

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GPG: A SIMPLE AND STRONG REINFORCEMENT LEARNING BASELINE FOR MODEL REASONING

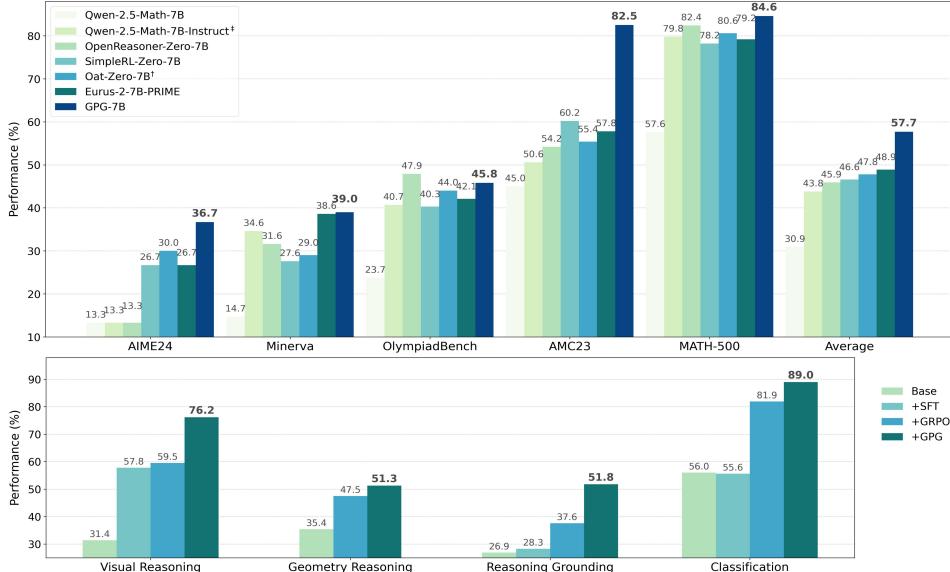
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimizes the original RL objective, thus obviating the need for surrogate loss functions. By eliminating the critic and reference models, avoiding KL divergence constraints, and addressing the advantage and gradient estimation bias, our approach significantly simplifies the training process compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. As illustrated in Figure 1, extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks.

1 INTRODUCTION



005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Figure 1: Performance comparison on unimodal reasoning tasks, with extended validation on multimodal reasoning. **(Top)** GPG achieves substantial performance gains over state-of-the-art (SOTA) baselines across diverse mathematical benchmarks, demonstrating its core effectiveness for linguistic reasoning. **(Bottom)** The method also generalizes robustly to multi-modal settings, outperforming other RL methods and further validating its broad applicability. Large Language Models (LLMs) have achieved substantial advancements, progressively narrowing the gap towards achieving Artificial General Intelligence (AGI) (OpenAI, 2024; Guo et al., 2025; Bai et al., 2025; Wu et al., 2024; Yao et al., 2024). Recently, LLMs, exemplified by OpenAI o1 (OpenAI, 2024) and DeepSeek R1 (Guo et al., 2025), adopt a strategy of generating intermediate reasoning steps before producing final answers. This approach markedly improves their efficacy in domain-specific

054 tasks, such as mathematical reasoning (Jia et al., 2024; Gao et al., 2024; Huang et al., 2025; Lai
 055 et al., 2024; Lightman et al., 2023; Huang et al., 2024). The remarkable success of this technology
 056 is mainly attributed to the Reinforcement Fine-Tuning (RFT) method (Schulman et al., 2017; Shao
 057 et al., 2024; Yu et al., 2025; Li et al., 2024; Hu, 2025). Through the application of RFT, the models
 058 allocate additional time to “deliberate” prior to generating answers, thereby constructing intricate
 059 reasoning chains and subsequently enhancing overall model performance.

060 In contrast to Supervised Fine-Tuning (SFT), which involves training models on fixed input-output
 061 pairs to mimic correct responses, RFT introduces an iterative process that incentivizes models to
 062 generate coherent and logically structured reasoning paths. RFT leverages RL techniques, such
 063 as Proximal Policy Optimization (PPO) (Schulman et al., 2017) and GRPO (Shao et al., 2024) to
 064 optimize decision-making during the generation of intermediate steps. Specifically, PPO ensures
 065 stability by constraining policy updates, preventing new strategies that deviate significantly from
 066 established behaviours. In contrast, GRPO enhances this process by evaluating performance across
 067 groups of actions, encouraging consistent improvements in reasoning quality. This dynamic and
 068 feedback-driven approach enables models to think more deeply, resulting in nuanced answers that
 069 better handle complex reasoning tasks compared to the more rigid and label-dependent training of
 070 SFT.

071 Despite the significant success of PPO in enhancing reasoning quality, it still suffers severely from
 072 the enormous resource consumption required during training. PPO necessitates the development and
 073 integration of both a critic model and a reference model, which not only complicates the training
 074 process but also substantially increases computational demands. Consequently, there is a growing
 075 trend toward simplifying the PPO method. For instance, ReMax (Li et al., 2024) removes the critic
 076 model by introducing a baseline value, which reduces the training GPU memory usage and accelerates
 077 the training process. Besides, GRPO eliminates the need for a critic model and utilizes normalized
 078 rewards within a sample group.

079 In addition to these methods to improve efficiency and stability, a very recent and concurrent work Dr.
 080 GRPO (Liu et al., 2025a) studies the details of reward and loss normalization and states GRPO tends
 081 to generate more tokens. However, although it reveals the reward bias in the advantage function, we
 082 observe that its performance did not significantly outperform GRPO.

083 Let’s review the birth of PPO. PPO was proposed as a general RL algorithm, with Atari games as
 084 primary evaluation benchmarks, where the policy network typically learns both visual representations
 085 and the control policy. In the LLM era, however, the policy is an LLM that already possesses
 086 strong representations from pretraining and SFT. Removing unnecessary components is important for
 087 scalability, which motivates rethinking simplified RL methods. Notably, PPO itself is a simplification
 088 of TRPO (Schulman et al., 2015), which in turn builds on the policy-gradient algorithm. A major
 089 weakness of policy gradients is high variance, which can be mitigated by (i) using a value-function
 090 baseline in advantage estimation and (ii) sampling more trajectories—both common practices in the
 091 post-training training for LLMs. Thus, it is natural to build a streamlined method for reasoning.

092 In summary, our key contributions are as follows:

- 093 • We revisit the design of policy gradient algorithms (Sutton et al., 1998) and propose a simple RL
 094 method that retains minimal RL components. Unlike conventional approaches, our method directly
 095 optimizes the objective function rather than relying on surrogate loss.
- 096 • Our approach eschews the necessity for both a critic model and a reference model. Moreover,
 097 it imposes no distributional constraints. These characteristics confer substantial advantages for
 098 potential scalability.
- 099 • We analyze and demonstrate the reward bias inherent in existing advantage functions and reveal
 100 the limitations of simplistic debiasing methods. Our exploration of the gradient estimate bias
 101 phenomenon has led us to propose a simple yet accurate gradient estimation (AGE) technique. To
 102 mitigate the potential issue of large variance in gradient estimation when the proportion of valid
 103 samples is excessively small, we introduce a simple thresholding mechanism to ensure a minimal
 104 partition of valid samples is maintained, followed by resampling.
- 105 • Extensive experiments demonstrate that GPG achieves SOTA results across various unimodal and
 106 multimodal visual tasks.

107 Our code will be open-sourced.

108

2 METHOD

109

2.1 PRELIMINARY AND TASK FORMULATION

110 RL is a computational approach to learning through interaction, where an agent seeks to maximize
 111 cumulative rewards by selecting optimal actions within an environment. The RL problem is typically
 112 defined by a policy π_θ , which maps states to actions, and aims to optimize the expected return. The
 113 core idea behind policy gradient methods is to use gradient ascent to iteratively adjust the policy
 114 parameters. The learning objective is maximizing the return $\mathcal{J}(\theta)$,

$$117 \quad \mathcal{J}(\theta) = \max_{\theta} \mathbb{E}_{\pi_\theta} \left[\sum_{t=0}^T r_t \right]. \quad (1)$$

118 The policy gradient theorem (Sutton et al., 1998) proves that the above problem can be converted into
 119 estimating the gradient,

$$120 \quad \nabla_{\theta} \mathcal{J}(\theta) = \mathbb{E}_{\pi_\theta} [\nabla_{\theta} \log \pi_\theta(a_t | s_t) Q^{\pi_\theta}(s_t, a_t)], \quad (2)$$

121 where $Q^{\pi_\theta}(s_t, a_t)$ is the action-value function, representing the expected return when taking action
 122 a_t in state s_t and following policy π_θ thereafter.

123 To reduce the variance, the advantage function $A^{\pi_\theta}(s_t, a_t)$ is often used, leading to the policy gradient
 124 update rule:

$$125 \quad \nabla_{\theta} \mathcal{J}(\theta) = \mathbb{E}_{\pi_\theta} [\nabla_{\theta} \log \pi_\theta(a_t | s_t) A^{\pi_\theta}(s_t, a_t)]. \quad (3)$$

126 *One-step advantage estimation* can be mathematically formulated as (Sutton et al., 1998):

$$127 \quad A^{\pi_\theta}(s_t, a_t) = Q^{\pi_\theta}(s_t, a_t) - V^{\pi_\theta}(s_t), \quad (4)$$

128 where $V^{\pi_\theta}(s_t)$ is a function of s_t . In principle, $V^{\pi_\theta}(s_t)$ can take any functional form. One commonly
 129 employed function is the value function, which represents the expected return when starting from state
 130 s_t and following policy π_θ . While GAE (Schulman et al., 2018) offers a more sophisticated approach
 131 to balance bias and variance in advantage estimation, we find that in the context of model reasoning,
 132 one-step estimation is sufficiently effective for achieving good performance. This simplicity is
 133 particularly advantageous in scenarios where computational efficiency is paramount.

134 Given a sequence of questions and instructions, the model is tasked with generating corresponding
 135 answers. Subsequently, rewards are returned based on predefined reward models or hand-crafted
 136 rules. Our objective is to leverage these reward signals to optimize our policy, thereby enhancing the
 137 model’s ability to generate accurate and contextually appropriate responses.

138 However, designing or obtaining accurate rewards for intermediate steps is nontrivial (Guo et al.,
 139 2025). To address this challenge, we simplify our problem as follows. Given a question and prompt
 140 s , we sample an action a from policy π_θ and obtain a final reward signal r . Note that the policy
 141 distribution π_θ is modeled in an autoregressive manner. In this setting, we can leverage policy gradient
 142 methods to optimize the policy.

143

2.2 GROUP POLICY GRADIENT

144 Our proposed method, Group Policy Gradient (GPG), is designed to address the issue of high
 145 variance in policy gradient estimation in the absence of a value model. By leveraging group-level
 146 rewards, GPG stabilizes learning and enhances the robustness of reinforcement learning training.
 147 Specifically, GPG utilizes the mean reward within each group to normalize the rewards, thereby
 148 effectively reducing variance. This approach eliminates the need for a traditional value model, thereby
 149 simplifying the training process and enhancing computational efficiency. The name “Group Policy
 150 Gradient” reflects our method’s core mechanism of utilizing group-level mean rewards to stabilize
 151 and optimize learning.

152 The core objective of GPG is defined as:

$$153 \quad \mathcal{J}_{\text{GPG}}(\theta) = \mathbb{E}_{(q, a) \sim \mathcal{D}, \{o_i\}_{i=1}^G} \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \left(-\log \pi_\theta(o_{i,t} | q, o_i, < t) \hat{A}_{i,t} \right) \right], \quad (5)$$

162 where o_i represents the individual responses in the group G , and the advantage of the i -th response is
 163 calculated by normalizing the group-level rewards $\{R_i\}_{i=1}^G$:

$$165 \quad \hat{A}_{i,t} = \frac{r_i - \text{mean}(\{R_i\}_{i=1}^G)}{F_{norm}}. \quad (6)$$

167 F_{norm} is an **optional** normalization technique, which is commonly applied in conjunction with
 168 reward clipping to mitigate the impact of unexpected outlier values. One widely adopted practice
 169 is to employ standard variance normalization within a training batch (Mnih et al., 2016; Schulman
 170 et al., 2017). This approach helps stabilize the training process by reducing the variance of the reward
 171 signal, which is particularly important when dealing with environments where the magnitude of
 172 rewards can vary significantly, such as in different Atari games. By normalizing the reward signal, the
 173 model becomes less sensitive to extreme values, thereby improving the robustness and convergence of
 174 the training algorithm. However, in the reasoning tasks involving large models, the reward is typically
 175 well-defined and does not suffer from the same variance issues observed in other environments. As
 176 for the Math reasoning problem, it is a common practice to award the right answer with 1.0 and the
 177 wrong answer with 0.0.

178 We utilize a basic Math Reasoning setting ¹ of SimpleRL from open-r1 (Face, 2025), using only
 179 the MATH-lighteval dataset to facilitate rapid experimental validation. Specifically, we remove the
 180 format reward and only enable the accuracy reward for simplicity.

Models	Average AIME24	MATH-500	AMC23	Minerva	Olympiad	Bench
Qwen2.5-Math-7B	30.9	13.3	57.6	45.0	14.7	23.7
GPRO	43.7	16.7	73.4	62.5	30.2	35.7
GPG($F_{norm}=1, \alpha=1$)	43.9	23.3	76.3	52.5	30.1	37.4
GPG($F_{norm}=\text{std}\{R(o)\}, \alpha=1$)	45.3	23.3	73.6	60.0	30.5	39.3
GPG($F_{norm}=\text{std}\{R(o)\}, \alpha = \frac{B}{B-M}$)	44.1	23.3	74.2	52.5	30.9	39.7
GPG($F_{norm}=1, \alpha = \frac{B}{B-M}$)	47.8	30.0	75.0	62.5	33.1	38.2
GPG($F_{norm}=1, \alpha = \frac{B}{B-M}, \beta_{th} = 0.6$)	48.3	30.0	76.2	62.5	34.2	39.0
Dr. GRPO [†]	43.7	26.7	74.6	50.0	30.1	37.3

192 Table 1: Math reasoning results on Qwen2.5-Math-7B model. [†]: reproduction use the released code.

193 The critical component: $\hat{A}_{i,t}$, has been underexplored in prior research in reasoning. This gap in the
 194 literature highlights the need for further investigation of the role and impact of $\hat{A}_{i,t}$ within reasoning
 195 tasks. There are two unresolved problems.

196 **The $\hat{A}_{i,t}$ should not introduce reward bias.** Otherwise, bias deviates from the original problem
 197 formulation. GRPO (Shao et al., 2024) formulates it as $F_{norm} = \text{std}\{R(o)\}$, which is essentially
 198 a function of s_t in Equation 2 and explicitly introduces the reward bias. Since we aim to solve the
 199 original problem, we don't want to apply a surrogate or bias. However, As shown in Table 1, if we
 200 remove this bias item, i.e. $F_{norm} = 1$, it (43.9%) *cannot clearly outperform* GRPO (43.7%), which
 201 is opposite to the observation of a concurrent work Dr. GRPO (Liu et al., 2025a).

202 **Examples of all right or wrong responses within a group introduce bias for the estimation of the**
 203 **gradient.** Given a training batch of batch size B , let the gradient of the i -th sample be denoted as g_i .
 204 Without loss of generality, assume that the first M examples within the batch are all right or wrong
 205 responses within a group. The standard backpropagation (BP) algorithm estimates the gradient as:
 206 $\mathbf{g} = \frac{\sum_{i=1}^B \mathbf{g}_i}{B} = \frac{\sum_{i=M+1}^B \mathbf{g}_i}{B}$. However, the first M examples are not valid for gradient estimation and
 207 contribute zero gradient. Therefore, the more accurate gradient estimation (AGE) can be written as:

$$210 \quad \hat{\mathbf{g}} = \frac{\sum_{i=M+1}^B \mathbf{g}_i}{B-M} = \mathbf{g} \frac{B}{B-M} = \alpha \mathbf{g}, \alpha = \frac{B}{B-M}. \quad (7)$$

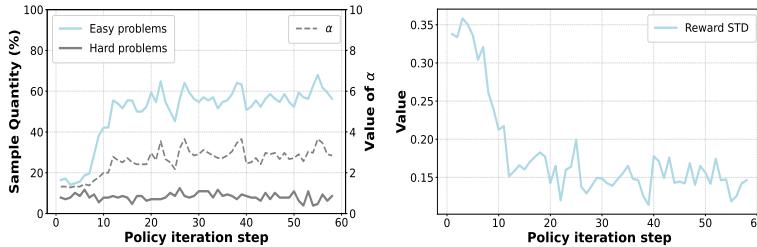
212 It should be noted that the value α is not a constant and it varies across different sample batches. We
 213 also illustrate α with different steps in Figure 2, which indicates the necessity of gradient correction.
 214 As for multi-GPU training, to achieve more accurate gradient calculations, it is advisable to gather

215 ¹huggingface/open-r1/recipes/Qwen2.5-Math-7B/grpo/config_simple_rl.yaml

216 all non-zero gradient samples across all GPUs and compute the average gradient uniformly. This
 217 approach can be implemented through a custom gradient aggregation function, which leads to
 218 increased communication overhead. Instead, we derive another equivalent format, which doesn't
 219 require extra cost, and we provide the proof in Section A. Therefore, given a batch sample, the
 220 objective can be written as

$$\hat{\mathcal{J}}_{\text{GPG}}(\theta) = \alpha \mathcal{J}_{\text{GPG}}(\theta). \quad (8)$$

223 As shown in Table 1, our method achieves an average score of 47.8%, being equipped with AGE.
 224



225
 226
 227
 228
 229
 230
 231
 232
 233
 234 Figure 2: **(Left)** The proportion of easy problems with all rewards are 0, hard problems with all
 235 rewards are 1 within a rollout group. **(Right)** The standard deviation of reward across steps.

236 In a scenario where we reject the M examples and resample responses in a manner similar to the
 237 approach presented in a recent work (Yu et al., 2025) until M equals 0, α is set to 1. However,
 238 this particular setting is not training-efficient. The reason is that the training time is constrained
 239 by the worker that takes the longest to collect the desired examples. In contrast, our proposed
 240 method demonstrates superior efficiency. Moreover, it can automatically adjust the loss based on the
 241 performance of the sample batch.

242 We also evaluate a setting of reward normalization of GRPO, where $F_{\text{norm}} = \text{std}\{R(o)\}, \alpha = 1$, and
 243 show the result in Table 1. It outperforms $F_{\text{norm}} = 1, \alpha = 1$ by 1.4% average score. This motivates us
 244 to dive into the source of the improvement. We plot the std of the reward in Figure 2. Note that the
 245 std is calculated by averaging the std of each group, whose value ranges from 0.10 to 0.35. And
 246 α varies from 1.5 to 4.0. The reward normalization of GRPO provides such a diving std (within a
 247 group) mechanism, which has some gradient correction effect.

Components				
	Value Models	Reference Models	Surrogate Loss	Policy Constraint
PPO	✓	✓	✓	✓
GRPO	✗	✓	✓	✓
TRPO	✓	✗	✓	✓
PGP	✗	✗	✗	✗

248
 249 Table 2: Comparison of reinforcement learning algorithms (in reasoning) with various components.
 250
 251

252 **Thresholding minimal partition of valid samples and resampling to reduce variance.** While our
 253 approach provides an unbiased estimation of the gradient, it may encounter issues with high variance
 254 when the proportion of valid samples is excessively low. To mitigate this, we introduce a threshold
 255 $\beta_{th} = \frac{1}{\alpha_{th}}$ for the proportion of valid samples. When this proportion falls below the given value, we
 256 accumulate the valid samples into the resampled subsequent batch until the proportion exceeds the
 257 threshold. This strategy effectively reduces the variance of the gradient estimation, thereby enhancing
 258 the stability and convergence rate of the model training process. It is worth noting that this strategy
 259 further improves the performance, as demonstrated in Table 1.

260 RL algorithms vary significantly in their approaches to tackling variance and optimizing policies.
 261 Two key components in many RL algorithms are surrogate loss and policy constraints. We summarize
 262 the main comparisons among various frameworks in Table 2. Our method stands out by preserving
 263 the simplest form, which not only ensures ease of implementation but also maintains high efficiency
 264 and effectiveness.

270

3 EXPERIMENTS

271

272 All experimental settings are meticulously controlled to ensure fair comparisons. We closely adhere
273 to the hyperparameters employed by GRPO, despite their suboptimality for our approach. Notably,
274 our method consistently outperforms GRPO across all tasks, achieving superior performance with
275 clear margins. These results underscore the robustness and efficacy of our proposed method.
276

277

3.1 EXPERIMENTAL SETUP

278

279 **Dataset and Benchmarks.** In the unimodal scenario, we utilize datasets from multiple sources
280 such as open-s1, open-rs (Dang & Ngo, 2025), and MATH-lighteval (Hendrycks et al., 2021) for
281 training. Specifically, we train the DeepSeek-R1-Distill-Qwen-1.5B base model with the open-s1
282 dataset, resulting in the GPG-RS1 model. Similarly, training with the open-rs dataset produces the
283 GPG-RS3 model. Furthermore, we perform ablation studies using the MATH-lighteval dataset on the
284 Qwen2.5-Math-7B base model. To compare the overall performance on the 7B model, we utilize the
285 dataset from (Yu et al., 2025), and the detailed setting is shown in Section B.1.
286

287 These datasets encompass a wide range of problem types and difficulty levels. To assess the
288 reasoning capabilities of the models, we employ five distinct mathematics-focused benchmark
289 datasets: AIME24, MATH-500 (Lightman et al., 2023; Hendrycks et al., 2021), AMC23, Minerva
290 (Lewkowycz et al., 2022), and OlympiadBench (Huang et al., 2024).
291

292 In the multimodal case, we handle a variety of tasks. Specifically, for the visual reasoning task, we
293 utilize approximately 12,000 samples from the SAT dataset (Ray et al., 2024) for training and perform
294 evaluations on the CV-Bench dataset Tong et al. (2024). In addressing the geometry reasoning task,
295 by following R1-V (Chen et al., 2025), we train on around 8,000 samples from the GEOQA training
296 set (Chen et al., 2025) and subsequently evaluating performance on the GEOQA test set (Chen et al.,
297 2022). For both the classification and reasoning grounding tasks, we follow Visual-RFT to conduct
298 few-shot classification training on Flower102 (Nilsback & Zisserman, 2008), Pets37 (Parkhi et al.,
299 2012), FGVCAircraft (Maji et al., 2013), Car196 (Krause et al., 2013), respectively. Additionally,
300 training is conducted on 239 samples from the LISA training set (Lai et al., 2024). All evaluations
301 are carried out using the corresponding test sets associated with these training sets.
302

303 **Implementation Details.** Our approach is broadly applicable across a wide range of reinforcement
304 learning tasks. To demonstrate its versatility and efficacy, we conduct experiments encompassing
305 both unimodal and multimodal scenarios. These experiments are performed on NVIDIA H20 GPUs
306 and NPUs from China. For each experiment, we adhere strictly to the implementation of original
307 code base, ensuring consistent training and evaluation procedures. The implemented GPG method
308 can refer to Algorithm 1, and more detailed settings can refer to Appendix B.
309

310

311 **Algorithm 1** Group Policy Gradient (GPG)

312 **Input:** o [shape: (B, G, C, dim)] \leftarrow Model Output, $r \leftarrow$ Reward, β_{th}
313 1: Collecting samples and calculate \hat{A} and α based on Equation 6 and Equation 7 until $\alpha < \frac{1}{\beta_{th}}$
314 2: Calculate $\log \pi_\theta(o)$ [per_token_logps] based on o and model π_θ
315 3: $loss \leftarrow -\log \pi_\theta(o) \cdot \hat{A} * \alpha$
316 **Output:** $loss$

317

318

3.2 UNIMODAL TASK EVALUATION

319

320 To evaluate our method, we select two models: a strong 1.5B distilled SFT model (DeepSeek-R1-
321 Distill-Qwen-1.5B) and a 7B base model.
322

323 **Mathematical Reasoning using 1.5B model (A strong SFT model).** Compared with other 1.5B
324 distilled models, our models exhibit superior performance with average accuracy 55.7% of GPG-RS1,
325 as illustrated in Table 3. Additionally, GPG-RS1 and GPG-RS3 shows strong results in AMC23 with
326 a score of 77.5% and 80.0%, obviously surpassing Open-RS 67.5% and 70.0%. Both GPG-RS1 and
327 GPG-RS3 demonstrate competitive performance across various benchmarks, particularly excelling in
328 MATH-500 with scores of 87.6% and 85.0%, and OlympiadBench with scores of 50.5% and 52.4%.
329

324 Distilled 1.5B Models		325 Average AIME24 MATH-500 AMC23 Minerva OlympiadBench				
326 DeepSeek-R1-Distill-Qwen-1.5B	48.9	28.8	82.8	62.9	26.5	43.3
327 Still-3-1.5B-Preview	51.6	32.5	84.4	66.7	29.0	45.4
328 Open-RS1 [†]	53.1	33.3	83.8	67.5	29.8	50.9
329 Open-RS3 [†]	52.0	26.7	85.4	70.0	27.9	50.2
330 GPG-RS1	55.7	33.3	87.6	77.5	29.4	50.5
331 GPG-RS3	55.5	33.3	85.0	80.0	26.8	52.4

332 Table 3: The zero-shot pass@1 performance of the 1.5B models distilled by DeepSeek-R1 across
 333 five mathematical reasoning benchmarks. [†]: reproduced results using released codes. [‡]: results from
 334 (Dang & Ngo, 2025).

336 7B Models		337 Average AIME24 MATH-500 AMC23 Minerva OlympiadBench				
338 Qwen-2.5-Math-7B-Instruct [‡]	43.8	13.3	79.8	50.6	34.6	40.7
339 Qwen2.5-Math-7B	30.9	13.3	57.6	45.0	14.7	23.7
340 Qwen2.5-Math-7B (no template)*	38.2	0.2	69.0	45.8	21.3	34.7
341 rStar-Math-7B (Guan et al., 2025)	-	26.7	78.4	47.5	-	47.1
342 Eurus-2-7B-PRIME (Cui et al., 2025)	48.9	26.7	79.2	57.8	38.6	42.1
343 Oat-Zero-7B (Liu et al., 2025a)	51.4	43.3	80.0	62.7	30.1	41.0
344 Oat-Zero-7B (Liu et al., 2025a) [†]	47.8	30.0	80.6	55.4	29.0	44.0
345 OpenReasoner-Zero-7B @ 8k (Hu et al., 2025)	45.9	13.3	82.4	54.2	31.6	47.9
346 SimpleRL-Zero-7B (Zeng et al., 2025)*	46.6	26.7	78.2	60.2	27.6	40.3
347 GPG-Zero-7B	57.7	36.7	84.6	82.5	39.0	45.8

348 Table 4: The zero-shot pass@1 performance of the 7B models across five mathematical reasoning
 349 benchmarks. [†]: reproduced results using the released code. [‡]: results from (Dang & Ngo, 2025), *:
 350 results from (Liu et al., 2025a).

351 **Mathematical Reasoning using 7B model.** As illustrated in Table 4, GPG-7B achieves an average
 352 score of 57.7% and outperforms other baselines with clear margins. This exceptional performance is
 353 further highlighted in the AMC23 and Minerva, where GPG-7B attained a leading score of 82.5%
 354 and 39.0%, exceeding SimpleRL-Zero-7B by impressive margins of 22.3% and 11.4%, respectively.
 355 Moreover, GPG-7B consistently exhibits superiority across most benchmarks, outperforming the
 356 recent state-of-the-art method, Oat-Zero-7B, by an average of 6.3%.

357 Models	358 GEOQA Test	359	360	361	362	363
Qwen2.5-VL-3B-Instruct	35.41					
+ GRPO	47.48					
+ GPG	51.33					

364 Table 5: Geometry reasoning re-
 365 sults on GEOQA. GPG is better
 366 than GRPO.

367 Models	368 Total	369 Count	370 Relation	371 Depth	372 Distance
Qwen2-VL-2B	31.38	54.69	22.46	0.16	31.66
+ SFT	57.84	60.02	68.92	55.00	45.83
+ GRPO	59.47	59.64	66.76	54.16	56.66
+ GPG	76.15	66.62	83.23	81.66	75.50

373 Table 7: Visual reasoning results on CV-Bench (Tong
 374 et al., 2024), which shows GPG training on base model
 375 has overall better performance over GRPO and the base
 376 model.

377 3.3 MULTIMODAL TASK EVALUTAION

378 We further evaluate our method on several very recent multimodal benchmarks, most of which report
 379 results based on GRPO.

380 **Geometry Reasoning.** In addition to visual reasoning, MLLMs exhibit notable proficiency in
 381 geometry reasoning. To evaluate the efficacy of the GPG method in this domain, we employ an

382 Models	383 Average	384 Flower102 Nilsback & Zisserman (2008)	385 Pets37 Parkhi et al. (2012)	386 FGVC5 Maji et al. (2013)	387 Cars196 Krause et al. (2013)
Qwen2-VL-2B	56.0	54.8	66.4	45.9	56.8
+ SFT	55.6	58.5	55.5	67.9	40.5
+ GRPO	81.9	71.4	86.1	74.8	95.3
+ GPG	89.0	79.3	90.8	88.5	97.5

388 Table 6: 4-shot Results on Four Fine-grained Classification
 389 Datasets. GPG shows consistently better results than GRPO
 390 on 4 classification datasets.

391 Models	392 mIoU _{test}	393 mIoU _{val}	394 gIoU _{test}
Qwen2-VL-2B	26.9	30.1	25.3
+ SFT	28.3	29.7	25.3
+ GRPO	37.6	34.4	34.4
+ GPG	51.8	51.3	50.4

395 Table 8: Reasoning grounding results on
 396 LISA (Lai et al., 2024). GPG surpasses
 397 GRPO in reasoning grounding.

378 experimental setup similar to that used in R1-V (Chen et al., 2025) using the GEOQA (Chen et al.,
 379 2022) dataset. The results, presented in Table 5, indicate that the GPG method achieved a score of
 380 51.33%, surpassing the GRPO’s score of 47.48% by 3.85% points. This demonstrates the superior
 381 performance of the GPG method in addressing complex geometric reasoning tasks.

382 **Classification.** Beyond the evaluation of reasoning tasks, we also assess the enhancement of the
 383 GPG method over GRPO in image perception tasks. As shown in Table 6, the GPG method achieves
 384 an average score of 89.0% across four classification datasets, surpassing GRPO by 7.1% points.
 385 Additionally, our method consistently produces improvements across all four classification datasets,
 386 underscoring its superiority in image perception tasks.

387 **Visual Reasoning.** We initially evaluate the GPG method using the CV-Bench (Tong et al., 2024)
 388 visual reasoning dataset, strictly adhering to the parameter settings of VisualThinker-R1-Zero. As
 389 illustrated in Table 7, the GPG method demonstrates a significant improvement in performance.
 390 Specifically, it attains a score of 76.15% on CV-Bench, representing an increase of 16.68% points
 391 compared to the 59.47% score achieved by GRPO.

392 **Reasoning Grounding.** The final critical aspect of evaluating MLLMs involves precisely identifying
 393 objects according to user requirements. To this end, we employ the Qwen2-VL-2B model for
 394 grounding tasks using the LISA dataset (Lai et al., 2024), with the results presented in Table 8.
 395 In comparison to the GRPO method, the GPG approach demonstrates a substantial enhancement,
 396 improving all metrics by over 14.0% points. This significant improvement underscores the superiority
 397 of the GPG method in object localization, leading to considerable advancements in reasoning and
 398 perception capabilities.

400 3.4 ABLATION STUDY AND DISCUSSION

401 **Case Study and Training Analysis.** We present the reasoning processes of GPG and GRPO, as
 402 illustrated in Figure 4 (supplementary). Compared to GRPO, the GPG approach demonstrates a more
 403 comprehensive and accurate reasoning capability, whereas GRPO exhibits errors in formula analysis.
 404 Consequently, GPG arrives at the correct solution, while GRPO produces an incorrect result. In
 405 Figure 3, we present a range of real-time training metrics to illustrate the effectiveness of GPG as a
 406 straightforward yet strong RL algorithm.

407 **Sensitivity on Group Size.** We study the effect of the number of generations within a group. As
 408 shown in Table 11, increasing the group size from 2 to 16 leads to progressive improvements across
 409 most metrics. Specifically, the Average performance improves steadily with larger group sizes. We
 410 choose 8 to achieve a good tradeoff between training cost and performance.

411 **Comparison with Various RL Methods.** We attempt to explain the differences between GPG and
 412 other RL methods in the simplest way. As shown in Table 14, it can be seen that the loss of GPG
 413 does not include the “CLIP term” and the “KL divergence”. Its form and calculation are the simplest,
 414 and as discussed in Section 3.2, its performance is better than other methods.

415 **Comparison with DAPO (Yu et al., 2025).** We meticulously control the experimental settings and
 416 rigorously reported the results in Table 9. All models are trained on the same dataset and for the
 417 same number of steps (1100). In contrast to DAPO (Yu et al., 2025), which incorporates all proposed
 418 components, our method focuses exclusively on the accuracy reward. Despite this, our approach
 419 achieves superior performance with reduced training and data costs. DAPO, which constructs fully
 420 valid batches through dynamic sampling, often requires more batches and may waste valid samples
 421 in the final batch. In contrast, our method avoids these inefficiencies, ensuring optimal resource
 422 utilization and enhanced performance.

Method	Average	AIME24	MATH-500	AMC23	Minerva	OlympiadBench	Training Cost	Data Cost	Memory
DAPO-7B	56.0	30.0	84.6	82.5	34.9	47.8	1×	1×	28G
PGP-Zero-7B	57.7	36.7	84.6	82.5	39.0	45.8	0.45×	0.39×	24G

424 425 Table 9: Comparison with DAPO (Qwen-7B Math). Ours is simpler, stronger and resource efficient.

426 **KL constraint.** In principle, our method is designed to optimize the original reinforcement learning
 427 (RL) problem directly. And it’s a bit strange without imposing any distribution constraints. Despite

432 this, we conduct an ablation study to evaluate the impact of adding a distribution constraint. The
 433 results are presented in Table 13. Our findings indicate that incorporating such a constraint negatively
 434 impacts performance.

435 Limited by space, we provide more ablation studies in Section B.2.

438 3.5 IMPACT AND LIMITATION DISCUSSION

440 Achieving advanced general intelligence critically depends on augmenting the reasoning capabilities
 441 of models, with efficient and scalable reinforcement learning methods serving as a cornerstone.
 442 Our proposed approach investigates a minimalist strategy that aims to enhance reasoning capacity
 443 through simplicity and efficiency, thereby potentially facilitating the development of scalable systems.
 444 However, given the constraints of our computational budget, we do not evaluate our method on
 445 extremely large models.

447 4 RELATED WORK

449 **Large Model Reasoning.** Recent advancements in both LLM and Multimodal Large Language
 450 Model (MLLM) increasingly focus on enabling models to simulate human-like, stepwise reasoning
 451 processes. In the field of LLMs, researchers have pioneered methods such as Chain-of-Thought
 452 (CoT) prompting (OpenAI, 2024; Wei et al., 2022; Kojima et al., 2022; Ye et al., 2025), Tree-of-
 453 Thought (Yao et al., 2023), Monte Carlo Tree Search (Feng et al., 2024; Xin et al., 2024; Trinh
 454 et al., 2024), and the construction of complex SFT datasets (Muennighoff et al., 2025), to enhance
 455 performance in reasoning tasks. Notably, approaches such as DeepSeek-R1 (Guo et al., 2025) employ
 456 large-scale RL with format-specific and result-oriented reward functions, guiding LLMs toward
 457 self-emerging, human-like, complex CoT reasoning with significant performance improvements
 458 in challenging reasoning tasks. Meanwhile, MLLMs convert inputs from various modalities into
 459 a unified LLM vocabulary representation space for processing and exhibit superior performance
 460 in vision understanding tasks (Wu et al., 2024; Liu et al., 2023; Chen et al., 2024; Google, 2023).
 461 Building on advancements in LLM reasoning, the research community collectively applies the
 462 DeepSeek-R1 methodology to MLLMs to enhance their visual reasoning capabilities, yielding
 463 remarkable progress (Zhang et al., 2025; Liu et al., 2025b; Chen et al., 2025; Zhou et al., 2025).

464 **Reinforcement Learning.** RL has driven significant progress in sequential decision-making, with
 465 policy gradient methods being fundamental to optimizing stochastic policies. The REINFORCE
 466 algorithm (Williams, 1992) establishes early principles for gradient-based policy updates in trajectory-
 467 driven tasks. However, its high variance poses challenges for scalability. To address this, subsequent
 468 research focus on stabilizing policy optimization processes. Trust Region Policy Optimization
 469 (TRPO) (Schulman et al., 2015) introduces constrained updates via quadratic approximations to
 470 ensure monotonic improvement. This approach is further refined by PPO (Schulman et al., 2017),
 471 which employed clipped objective functions to simplify the optimization process. Subsequent
 472 studies seek to enhance the PPO algorithm (Zheng et al., 2023) or elaborate on its implementation
 473 (Engstrom et al., 2019). PPO achieves widespread use in language model alignment and robotic
 474 control. However, the algorithm's dependence on conservative policy updates or heuristic clipping
 475 thresholds can undermine its exploration potential in favour of stability, which poses a significant
 476 challenge in complex domains requiring dynamic strategy adaptation.

477 Limited by space, more related work is discussed in Section C.

478 5 CONCLUSION

481 In this paper, we introduce GPG, which effectively addresses the critical challenges inherent in
 482 reinforcement fine-tuning approaches such as PPO and GRPO. By directly incorporating group-based
 483 decision dynamics into the standard PG method, GPG simplifies the training process and significantly
 484 reduces computational overhead without sacrificing reasoning quality. This breakthrough provides
 485 a more efficient framework for training advanced LLMs capable of complex reasoning, thereby
 486 contributing to more resource-effective and scalable artificial intelligence systems.

486

6 REPRODUCIBILITY STATEMENT

488 We have taken the following steps to ensure the reproducibility of our empirical results: (1) We
 489 provide a comprehensive description of all experimental setups, including the datasets used and their
 490 corresponding benchmarks, in Section 3.1. (2) Our implementation builds upon several publicly
 491 available code repositories. For unimodal tasks, we utilize the VERL framework (Sheng et al.,
 492 2024), Open-r1 (Face, 2025), and Open-rs (Dang & Ngo, 2025). For multimodal tasks, we adopt
 493 VisualThinker-R1-Zero (Zhou et al., 2025), R1-V (Chen et al., 2025), and Visual-RFT (Liu et al.,
 494 2025b). These repositories have been adapted to suit our purposes and to facilitate replication by the
 495 research community. (3) Detailed training configurations—including hyperparameters, evaluation
 496 protocols, and specific adaptations applied to each base framework—are thoroughly documented
 497 in Appendices B.1 and B.4. (4) In compliance with the double-blind review policy, we have made
 498 our full implementation, along with training and evaluation scripts, publicly accessible through an
 499 anonymous repository. This ensures that all reported results can be reproduced without revealing the
 500 authors’ identities. The anonymous link is provide in Appendix B.6.

501

REFERENCES

503 Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
 504 Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What matters for
 505 on-policy deep actor-critic methods? a large-scale study. In *International conference on learning
 506 representations*, 2021. 15

507 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 508 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
 509 1

511 Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric P. Xing, and Liang Lin.
 512 Geoqa: A geometric question answering benchmark towards multimodal numerical reasoning,
 513 2022. URL <https://arxiv.org/abs/2105.14517>. 6, 8, 17

514 Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization
 515 ability in vision-language models with less than \$3. [https://github.com/Deep-Agent/
 516 R1-V](https://github.com/Deep-Agent/R1-V), 2025. Accessed: 2025-02-02. 6, 8, 9, 10, 16

518 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
 519 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
 520 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024. 9

521 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
 522 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint
 523 arXiv:2502.01456*, 2025. 7

524 Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works and
 525 what doesn’t, 2025. URL <https://arxiv.org/abs/2503.16219>. 6, 7, 10, 16

527 Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
 528 and Aleksander Madry. Implementation matters in deep rl: A case study on ppo and trpo. In
 529 *International conference on learning representations*, 2019. 9

530 Hugging Face. Open r1: A fully open reproduction of deepseek-r1. [https://github.com/
 531 huggingface/open-r1](https://github.com/huggingface/open-r1), 2025. Accessed: January 2025. 4, 10, 16

533 Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
 534 Wang. Alphazero-like tree-search can guide large language model decoding and training, 2024.
 535 URL <https://arxiv.org/abs/2309.17179>. 9

536 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
 537 Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for
 538 large language models. *arXiv preprint arXiv:2410.07985*, 2024. 2

539 Google. Gemini: A family of highly capable multimodal models, 2023. 9

540 Xinyu Guan, Li Lyra Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
 541 rstar-math: Small llms can master math reasoning with self-evolved deep thinking. *arXiv preprint*
 542 *arXiv:2501.04519*, 2025. 7

543 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 544 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 545 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025. 1, 3, 9

546 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 547 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 548 *preprint arXiv:2103.03874*, 2021. 6, 15

549 Chloe Ching-Yun Hsu, Celestine Mendler-Dünner, and Moritz Hardt. Revisiting design choices in
 550 proximal policy optimization. *arXiv preprint arXiv:2009.10897*, 2020. 20

551 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models, 2025.
 552 URL <https://arxiv.org/abs/2501.03262>. 2

553 Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 554 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 555 model. *arXiv preprint arXiv:2503.24290*, 2025. 7

556 Hailang Huang, Yong Wang, Zixuan Huang, Huaqiu Li, Tongwen Huang, Xiangxiang Chu, and
 557 Richong Zhang. Mmgenbench: Fully automatically evaluating lmms from the text-to-image
 558 generation perspective, 2025. URL <https://arxiv.org/abs/2411.14062>. 2

559 Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
 560 Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese
 561 evaluation suite for foundation models. *Advances in Neural Information Processing Systems*, 36:
 562 62991–63010, 2023. 15

563 Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li, Haoyang Zou, Ruijie Xu, Run-Ze Fan, Lyuman-
 564 shan Ye, Ethan Chern, Yixin Ye, et al. Olympicarena: Benchmarking multi-discipline cognitive
 565 reasoning for superintelligent ai. *Advances in Neural Information Processing Systems*, 37:19209–
 566 19253, 2024. 2, 6

567 LI Jia, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
 568 Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, et al. Numinamath, 2024. 2

569 Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
 570 sawa. Large language models are zero-shot reasoners. In S. Koyejo, S. Mo-
 571 hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural In-*

572 *formation Processing Systems*, volume 35, pp. 22199–22213. Curran Associates, Inc.,
 573 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf. 9

574 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 575 categorization. In *Proceedings of the IEEE international conference on computer vision workshops*,
 576 pp. 554–561, 2013. 6, 7, 17

577 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Reasoning
 578 segmentation via large language model. In *Proceedings of the IEEE/CVF Conference on Computer*

579 *Vision and Pattern Recognition*, pp. 9579–9589, 2024. 2, 6, 7, 8, 17

580 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 581 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 582 reasoning problems with language models. *Advances in Neural Information Processing Systems*,
 583 35:3843–3857, 2022. 6

584 Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
 585 simple, effective, and efficient reinforcement learning method for aligning large language models,
 586 2024. URL <https://arxiv.org/abs/2310.10505>. 2

594 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 595 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth*
 596 *International Conference on Learning Representations*, 2023. 2, 6

597

598 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 599 *neural information processing systems*, 36:34892–34916, 2023. 9

600 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 601 Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*,
 602 2025a. 2, 4, 7, 16

603

604 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 605 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025b. 9,
 606 10, 16

607 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 608 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013. 6, 7, 17

609

610 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
 611 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 612 learning. In *International conference on machine learning*, pp. 1928–1937. PMLR, 2016. 4

613

614 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 615 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 616 scaling. *arXiv preprint arXiv:2501.19393*, 2025. 9

617

618 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 619 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 722–729. IEEE, 2008. 6, 7, 17

620

621 OpenAI. Learning to reason with llms, 2024. URL <https://openai.com/index/learning-to-reason-with-llms/>. 1, 9

622

623 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012*
 624 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012. 6, 7, 17

625

626 Arijit Ray, Jiafei Duan, Reuben Tan, Dina Bashkirova, Rose Hendrix, Kiana Ehsani, Aniruddha
 627 Kembhavi, Bryan A. Plummer, Ranjay Krishna, Kuo-Hao Zeng, and Kate Saenko. Sat: Spatial
 628 aptitude training for multimodal language models, 2024. URL <https://arxiv.org/abs/2412.07755>. 6

629

630 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 631 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,
 632 2015. 2, 9, 20

633

634 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 635 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017. 2, 4, 9, 16, 20

636

637 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
 638 continuous control using generalized advantage estimation, 2018. URL <https://arxiv.org/abs/1506.02438>. 3, 16

639

640 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 641 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 642 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024. 2, 4, 16, 20

643

644 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 645 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 646 *arXiv: 2409.19256*, 2024. 10, 15

647

Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 press Cambridge, 1998. 2, 3

648 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha Akula,
 649 Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Ziteng Wang, Rob Fergus, Yann LeCun,
 650 and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal llms, 2024.
 651 URL <https://arxiv.org/abs/2406.16860>. 6, 7, 8, 16

652 Trieu Trinh, Yuhuai Wu, Quoc Le, He He, and Thang Luong. Solving olympiad geometry without
 653 human demonstrations. *Nature*, 2024. doi: 10.1038/s41586-023-06747-5. 9

654 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 655 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 656 neural information processing systems*, 35:24824–24837, 2022. 9

657 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 658 learning. *Machine learning*, 8:229–256, 1992. 9

659 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 660 Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
 661 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024. 1, 9

662 Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
 663 Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F. Wu, Fuli Luo,
 664 and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback for reinforcement
 665 learning and monte-carlo tree search, 2024. URL <https://arxiv.org/abs/2408.08152>.
 666 9

667 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 668 Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural
 669 information processing systems*, 36:11809–11822, 2023. 9

670 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 671 Weilin Zhao, Zihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint
 672 arXiv:2408.01800*, 2024. 1

673 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
 674 reasoning, 2025. URL <https://arxiv.org/abs/2502.03387>. 9

675 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 676 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 677 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 678 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
 679 Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source
 680 llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>. 2, 5, 6, 8, 15, 16

681 Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model
 682 and 8k examples: Emerging reasoning with reinforcement learning is both effective and efficient.
 683 <https://hkust-nlp.notion.site/simplerl-reason>, 2025. Notion Blog. 7

684 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao.
 685 R1-vl: Learning to reason with multimodal large language models via step-wise group relative
 686 policy optimization. *arXiv preprint arXiv:2503.12937*, 2025. 9

687 Rui Zheng, Shihuan Dou, Songyang Gao, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin, Qin Liu,
 688 Limao Xiong, Lu Chen, Zhiheng Xi, Yuhao Zhou, Nuo Xu, Wenbin Lai, Minghao Zhu, Rongxiang
 689 Weng, Wensen Cheng, Cheng Chang, Zhangyue Yin, Yuan Hua, Haoran Huang, Tianxiang Sun,
 690 Hang Yan, Tao Gui, Qi Zhang, Xipeng Qiu, and Xuanjing Huang. Secrets of rlhf in large language
 691 models part i: Ppo, 2023. 9

692 Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
 693 zero's "aha moment" in visual reasoning on a 2b non-sft model, 2025. URL <https://arxiv.org/abs/2503.05132>. 9, 10, 16

694 701

702 **A ANALYSIS OF DISTRIBUTED GRADIENT AVERAGING WITH INVALID**
 703 **SAMPLES**
 704

705 **A.1 PROBLEM FORMULATION**
 706

707 Consider a distributed training setup where:

709 • A batch of B samples is evenly distributed across N GPUs, with each GPU processing
 710 $K = B/N$ samples.
 711 • For the i -th GPU, the first M_i samples produce zero gradients (invalid samples), while the
 712 remaining $(K - M_i)$ samples generate valid gradients.
 713 • Let $M_{\text{total}} = \sum_{i=1}^N M_i$ denote the total invalid samples, and $S = B - M_{\text{total}}$ the effective
 714 valid samples.

715 Let $g_{i,j}$ represent the gradient of the j -th valid sample on the i -th GPU. We define the valid gradient
 716 sum for GPU i as:

717
$$G_i = \sum_{j=M_i+1}^K g_{i,j} \quad (9)$$

721 The conventional distributed averaging approach in PyTorch computes a gradient estimate:

722
$$\hat{G}_{\text{PyTorch}} = \frac{1}{B} \sum_{i=1}^N G_i \quad (10)$$

725 whereas the theoretically correct gradient should be:

727
$$G_{\text{true}} = \frac{1}{S} \sum_{i=1}^N G_i \quad (11)$$

730 **Proof. Step 1: Conventional Approach Derivation**

731 Each GPU calculates its local mean using the *assigned* sample count K (not valid samples):

733
$$\bar{G}_i^{\text{local}} = \frac{G_i}{K} \quad (12)$$

735 Global averaging then gives:

737
$$\hat{G}_{\text{PyTorch}} = \frac{1}{N} \sum_{i=1}^N \bar{G}_i^{\text{local}} = \frac{1}{N} \sum_{i=1}^N \frac{G_i}{K} = \frac{1}{B} \sum_{i=1}^N G_i \quad (\text{since } N \cdot K = B) \quad (13)$$

740 **Step 2: True Gradient Computation**

741 The correct gradient averages over only valid samples:

743
$$G_{\text{true}} = \frac{1}{S} \sum_{i=1}^N G_i \quad (S = B - M_{\text{total}}) \quad (14)$$

746 Observe the proportional relationship:

748
$$\hat{G}_{\text{PyTorch}} = \frac{1}{B} \sum_{i=1}^N G_i \quad (15)$$

751
$$= \left(\frac{1}{S} \sum_{i=1}^N G_i \right) \cdot \frac{S}{B} \quad (16)$$

754
$$= G_{\text{true}} \cdot \frac{S}{B} \quad (17)$$

755 \square

756 **B MORE EXPERIMENT DETAILS**
757758 **B.1 EXPERIMENT SETTINGS**
759760 **Training setting on 7B based on dataset from (Yu et al., 2025).** We employ the VERL framework
761 (Sheng et al., 2024) with a global batch size of 144 prompts. For each prompt, we generate 8
762 responses and use only accuracy-based rewards. Our implementation strictly follows Algorithm 1.
763 We optimize the network using the AdamW optimizer with a constant learning rate of 1×10^{-6} and
764 a weight decay of 0.1. The threshold value β_{th} is set to 0.6. We trained the model for 1100 steps
765 utilizing 48 NPUs sourced from China.
766767 **B.2 MORE ABLATION EXPERIMENT RESULTS**
768769

β_{th}	Average	AIME24	MATH-500	AMC23	Minerva	OlympiadBench
0.6	48.3	30.0	76.2	62.5	34.2	39.0
0.8	48.6	33.3	73.6	67.5	29.4	39.3

773 Table 10: Ablation on different β_{th} using Qwen2.5 Math 7B.
774775

Group Number	Average	AIME24	MATH-500	AMC23	Minerva	OlympiadBench
2	41.9	16.7	71.6	60.0	25.0	36.0
4	43.3	20.0	73.2	55.0	29.8	38.5
8	45.3	23.3	73.6	60.0	30.5	39.3
16	47.3	26.7	74.6	65.0	32.4	37.8

776 Table 11: Ablation on different group size (wo AGE) using Qwen2.5 Math 7B.
777778

Model	MMLU	C-Eval
DeepSeek-R1-distill-qwen-1.5B	38.31	32.91
+ GPG	38.53 (+0.22)	33.29 (+0.38)

779 Table 12: Evaluation of GPG on MMLU and C-Eval.
780781 **Reward Normalization.** We study the role of reward normalization and show the result in Table 13.
782 Normalization within a batch is common practice in the RL training process (Andrychowicz et al.,
783 2021). The results of the experiment show that reward normalization within a group is better than the
784 batch.
785786 **Comparision of various RL methods.** We compare the main component of various RL methods in
787 Table 14.
788789 **Evaluation on General Benchmarks**
790791 One potential concern for GPG is that the performance gains on specialized reasoning benchmarks
792 might come at the cost of degrading the model’s general capabilities. To investigate this, we conduct
793 an additional evaluation on two widely used general benchmarks that are unrelated to the reasoning
794 datasets used in training: MMLU (Hendrycks et al., 2021), which covers 57 subjects spanning STEM,
795 humanities, social sciences, and other fields, and C-Eval (Huang et al., 2023), a comprehensive
796 Chinese evaluation suite consisting of 52 diverse disciplines.
797798 We evaluate the DeepSeek-R1-distill-Qwen-1.5B and the same model after being trained by GPG. The
799 evaluation is performed using the OPENCOMPASS framework, ensuring identical settings for a fair
800 comparison. As shown in Table 15 and 16, GPG achieves consistent improvements on both MMLU
801 (+0.22) and C-Eval (+0.38), indicating that it not only boosts reasoning-specific benchmarks but
802 also enhances performance on general-purpose evaluations. Detailed results for each sub-domain are
803 provided in Table 15 and Table 16. These findings confirm that GPG’s improvements on specialized
804 reasoning tasks do not compromise the model’s general capabilities, and in some cases even slightly
805 enhance them. Therefore, GPG can be regarded as a safe and broadly applicable method.
806

	F_{norm}	Average	AIME24	MATH-500	AMC23	Minerva	OlympiadBench
Group	45.3	23.3	73.6	60.0	30.5	39.3	
Batch	44.9	23.3	72.2	55.0	35.3	38.5	
1	43.9	23.3	76.3	52.5	30.1	37.4	

Table 13: Ablation on reward normalization using Qwen2.5 Math 7B.

RL Method	Loss Function	Advantage Function
PPO (Schulman et al., 2017)	$\mathcal{L}_{\text{PPO}} = -\min \left[\frac{\pi_{\theta}(o)}{\pi_{\theta_{old}}(o)} \cdot A, \underbrace{\text{clip} \left(\frac{\pi_{\theta}(o)}{\pi_{\theta_{old}}(o)}, 1 - \epsilon, 1 + \epsilon \right)}_{\text{CLIP}} \cdot A \right]$	where A computed by applying GAE (Schulman et al., 2018) based on rewards and the critic model.
GRPO (Shao et al., 2024)	$\mathcal{L}_{\text{GRPO}} = - \left(\min \left[\frac{\pi_{\theta}(o)}{\pi_{\theta_{old}}(o)} \cdot A, \text{CLIP} \cdot A \right] - \beta \mathbb{D}_{KL} [\pi_{\theta} \parallel \pi_{ref}] \right)$	$A = \frac{R(o) - \text{mean}\{R(o)\}}{\text{std}\{R(o)\}}$
Dr. GRPO (Liu et al., 2025a)	$\mathcal{L}_{\text{Dr.GRPO}} = \mathcal{L}_{\text{PPO}}$	$A = R(o) - \text{mean}\{R(o)\}$
DAPO (Yu et al., 2025)	$\mathcal{L}_{\text{DAPO}} = -\min \left[\frac{\pi_{\theta}(o)}{\pi_{\theta_{old}}(o)} \cdot A, \text{clip} \left(\frac{\pi_{\theta}(o)}{\pi_{\theta_{old}}(o)}, 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}} \right) \cdot A \right]$	$A = \frac{R(o) - \text{mean}\{R(o)\}}{\text{std}\{R(o)\}}$
GPG	$\mathcal{L}_{\text{GPG}} = -\log \pi_{\theta}(o) \cdot A$	$A = \alpha * (R(o) - \text{mean}\{R(o)\})$

Table 14: Comparison of various RL methods, we explain in the simplest form.

B.3 PROMPT AND REWARD FUNCTION

Prompt for Reasoning. In the process of reinforcement fine-tuning, specific instructions are incorporated into the system prompt. These instructions encourage the model to generate intermediate reasoning steps, thereby facilitating the reasoning capabilities of the model. An example of this approach is provided below (Liu et al., 2025b):

System Prompt for Reasoning for 1.5B Model

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within `<think>` `</think>` and `<answer>` `</answer>` tags, respectively, i.e., `<think>` reasoning process here `</think>` `<answer>` answer here `</answer>`

Reward Function. For most tasks, we use the accuracy and formatting reward functions. For the grounding task, the Intersection over Union (IoU) reward function is utilized. For the Qwen 7B setting, we only use the accuracy reward.

- Accuracy: If the model’s output is consistent with the ground truth, a reward of 1.0 is awarded.
- Formatting: If the format of the model output is “`<think>` `</think>` `<answer>` `</answer>`”, a reward of 1.0 is granted.
- IoU: Consistent with Visual-RFT (Liu et al., 2025b), the reward value is derived from the calculated scores of the bounding boxes generated by the model.

B.4 MORE EXPERIMENT SETTINGS

To evaluate the unimodal reasoning capabilities of our proposed method, we utilize two publicly available code repositories: Open-r1 (Face, 2025) and Open-rs (Dang & Ngo, 2025). These repositories are selected due to their extensive coverage of various reasoning scenarios and their ability to present substantial challenges that effectively assess the reasoning capabilities of advanced models. The DeepSeek-R1-Distill-Qwen-1.5B model is trained for 100 and 50 global steps using the open-s1 and open-rs datasets, as reported in the repository (Dang & Ngo, 2025), resulting in the GPG-RS1 and GPG-RS3 models, respectively.

For multimodal tasks, we have selected three renowned frameworks as our code base: VisualThinker-R1-Zero (Zhou et al., 2025), R1-V (Chen et al., 2025), and Visual-RFT (Liu et al., 2025b). These frameworks cover a variety of tasks, including visual reasoning, geometric reasoning, and image perception. The use of distinct code bases enables a comprehensive assessment of the performance enhancements achieved by our method across different tasks. Specifically, for the VisualThinker-R1-Zero framework, we evaluate the results of the GPG approach on the CV-Bench (Tong et al., 2024).

864	MMLU Datasets	Deepseek-R1-Distill-Qwen-1.5B	+GPG	Accuracy Gain
865	college biology	24.31	24.31	0.00
866	college chemistry	32.00	32.00	0.00
867	college computer science	21.00	21.00	0.00
868	college mathematics	32.00	32.00	0.00
869	college physics	28.43	30.39	+1.96
870	electrical engineering	50.34	50.34	0.00
871	astronomy	36.84	38.16	+1.32
872	anatomy	35.56	35.56	0.00
873	abstract algebra	27.00	27.00	0.00
874	machine learning	37.50	37.50	0.00
875	clinical knowledge	41.89	42.64	+0.75
876	global facts	31.00	30.00	-1.00
877	management	43.69	43.69	0.00
878	nutrition	38.89	38.89	0.00
879	marketing	58.55	58.55	0.00
880	professional accounting	29.08	28.72	-0.36
881	high school geography	44.95	45.45	+0.50
882	international law	45.45	47.11	+1.66
883	moral scenarios	24.13	24.36	+0.23
884	computer security	39.00	39.00	0.00
885	high school microeconomics	44.96	46.22	+1.26
886	high school microeconomics	27.71	28.16	+0.45
887	professional law	46.00	46.00	0.00
888	medical genetics	33.5	33.66	+0.16
889	professional psychology	39.81	39.81	0.00
890	jurisprudence	33.92	33.33	-0.59
891	world religions	41.48	42.12	+0.64
892	philosophy	40.96	40.96	0.00
893	virology	38.42	39.41	+0.99
894	high school chemistry	42.73	42.73	0.00
895	public relations	42.82	43.08	+0.26
896	high school macroeconomics	48.85	48.85	0.00
897	high school statistics	37.57	38.10	+0.53
898	high school physics	24.50	23.84	-0.66
899	high school computer science	42.00	42.00	0.00
900	high school european history	40.00	40.61	+0.61
901	business ethics	43.00	43.00	0.00
902	moral disputes	37.57	37.28	-0.29
903	high school statistics	50.00	50.46	+0.46
904	miscellaneous	44.32	44.57	+0.25
905	formal logic	29.37	29.37	0.00
906	high school government and politics	38.34	38.86	+0.52
907	prehistory	32.72	33.33	+0.61
908	security studies	43.67	43.67	0.00
909	high school biology	44.52	44.19	-0.33
910	logical fallacies	38.04	38.04	0.00
911	high school world history	42.62	43.04	+0.42
912	high school mathematics	38.60	38.97	+0.37
913	college medicine	30.00	30.74	+0.74
914	high school us history	32.37	32.95	+0.58
915	sociology	35.78	35.78	0.00
916	econometrics	47.76	48.26	+0.50
917	high school psychology	32.46	32.46	0.00
918	human aging	42.94	42.75	-0.19
919	us foreign policy	36.32	36.32	0.00
920	conceptual physics	56.00	57.00	+1.00
921	AVERAGE	38.31	38.53	+0.22

Table 15: Comparison of performance metrics across general MMLU datasets.

Additionally, we evaluate the GPG results on the GEOQA dataset (Chen et al., 2022) based on R1-V. Finally, for tasks related to image perception, such as classification (Nilsback & Zisserman, 2008; Parkhi et al., 2012; Maji et al., 2013; Krause et al., 2013) and reasoning grounding (Lai et al., 2024), we examine the performance of PGP using the Visual-RFT framework.

918
919920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C-Eval Datasets	Deepseek-R1-Distill-Qwen-1.5B	PGP	Accuracy Gain
computer network	9.09	9.09	0.00
operating system	42.86	43.36	+0.50
computer architecture	28.57	27.93	-0.64
college programming	50.00	50.00	0.00
college physics	16.67	17.49	+0.82
college chemistry	42.86	42.86	0.00
advanced mathematics	42.11	41.83	-0.28
probability and statistics	38.89	39.30	+0.41
discrete mathematics	20.57	21.05	+0.48
electrical engineer	38.89	38.89	0.00
metrology engineer	12.00	13.40	+1.40
high school mathematics	20.78	21.67	+0.89
high school physics	47.18	50.67	+3.49
high school chemistry	49.00	50.25	+1.25
high school biology	22.22	22.54	+0.32
middle school mathematics	26.67	26.34	-0.33
middle school biology	39.00	38.37	-0.63
middle school physics	42.86	45.93	+3.07
middle school chemistry	33.33	32.47	-0.86
veterinary medicine	46.15	47.13	+0.98
college economics	57.89	57.89	0.00
business administration	15.38	19.88	+4.50
marxism	30.82	30.82	+0.00
mao zedong thought	16.67	17.06	+0.39
education science	45.45	45.16	-0.29
teacher qualification	55.56	57.68	+2.12
high school politics	21.43	29.24	+7.81
high school geography	27.27	28.11	+0.84
middle school politics	29.56	29.56	0.00
middle school geography	4.73	4.73	0.00
modern chinese history	25.00	25.00	0.00
ideological and moral cultivation	39.98	39.98	0.00
logic	46.67	46.02	-0.65
law	26.67	20.33	-6.34
chinese language and literature	15.38	14.79	-0.59
art studies	35.71	35.71	0.00
professional tour guide	20.00	20.00	0.00
legal professional	7.14	6.66	-0.48
high school chinese	41.67	41.67	0.00
high school history	41.67	42.21	+0.54
middle school history	9.09	9.09	0.00
civil servant	47.37	47.84	+0.47
sports science	62.48	62.48	0.00
plant protection	33.33	34.33	+1.00
basic medicine	44.44	43.74	-0.70
clinical medicine	42.86	42.16	-0.70
urban and rural planner	57.14	61.44	+4.30
accountant	23.53	22.77	-0.76
fire engineer	41.67	41.67	0.00
environmental impact engineer	19.05	18.34	-0.71
tax accountant	30.75	29.22	-1.53
physician	25.00	24.79	-0.21
AVERAGE	32.91	33.29	+0.38

Table 16: Comparison of performance metrics across general C-Eval datasets.

972

System Prompt for Qwen 7B Reasoning

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

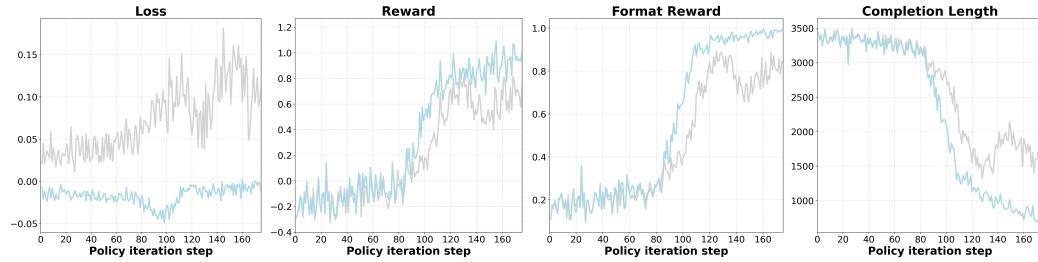


Figure 3: Comparison of GPG(blue curves) and GRPO(gray curves) in terms of training loss, rewards and completion length. Experiments are based on DeepSeek-R1-Distill-Qwen-1.5B, same as Table 3.

991

992

993

994

B.5 CASE EXAMPLE

995

We show a case study in Figure 4.

996

997

998

B.6 ANONYMOUS CODE

999

1000

1001

1002

To facilitate reproducibility while adhering to the double-blind review policy, we provide an anonymous link to the complete source code, including all scripts and configuration files necessary to replicate our experiments. The code is available at: <https://anonymous.4open.science/r/ICLR2026-GPG-DA32>.

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

User: Solve the following math problem efficiently and clearly. The last line of your response should be of the following format: "Therefore, the final answer is: . I hope it is correct" (without quotes) where **[ANSWER]** is just the final number or expression that solves the problem. Think step by step before answering. Let A, B, C , and D be points on the hyperbola $\frac{x^2}{20} - \frac{y^2}{24} = 1$ such that $ABCD$ is a rhombus whose diagonals intersect at the origin. Find the greatest real number that is less than BD^2 for all such rhombi.

Assistant: Let's solve this step by step.

Ground Truth: 480

PGP:

<think> Since $ABCD$ is a rhombus with diagonals intersecting at the origin, we know that $AB^2 + CD^2 = AD^2 + BC^2$ and the diagonals bisect each other at right angles. The equation of the hyperbola is given as $\frac{x^2}{20} - \frac{y^2}{24} = 1$. To find specific coordinates (x, y) of points A, B, C , and D on the hyperbola, we solve the hyperbola equation for these points satisfying the rhombus properties. To find BD^2 , we take $B = (x_1, y_1)$ and $D = (x_2, y_2)$ on the hyperbola such that the diagonals bisect each other and cross at the origin. Utilize the symmetry that the rhombus provides, where the diagonals of the rhombus are equal.

We derive and solve expressions for the distances between these points (i.e., BD , which encompasses symmetric properties):

- Calculate the squared distances of each diagonal intersection.

- Consider the maximum length that fits within the geometric properties of the rhombus:

- Hence, $BD = \sqrt{x_1^2 + y_1^2 + x_2^2 + y_2^2}$.

After considering all possible values within the range dictated by the hyperbolic equation and rhombus properties, we find the greatest real number. </think>

<answer> Therefore, the final answer is: **[480]**. I hope it is correct.
</answer>

GRPO:

<think> The points A, B, C , and D lie on the hyperbola, which gives the equations: $\frac{x^2}{20} - \frac{y^2}{24} = 1$. Assume that $A = (a\sqrt{20}, b\sqrt{24})$, $C = (-a\sqrt{20}, -b\sqrt{24})$, due to the symmetry of the rhombus. Points B and D transversely lie symmetric to origin. From hyperbola properties: $\frac{(a\sqrt{20})^2}{24} - \frac{(b\sqrt{24})^2}{24} = 1$, $\frac{(b\sqrt{24})^2}{24} - \frac{(a\sqrt{20})^2}{24} = 1$. Thus solving both yield simpler vertex component Expression: $BD = 2\sqrt{20+24} = 2\sqrt{44}$. Bounding details, max achievable setting confirms: Hence, $BD^2 = 4 \cdot (20+24)$ gives: Calculated complete max achievable fitting cross: 176. </think>

<answer> Therefore, the final answer is: **[176]**. I hope that it is correct. </answer>

Figure 4: Comparison of GPG and GRPO in mathematical reasoning task based on DeepSeek-R1-Distill-Qwen-1.5B model trained on Open-rs dataset: a test case from AIME24 dataset.

1026 **C MORE RELATED WORK**
 1027

1028 **Proximal Policy Optimization.** PPO (Schulman et al., 2017) addresses the inherent optimization
 1029 instability of Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) through a clipped
 1030 surrogate objective. Formally, let the probability ratio between the updated policy π_θ and the previous
 1031 policy $\pi_{\theta_{\text{old}}}$ be defined as

$$1032 \quad r_t(\theta) = \frac{\pi_\theta(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)}, \quad (18)$$

1033 where a_t and s_t denote the action and state at timestep t , respectively. While TRPO maximizes the
 1034 surrogate objective

$$1035 \quad \mathcal{J}^{\text{TRPO}}(\theta) = \mathbb{E}_t \left[r_t(\theta) \hat{A}_t \right] \quad (19)$$

1036 under a Kullback-Leibler (KL) divergence constraint, PPO reformulates this via a clipped mechanism.
 1037 Here, \hat{A}_t represents the estimated advantage function quantifying the relative value of action a_t in
 1038 state s_t . The PPO objective is defined as:

$$1039 \quad \mathcal{J}^{\text{CLIP}}(\theta) = \mathbb{E}_t \left[\min \left(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right], \quad (20)$$

1040 where the clip operator restricts $r_t(\theta)$ to the interval $[1 - \epsilon, 1 + \epsilon]$, with ϵ being a hyperparameter
 1041 controlling the policy update magnitude. This constraint prevents excessive policy deviations that
 1042 could degrade performance.

1043 To further stabilize training and promote exploration, the composite objective incorporates three
 1044 components: 1) Clipped policy gradient term $\mathcal{J}^{\text{CLIP}}(\theta)$, 2) Value function loss:

$$1045 \quad \mathcal{L}^{\text{VF}} = \mathbb{E}_t \left[(V_\theta(s_t) - V_{\text{target}}(s_t))^2 \right], \quad (21)$$

1046 where $V_\theta(s_t)$ is the state-value function estimator and $V_{\text{target}}(s_t)$ denotes the target value computed
 1047 via temporal-difference methods, 3) Entropy regularization:

$$1048 \quad \mathcal{H}(s_t, \pi_\theta) = - \sum_{a \in \mathcal{A}} \pi_\theta(a|s_t) \log \pi_\theta(a|s_t), \quad (22)$$

1049 with \mathcal{A} being the action space, which prevents premature policy convergence by encouraging stochasticity.

1050 The complete objective integrates these terms as:

$$1051 \quad \mathcal{J}^{\text{PPO}}(\theta) = \mathbb{E}_t \left[\mathcal{J}^{\text{CLIP}}(\theta) - c_1 \mathcal{L}^{\text{VF}} + c_2 \mathcal{H}(s_t, \pi_\theta) \right], \quad (23)$$

1052 where $c_1 > 0$ and $c_2 > 0$ are coefficients balancing policy optimization, value estimation accuracy,
 1053 and exploration. Crucially, PPO replaces TRPO’s computationally intensive second-order KL
 1054 constraints with first-order gradient clipping, enabling efficient large-scale implementations while
 1055 preserving monotonic policy improvement guarantees, as rigorously established through surrogate
 1056 objective monotonicity analysis (Hsu et al., 2020).

1057 **Group Relative Policy Optimization.** GRPO (Shao et al., 2024) establishes a policy gradient
 1058 framework that eliminates dependency on explicit value function approximation through comparative
 1059 advantage estimation within response groups. The method operates by sampling multiple candidate
 1060 outputs for each input question and constructing advantage signals based on relative rewards within
 1061 these groups. For a given question $q \sim P(Q)$, the algorithm generates G responses $\{o_1, \dots, o_G\}$ from
 1062 the current policy $\pi_{\theta_{\text{old}}}$, then computes token-level advantages using intra-group reward comparisons.

1063 The advantage term $\hat{A}_{i,t}$ for the t -th token in the i -th response is defined as the deviation from the
 1064 group average reward:

$$1065 \quad \hat{A}_{i,t} = R(o_i) - \frac{1}{G} \sum_{j=1}^G R(o_j), \quad (24)$$

1066 where $R(\cdot)$ denotes the reward model’s evaluation. This design inherently aligns with the comparative
 1067 training paradigm of reward models, which typically learn from pairwise response rankings.

1080 The optimization objective integrates clipped probability ratios with explicit KL regularization.
 1081 Defining the token-level probability ratio as:
 1082

$$1083 r_{i,t}(\theta) = \frac{\pi_\theta(o_{i,t}|q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t}|q, o_{i,<t})}, \quad (25)$$

1085 the clipped surrogate objective constrains policy updates through:
 1086

$$1087 \mathcal{J}_{i,t}^{\text{clip}}(\theta) = \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(r_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,t} \right). \quad (26)$$

1089 Diverging from PPO’s implicit KL control via reward shaping, GRPO directly regularizes policy
 1090 divergence using an unbiased KL estimator:
 1091

$$1092 \mathbb{D}_{\text{KL}}[\pi_\theta \| \pi_{\text{ref}}] = \frac{\pi_{\text{ref}}(o_{i,t}|q, o_{i,<t})}{\pi_\theta(o_{i,t}|q, o_{i,<t})} - \log \frac{\pi_{\text{ref}}(o_{i,t}|q, o_{i,<t})}{\pi_\theta(o_{i,t}|q, o_{i,<t})} - 1, \quad (27)$$

1094 The complete objective combines these components with a regularization coefficient β :
 1095

$$1096 \mathcal{J}^{\text{GRPO}}(\theta) = \mathbb{E}_{q, \{o_i\}} \left[\frac{1}{G|o_i|} \sum_{i,t} \left(\mathcal{J}_{i,t}^{\text{clip}}(\theta) - \beta \mathbb{D}_{\text{KL}}[\pi_\theta \| \pi_{\text{ref}}] \right) \right]. \quad (28)$$

1100 C.1 EXPERIMENTS DURING REBUTTAL

1102 Method	1103 Code		1104 General QA	
	1105 MBPP	MBPP+	HellaSwag (acc _{norm} /std _{err})	TruthfulQA (mc2/std _{err})
1106 GRPO	24.60%	21.96%	41.914/0.492	47.307/1.516
1107 GPG	26.19%	23.81%	42.551/0.493	50.146/1.533

1106 Table 17: Zero-shot results on code generation and general QA tasks using Qwen-1.5B.
 1107

1109 Compared with the GRPO baseline, Group A replaces the loss with a policy-gradient (PG) loss and
 1110 removes the KL divergence term. It thus applies a policy-gradient algorithm with group rewards, as
 1111 in GRPO. Group B corrects an error in reward normalization and uses the proper formula; however,
 1112 its performance degrades. We attribute this degradation to gradient bias, which Group C mitigates via
 1113 α -scaling, yielding improved performance. Group D further improves performance by imposing a
 1114 minimum valid-sample proportion threshold, which serves as a variance-reduction mechanism.
 1115

1116 Models	1117 Average	1118 Value Models	1119 Reference Models	1120 Surrogate Loss	1121 Policy Constraint	1122 Debiased Gradient	1123 Variance Reduction
Qwen2.5-Math-7B	30.9	-	-	-	-	-	-
GPRO	43.7	x	✓	✓	✓	x	x
A. GPG($F_{\text{norm}} = \text{std}\{R(o)\}, \alpha = 1\}$ [PG+Group Reward])	45.3	x	x	x	x	x	x
B. GPG($F_{\text{norm}} = 1, \alpha = 1$)	43.9	x	x	x	x	x	x
C. GPG($F_{\text{norm}} = 1, \alpha = \frac{B}{B-M}$)	47.8	x	x	x	x	✓	x
D. GPG($F_{\text{norm}} = 1, \alpha = \frac{B}{B-M}, \beta_{th} = 0.6$)	48.3	x	x	x	x	✓	✓

1121 Table 18: Math reasoning results on Qwen2.5-Math-7B model.
 1122

1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149

Model	Avg AIME24 AMC23 MATH_500 MINERVA				
<i>pass@1 (Acc / Std)</i>					
Oat-Zero	52.0	31.6/8.8	66.5/7.6	79.5/1.8	30.5/2.8
Eurus-2-7B-PRIME	48.9	16.7/6.8	62.5/7.5	79.6/1.8	37.1/2.9
Open-Reasoner-Zero-7B	46.3	15.8/6.3	55.0/7.9	82.2/1.7	32.2/2.8
Qwen-2.5-Math-7B-SimpleRL-Zero	49.4	29.2/8.5	60.6/7.8	76.6/1.8	31.3/2.9
PGP-Zero-7B	58.7	31.7/8.8	80.6/6.1	85.3/1.6	37.4/3.0
<i>pass@3 (Acc / Std)</i>					
Oat-Zero	59.4	40.0/8.8	74.4/6.7	85.6/1.6	37.4/2.9
Eurus-2-7B-PRIME	58.7	27.5/7.4	76.3/6.9	86.9/1.5	44.3/3.0
Open-Reasoner-Zero-7B	54.8	20.8/6.9	68.8/7.8	88.1/1.5	41.5/3.0
Qwen-2.5-Math-7B-SimpleRL-Zero	58.9	36.8/9.1	70.0/6.7	86.0/1.3	42.8/3.0
PGP-Zero-7B	64.7	41.5/9.2	85.0/5.7	89.0/1.4	43.4/3.0
<i>pass@5 (Acc / Std)</i>					
Oat-Zero	62.2	42.5/8.9	78.8/6.7	87.1/1.5	40.5/3.0
Eurus-2-7B-PRIME	62.1	30.9/8.2	80.6/6.7	89.3/1.3	47.6/3.0
Open-Reasoner-Zero-7B	60.4	27.5/7.4	78.1/6.9	90.5/1.3	45.3/3.0
Qwen-2.5-Math-7B-SimpleRL-Zero	62.7	41.6/9.1	74.4/6.7	88.8/1.3	45.9/3.0
PGP-Zero-7B	66.2	41.7/9.2	86.3/5.7	90.9/1.3	46.0/3.0

1170 Table 19: Pass@3 and pass@5 results—reported as mean \pm standard deviation computed over four
 1171 random seeds—for the Qwen2.5-7B base model. GPG consistently shows clear advantages over
 1172 other baselines, consistent with the trends in Table 4.
 1173

1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187