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ABSTRACT

Reinforcement Learning (RL) can directly enhance the reasoning capabilities
of large language models without extensive reliance on Supervised Fine-Tuning
(SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism
and propose a minimalist RL approach termed Group Policy Gradient (GPG).
Unlike conventional methods, GPG directly optimizes the original RL objective,
thus obviating the need for surrogate loss functions. By eliminating the critic
and reference models, avoiding KL divergence constraints, and addressing the
advantage and gradient estimation bias, our approach significantly simplifies the
training process compared to Group Relative Policy Optimization (GRPO). Our
approach achieves superior performance without relying on auxiliary techniques
or adjustments. As illustrated in Figure 1, extensive experiments demonstrate that
our method not only reduces computational costs but also consistently outperforms
GRPO across various unimodal and multimodal tasks.

1 INTRODUCTION

Figure 1: Performance comparison on unimodal reasoning tasks, with extended validation on
multimodal reasoning. (Top) GPG achieves substantial performance gains over state-of-the-art
(SOTA) baselines across diverse mathematical benchmarks, demonstrating its core effectiveness
for linguistic reasoning. (Bottom) The method also generalizes robustly to multi-modal settings,
outperforming other RL methods and further validating its broad applicability.
Large Language Models (LLMs) have achieved substantial advancements, progressively narrowing
the gap towards achieving Artificial General Intelligence (AGI) (OpenAI, 2024; Guo et al., 2025; Bai
et al., 2025; Wu et al., 2024; Yao et al., 2024). Recently, LLMs, exemplified by OpenAI o1 (OpenAI,
2024) and DeepSeek R1 (Guo et al., 2025), adopt a strategy of generating intermediate reasoning steps
before producing final answers. This approach markedly improves their efficacy in domain-specific
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tasks, such as mathematical reasoning (Jia et al., 2024; Gao et al., 2024; Huang et al., 2025; Lai
et al., 2024; Lightman et al., 2023; Huang et al., 2024). The remarkable success of this technology
is mainly attributed to the Reinforcement Fine-Tuning (RFT) method (Schulman et al., 2017; Shao
et al., 2024; Yu et al., 2025; Li et al., 2024; Hu, 2025). Through the application of RFT, the models
allocate additional time to “deliberate” prior to generating answers, thereby constructing intricate
reasoning chains and subsequently enhancing overall model performance.

In contrast to Supervised Fine-Tuning (SFT), which involves training models on fixed input-output
pairs to mimic correct responses, RFT introduces an iterative process that incentivizes models to
generate coherent and logically structured reasoning paths. RFT leverages RL techniques, such
as Proximal Policy Optimization (PPO) (Schulman et al., 2017) and GRPO (Shao et al., 2024) to
optimize decision-making during the generation of intermediate steps. Specifically, PPO ensures
stability by constraining policy updates, preventing new strategies that deviate significantly from
established behaviours. In contrast, GRPO enhances this process by evaluating performance across
groups of actions, encouraging consistent improvements in reasoning quality. This dynamic and
feedback-driven approach enables models to think more deeply, resulting in nuanced answers that
better handle complex reasoning tasks compared to the more rigid and label-dependent training of
SFT.

Despite the significant success of PPO in enhancing reasoning quality, it still suffers severely from
the enormous resource consumption required during training. PPO necessitates the development and
integration of both a critic model and a reference model, which not only complicates the training
process but also substantially increases computational demands. Consequently, there is a growing
trend toward simplifying the PPO method. For instance, ReMax (Li et al., 2024) removes the critic
model by introducing a baseline value, which reduces the training GPU memory usage and accelerates
the training process. Besides, GRPO eliminates the need for a critic model and utilizes normalized
rewards within a sample group.

In addition to these methods to improve efficiency and stability, a very recent and concurrent work Dr.
GRPO (Liu et al., 2025a) studies the details of reward and loss normalization and states GRPO tends
to generate more tokens. However, although it reveals the reward bias in the advantage function, we
observe that its performance did not significantly outperform GRPO.

Let’s review the birth of PPO. PPO was proposed as a general RL algorithm, with Atari games as
primary evaluation benchmarks, where the policy network typically learns both visual representations
and the control policy. In the LLM era, however, the policy is an LLM that already possesses
strong representations from pretraining and SFT. Removing unnecessary components is important for
scalability, which motivates rethinking simplified RL methods. Notably, PPO itself is a simplification
of TRPO (Schulman et al., 2015), which in turn builds on the policy-gradient algorithm. A major
weakness of policy gradients is high variance, which can be mitigated by (i) using a value-function
baseline in advantage estimation and (ii) sampling more trajectories—both common practices in the
post-training training for LLMs. Thus, it is natural to build a streamlined method for reasoning.

In summary, our key contributions are as follows:

• We revisit the design of policy gradient algorithms (Sutton et al., 1998) and propose a simple RL
method that retains minimal RL components. Unlike conventional approaches, our method directly
optimizes the objective function rather than relying on surrogate loss.

• Our approach eschews the necessity for both a critic model and a reference model. Moreover,
it imposes no distributional constraints. These characteristics confer substantial advantages for
potential scalability.

• We analyze and demonstrate the reward bias inherent in existing advantage functions and reveal
the limitations of simplistic debiasing methods. Our exploration of the gradient estimate bias
phenomenon has led us to propose a simple yet accurate gradient estimation (AGE) technique. To
mitigate the potential issue of large variance in gradient estimation when the proportion of valid
samples is excessively small, we introduce a simple thresholding mechanism to ensure a minimal
partition of valid samples is maintained, followed by resampling.

• Extensive experiments demonstrate that GPG achieves SOTA results across various unimodal and
multimodal visual tasks.

Our code will be open-sourced.
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2 METHOD

2.1 PRELIMINARY AND TASK FORMULATION

RL is a computational approach to learning through interaction, where an agent seeks to maximize
cumulative rewards by selecting optimal actions within an environment. The RL problem is typically
defined by a policy πθ, which maps states to actions, and aims to optimize the expected return. The
core idea behind policy gradient methods is to use gradient ascent to iteratively adjust the policy
parameters. The learning objective is maximizing the return J (θ),

J (θ) = max
θ

Eπθ

[
T∑

t=0

rt

]
. (1)

The policy gradient theorem (Sutton et al., 1998) proves that the above problem can be converted into
estimating the gradient,

∇θJ (θ) = Eπθ
[∇θ log πθ(at | st)Qπθ (st, at)] , (2)

where Qπθ (st, at) is the action-value function, representing the expected return when taking action
at in state st and following policy πθ thereafter.

To reduce the variance, the advantage function Aπθ (st, at) is often used, leading to the policy gradient
update rule:

∇θJ (θ) = Eπθ
[∇θ log πθ(at | st)Aπθ (st, at)] . (3)

One-step advantage estimation can be mathematically formulated as (Sutton et al., 1998):

Aπθ (st, at) = Qπθ (st, at)− V πθ (st), (4)

where V πθ (st) is a function of st. In principle, V πθ (st) can take any functional form. One commonly
employed function is the value function, which represents the expected return when starting from state
st and following policy πθ. While GAE (Schulman et al., 2018) offers a more sophisticated approach
to balance bias and variance in advantage estimation, we find that in the context of model reasoning,
one-step estimation is sufficiently effective for achieving good performance. This simplicity is
particularly advantageous in scenarios where computational efficiency is paramount.

Given a sequence of questions and instructions, the model is tasked with generating corresponding
answers. Subsequently, rewards are returned based on predefined reward models or hand-crafted
rules. Our objective is to leverage these reward signals to optimize our policy, thereby enhancing the
model’s ability to generate accurate and contextually appropriate responses.

However, designing or obtaining accurate rewards for intermediate steps is nontrivial (Guo et al.,
2025). To address this challenge, we simplify our problem as follows. Given a question and prompt
s, we sample an action a from policy πθ and obtain a final reward signal r. Note that the policy
distribution πθ is modeled in an autoregressive manner. In this setting, we can leverage policy gradient
methods to optimize the policy.

2.2 GROUP POLICY GRADIENT

Our proposed method, Group Policy Gradient (GPG), is designed to address the issue of high
variance in policy gradient estimation in the absence of a value model. By leveraging group-level
rewards, GPG stabilizes learning and enhances the robustness of reinforcement learning training.
Specifically, GPG utilizes the mean reward within each group to normalize the rewards, thereby
effectively reducing variance. This approach eliminates the need for a traditional value model, thereby
simplifying the training process and enhancing computational efficiency. The name “Group Policy
Gradient” reflects our method’s core mechanism of utilizing group-level mean rewards to stabilize
and optimize learning.

The core objective of GPG is defined as:

JGPG(θ) =E(q,a)∼D,{oi}G
i=1

 1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

(
− log πθ(oi,t | q, oi, < t)Âi,t

) , (5)
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where oi represents the individual responses in the group G, and the advantage of the i-th response is
calculated by normalizing the group-level rewards {Ri}Gi=1:

Âi,t =
ri −mean({Ri}Gi=1)

Fnorm
. (6)

Fnorm is an optional normalization technique, which is commonly applied in conjunction with
reward clipping to mitigate the impact of unexpected outlier values. One widely adopted practice
is to employ standard variance normalization within a training batch (Mnih et al., 2016; Schulman
et al., 2017). This approach helps stabilize the training process by reducing the variance of the reward
signal, which is particularly important when dealing with environments where the magnitude of
rewards can vary significantly, such as in different Atari games. By normalizing the reward signal, the
model becomes less sensitive to extreme values, thereby improving the robustness and convergence of
the training algorithm. However, in the reasoning tasks involving large models, the reward is typically
well-defined and does not suffer from the same variance issues observed in other environments. As
for the Math reasoning problem, it is a common practice to award the right answer with 1.0 and the
wrong answer with 0.0.

We utilize a basic Math Reasoning setting 1 of SimpleRL from open-r1 (Face, 2025), using only
the MATH-lighteval dataset to facilitate rapid experimental validation. Specifically, we remove the
format reward and only enable the accuracy reward for simplicity.

Models Average AIME24 MATH-500 AMC23 Minerva OlympiadBench

Qwen2.5-Math-7B 30.9 13.3 57.6 45.0 14.7 23.7

GPRO 43.7 16.7 73.4 62.5 30.2 35.7
GPG(Fnorm=1,α=1) 43.9 23.3 76.3 52.5 30.1 37.4
GPG(Fnorm=std{R(o)},α=1) 45.3 23.3 73.6 60.0 30.5 39.3
GPG(Fnorm=std{R(o)},α = B

B−M
) 44.1 23.3 74.2 52.5 30.9 39.7

GPG(Fnorm=1, α = B
B−M

) 47.8 30.0 75.0 62.5 33.1 38.2
GPG(Fnorm=1, α = B

B−M
, βth = 0.6) 48.3 30.0 76.2 62.5 34.2 39.0

Dr. GRPO† 43.7 26.7 74.6 50.0 30.1 37.3

Table 1: Math reasoning results on Qwen2.5-Math-7B model. †: reproduction use the released code.

The critical component: Âi,t, has been underexplored in prior research in reasoning. This gap in the
literature highlights the need for further investigation of the role and impact of Âi,t within reasoning
tasks. There are two unresolved problems.

The Âi,t should not introduce reward bias. Otherwise, bias deviates from the original problem
formulation. GRPO (Shao et al., 2024) formulates it as Fnorm = std{R(o)}, which is essentially
a function of st in Equation 2 and explicitly introduces the reward bias. Since we aim to solve the
original problem, we don’t want to apply a surrogate or bias. However, As shown in Table 1, if we
remove this bias item, i.e. Fnorm = 1, it (43.9%) cannot clearly outperform GRPO (43.7%), which
is opposite to the observation of a concurrent work Dr. GRPO (Liu et al., 2025a).

Examples of all right or wrong responses within a group introduce bias for the estimation of the
gradient. Given a training batch of batch size B, let the gradient of the i-th sample be denoted as gi.
Without loss of generality, assume that the first M examples within the batch are all right or wrong
responses within a group. The standard backpropagation (BP) algorithm estimates the gradient as:

g =
∑B

i=1 gi

B =
∑B

i=M+1 gi

B . However, the first M examples are not valid for gradient estimation and
contribute zero gradient. Therefore, the more accurate gradient estimation (AGE) can be written as:

ĝ =

∑B
i=M+1 gi

B −M
= g

B

B −M
= αg, α =

B

B −M
. (7)

It should be noted that the value α is not a constant and it varies across different sample batches. We
also illustrate α with different steps in Figure 2, which indicates the necessity of gradient correction.
As for multi-GPU training, to achieve more accurate gradient calculations, it is advisable to gather

1huggingface/open-r1/recipes/Qwen2.5-Math-7B/grpo/config_simple_rl.yaml
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all non-zero gradient samples across all GPUs and compute the average gradient uniformly. This
approach can be implemented through a custom gradient aggregation function, which leads to
increased communication overhead. Instead, we derive another equivalent format, which doesn’t
require extra cost, and we provide the proof in Section A. Therefore, given a batch sample, the
objective can be written as

ĴGPG(θ) = αJGPG(θ). (8)

As shown in Table 1, our method achieves an average score of 47.8%, being equipped with AGE.
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Figure 2: (Left) The proportion of easy problems with all rewards are 0, hard problems with all
rewards are 1 within a rollout group. (Right) The standard deviation of reward across steps.

In a scenario where we reject the M examples and resample responses in a manner similar to the
approach presented in a recent work (Yu et al., 2025) until M equals 0, α is set to 1. However,
this particular setting is not training-efficient. The reason is that the training time is constrained
by the worker that takes the longest to collect the desired examples. In contrast, our proposed
method demonstrates superior efficiency. Moreover, it can automatically adjust the loss based on the
performance of the sample batch.

We also evaluate a setting of reward normalization of GRPO, where Fnorm=std{R(o)},α=1, and
show the result in Table 1. It outperforms Fnorm=1,α=1 by 1.4% average score. This motivates us
to dive into the source of the improvement. We plot the std of the reward in Figure 2. Note that the
std is calculated by averaging the std of each group, whose value ranges from 0.10 to 0.35. And
α varies from 1.5 to 4.0. The reward normalization of GRPO provides such a diving std (within a
group) mechanism, which has some gradient correction effect.

Components

Value Models Reference Models Surrogate Loss Policy Constraint

PPO ✓ ✓ ✓ ✓
GRPO ✗ ✓ ✓ ✓
TRPO ✓ ✗ ✓ ✓
GPG ✗ ✗ ✗ ✗

Table 2: Comparison of reinforcement learning algorithms (in reasoning) with various components.

Thresholding minimal partition of valid samples and resampling to reduce variance. While our
approach provides an unbiased estimation of the gradient, it may encounter issues with high variance
when the proportion of valid samples is excessively low. To mitigate this, we introduce a threshold
βth = 1

αth
for the proportion of valid samples. When this proportion falls below the given value, we

accumulate the valid samples into the resampled subsequent batch until the proportion exceeds the
threshold. This strategy effectively reduces the variance of the gradient estimation, thereby enhancing
the stability and convergence rate of the model training process. It is worth noting that this strategy
further improves the performance, as demonstrated in Table 1.

RL algorithms vary significantly in their approaches to tackling variance and optimizing policies.
Two key components in many RL algorithms are surrogate loss and policy constraints. We summarize
the main comparisons among various frameworks in Table 2. Our method stands out by preserving
the simplest form, which not only ensures ease of implementation but also maintains high efficiency
and effectiveness.
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3 EXPERIMENTS

All experimental settings are meticulously controlled to ensure fair comparisons. We closely adhere
to the hyperparameters employed by GRPO, despite their suboptimality for our approach. Notably,
our method consistently outperforms GRPO across all tasks, achieving superior performance with
clear margins. These results underscore the robustness and efficacy of our proposed method.

3.1 EXPERIMENTAL SETUP

Dataset and Benchmarks. In the unimodal scenario, we utilize datasets from multiple sources
such as open-s1, open-rs (Dang & Ngo, 2025), and MATH-lighteval (Hendrycks et al., 2021) for
training. Specifically, we train the DeepSeek-R1-Distill-Qwen-1.5B base model with the open-s1
dataset, resulting in the GPG-RS1 model. Similarly, training with the open-rs dataset produces the
GPG-RS3 model. Furthermore, we perform ablation studies using the MATH-lighteval dataset on the
Qwen2.5-Math-7B base model. To compare the overall performance on the 7B model, we utilize the
dataset from (Yu et al., 2025), and the detailed setting is shown in Section B.1.

These datasets encompass a wide range of problem types and difficulty levels. To assess the
reasoning capabilities of the models, we employ five distinct mathematics-focused benchmark
datasets: AIME24, MATH-500 (Lightman et al., 2023; Hendrycks et al., 2021), AMC23, Minerva
(Lewkowycz et al., 2022), and OlympiadBench (Huang et al., 2024).

In the multimodal case, we handle a variety of tasks. Specifically, for the visual reasoning task, we
utilize approximately 12, 000 samples from the SAT dataset (Ray et al., 2024) for training and perform
evaluations on the CV-Bench dataset Tong et al. (2024). In addressing the geometry reasoning task,
by following R1-V (Chen et al., 2025), we train on around 8, 000 samples from the GEOQA training
set (Chen et al., 2025) and subsequently evaluating performance on the GEOQA test set (Chen et al.,
2022). For both the classification and reasoning grounding tasks, we follow Visual-RFT to conduct
few-shot classification training on Flower102 (Nilsback & Zisserman, 2008), Pets37 (Parkhi et al.,
2012), FGVCAircraft (Maji et al., 2013), Car196 (Krause et al., 2013), respectively. Additionally,
training is conducted on 239 samples from the LISA training set (Lai et al., 2024). All evaluations
are carried out using the corresponding test sets associated with these training sets.

Implementation Details. Our approach is broadly applicable across a wide range of reinforcement
learning tasks. To demonstrate its versatility and efficacy, we conduct experiments encompassing
both unimodal and multimodal scenarios. These experiments are performed on NVIDIA H20 GPUs
and NPUs from China. For each experiment, we adhere strictly to the implementation of original
code base, ensuring consistent training and evaluation procedures. The implemented GPG method
can refer to Algorithm 1, and more detailed settings can refer to Appendix B.

Algorithm 1 Group Policy Gradient (GPG)

Input: o [shape: (B,G,C, dim)]←Model Output, r ← Reward, βth

1: Collecting samples and calculate Â and α based on Equation 6 and Equation 7 until α < 1
βth

2: Calculate log πθ(o)[per_token_logps] based on o and model πθ

3: loss← − log πθ(o) · Â ∗ α
Output: loss

3.2 UNIMODAL TASK EVALUATION

To evaluate our method, we select two models: a strong 1.5B distilled SFT model (DeepSeek-R1-
Distill-Qwen-1.5B) and a 7B base model.

Mathematical Reasoning using 1.5B model (A strong SFT model). Compared with other 1.5B
distilled models, our models exhibit superior performance with average accuracy 55.7% of GPG-RS1,
as illustrated in Table 3. Additionally, GPG-RS1 and GPG-RS3 shows strong results in AMC23 with
a score of 77.5% and 80.0%, obviously surpassing Open-RS 67.5% and 70.0%. Both GPG-RS1 and
GPG-RS3 demonstrate competitive performance across various benchmarks, particularly excelling in
MATH-500 with scores of 87.6% and 85.0%, and OlympiadBench with scores of 50.5% and 52.4%.
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Distilled 1.5B Models Average AIME24 MATH-500 AMC23 Minerva OlympiadBench

DeepSeek-R1-Distill-Qwen-1.5B 48.9 28.8 82.8 62.9 26.5 43.3
Still-3-1.5B-Preview 51.6 32.5 84.4 66.7 29.0 45.4
Open-RS1† 53.1 33.3 83.8 67.5 29.8 50.9
Open-RS3† 52.0 26.7 85.4 70.0 27.9 50.2
GPG-RS1 55.7 33.3 87.6 77.5 29.4 50.5
GPG-RS3 55.5 33.3 85.0 80.0 26.8 52.4

Table 3: The zero-shot pass@1 performance of the 1.5B models distilled by DeepSeek-R1 across
five mathematical reasoning benchmarks. †: reproduced results using released codes. ‡: results from
(Dang & Ngo, 2025).

7B Models Average AIME24 MATH-500 AMC23 Minerva OlympiadBench

Qwen-2.5-Math-7B-Instruct ‡ 43.8 13.3 79.8 50.6 34.6 40.7
Qwen2.5-Math-7B 30.9 13.3 57.6 45.0 14.7 23.7
Qwen2.5-Math-7B (no template)⋆ 38.2 0.2 69.0 45.8 21.3 34.7
rStar-Math-7B (Guan et al., 2025) - 26.7 78.4 47.5 - 47.1
Eurus-2-7B-PRIME (Cui et al., 2025) 48.9 26.7 79.2 57.8 38.6 42.1
Oat-Zero-7B (Liu et al., 2025a) 51.4 43.3 80.0 62.7 30.1 41.0
Oat-Zero-7B (Liu et al., 2025a)† 47.8 30.0 80.6 55.4 29.0 44.0
OpenReasoner-Zero-7B @ 8k (Hu et al., 2025) 45.9 13.3 82.4 54.2 31.6 47.9
SimpleRL-Zero-7B (Zeng et al., 2025)⋆ 46.6 26.7 78.2 60.2 27.6 40.3
GPG-Zero-7B 57.7 36.7 84.6 82.5 39.0 45.8

Table 4: The zero-shot pass@1 performance of the 7B models across five mathematical reasoning
benchmarks. †: reproduced results using the released code. ‡: results from (Dang & Ngo, 2025), ⋆:
results from (Liu et al., 2025a).

Mathematical Reasoning using 7B model. As illustrated in Table 4, GPG-7B achieves an average
score of 57.7% and outperforms other baselines with clear margins. This exceptional performance is
further highlighted in the AMC23 and Minerva, where GPG-7B attained a leading score of 82.5%
and 39.0%, exceeding SimpleRL-Zero-7B by impressive margins of 22.3% and 11.4%, respectively.
Moreover, GPG-7B consistently exhibits superiority across most benchmarks, outperforming the
recent state-of-the-art method, Oat-Zero-7B, by an average of 6.3%.

Models GEOQATest

Qwen2.5-VL-3B-Instruct 35.41

+ GRPO 47.48
+ GPG 51.33

Table 5: Geometry reasoning re-
sults on GEOQA. GPG is better
than GRPO.

Models Average Flower102 Nilsback & Zisserman (2008) Pets37 Parkhi et al. (2012) FGVC Maji et al. (2013) Cars196 Krause et al. (2013)

Qwen2-VL-2B 56.0 54.8 66.4 45.9 56.8

+ SFT 55.6 58.5 55.5 67.9 40.5
+ GRPO 81.9 71.4 86.1 74.8 95.3
+ GPG 89.0 79.3 90.8 88.5 97.5

Table 6: 4-shot Results on Four Fine-grained Classification
Datasets. GPG shows consistently better results than GRPO
on 4 classification datasets.

Models Total Count Relation Depth Distance

Qwen2-VL-2B 31.38 54.69 22.46 0.16 31.66

+ SFT 57.84 60.02 68.92 55.00 45.83
+ GRPO 59.47 59.64 66.76 54.16 56.66
+ GPG 76.15 66.62 83.23 81.66 75.50

Table 7: Visual reasoning results on CV-Bench (Tong
et al., 2024), which shows GPG training on base model
has overall better performance over GRPO and the base
model.

Models mIoUtest mIoUval gIoUtest

Qwen2-VL-2B 26.9 30.1 25.3

+ SFT 28.3 29.7 25.3
+ GRPO 37.6 34.4 34.4
+ GPG 51.8 51.3 50.4

Table 8: Reasoning grounding results on
LISA (Lai et al., 2024). GPG surpasses
GRPO in reasoning grounding.

3.3 MULTIMODAL TASK EVALUTAION

We further evaluate our method on several very recent multimodal benchmarks, most of which report
results based on GRPO.

Geometry Reasoning. In addition to visual reasoning, MLLMs exhibit notable proficiency in
geometry reasoning. To evaluate the efficacy of the GPG method in this domain, we employ an
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experimental setup similar to that used in R1-V (Chen et al., 2025) using the GEOQA (Chen et al.,
2022) dataset. The results, presented in Table 5, indicate that the GPG method achieved a score of
51.33%, surpassing the GRPO’s score of 47.48% by 3.85% points. This demonstrates the superior
performance of the GPG method in addressing complex geometric reasoning tasks.

Classification. Beyond the evaluation of reasoning tasks, we also assess the enhancement of the
GPG method over GRPO in image perception tasks. As shown in Table 6, the GPG method achieves
an average score of 89.0% across four classification datasets, surpassing GRPO by 7.1% points.
Additionally, our method consistently produces improvements across all four classification datasets,
underscoring its superiority in image perception tasks.

Visual Reasoning. We initially evaluate the GPG method using the CV-Bench (Tong et al., 2024)
visual reasoning dataset, strictly adhering to the parameter settings of VisualThinker-R1-Zero. As
illustrated in Table 7, the GPG method demonstrates a significant improvement in performance.
Specifically, it attains a score of 76.15% on CV-Bench, representing an increase of 16.68% points
compared to the 59.47% score achieved by GRPO.

Reasoning Grounding. The final critical aspect of evaluating MLLMs involves precisely identifying
objects according to user requirements. To this end, we employ the Qwen2-VL-2B model for
grounding tasks using the LISA dataset (Lai et al., 2024), with the results presented in Table 8.
In comparison to the GRPO method, the GPG approach demonstrates a substantial enhancement,
improving all metrics by over 14.0% points. This significant improvement underscores the superiority
of the GPG method in object localization, leading to considerable advancements in reasoning and
perception capabilities.

3.4 ABLATION STUDY AND DISCUSSION

Case Study and Training Analysis. We present the reasoning processes of GPG and GRPO, as
illustrated in Figure 4 (supplementary). Compared to GRPO, the GPG approach demonstrates a more
comprehensive and accurate reasoning capability, whereas GRPO exhibits errors in formula analysis.
Consequently, GPG arrives at the correct solution, while GRPO produces an incorrect result. In
Figure 3, we present a range of real-time training metrics to illustrate the effectiveness of GPG as a
straightforward yet strong RL algorithm.

Sensitivity on Group Size. We study the effect of the number of generations within a group. As
shown in Table 11, increasing the group size from 2 to 16 leads to progressive improvements across
most metrics. Specifically, the Average performance improves steadily with larger group sizes. We
choose 8 to achieve a good tradeoff between training cost and performance.

Comparison with Various RL Methods. We attempt to explain the differences between GPG and
other RL methods in the simplest way. As shown in Table 14, it can be seen that the loss of GPG
does not include the “CLIP term” and the “KL divergence”. Its form and calculation are the simplest,
and as discussed in Section 3.2, its performance is better than other methods.

Comparison with DAPO (Yu et al., 2025). We meticulously control the experimental settings and
rigorously reported the results in Table 9. All models are trained on the same dataset and for the
same number of steps (1100). In contrast to DAPO (Yu et al., 2025), which incorporates all proposed
components, our method focuses exclusively on the accuracy reward. Despite this, our approach
achieves superior performance with reduced training and data costs. DAPO, which constructs fully
valid batches through dynamic sampling, often requires more batches and may waste valid samples
in the final batch. In contrast, our method avoids these inefficiencies, ensuring optimal resource
utilization and enhanced performance.

Method Average AIME24 MATH-500 AMC23 Minerva OlympiadBench Training Cost Data Cost Memory

DAPO-7B 56.0 30.0 84.6 82.5 34.9 47.8 1× 1× 28G
GPG-Zero-7B 57.7 36.7 84.6 82.5 39.0 45.8 0.45× 0.39× 24G

Table 9: Comparison with DAPO (Qwen-7B Math). Ours is simpler, stronger and resource efficient.

KL constraint. In principle, our method is designed to optimize the original reinforcement learning
(RL) problem directly. And it’s a bit strange without imposing any distribution constraints. Despite
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this, we conduct an ablation study to evaluate the impact of adding a distribution constraint. The
results are presented in Table 13. Our findings indicate that incorporating such a constraint negatively
impacts performance.

Limited by space, we provide more ablation studies in Section B.2.

3.5 IMPACT AND LIMITATION DISCUSSION

Achieving advanced general intelligence critically depends on augmenting the reasoning capabilities
of models, with efficient and scalable reinforcement learning methods serving as a cornerstone.
Our proposed approach investigates a minimalist strategy that aims to enhance reasoning capacity
through simplicity and efficiency, thereby potentially facilitating the development of scalable systems.
However, given the constraints of our computational budget, we do not evaluate our method on
extremely large models.

4 RELATED WORK

Large Model Reasoning. Recent advancements in both LLM and Multimodal Large Language
Model (MLLM) increasingly focus on enabling models to simulate human-like, stepwise reasoning
processes. In the field of LLMs, researchers have pioneered methods such as Chain-of-Thought
(CoT) prompting (OpenAI, 2024; Wei et al., 2022; Kojima et al., 2022; Ye et al., 2025), Tree-of-
Thought (Yao et al., 2023), Monte Carlo Tree Search (Feng et al., 2024; Xin et al., 2024; Trinh
et al., 2024), and the construction of complex SFT datasets (Muennighoff et al., 2025), to enhance
performance in reasoning tasks. Notably, approaches such as DeepSeek-R1 (Guo et al., 2025) employ
large-scale RL with format-specific and result-oriented reward functions, guiding LLMs toward
self-emerging, human-like, complex CoT reasoning with significant performance improvements
in challenging reasoning tasks. Meanwhile, MLLMs convert inputs from various modalities into
a unified LLM vocabulary representation space for processing and exhibit superior performance
in vision understanding tasks (Wu et al., 2024; Liu et al., 2023; Chen et al., 2024; Google, 2023).
Building on advancements in LLM reasoning, the research community collectively applies the
DeepSeek-R1 methodology to MLLMs to enhance their visual reasoning capabilities, yielding
remarkable progress (Zhang et al., 2025; Liu et al., 2025b; Chen et al., 2025; Zhou et al., 2025).

Reinforcement Learning. RL has driven significant progress in sequential decision-making, with
policy gradient methods being fundamental to optimizing stochastic policies. The REINFORCE
algorithm (Williams, 1992) establishes early principles for gradient-based policy updates in trajectory-
driven tasks. However, its high variance poses challenges for scalability. To address this, subsequent
research focus on stabilizing policy optimization processes. Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015) introduces constrained updates via quadratic approximations to
ensure monotonic improvement. This approach is further refined by PPO (Schulman et al., 2017),
which employed clipped objective functions to simplify the optimization process. Subsequent
studies seek to enhance the PPO algorithm (Zheng et al., 2023) or elaborate on its implementation
(Engstrom et al., 2019). PPO achieves widespread use in language model alignment and robotic
control. However, the algorithm’s dependence on conservative policy updates or heuristic clipping
thresholds can undermine its exploration potential in favour of stability, which poses a significant
challenge in complex domains requiring dynamic strategy adaptation.

Limited by space, more related work is discussed in Section C.

5 CONCLUSION

In this paper, we introduce GPG, which effectively addresses the critical challenges inherent in
reinforcement fine-tuning approaches such as PPO and GRPO. By directly incorporating group-based
decision dynamics into the standard PG method, GPG simplifies the training process and significantly
reduces computational overhead without sacrificing reasoning quality. This breakthrough provides
a more efficient framework for training advanced LLMs capable of complex reasoning, thereby
contributing to more resource-effective and scalable artificial intelligence systems.

9
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6 REPRODUCIBILITY STATEMENT

We have taken the following steps to ensure the reproducibility of our empirical results: (1) We
provide a comprehensive description of all experimental setups, including the datasets used and their
corresponding benchmarks, in Section 3.1. (2) Our implementation builds upon several publicly
available code repositories. For unimodal tasks, we utilize the VERL framework (Sheng et al.,
2024), Open-r1 (Face, 2025), and Open-rs (Dang & Ngo, 2025). For multimodal tasks, we adopt
VisualThinker-R1-Zero (Zhou et al., 2025), R1-V (Chen et al., 2025), and Visual-RFT (Liu et al.,
2025b). These repositories have been adapted to suit our purposes and to facilitate replication by the
research community. (3) Detailed training configurations—including hyperparameters, evaluation
protocols, and specific adaptations applied to each base framework—are thoroughly documented
in Appendices B.1 and B.4. (4) In compliance with the double-blind review policy, we have made
our full implementation, along with training and evaluation scripts, publicly accessible through an
anonymous repository. This ensures that all reported results can be reproduced without revealing the
authors’ identities. The anonymous link is provide in Appendix B.6.
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A ANALYSIS OF DISTRIBUTED GRADIENT AVERAGING WITH INVALID
SAMPLES

A.1 PROBLEM FORMULATION

Consider a distributed training setup where:

• A batch of B samples is evenly distributed across N GPUs, with each GPU processing
K = B/N samples.

• For the i-th GPU, the first Mi samples produce zero gradients (invalid samples), while the
remaining (K −Mi) samples generate valid gradients.

• Let Mtotal =
∑N

i=1 Mi denote the total invalid samples, and S = B −Mtotal the effective
valid samples.

Let gi,j represent the gradient of the j-th valid sample on the i-th GPU. We define the valid gradient
sum for GPU i as:

Gi =
K∑

j=Mi+1

gi,j (9)

The conventional distributed averaging approach in PyTorch computes a gradient estimate:

ĜPyTorch =
1

B

N∑
i=1

Gi (10)

whereas the theoretically correct gradient should be:

Gtrue =
1

S

N∑
i=1

Gi (11)

Proof. Step 1: Conventional Approach Derivation

Each GPU calculates its local mean using the assigned sample count K (not valid samples):

Ḡlocal
i =

Gi

K
(12)

Global averaging then gives:

ĜPyTorch =
1

N

N∑
i=1

Ḡlocal
i =

1

N

N∑
i=1

Gi

K
=

1

B

N∑
i=1

Gi (since N ·K = B) (13)

Step 2: True Gradient Computation

The correct gradient averages over only valid samples:

Gtrue =
1

S

N∑
i=1

Gi (S = B −Mtotal) (14)

Observe the proportional relationship:

ĜPyTorch =
1

B

N∑
i=1

Gi (15)

=

(
1

S

N∑
i=1

Gi

)
· S
B

(16)

= Gtrue ·
S

B
(17)
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B MORE EXPERIMENT DETAILS

B.1 EXPERIMENT SETTINGS

Training setting on 7B based on dataset from (Yu et al., 2025). We employ the VERL framework
(Sheng et al., 2024) with a global batch size of 144 prompts. For each prompt, we generate 8
responses and use only accuracy-based rewards. Our implementation strictly follows Algorithm 1.
We optimize the network using the AdamW optimizer with a constant learning rate of 1× 10−6 and
a weight decay of 0.1. The threshold value βth is set to 0.6. We trained the model for 1100 steps
utilizing 48 NPUs sourced from China.

B.2 MORE ABLATION EXPERIMENT RESULTS

βth Average AIME24 MATH-500 AMC23 Minerva OlympiadBench

0.6 48.3 30.0 76.2 62.5 34.2 39.0
0.8 48.6 33.3 73.6 67.5 29.4 39.3

Table 10: Ablation on different βth using Qwen2.5 Math 7B.

Group Number Average AIME24 MATH-500 AMC23 Minerva OlympiadBench

2 41.9 16.7 71.6 60.0 25.0 36.0
4 43.3 20.0 73.2 55.0 29.8 38.5
8 45.3 23.3 73.6 60.0 30.5 39.3

16 47.3 26.7 74.6 65.0 32.4 37.8

Table 11: Ablation on different group size (wo AGE) using Qwen2.5 Math 7B.

Model MMLU C-Eval
DeepSeek-R1-distill-qwen-1.5B 38.31 32.91
+ GPG 38.53 (+0.22) 33.29 (+0.38)

Table 12: Evaluation of GPG on MMLU and C-Eval.

Reward Normalization. We study the role of reward normalization and show the result in Table 13.
Normalization within a batch is common practice in the RL training process (Andrychowicz et al.,
2021). The results of the experiment show that reward normalization within a group is better than the
batch.

Comparision of various RL methods. We compare the main component of various RL methods in
Table 14.

Evaluation on General Benchmarks

One potential concern for GPG is that the performance gains on specialized reasoning benchmarks
might come at the cost of degrading the model’s general capabilities. To investigate this, we conduct
an additional evaluation on two widely used general benchmarks that are unrelated to the reasoning
datasets used in training: MMLU (Hendrycks et al., 2021), which covers 57 subjects spanning STEM,
humanities, social sciences, and other fields, and C-Eval (Huang et al., 2023), a comprehensive
Chinese evaluation suite consisting of 52 diverse disciplines.

We evaluate the DeepSeek-R1-distill-Qwen-1.5B and the same model after being trained by GPG. The
evaluation is performed using the OPENCOMPASS framework, ensuring identical settings for a fair
comparison. As shown in Table 15 and 16, GPG achieves consistent improvements on both MMLU
(+0.22) and C-Eval (+0.38), indicating that it not only boosts reasoning-specific benchmarks but
also enhances performance on general-purpose evaluations. Detailed results for each sub-domain are
provided in Table 15 and Table 16. These findings confirm that GPG’s improvements on specialized
reasoning tasks do not compromise the model’s general capabilities, and in some cases even slightly
enhance them. Therefore, GPG can be regarded as a safe and broadly applicable method.
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Fnorm Average AIME24 MATH-500 AMC23 Minerva OlympiadBench

Group 45.3 23.3 73.6 60.0 30.5 39.3
Batch 44.9 23.3 72.2 55.0 35.3 38.5

1 43.9 23.3 76.3 52.5 30.1 37.4

Table 13: Ablation on reward normalization using Qwen2.5 Math 7B.
RL Method Loss Function Advantage Function

PPO (Schulman et al., 2017) LPPO = − min

 πθ(o)

πθold
(o)

· A, clip

(
πθ(o)

πθold
(o)

, 1 − ϵ, 1 + ϵ

)
︸ ︷︷ ︸

CLIP

·A

 where A computed by
applying GAE (Schulman et al., 2018) based on

rewards and the critic model.

GRPO (Shao et al., 2024) LGRPO = −
(
min

[
πθ(o)

πθold
(o)

· A, CLIP · A
]
− βDKL [πθ∥πref ]

)
A =

R(o) − mean{R(o)}
std{R(o)}

Dr. GRPO (Liu et al., 2025a) LDr.GRPO = LPPO A =R(o) − mean{R(o)}

DAPO (Yu et al., 2025) LDAPO = − min

[
πθ(o)

πθold
(o)

· A, clip

(
πθ(o)

πθold
(o)

, 1 − ϵlow, 1 + ϵhigh

)
· A
]

A =
R(o) − mean{R(o)}

std{R(o)}
GPG LGPG = − log πθ(o) · A A =α ∗ (R(o) − mean{R(o)})

Table 14: Comparison of various RL methods, we explain in the simplest form.

B.3 PROMPT AND REWARD FUNCTION

Prompt for Reasoning. In the process of reinforcement fine-tuning, specific instructions are
incorporated into the system prompt. These instructions encourage the model to generate intermediate
reasoning steps, thereby facilitating the reasoning capabilities of the model. An example of this
approach is provided below (Liu et al., 2025b):

System Prompt for Reasoning for 1.5B Model
A conversation between User and Assistant. The user asks a question, and the Assistant
solves it. The assistant first thinks about the reasoning process in the mind and then provides
the user with the answer. The reasoning process and answer are enclosed within <think>
</think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here
</think><answer> answer here </answer>

Reward Function. For most tasks, we use the accuracy and formatting reward functions. For the
grounding task, the Intersection over Union (IoU) reward function is utilized. For the Qwen 7B
setting, we only use the accuracy reward.

• Accuracy: If the model’s output is consistent with the ground truth, a reward of 1.0 is awarded.
• Formatting: If the format of the model output is “<think></think> <answer></answer>”, a reward

of 1.0 is granted.
• IoU: Consistent with Visual-RFT (Liu et al., 2025b), the reward value is derived from the calculated

scores of the bounding boxes generated by the model.

B.4 MORE EXPERIMENT SETTINGS

To evaluate the unimodal reasoning capabilities of our proposed method, we utilize two publicly
available code repositories: Open-r1 (Face, 2025) and Open-rs (Dang & Ngo, 2025). These reposito-
ries are selected due to their extensive coverage of various reasoning scenarios and their ability to
present substantial challenges that effectively assess the reasoning capabilities of advanced models.
The DeepSeek-R1-Distill-Qwen-1.5B model is trained for 100 and 50 global steps using the open-s1
and open-rs datasets, as reported in the repository (Dang & Ngo, 2025), resulting in the GPG-RS1
and GPG-RS3 models, respectively.

For multimodal tasks, we have selected three renowned frameworks as our code base: VisualThinker-
R1-Zero (Zhou et al., 2025), R1-V (Chen et al., 2025), and Visual-RFT (Liu et al., 2025b). These
frameworks cover a variety of tasks, including visual reasoning, geometric reasoning, and image
perception. The use of distinct code bases enables a comprehensive assessment of the performance
enhancements achieved by our method across different tasks. Specifically, for the VisualThinker-R1-
Zero framework, we evaluate the results of the GPG approach on the CV-Bench (Tong et al., 2024).
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MMLU Datasets Deepseek-R1-Distill-Qwen-1.5B +GPG Accuracy Gain
college biology 24.31 24.31 0.00
college chemistry 32.00 32.00 0.00
college computer science 21.00 21.00 0.00
college mathematics 32.00 32.00 0.00
college physics 28.43 30.39 +1.96
electrical engineering 50.34 50.34 0.00
astronomy 36.84 38.16 +1.32
anatomy 35.56 35.56 0.00
abstract algebra 27.00 27.00 0.00
machine learning 37.50 37.50 0.00
clinical knowledge 41.89 42.64 +0.75
global facts 31.00 30.00 -1.00
management 43.69 43.69 0.00
nutrition 38.89 38.89 0.00
marketing 58.55 58.55 0.00
professional accounting 29.08 28.72 -0.36
high school geography 44.95 45.45 +0.50
international law 45.45 47.11 +1.66
moral scenarios 24.13 24.36 +0.23
computer security 39.00 39.00 0.00
high school microeconomics 44.96 46.22 +1.26
professional law 27.71 28.16 +0.45
medical genetics 46.00 46.00 0.00
professional psychology 33.5 33.66 +0.16
jurisprudence 39.81 39.81 0.00
world religions 33.92 33.33 -0.59
philosophy 41.48 42.12 +0.64
virology 40.96 40.96 0.00
high school chemistry 38.42 39.41 +0.99
public relations 42.73 42.73 0.00
high school macroeconomics 42.82 43.08 +0.26
human sexuality 48.85 48.85 0.00
elementary mathematics 37.57 38.10 +0.53
high school physics 24.50 23.84 -0.66
high school computer science 42.00 42.00 0.00
high school european history 40.00 40.61 +0.61
business ethics 43.00 43.00 0.00
moral disputes 37.57 37.28 -0.29
high school statistics 50.00 50.46 +0.46
miscellaneous 44.32 44.57 +0.25
formal logic 29.37 29.37 0.00
high school government and politics 38.34 38.86 +0.52
prehistory 32.72 33.33 +0.61
security studies 43.67 43.67 0.00
high school biology 44.52 44.19 -0.33
logical fallacies 38.04 38.04 0.00
high school world history 42.62 43.04 +0.42
professional medicine 38.60 38.97 +0.37
high school mathematics 30.00 30.74 +0.74
college medicine 32.37 32.95 +0.58
high school us history 35.78 35.78 0.00
sociology 47.76 48.26 +0.50
econometrics 32.46 32.46 0.00
high school psychology 42.94 42.75 -0.19
human aging 36.32 36.32 0.00
us foreign policy 56.00 57.00 +1.00
conceptual physics 40.43 39.57 -0.86
AVERAGE 38.31 38.53 +0.22

Table 15: Comparison of performance metrics across general MMLU datasets.

Additionally, we evaluate the GPGresults on the GEOQA dataset (Chen et al., 2022) based on R1-V.
Finally, for tasks related to image perception, such as classification (Nilsback & Zisserman, 2008;
Parkhi et al., 2012; Maji et al., 2013; Krause et al., 2013) and reasoning grounding (Lai et al., 2024),
we examine the performance of PGP using the Visual-RFT framework.
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C-Eval Datasets Deepseek-R1-Distill-Qwen-1.5B GPG Accuracy Gain
computer network 9.09 9.09 0.00
operating system 42.86 43.36 +0.50
computer architecture 28.57 27.93 -0.64
college programming 50.00 50.00 0.00
college physics 16.67 17.49 +0.82
college chemistry 42.86 42.86 0.00
advanced mathematics 42.11 41.83 -0.28
probability and statistics 38.89 39.30 +0.41
discrete mathematics 20.57 21.05 +0.48
electrical engineer 38.89 38.89 0.00
metrology engineer 12.00 13.40 +1.40
high school mathematics 20.78 21.67 +0.89
high school physics 47.18 50.67 +3.49
high school chemistry 49.00 50.25 +1.25
high school biology 22.22 22.54 +0.32
middle school mathematics 26.67 26.34 -0.33
middle school biology 39.00 38.37 -0.63
middle school physics 42.86 45.93 +3.07
middle school chemistry 33.33 32.47 -0.86
veterinary medicine 46.15 47.13 +0.98
college economics 57.89 57.89 0.00
business administration 15.38 19.88 +4.50
marxism 30.82 30.82 +0.00
mao zedong thought 16.67 17.06 +0.39
education science 45.45 45.16 -0.29
teacher qualification 55.56 57.68 +2.12
high school politics 21.43 29.24 +7.81
high school geography 27.27 28.11 +0.84
middle school politics 29.56 29.56 0.00
middle school geography 4.73 4.73 0.00
modern chinese history 25.00 25.00 0.00
ideological and moral cultivation 39.98 39.98 0.00
logic 46.67 46.02 -0.65
law 26.67 20.33 -6.34
chinese language and literature 15.38 14.79 -0.59
art studies 35.71 35.71 0.00
professional tour guide 20.00 20.00 0.00
legal professional 7.14 6.66 -0.48
high school chinese 41.67 41.67 0.00
high school history 41.67 42.21 +0.54
middle school history 9.09 9.09 0.00
civil servant 47.37 47.84 +0.47
sports science 62.48 62.48 0.00
plant protection 33.33 34.33 +1.00
basic medicine 44.44 43.74 -0.70
clinical medicine 42.86 42.16 -0.70
urban and rural planner 57.14 61.44 +4.30
accountant 23.53 22.77 -0.76
fire engineer 41.67 41.67 0.00
environmental impact engineer 19.05 18.34 -0.71
tax accountant 30.75 29.22 -1.53
physician 25.00 24.79 -0.21
AVERAGE 32.91 33.29 +0.38

Table 16: Comparison of performance metrics across general C-Eval datasets.
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System Prompt for Qwen 7B Reasoning
<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nKelly can
read five pages of her fiction book or two pages of her history textbook in seven min-
utes. If Kelly wants to read thirty pages of each book, for how many minutes in to-
tal must Kelly read?\nPlease reason step by step, and put your final answer within
boxed.<|im_end|>\n<|im_start|>assistant\n"

Figure 3: Comparison of GPG(blue curves) and GRPO(gray curves) in terms of training loss, rewards
and completion length. Experiments are based on DeepSeek-R1-Distill-Qwen-1.5B, same as Table 3.

B.5 CASE EXAMPLE

We show a case study in Figure 4.

B.6 ANONYMOUS CODE

To facilitate reproducibility while adhering to the double-blind review policy, we provide an anony-
mous link to the complete source code, including all scripts and configuration files necessary to
replicate our experiments. The code is available at: https://anonymous.4open.science/r/ICLR2026-
GPG-DA32.

GPG:
<think> Since ���� is a rhombus with diagonals intersecting at the 
origin, we know that ��2 + ��2 = ��2 + ��2 and the diagonals 
bisect each other at right angles. The equation of the hyperbola is 
given as �

2

20
− �2

24
= 1. To find specific coordinates  �, �  of points �, 

�, �, and � on the hyperbola, we solve the hyperbola equation for 
these points satisfying the rhombus properties. To find ��2, we take 
� =  �1, �1  and � =  �2, �2  on the hyperbola such that the 
diagonals bisect each other and cross at the origin. Utilize the 
symmetry that the rhombus provides, where the diagonals of the 
rhombus are equal.
We derive and solve expressions for the distances between these 
points (i.e., ��, which encompasses symmetric properties):
    - Calculate the squared distances of each diagonal intersection.
    - Consider the maximum length that fits within the geometric 
properties of the rhombus:
    - Hence, �� = �1

2 + �1
2 + �2

2 + �2
2.

After considering all possible values within the range dictated by the 
hyperbolic equation and rhombus properties, we find the greatest 
real number. </think>

<answer> Therefore, the final answer is: 480 . I hope it is correct. 
</answer>

GRPO:
<think> The points �, �, �, and � lie on the hyperbola, which 
gives the equations: �

2

20
− �2

24
= 1. Assume that � =  � 20, � 24 , 

� =  −� 20, − � 24 , due to the symmetry of the rhombus. 
Points � and � transversely lie symmetric to origin. From 

hyperbola properties:  � 20 
2

24
−  � 24 

2

24
= 1,  � 24 

2

24
−  � 20 

2

24
= 1. 

Thus solving both yield simpler vertex component: Expression: 
�� = 2 20 + 24 = 2 44. Bounding details, max achievable 
setting confirms: Hence, ��2 = 4 ∙  20 + 24  gives: Calculated 
complete max achievable fitting cross: 176. </think>

<answer> Therefore, the final answer is: 176 . I hope that it is 
correct. </answer>

User: Solve the following math problem efficiently and clearly. The last line of your response should be of the following format: "Therefore, 
the final answer is: . I hope it is correct" (without quotes) where ������  is just the final number or expression that solves the problem. 
Think step by step before answering. Let �, �, �, and � be points on the hyperbola �

2

20
− �2

24
= 1 such that ���� is a rhombus whose diagonals 

intersect at the origin. Find the greatest real number that is less than ��2 for all such rhombi.
Assistant: Let's solve this step by step.
Ground Truth: 480

Figure 4: Comparison of GPG and GRPO in mathematical reasoning task based on DeepSeek-R1-
Distill-Qwen-1.5B model trained on Open-rs dataset: a test case from AIME24 dataset.
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C MORE RELATED WORK

Proximal Policy Optimization. PPO (Schulman et al., 2017) addresses the inherent optimization
instability of Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) through a clipped
surrogate objective. Formally, let the probability ratio between the updated policy πθ and the previous
policy πθold be defined as

rt(θ) =
πθ(at|st)
πθold(at|st)

, (18)

where at and st denote the action and state at timestep t, respectively. While TRPO maximizes the
surrogate objective

J TRPO(θ) = Et

[
rt(θ)Ât

]
(19)

under a Kullback-Leibler (KL) divergence constraint, PPO reformulates this via a clipped mechanism.
Here, Ât represents the estimated advantage function quantifying the relative value of action at in
state st. The PPO objective is defined as:

J CLIP(θ) = Et

[
min

(
rt(θ)Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)]
, (20)

where the clip operator restricts rt(θ) to the interval [1 − ϵ, 1 + ϵ], with ϵ being a hyperparameter
controlling the policy update magnitude. This constraint prevents excessive policy deviations that
could degrade performance.

To further stabilize training and promote exploration, the composite objective incorporates three
components: 1) Clipped policy gradient term J CLIP(θ), 2) Value function loss:

LVF = Et

[
(Vθ(st)− Vtarget(st))

2
]
, (21)

where Vθ(st) is the state-value function estimator and Vtarget(st) denotes the target value computed
via temporal-difference methods, 3) Entropy regularization:

H(st, πθ) = −
∑
a∈A

πθ(a|st) log πθ(a|st), (22)

with A being the action space, which prevents premature policy convergence by encouraging stochas-
ticity.

The complete objective integrates these terms as:

J PPO(θ) = Et

[
J CLIP(θ)− c1LVF + c2H(st, πθ)

]
, (23)

where c1 > 0 and c2 > 0 are coefficients balancing policy optimization, value estimation accuracy,
and exploration. Crucially, PPO replaces TRPO’s computationally intensive second-order KL
constraints with first-order gradient clipping, enabling efficient large-scale implementations while
preserving monotonic policy improvement guarantees, as rigorously established through surrogate
objective monotonicity analysis (Hsu et al., 2020).

Group Relative Policy Optimization. GRPO (Shao et al., 2024) establishes a policy gradient
framework that eliminates dependency on explicit value function approximation through comparative
advantage estimation within response groups. The method operates by sampling multiple candidate
outputs for each input question and constructing advantage signals based on relative rewards within
these groups. For a given question q ∼ P (Q), the algorithm generates G responses {o1, . . . , oG} from
the current policy πθold , then computes token-level advantages using intra-group reward comparisons.

The advantage term Âi,t for the t-th token in the i-th response is defined as the deviation from the
group average reward:

Âi,t = R(oi)−
1

G

G∑
j=1

R(oj), (24)

where R(·) denotes the reward model’s evaluation. This design inherently aligns with the comparative
training paradigm of reward models, which typically learn from pairwise response rankings.
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The optimization objective integrates clipped probability ratios with explicit KL regularization.
Defining the token-level probability ratio as:

ri,t(θ) =
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, (25)

the clipped surrogate objective constrains policy updates through:

J clip
i,t (θ) = min

(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

)
. (26)

Diverging from PPO’s implicit KL control via reward shaping, GRPO directly regularizes policy
divergence using an unbiased KL estimator:

DKL [πθ∥πref] =
πref(oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
− log

πref(oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
− 1, (27)

The complete objective combines these components with a regularization coefficient β:

J GRPO(θ) = Eq,{oi}

 1

G|oi|
∑
i,t

(
J clip
i,t (θ)− βDKL [πθ∥πref]

) . (28)

C.1 EXPERIMENTS DURING REBUTTAL

Method Code General QA
MBPP MBPP+ HellaSwag (accnorm/stderr) TruthfulQA (mc2/stderr)

GRPO 24.60% 21.96% 41.914/0.492 47.307/1.516
GPG 26.19% 23.81% 42.551/0.493 50.146/1.533

Table 17: Zero-shot results on code generation and general QA tasks using Qwen-1.5B.

Compared with the GRPO baseline, Group A replaces the loss with a policy-gradient (PG) loss and
removes the KL divergence term. It thus applies a policy-gradient algorithm with group rewards, as
in GRPO. Group B corrects an error in reward normalization and uses the proper formula; however,
its performance degrades. We attribute this degradation to gradient bias, which Group C mitigates via
α-scaling, yielding improved performance. Group D further improves performance by imposing a
minimum valid-sample proportion threshold, which serves as a variance-reduction mechanism.

Models Average Value Models Reference Models Surrogate Loss Policy Constraint Debiased Gradient Variance Reduction

Qwen2.5-Math-7B 30.9 - - - - - -

GPRO 43.7 ✗ ✓ ✓ ✓ ✗ ✗

A. GPG(Fnorm=std{R(o)},α=1) [PG+Group Reward] 45.3 ✗ ✗ ✗ ✗ ✗ ✗
B. GPG(Fnorm=1,α=1) 43.9 ✗ ✗ ✗ ✗ ✗ ✗
C. GPG(Fnorm=1, α = B

B−M
) 47.8 ✗ ✗ ✗ ✗ ✓ ✗

D. GPG(Fnorm=1, α = B
B−M

, βth = 0.6) 48.3 ✗ ✗ ✗ ✗ ✓ ✓

Table 18: Math reasoning results on Qwen2.5-Math-7B model.
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Model Avg AIME24 AMC23 MATH_500 MINERVA
pass@1 (Acc / Std)

Oat-Zero 52.0 31.6/8.8 66.5/7.6 79.5/1.8 30.5/2.8
Eurus-2-7B-PRIME 48.9 16.7/6.8 62.5/7.5 79.6/1.8 37.1/2.9
Open-Reasoner-Zero-7B 46.3 15.8/6.3 55.0/7.9 82.2/1.7 32.2/2.8
Qwen-2.5-Math-7B-SimpleRL-Zero 49.4 29.2/8.5 60.6/7.8 76.6/1.8 31.3/2.9
GPG-Zero-7B 58.7 31.7/8.8 80.6/6.1 85.3/1.6 37.4/3.0

pass@3 (Acc / Std)

Oat-Zero 59.4 40.0/8.8 74.4/6.7 85.6/1.6 37.4/2.9
Eurus-2-7B-PRIME 58.7 27.5/7.4 76.3/6.9 86.9/1.5 44.3/3.0
Open-Reasoner-Zero-7B 54.8 20.8/6.9 68.8/7.8 88.1/1.5 41.5/3.0
Qwen-2.5-Math-7B-SimpleRL-Zero 58.9 36.8/9.1 70.0/6.7 86.0/1.3 42.8/3.0
GPG-Zero-7B 64.7 41.5/9.2 85.0/5.7 89.0/1.4 43.4/3.0

pass@5 (Acc / Std)

Oat-Zero 62.2 42.5/8.9 78.8/6.7 87.1/1.5 40.5/3.0
Eurus-2-7B-PRIME 62.1 30.9/8.2 80.6/6.7 89.3/1.3 47.6/3.0
Open-Reasoner-Zero-7B 60.4 27.5/7.4 78.1/6.9 90.5/1.3 45.3/3.0
Qwen-2.5-Math-7B-SimpleRL-Zero 62.7 41.6/9.1 74.4/6.7 88.8/1.3 45.9/3.0
GPG-Zero-7B 66.2 41.7/9.2 86.3/5.7 90.9/1.3 46.0/3.0

Table 19: Pass@3 and pass@5 results—reported as mean ± standard deviation computed over four
random seeds—for the Qwen2.5-7B base model. GPG consistently shows clear advantages over
other baselines, consistent with the trends in Table 4.
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