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Abstract

Taxonomy is a knowledge graph of concept001
hierarchy which plays a significant role in002
semantics entailment and is widely used in003
many downstream natural language processing004
tasks. Distinct from building a taxonomy from005
scratch, the task of taxonomy expansion aims006
at enriching an existing taxonomy by adding007
new concepts. However, existing methods of-008
ten employ only part of the structural infor-009
mation for representing the taxonomy, which010
may ignore sufficient features. Meanwhile, as011
many recent models usually take this task in012
insertion only manner, they preserve limita-013
tions when the new concept is not an inser-014
tion to taxonomy. Therefore, we propose Tax-015
oSeq, a method that converts the task of tax-016
onomy expansion into a sequence to sequence017
setting, thereby effectively exploiting the en-018
tire structural features and naturally dealing019
with more expansion cases. Empowered by020
pre-trained language models such as T5 (Raffel021
et al., 2020), our approach is shown to achieve022
significant progress over other methods in Se-023
meval’s three publicly benchmark datasets.024

1 Introduction025

Taxonomy is a tree structure or directed acyclic026

graph composed of “is-a” relationships, which con-027

structs valuable knowledge connections between028

concepts. High-quality taxonomy is critical for029

many downstream tasks, such as product recom-030

mendation in e-commerce (Liu et al., 2019), infor-031

mation retrieval in web search (Yang et al., 2020),032

and question answering in education (Yu et al.,033

2020a). Inserting new emerging concepts into a034

taxonomy is the task of taxonomy expansion, and035

the key is to insert them into the right place to036

ensure consistency of concept relationships.037

Recent works on taxonomy expansion can be038

divided into two technical lines: 1) Concept Pair039

Matching methods utilize information around con-040

cepts of taxonomy, e.g., GNN (Shen et al., 2020)041
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Figure 1: An illustration of a taxonomy expansion task.
Modeling the entire structure of taxonomy with se-
quences.

for mapping the concepts into a high dimensional 042

space or mini-paths (Yu et al., 2020b) for matching 043

in local range of taxonomy concepts. 2) Hierarchy 044

Expansion methods take taxonomy hierarchical in- 045

formation into account, constructing a subtree-like 046

structure, e.g., ego-trees (Wang et al., 2021) and 047

taxonomy-paths (Liu et al., 2021), to extract hori- 048

zontal or vertical concept information of taxonomy. 049

050

Although these approaches utilize taxonomy 051

structural knowledge, they do not explicitly estab- 052

lish the entire structure of local taxonomy, resulting 053

in a discount in representing taxonomy. For exam- 054

ple, in Figure 1, the “red sea” concept in expanded 055

taxonomy forms structures that can be acute angle 056

edges (semantic similarity), paths (hypernym re- 057

lations) and individual points (no relation), where 058

a fixed representation is only modeled from the 059

side. Furthermore, they all insert concepts in a 060

“insertion only” manner, which mainly consider se- 061

mantic similarity and hypernym relations. The top- 062

ranked concept in the seed taxonomy is chosen for 063
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insertion and the new concept is appended below it.064

These methods do not explicitly distinguish no re-065

lation of new concept, which can cause unintuitive066

in the insertion position.067

To address the issues above, we propose a068

novel taoxonomy expansion method by converting069

Taxonomy into Sequence (TaxoSeq) for concept070

insertion. In particular, we use brackets and con-071

cept position in brackets to represent an arbitrary072

tree structure taxonomy as a sequence, denoting073

various relationships in taxonomy. Then we insert074

the concept directly into the bracket sequence to075

obtain the expanded taxonomy of inserted concept076

by sequence-to-sequence (seq2seq) framework.077

Based on our observation of the taxonomy struc-078

ture, we found that taxonomy have two characteris-079

tics: layer factor and depth factor. The depth factor080

is created by hypernym-hyponym relationship, in081

which the hypernym has a semantic entailment re-082

lationship with the hyponym. The layer factor is083

made up of semantic similarities between concepts084

with the same hypernym, which we refer to as sib-085

ling concepts. We propose a bracket tree modeling086

approach in which concepts outside the brackets087

have a hypernym relationship with concepts inside088

the brackets, and concepts within the same bracket089

are sibling concepts. In this way, we converted tax-090

onomy into a sequence regardless of its structure.091

The sequence-to-sequence approach has been092

applied to various NLP tasks, such as Dia-093

logue (Colombo et al., 2020) Question An-094

swer (Saxena et al., 2022) and Translation (Wang095

et al., 2022). Drawing on this idea, we make a sim-096

ilar study on taxonomy expansion. During training,097

the sequence inputted to the model encodes both se-098

mantic and structural features of taxonomy. Then,099

combined with the generative T5 pre-train language100

model (PLM), we directly generate the sequence101

taxonomy inserted concept. This can break the case102

of insertion only, which identifies non-insertion and103

other insertion types. In addition, T5 model trained104

on large-scale corpora also benefits discovering the105

hypernym relationship.106

In the experiment, we evaluate TaxoSeq in three107

public benchmarks in SemEval-task13. Our algo-108

rithm yields a maximum improvement of 22.1%109

accuracy over the state-of-the-art algorithm. More-110

over, we conducted ablation experiments to verify111

the effectiveness of each part of TaxoSeq.112

Our contributions are threefold: 1) We propose a113

bracket tree modeling method that can convert local114

tree taxonomy into a sequence regardless of its 115

different structure. 2) We employ a new sequence- 116

to-sequence concept insertion strategy to directly 117

insert new concepts into the taxonomy, which can 118

address the case of no insertion. 3) We conduct 119

extensive evaluations on three benchmark datasets 120

to validate the performance of TaxoSeq methods. 121

2 Related work 122

Taxonomy Construction. Automated taxonomy 123

construction tasks have endured in academic re- 124

search, which aims to construct a bunch of nodes 125

into a directed acyclic graph or a tree from scratch. 126

Further, it can be divided into two subfields. The 127

first subfield clusters similar terms into a topic and 128

constructs these topics into a taxonomy, which is 129

called topic-level taxonomy construction (Shang 130

et al., 2020; Downey et al., 2015). Another sub- 131

field is in term level, and the "is-a" relation ex- 132

traction between terms utilizes either a pattern- 133

based method (Panchenko et al., 2016; Chang 134

et al., 2017) or a distributional method (Shi et al., 135

2019; Chang et al., 2017). For example, the 136

Hearst pattern (Hearst, 1992) is a typical pattern- 137

based method, and these methods have relatively 138

high accuracy but low recall. The distribution 139

method (Dash et al., 2020; Wang et al., 2019) can 140

determine whether a concept pair has a hypernym 141

relationship with each other by word embedding, 142

but it requires a large amount of manual anno- 143

tation, which affects the application in different 144

domains. With the development of practical ap- 145

plications, many new concepts emerge, and the 146

taxonomy construction will be laborious and time- 147

consuming, thus it is critical to find a solid solution. 148

Taxonomy Expansion. Recent researches mainly 149

addresses how to insert new concepts into the seed 150

taxonomy. (Manzoor et al., 2020) learns the rep- 151

resentation of the implicit semantic information 152

of edges and the embedding of nodes to discover 153

whether a node pair has a hypernym relationship. 154

(Shen et al., 2020) proposes a location-enhanced 155

graph neural network to encode the relative posi- 156

tion of anchors and a noise-robust training strategy. 157

STEAM (Yu et al., 2020b) offers a multi-view co- 158

training procedure with the integration of multiple 159

external sources to assist mini-path-based classi- 160

fication in finding the anchor node. HEF (Wang 161

et al., 2021) constructs a subtree model of the hy- 162

pernyms and sibling nodes and encodes the four 163

representations of the subtree. Although existing 164
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methods supplement the implicit information of the165

taxonomy structure with the help of auxiliary algo-166

rithms, they do not model the entire tree taxonomy167

structure. Moreover, they treat taxonomy expan-168

sion as a ranking task for nodes, which essentially169

defaults that nodes must be able to be inserted. In170

contrast, our algorithm can represent different tax-171

onomy structures and flexibly insert concepts into172

the taxonomy with the help of pre-trained language173

models and the seq2seq framework.174

3 Problem Formalization175

In this section, we first define taxonomy, then for-176

malize the task of taxonomy expansion.177

Definition 3.1 (Taxonomy) Taxonomy is a tree178

structure that can be represented by T = (C, E),179

where c ∈ C represents the concept in taxonomy180

T . ⟨ci, cj⟩ ∈ E denotes the edge representing181

hypernym-hyponym relation between two concepts,182

where ci is the hypernym, and cj is the hyponym.183

For example, in the seed taxonomy in Figure 1,184

“sea”, “black sea” and “caspian sea” are concepts.185

⟨sea, black sea⟩ and ⟨sea, caspian sea⟩ are edges186

in the taxonomy, where “sea” is the hypernym of187

“black sea” and “caspian sea”.188

Definition 3.2 (Taxonomy Expansion) Given a189

seed taxonomy T 0 = (C0, E0) and a set of new190

concepts C, taxonomy expansion aims to form a191

new taxonomy T = (C0 ∪ C, E0 ∪ E) by insert-192

ing the concepts C into taxonomy T 0, where E is193

the set of new edges after insertion. Specially, for194

each given query concept q ∈ C, the model utilizes195

the hypernym score function f(q, c) formed with196

concept c ∈ C0 to determine the anchor concept197

ca = argmaxc∈C0 f(q, c) and to form loacl tax-198

onomy T c containing q and c. If ca ∈ C,the edge199

⟨ca, q⟩ is added to E .200

For the query concept “red sea” in Figure 1, the201

insertion function formed by “black sea” concept202

(this will be introduced in 4.2) has the highest rank-203

ing, the anchor concept is determined as “sea”,204

and the local taxonomy sequence is formed as205

“(sea(black sea)(red sea)))”. Both obtaining anchor206

concept and generating taxonomy inserted query in207

original taxonomy is very complex, so we consider208

pre-sorted nodes in practical application. There-209

fore, the key to inserting query concepts lies in how210

to construct the function f , which mainly solves211

two problems, modeling taxonomy features and212

different insertion styles. The following section213

presents our approach to solving these problems.214

4 Method 215

In this section, we want to extract local entire taxon- 216

omy structure information and solve fixed insertion 217

of query concepts, so we designed a bracket tree 218

representation of taxonomy and used a pre-trained 219

language model to generate the taxonomy after 220

inserting query concept flexibly. As shown in Fig- 221

ure 2, TaxoSeq contains four key components: (1) 222

Bracket Tree Modeling: given a tree taxonomy, 223

TaxoSeq converts it into a sequence represented by 224

a bracket tree. (2) Concept Pair Extraction: sam- 225

pling the concept pairs from the seed taxonomy to 226

form the training set. (3) Concept Insertion: gen- 227

erate sequences of inserted query concepts using 228

T5 pre-trained language model. (4) Model Infer- 229

ence: determine the final anchor concept of the 230

query concept using the complement module and 231

pre-sorting. Next, we will introduce the details of 232

four components. 233

4.1 Bracket Tree Modeling 234

In this section, we want to transform a given tree 235

taxonomy into a bracket tree sequence, and the key 236

is how to preserve the properties of the taxonomy. 237

Therefore, we first analyse the characteristic of 238

taxonomy, and then we give formal representation 239

of bracket tree and the transformation rules. 240

Based on the observation of taxonomy, we sum- 241

marize the characteristic of taxonomy structure con- 242

tains three relations. 243

• Hypernym Relationship. Two concepts con- 244

nected by the same edge in taxonomy have a 245

hypernym relationship. 246

• Similarity Relationship. The hyponym con- 247

cepts under the same hypernym have a seman- 248

tic similarity relationship. 249

• Semantic Granularity Distinction. Con- 250

cepts of different semantic granularity are lo- 251

cated in different layers of taxonomy, where 252

the more concrete concepts are in the lower of 253

taxonomy and the more abstract concepts are 254

in the upper of taxonomy. 255

The key to converting taxonomy into sequence is 256

how to model these three relationships, which we 257

designate as taxonomy relations in later section. 258

Therefore, we design a bracket tree that nicely en- 259

compasses these taxonomy relationships. 260

Definition 4.1 (Bracket Tree) Bracket tree is a se- 261

quence representing a tree-like taxonomy denoted 262

by S =
[
C, E

]
. c ∈ C is a concept in sequence. 263

3



( (sea (black sea) )

…

geophysical
environment

sea

caspian seablack sea

…

…desert

red sea

Seed 
Taxonomy

Query

Input

seasea

sea caspian 
sea

geophysical
environment

desert

geophysical
environment

black 
sea

Bracket Tree 
Module

taxonomy barcket tree: ( (sea (black sea) ) query: red sea

Pre-train Language Model (PLM)

Calculate Loss for Training

Sequence
Complement

Module

Pre-sorted
Module

concept pairs extraction Taxonomy Bracket Tree Sequentialization

( (sea (black sea) (red sea) ) )
Output of Bracket Tree 

Inference

sea

black 
sea

red 
sea

prompt bracket tree and query

Figure 2: The illustration of the proposed taxonomy to sequence model. We give an example of a green concept as
the query concept to be inserted. Each cycle represents the seed taxonomy concepts and a query concept.

e ∈ E is an edge in sequence, containing “(” and264

“)”, denoted as ci(cj), where the concept ci outside265

the bracket is the hypernym of cj inside the bracket.266

For example, “sea”, “black sea” and “red sea” in267

Figure 1 are transformed into a bracket tree as268

((sea(black sea)(red sea))), where “sea” is the hy-269

pernym of “black sea” and “red sea”, which is out-270

side the brackets of “black sea” and “red sea”. In271

this case, “black sea” and “red sea” are sibling con-272

cepts, which are inside the “sea” concept’s bracket.273

To convert taxonomy to a bracket tree, we devise274

three transformational rules:275

Concepts with Hypernym Relations. When276

two concepts have a hypernym-hyponym relation,277

add parentheses on both sides of the hyponym and278

place them on the right side of the hypernym.279

Concepts with Sibling Relations. When con-280

cepts are siblings and are children of the same hy-281

pernym, they are placed to the right of that hyper-282

nym in alphabetical order.283

Multiple Trees. We introduce a blank virtual284

concept to distinguish multiple trees, which means285

that the virtual concept is the hypernym of the root286

concept. Specifically, we enclose tree concepts287

with parentheses and add two parentheses to the288

outermost layer.289

According to the above rules, the taxonomy is290

represented by sequence recursively. Bracket tree291

can allow the long-range dependencies of taxon-292

omy and ensure its uniqueness.293

4.2 Concept Pair Extraction294

When given a bracket tree formed by taxonomy295

and a query concept q, our goal is to generate296

a new bracket tree after inserting query concept.297

However, direct operation on entire seed taxonomy298

does not work well because the taxonomy contains 299

enormous amount taxonomy relationships. To dis- 300

tinguish different relations around concepts and 301

identify the semantic granularity, we use taxonomy 302

fragments to disassemble entire taxonomy. There- 303

fore, we propose a concept pair sampling strategy. 304

On the one hand, it can construct the entire taxon- 305

omy relations and be sampled systematically. On 306

the other hand, concept pairs maintain the transfer- 307

ability of semantic information and also distinguish 308

different levels of concepts. Specifically, we design 309

positive and negative sampling methods: 310

Positive Sampling. We need the positive samples 311

allow model to learn information around the anchor 312

concepts, the hypernym relations and the seman- 313

tic similarity relations of query concept. Through 314

investigation, we find two characteristics. Firstly, 315

the grandfather concept has a hypernym relation 316

with the query concept, which can augment the an- 317

chor concept’s hypernym finding. Therefore, we 318

extract the anchor concept and its father, forming a 319

grandfather-father concept pair G(c). Secondly, the 320

sibling concept has a similar semantic to the query 321

concept, thereby strengthening the query structure 322

hierarchy discovery in seed taxonomy. So we ex- 323

tract the anchor and the sibling of query concept 324

forming a father-sibling concept pair F (c). 325

For example, for the anchor concept “sea” of 326

“red sea” in Figure 2, the grandfather-father con- 327

cept pair is “geography environment - sea”, and the 328

father-sibling concept pair is “sea-black sea”. Ap- 329

parently, the grandfather-father concept pair has 330

only one concept pair, while the father-sibling 331

have multiple ones, which leads to data imbalance. 332

Therefore, we duplicate the number of grandfather- 333

sibling to half the number of father-sibling. 334
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Negative Sampling. In a straightforward approach,335

negative concept pairs are randomly sampled R̃(c),336

but this would make the insertion not distinguish337

the fine-grained hypernym relation because the an-338

cestor concepts also have a hypernym relationship339

with query concepts. So we select the anchor’s340

ancestor and the ancestor’s father to form a nega-341

tive concept pair Ã(c), which can help finding the342

nearst-neighbor hypernym anchor at a fine-grained343

level. For example, for the “sea” anchor concept in344

Figure 1, we extract its ancestor concepts “environ-345

ment” and “environment geography” as a negative346

sample concept pair.347

The ratio of the number of positive samples to348

the number of negative samples can be tuned, and349

we will further analyze it during the experiment.350

Finally, the training data are summarized as:351

S(c) = G(c) ∪ F (c)︸ ︷︷ ︸
Positive Sampling

∪ R̃(c) ∪ Ã(c)︸ ︷︷ ︸
Negative Sampling

352

4.3 Concept Insertion as a Sequence to353

Sequence model354

In this section, We design a sequence-to-sequence355

training method using the T5 pre-trained language356

model for concept insertion.357

As mentioned of our goal in 4.2, we introduce358

prompts to glue the concept pair sequence and359

query together, forming an input as: “taxonomy360

bracket tree: t; query: q” in Figure 2, where t is361

a bracket concept pair and q is the query concept.362

For this sequence-to-sequence framework, which363

ask T5 to perform concept insertion learning during364

training so that the sequence inserted query concept365

can be generated during inference. Of course, it366

can be switched to any other prompt . The training367

loss L can be expressed as:368

L (θ) =
k∑

t=1

− logPθ (xt|stoken, x<t) (1)369

where θ is the optimization weight, stoken is the370

token of the sequence input to T5 model, xt is the371

token of the sequence generated in decode, and x<t372

is the sequence token generated so far.373

4.4 Inference374

During inference, for the insertion of a new con-375

cept q ∈ C, we extract all concepts in the seed376

taxonomy T 0 and their father to form the concept377

pair for input. Each concept has only one parent378

concept , so that all concept pairs can be included.379

True : “( (sea (black sea) (red sea) ) )”
Missing right bracket : “( (sea (black sea) (red sea) ) )” 

Word wrong : “( (sea (black sea) (reptile) ) )”

Figure 3: Two errors – missing right bracket and word
wrong.

We experimentally observe that the sentences 380

generated by T5 have two errors, one is missing 381

right bracket, and the other is that the words of the 382

generated sentences are not the input words. For 383

the first case in Figure 3, the closing parenthesis is 384

only missing at the end of the sequence, so we can 385

fill it according to the number of left parentheses. 386

For the second case, “reptile” replacing “red sea” 387

in Figure 3, the generated sentences are generally 388

one word wrong. Due to we know the input taxon- 389

omy and query concept, we can amend the wrong 390

word of the generated sentence to ensure word con- 391

sistency. Finally, the resulting bracket tree can be 392

equivalently converted to a taxonomy. We named 393

the above operation as the sequence complement. 394

As described in Section 3, while we can design a 395

sorting algorithm for all concepts, our method can 396

also be used as a plug-in to obtain the final insertion 397

position , which make further judgments on the 398

results of other taxonomy expansion works. We 399

utilize existing algorithms’ result as prior ranking 400

work. For example, the HEF algorithm scores the 401

hypernym of all the concepts in seed taxonomy. 402

Their models can be formulated as a score function 403

fpri(c, q), concept c on the hypernym relation of q. 404

The higher the score, the more hypernym relation is. 405

Therefore, for each query concept q, all concepts 406

c in the seed taxonomy C0 are sorted according 407

to their scores to obtain R(C0, q), which is the 408

pre-sorted module in Figure 2. 409

We formulate query concept q inserted into con- 410

cept pair formed by c as : 411

I(c, q) =

{
1 inserted q
0 no inserted q

412

The position selected for the query concept to be 413

inserted is the highest-ranked sequence, i.e., 414

parent(q) = argmax
cϵC0

I(c, q) ∗ fpri(c, q) 415

5 Experiments 416

In this section, we first introduce the experiment 417

settings, then report the overall comparison results, 418

along with ablation studies to analyze the influence 419

of different parameters of method components. Fi- 420

nally, we perform case studies and error analyses. 421
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5.1 Experimental Setup422

Datasets. We evaluate the performance of the Tax-423

oSeq using three publicly benchmark datasets in424

SemEval 2016 task 13, including three taxos of the425

environment, science, and food. Table 1 shows the426

specific statistics of these three datasets. The tax-427

onomy of these three datasets is a directed acyclic428

graph, which we convert into a tree referring to429

HEF. Following previous baseline methods, we ex-430

tract 20% leaf concepts as the query concept. The431

number of the remaining concepts, which serve as432

the seed taxonomy, is displayed as NS in Table 1.

Table 1: Statistics of SemEval datasets. |NO| and |EO|
are the number of concepts and edges in the original
taxonomy dataset, respectively. |NS | is the number of
seed taxonomy concept in TaxoSeq, D is the depth of
the taxonomy.

Dataset D |NO| |EO| |NS |

Environment 6 261 261 193
Science 8 429 452 328

Food 8 1486 1576 1173

433
Baseline Methods. We mainly compare the fol-434

lowing baseline methods:435

• BERT+MLP uses BERT to determine436

whether two concepts merged into a sequence437

have a hypernym-hyponym relation, which438

can be regarded as a binary classification task.439

• HypeNet (Shwartz et al., 2016) encodes con-440

cept dependency path by recurrent neural net-441

work and combines distributional signals to442

enhance detecting hypernym relations.443

• TaxoExpan (Shen et al., 2020) is a self-444

supervised taxonomy expansion method,445

which uses graph neural network to integrate446

the information around the concept of seed447

taxonomy to strengthen the anchor search.448

• STEAM (Yu et al., 2020b) learns feature449

representations from multiple views and per-450

forms co-training to formulate a concept at-451

tachment prediction task between anchor mini-452

paths and query terms.453

• HEF (Wang et al., 2021) is the state-of-the-art454

taxonomy expansion model, which constructs455

several tree-exclusive features to enhance hy-456

pernymy relation detection.457

• TEMP (Liu et al., 2021) uses a merging se-458

quence formed by the path of root concept to459

the concept in seed taxonomy and the query 460

concept with an explanation to find hypernym. 461

BERT and HypeNet are the classical hypernym 462

relationship classification model. TaxoExpan 463

and STEAM construct local concept information, 464

which we compare on the performance of extract- 465

ing different taxonomy feature approaches. In ad- 466

dition, we experiment with no complement module 467

of TaxoSeq and BART-large for replacing T5 to 468

verify the effectiveness of each module. 469

Metric. We denote the real anchor concept in the 470

test data as ca1, ca2, . . . , can, and the anchor con- 471

cepts predicted by the model as ĉa1, ĉa2, . . . , ĉan. 472

Based on previous work (Wang et al., 2021; Yu 473

et al., 2020b), we use the following metrics: 474

Accuracy (ACC) measures the exact proportion 475

that predicted anchor concept inserted query con- 476

cept matches the true anchor concept. 477

Mean reciprocal rank (MRR) measures aver- 478

age recipocal rank of real anchor concept formed 479

by inserting query concept. 480

Wu & Palmer similarity (Wu&P) measures the 481

distance in taxonomy between the predicted anchor 482

concept and the true anchor concept. This metric is 483

often used to evaluate the quality of the taxonomy 484

structure after inserting query concept: 485

WU&P =
1

n

n∑
i=1

2 ∗ depth(LCA(cai, ĉai))

depth(cai) + depth(ĉai)
486

where depth() is the depth of the concept in the 487

taxonomy, and LCA(, ) is the nearest common an- 488

cestor of the two concepts in the taxonomy. 489

5.2 Implementation Details 490

The above baseline methods, except for BERT- 491

MLP, are obtained from the source code published 492

by the author. We perform 5 experiments on each 493

baseline and select the best result, which are com- 494

pared with the result of TaxoSeq. Additionally, we 495

choose an equal number of negative concept pairs 496

as positive concept pair at random. For each query 497

concept during inference, we first use the HEF to 498

obtain a prior ranking of the seed taxonomy con- 499

cept for no complement and BART-large experi- 500

ments. Then we chose T5-large as our primary 501

experimental for HEF prior sorted concepts and 502

TEMP prior sorted concepts. We adopt AdamW to 503

optimize the parameters and employ a linear warm- 504

up that accelerates the learning rate from 0 to a 505

maximum value (9e-4) from an initial 10 percent 506

step, then drops to 0 in subsequent steps. 507
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Table 2: Comparison of TaxoSeq and other baselines. All metrics are presented in percentages (%). The best results
are marked in bold. No Complement is that the TaxoSeq method does not add the sequence complement module
during inference. T5-large replaced with BART-large in HEF pre-sorted module denoted by BART.

Dataset SemEval16-Env SemEval16-Sci SemEval16-Food
Metric Acc MRR Wu&P Acc MRR Wu&P Acc MRR Wu&P

BERT+MLP 11.1 21.5 47.9 11.5 15.7 43.6 10.5 14.9 47.0
HypeNet 16.7 23.7 55.8 15.4 22.6 50.7 20.5 27.3 63.2

TaxoExpan 11.1 32.3 54.8 27.8 44.8 57.6 27.6 40.5 54.2
STEAM 36.1 46.9 69.6 36.5 48.3 68.2 34.2 43.4 67.0

HEF 50.0 60.1 69.3 51.6 61.5 73.5 36.6 48.3 68.8
TEMP 51.9 65.9 79.4 54.1 64.6 83.0 47.8 60.6 80.9

No Complement 56.8 63.6 68.2 58.2 66.7 82.0 42.5 52.8 63.9
BART 56.8 64.1 68.9 59.3 60.0 80.5 53.1 58.6 76.8

HEF+TaxoSeq 58.6 66.7 73.3 59.3 67.7 83.8 44.5 53.9 70.3
TEMP+TaxoSeq 63.4 66.4 67.3 60.0 62.7 71.3 53.8 55.4 70.1

5.3 Experimental Results508

As shown in Table 2, our proposed TaxoSeq outper-509

form state-of-the-art HEF and TEMP with the great-510

est improvement of 21.5% and 22.1% in ACC, re-511

spectively. TaxoExpan, STEAM, HEF and TEMP512

construct the information around anchor concept,513

and the performance is improved dramatically over514

the other two baselines, which also validates that515

our bracket tree can improve the performance. In516

particular, firstly, ACC has the largest improvement517

rate among the three metrics, showing that TaxoSeq518

is more helpful in finding sorted first-anchor con-519

cept. Secondly, the performance of the food dataset520

is worse than the other two datasets, indicating that521

the semantic information of concepts from differ-522

ent domains impacts concept insertion. When we523

perform experiments with no complement mod-524

ule, the overall performance is 2% to 5% lower525

to HEF+TaxoSeq. This phenomenon is because526

the pre-trained language model does not have prior527

knowledge of the bracket tree, so two types of er-528

rors occur to reduce the performance. Bart-large529

also outperforms HEF on all three datasets, but530

it outperforms T5 on the food dataset. This indi-531

cates that different pre-training language models532

influence the improvement in different domains.533

5.4 Ablation Experiments534

To further explore different components of Tax-535

oSeq on performance, we also performed two ex-536

periments. One is control the number of negative537

of Ã(c), the other is to investigate the ratio of neg-538

ative samples to positive samples. We perform539

experiments on the science dataset and apply the540

optimized parameters to the other two datasets.541
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Figure 4: The performance on different number of neg-
ative ancestor concepts.
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Figure 5: The performance on different ratios of nega-
tive sample to positive sample.

Negative Ancestor. We repeat the number of neg- 542

ative ancestor concept pair from none to 5 times 543

and observe the changes in Figure 4. The worst ex- 544

perimental results were obtained when no ancestor 545

concept pair were added as negative samples. This 546

is because the ancestor concept has a hypernym 547

relationship with the query concept. Without the 548

ancestor concept as a negative sample, the model 549

will find the wrong hypernym word. In addition, 550

the experimental results are the best at 2 times the 551

number of negative ancestor concept pair samples. 552

Ratios of Negative to Positive. We also exper- 553
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Table 3: The analysis of 3 error types is based on the failure of TaxoSeq cases in science dataset. “#” refers to the
number of error types, and the red concept is the query concept inserted into taxonomy.

Error Type # Example

Bypass Anchor Insertion 12 "predict sentence": "((physics(optics)(holography)))"
"true sentence": "((physics(optics(holography))))"

No Insertion 15
"predict sentence": "((geostrategy)(politics(geopolitics)))"
"true sentence": "((politics(geopolitics(geostrategy))))"

Wrong Ranking 10

"anchor concept": "chemistry"
"inital rank":10

"predict sentence": "((chemistry(thermochemistry)(femtochemistry)))"
"true sentence": "((chemistry(thermochemistry)(femtochemistry)))"
"inital ranking": 5

Term : “pharmacology” Initial Rank : 1
Predict : “ ((medicine(pharmacology))(physical geography))”

Term : “geography” Initial Rank : 2
Predict : “((earth(geography(physical geography))))”

Figure 6: A case study on the concept of ‘physical
geography’ inserted into concept pair and improving the
ranking of anchor concept.

iment with different negative sample to positive554

sample ratios from none to all in Figure 5. We can555

see the curve first increase and then decrease as556

the negative samples increase. In the absence of557

negative sample, TaxoSeq is equivalent to sorting558

all concepts. Even so, our experimental results are559

better than baselines. This can be attributed to the560

design of concept pair that will extend the search of561

anchor concepts. The best result is at the same pro-562

portion of positive and negative samples. However,563

as negative cases continue to increase, the accuracy564

rate decreases, whereas too many negative samples565

will overfit the model to misclassification.566

5.5 Case Studies and Error Analysis567

Case Studies. Figure 6 shows a case study on the568

query concept of “physical geography” inserted569

into seed taxonomy. In the first bracket tree, al-570

though the concept “pharmacology“ was initially571

ranked first, the query concept is not inserted, so572

“pharmacology” is eliminated. “geography” is cho-573

sen as the anchor concept in the second bracket574

tree and directly formed the result after insertion.575

This example shows that TaxoSeq can eliminate576

over-ranked non-anchor nodes, and the insertion577

method is very straightforward and can continue to578

be extended in future work.579

Error Analysis. To further explore the bottlenecks580

of TaxoSeq, we analyze all 37 errors resulted in581

the science dataset and classify them into three 582

categories in Table 3: (1) Bypass anchor inser- 583

tion. Query concept bypasses the anchor concept 584

and inserts directly into the grandfather concept, 585

e.g., the anchor for “holography” is “optics”, but 586

“physics” is selected. Ten of these errors had only 587

one grandfather-father concept pair inserted (single- 588

edge) in a way that does not have sibling concept, 589

accounting for 83% of these errors. (2) No in- 590

sertion. The query concept isn’t inserted into the 591

anchor concept, e.g., the “geostrategy” concept 592

should be inserted under “geopolitics”. Although 593

there are many concept pair containing anchor for 594

each query concept in this type of error, none of 595

them have been identified. (3) Wrong ranking 596

fails to rank the anchor concept first, but it does 597

move it forward, e.g.,the ranking of the anchor for 598

“femtochemistry” is lifted from 10 to 5. 599

In future work, we focus on addressing single- 600

edge hypernym concept discovery and allowing 601

the model to identify no finding anchor concept 602

with a view to being able to resolve bypass anchor 603

insertion and no insertion. 604

6 Conclusion 605

We propose a TaxoSeq model that converts taxon- 606

omy into sequence and flexibly inserts query con- 607

cepts into taxonomy using the Seq2Seq architec- 608

ture. We use the bracketed tree serialization method 609

and propose three conversion rules to transform any 610

tree taxonomy into its corresponding sequence. We 611

systematically design a strategy for sampling the 612

training set from the seed taxonomy, considering 613

the hypernym relations of ancestor nodes and the se- 614

mantic similarity of sibling nodes during insertion, 615

and also finding the most fine-grained hypernym. 616

The experimental results in SemEval-task 13 show 617

that we outperform state-of-the-art algorithms. 618

8



Ethic Considerations619

In this paper, we conduct an exploration of con-620

verting the taxonomy expansion task into seq2seq621

paradigm and exploiting pretrained language mod-622

els (PLMs) in lifting performance. However, we623

only provide primary results on english datasets,624

which limits the use of this method in other lan-625

guage scenarios. Meanwhile, we just provide the626

insight of this strategy by one example implemen-627

tation as bracket trees. As there are plenty of other628

approaches for converting the taxonomy into se-629

quence, we hope our work can call for more tech-630

nical attempts via such ideas.631
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