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Abstract

Taxonomy is a knowledge graph of concept
hierarchy which plays a significant role in
semantics entailment and is widely used in
many downstream natural language processing
tasks. Distinct from building a taxonomy from
scratch, the task of taxonomy expansion aims
at enriching an existing taxonomy by adding
new concepts. However, existing methods of-
ten employ only part of the structural infor-
mation for representing the taxonomy, which
may ignore sufficient features. Meanwhile, as
many recent models usually take this task in
insertion only manner, they preserve limita-
tions when the new concept is not an inser-
tion to taxonomy. Therefore, we propose Tax-
oSeq, a method that converts the task of tax-
onomy expansion into a sequence to sequence
setting, thereby effectively exploiting the en-
tire structural features and naturally dealing
with more expansion cases. Empowered by
pre-trained language models such as TS (Raffel
et al., 2020), our approach is shown to achieve
significant progress over other methods in Se-
meval’s three publicly benchmark datasets.

1 Introduction

Taxonomy is a tree structure or directed acyclic
graph composed of “is-a” relationships, which con-
structs valuable knowledge connections between
concepts. High-quality taxonomy is critical for
many downstream tasks, such as product recom-
mendation in e-commerce (Liu et al., 2019), infor-
mation retrieval in web search (Yang et al., 2020),
and question answering in education (Yu et al.,
2020a). Inserting new emerging concepts into a
taxonomy is the task of taxonomy expansion, and
the key is to insert them into the right place to
ensure consistency of concept relationships.
Recent works on taxonomy expansion can be
divided into two technical lines: 1) Concept Pair
Matching methods utilize information around con-
cepts of taxonomy, e.g., GNN (Shen et al., 2020)
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Figure 1: An illustration of a taxonomy expansion task.
Modeling the entire structure of taxonomy with se-
quences.

for mapping the concepts into a high dimensional
space or mini-paths (Yu et al., 2020b) for matching
in local range of taxonomy concepts. 2) Hierarchy
Expansion methods take taxonomy hierarchical in-
formation into account, constructing a subtree-like
structure, e.g., ego-trees (Wang et al., 2021) and
taxonomy-paths (Liu et al., 2021), to extract hori-
zontal or vertical concept information of taxonomy.

Although these approaches utilize taxonomy
structural knowledge, they do not explicitly estab-
lish the entire structure of local taxonomy, resulting
in a discount in representing taxonomy. For exam-
ple, in Figure 1, the “red sea” concept in expanded
taxonomy forms structures that can be acute angle
edges (semantic similarity), paths (hypernym re-
lations) and individual points (no relation), where
a fixed representation is only modeled from the
side. Furthermore, they all insert concepts in a

“insertion only” manner, which mainly consider se-
mantic similarity and hypernym relations. The top-
ranked concept in the seed taxonomy is chosen for



insertion and the new concept is appended below it.
These methods do not explicitly distinguish no re-
lation of new concept, which can cause unintuitive
in the insertion position.

To address the issues above, we propose a
novel taoxonomy expansion method by converting
Taxonomy into Sequence (TaxoSeq) for concept
insertion. In particular, we use brackets and con-
cept position in brackets to represent an arbitrary
tree structure taxonomy as a sequence, denoting
various relationships in taxonomy. Then we insert
the concept directly into the bracket sequence to
obtain the expanded taxonomy of inserted concept
by sequence-to-sequence (seq2seq) framework.

Based on our observation of the taxonomy struc-
ture, we found that taxonomy have two characteris-
tics: layer factor and depth factor. The depth factor
is created by hypernym-hyponym relationship, in
which the hypernym has a semantic entailment re-
lationship with the hyponym. The layer factor is
made up of semantic similarities between concepts
with the same hypernym, which we refer to as sib-
ling concepts. We propose a bracket tree modeling
approach in which concepts outside the brackets
have a hypernym relationship with concepts inside
the brackets, and concepts within the same bracket
are sibling concepts. In this way, we converted tax-
onomy into a sequence regardless of its structure.

The sequence-to-sequence approach has been
applied to various NLP tasks, such as Dia-
logue (Colombo et al., 2020) Question An-
swer (Saxena et al., 2022) and Translation (Wang
et al., 2022). Drawing on this idea, we make a sim-
ilar study on taxonomy expansion. During training,
the sequence inputted to the model encodes both se-
mantic and structural features of taxonomy. Then,
combined with the generative T5 pre-train language
model (PLM), we directly generate the sequence
taxonomy inserted concept. This can break the case
of insertion only, which identifies non-insertion and
other insertion types. In addition, T5 model trained
on large-scale corpora also benefits discovering the
hypernym relationship.

In the experiment, we evaluate TaxoSeq in three
public benchmarks in SemEval-task13. Our algo-
rithm yields a maximum improvement of 22.1%
accuracy over the state-of-the-art algorithm. More-
over, we conducted ablation experiments to verify
the effectiveness of each part of TaxoSeq.

Our contributions are threefold: 1) We propose a
bracket tree modeling method that can convert local

tree taxonomy into a sequence regardless of its
different structure. 2) We employ a new sequence-
to-sequence concept insertion strategy to directly
insert new concepts into the taxonomy, which can
address the case of no insertion. 3) We conduct
extensive evaluations on three benchmark datasets
to validate the performance of TaxoSeq methods.

2 Related work

Taxonomy Construction. Automated taxonomy
construction tasks have endured in academic re-
search, which aims to construct a bunch of nodes
into a directed acyclic graph or a tree from scratch.
Further, it can be divided into two subfields. The
first subfield clusters similar terms into a topic and
constructs these topics into a taxonomy, which is
called topic-level taxonomy construction (Shang
et al., 2020; Downey et al., 2015). Another sub-
field is in term level, and the "is-a" relation ex-
traction between terms utilizes either a pattern-
based method (Panchenko et al., 2016; Chang
et al., 2017) or a distributional method (Shi et al.,
2019; Chang et al., 2017). For example, the
Hearst pattern (Hearst, 1992) is a typical pattern-
based method, and these methods have relatively
high accuracy but low recall. The distribution
method (Dash et al., 2020; Wang et al., 2019) can
determine whether a concept pair has a hypernym
relationship with each other by word embedding,
but it requires a large amount of manual anno-
tation, which affects the application in different
domains. With the development of practical ap-
plications, many new concepts emerge, and the
taxonomy construction will be laborious and time-
consuming, thus it is critical to find a solid solution.
Taxonomy Expansion. Recent researches mainly
addresses how to insert new concepts into the seed
taxonomy. (Manzoor et al., 2020) learns the rep-
resentation of the implicit semantic information
of edges and the embedding of nodes to discover
whether a node pair has a hypernym relationship.
(Shen et al., 2020) proposes a location-enhanced
graph neural network to encode the relative posi-
tion of anchors and a noise-robust training strategy.
STEAM (Yu et al., 2020b) offers a multi-view co-
training procedure with the integration of multiple
external sources to assist mini-path-based classi-
fication in finding the anchor node. HEF (Wang
et al., 2021) constructs a subtree model of the hy-
pernyms and sibling nodes and encodes the four
representations of the subtree. Although existing



methods supplement the implicit information of the
taxonomy structure with the help of auxiliary algo-
rithms, they do not model the entire tree taxonomy
structure. Moreover, they treat taxonomy expan-
sion as a ranking task for nodes, which essentially
defaults that nodes must be able to be inserted. In
contrast, our algorithm can represent different tax-
onomy structures and flexibly insert concepts into
the taxonomy with the help of pre-trained language
models and the seq2seq framework.

3 Problem Formalization

In this section, we first define taxonomy, then for-
malize the task of taxonomy expansion.

Definition 3.1 (Taxonomy) Taxonomy is a tree
structure that can be represented by T = (C,E),
where ¢ € C represents the concept in taxonomy
T. (ci,cj) € & denotes the edge representing
hypernym-hyponym relation between two concepts,
where c; is the hypernym, and c; is the hyponym.

For example, in the seed taxonomy in Figure 1,
“sea”, “black sea” and “caspian sea” are concepts.
(sea, black sea) and (sea, caspian sea) are edges
in the taxonomy, where “sea” is the hypernym of
“black sea” and “caspian sea”.

Definition 3.2 (Taxonomy Expansion) Given a
seed taxonomy T° = (C°,E°) and a set of new
concepts C, taxonomy expansion aims to form a
new taxonomy T = (COUC,E° U &) by insert-
ing the concepts C into taxonomy T°, where € is
the set of new edges after insertion. Specially, for
each given query concept q € C, the model utilizes
the hypernym score function f(q,c) formed with
concept ¢ € C° to determine the anchor concept
cq = argmax,cco f(q,c) and to form loacl tax-
onomy T ¢ containing q and c. If ¢, € C,the edge
(€a,q) is added to E.

For the query concept “red sea” in Figure 1, the
insertion function formed by “black sea” concept
(this will be introduced in 4.2) has the highest rank-
ing, the anchor concept is determined as “sea”,
and the local taxonomy sequence is formed as
“(sea(black sea)(red sea)))”. Both obtaining anchor
concept and generating taxonomy inserted query in
original taxonomy is very complex, so we consider
pre-sorted nodes in practical application. There-
fore, the key to inserting query concepts lies in how
to construct the function f, which mainly solves
two problems, modeling taxonomy features and
different insertion styles. The following section
presents our approach to solving these problems.

4 Method

In this section, we want to extract local entire taxon-
omy structure information and solve fixed insertion
of query concepts, so we designed a bracket tree
representation of taxonomy and used a pre-trained
language model to generate the taxonomy after
inserting query concept flexibly. As shown in Fig-
ure 2, TaxoSeq contains four key components: (1)
Bracket Tree Modeling: given a tree taxonomy,
TaxoSeq converts it into a sequence represented by
a bracket tree. (2) Concept Pair Extraction: sam-
pling the concept pairs from the seed taxonomy to
form the training set. (3) Concept Insertion: gen-
erate sequences of inserted query concepts using
T5 pre-trained language model. (4) Model Infer-
ence: determine the final anchor concept of the
query concept using the complement module and
pre-sorting. Next, we will introduce the details of
four components.

4.1 Bracket Tree Modeling

In this section, we want to transform a given tree
taxonomy into a bracket tree sequence, and the key
is how to preserve the properties of the taxonomy.
Therefore, we first analyse the characteristic of
taxonomy, and then we give formal representation
of bracket tree and the transformation rules.

Based on the observation of taxonomy, we sum-
marize the characteristic of taxonomy structure con-
tains three relations.

* Hypernym Relationship. Two concepts con-
nected by the same edge in taxonomy have a
hypernym relationship.

* Similarity Relationship. The hyponym con-
cepts under the same hypernym have a seman-
tic similarity relationship.

* Semantic Granularity Distinction. Con-
cepts of different semantic granularity are lo-
cated in different layers of taxonomy, where
the more concrete concepts are in the lower of
taxonomy and the more abstract concepts are
in the upper of taxonomy.

The key to converting taxonomy into sequence is
how to model these three relationships, which we
designate as taxonomy relations in later section.
Therefore, we design a bracket tree that nicely en-
compasses these taxonomy relationships.

Definition 4.1 (Bracket Tree) Bracket tree is a se-
quence representing a tree-like taxonomy denoted
by § = [C,E]. c € C is a concept in sequence.
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Figure 2: The illustration of the proposed taxonomy to sequence model. We give an example of a green concept as
the query concept to be inserted. Each cycle represents the seed taxonomy concepts and a query concept.

e € & is an edge in sequence, containing “(” and
“)”, denoted as c;(c;), where the concept c; outside
the bracket is the hypernym of c; inside the bracket.

For example, “sea”, “black sea” and “red sea” in
Figure 1 are transformed into a bracket tree as
((sea(black sea)(red sea))), where “sea” is the hy-
pernym of “black sea” and “red sea”, which is out-
side the brackets of “black sea” and “red sea”. In
this case, “black sea” and “red sea” are sibling con-
cepts, which are inside the “sea” concept’s bracket.
To convert taxonomy to a bracket tree, we devise
three transformational rules:

Concepts with Hypernym Relations. When
two concepts have a hypernym-hyponym relation,
add parentheses on both sides of the hyponym and
place them on the right side of the hypernym.

Concepts with Sibling Relations. When con-
cepts are siblings and are children of the same hy-
pernym, they are placed to the right of that hyper-
nym in alphabetical order.

Multiple Trees. We introduce a blank virtual
concept to distinguish multiple trees, which means
that the virtual concept is the hypernym of the root
concept. Specifically, we enclose tree concepts
with parentheses and add two parentheses to the
outermost layer.

According to the above rules, the taxonomy is
represented by sequence recursively. Bracket tree
can allow the long-range dependencies of taxon-
omy and ensure its uniqueness.

4.2 Concept Pair Extraction

When given a bracket tree formed by taxonomy
and a query concept g, our goal is to generate
a new bracket tree after inserting query concept.
However, direct operation on entire seed taxonomy

does not work well because the taxonomy contains
enormous amount taxonomy relationships. To dis-
tinguish different relations around concepts and
identify the semantic granularity, we use taxonomy
fragments to disassemble entire taxonomy. There-
fore, we propose a concept pair sampling strategy.
On the one hand, it can construct the entire taxon-
omy relations and be sampled systematically. On
the other hand, concept pairs maintain the transfer-
ability of semantic information and also distinguish
different levels of concepts. Specifically, we design
positive and negative sampling methods:

Positive Sampling. We need the positive samples
allow model to learn information around the anchor
concepts, the hypernym relations and the seman-
tic similarity relations of query concept. Through
investigation, we find two characteristics. Firstly,
the grandfather concept has a hypernym relation
with the query concept, which can augment the an-
chor concept’s hypernym finding. Therefore, we
extract the anchor concept and its father, forming a
grandfather-father concept pair G(c). Secondly, the
sibling concept has a similar semantic to the query
concept, thereby strengthening the query structure
hierarchy discovery in seed taxonomy. So we ex-
tract the anchor and the sibling of query concept
forming a father-sibling concept pair F'(c).

For example, for the anchor concept “sea” of
“red sea” in Figure 2, the grandfather-father con-
cept pair is “geography environment - sea”, and the
father-sibling concept pair is “sea-black sea”. Ap-
parently, the grandfather-father concept pair has
only one concept pair, while the father-sibling
have multiple ones, which leads to data imbalance.
Therefore, we duplicate the number of grandfather-
sibling to half the number of father-sibling.



Negative Sampling. In a straightforward approach,
negative concept pairs are randomly sampled R(c),
but this would make the insertion not distinguish
the fine-grained hypernym relation because the an-
cestor concepts also have a hypernym relationship
with query concepts. So we select the anchor’s
ancestor and the ancestor’s father to form a nega-
tive concept pair A(c), which can help finding the
nearst-neighbor hypernym anchor at a fine-grained
level. For example, for the “sea” anchor concept in
Figure 1, we extract its ancestor concepts “environ-
ment” and “environment geography” as a negative
sample concept pair.

The ratio of the number of positive samples to
the number of negative samples can be tuned, and
we will further analyze it during the experiment.
Finally, the training data are summarized as:

S(c)= G(c)UF(c) U R(c)UA(c)

Positive Sampling

Negative Sampling

4.3 Concept Insertion as a Sequence to
Sequence model

In this section, We design a sequence-to-sequence
training method using the T5 pre-trained language
model for concept insertion.

As mentioned of our goal in 4.2, we introduce
prompts to glue the concept pair sequence and
query together, forming an input as: “taxonomy
bracket tree: t; query: ¢” in Figure 2, where ¢ is
a bracket concept pair and q is the query concept.
For this sequence-to-sequence framework, which
ask T5 to perform concept insertion learning during
training so that the sequence inserted query concept
can be generated during inference. Of course, it
can be switched to any other prompt . The training
loss £ can be expressed as:

k
E(Q) = Z_logPG (xt‘stoken7x<t) (1)

t=1

where 6 is the optimization weight, Sioken 1S the
token of the sequence input to TS5 model, z; is the
token of the sequence generated in decode, and =,
is the sequence token generated so far.

4.4 Inference

During inference, for the insertion of a new con-
cept ¢ € C, we extract all concepts in the seed
taxonomy 7 and their father to form the concept
pair for input. Each concept has only one parent
concept , so that all concept pairs can be included.

True : “( (sea (black sea) (red sea) ) )”
Missing right bracket : ““( (sea (black sea) (red sea) ) )”
‘Word wrong : “( (sea (black sea) (reptile) ) )”

Figure 3: Two errors — missing right bracket and word
wrong.

We experimentally observe that the sentences
generated by TS5 have two errors, one is missing
right bracket, and the other is that the words of the
generated sentences are not the input words. For
the first case in Figure 3, the closing parenthesis is
only missing at the end of the sequence, so we can
fill it according to the number of left parentheses.
For the second case, “reptile” replacing “red sea”
in Figure 3, the generated sentences are generally
one word wrong. Due to we know the input taxon-
omy and query concept, we can amend the wrong
word of the generated sentence to ensure word con-
sistency. Finally, the resulting bracket tree can be
equivalently converted to a taxonomy. We named
the above operation as the sequence complement.

As described in Section 3, while we can design a
sorting algorithm for all concepts, our method can
also be used as a plug-in to obtain the final insertion
position , which make further judgments on the
results of other taxonomy expansion works. We
utilize existing algorithms’ result as prior ranking
work. For example, the HEF algorithm scores the
hypernym of all the concepts in seed taxonomy.
Their models can be formulated as a score function
fpri(c, q), concept c on the hypernym relation of g.
The higher the score, the more hypernym relation is.
Therefore, for each query concept g, all concepts
c in the seed taxonomy C° are sorted according
to their scores to obtain R(C?,q), which is the
pre-sorted module in Figure 2.

We formulate query concept ¢ inserted into con-
cept pair formed by c as :

1(0761):{

The position selected for the query concept to be
inserted is the highest-ranked sequence, i.e.,

1  inserted q
0 no inserted ¢q

parent(q) = argmax(c,q) * fpri(c,q)
Cce
S Experiments

In this section, we first introduce the experiment
settings, then report the overall comparison results,
along with ablation studies to analyze the influence
of different parameters of method components. Fi-
nally, we perform case studies and error analyses.



5.1 Experimental Setup

Datasets. We evaluate the performance of the Tax-
oSeq using three publicly benchmark datasets in
SemEval 2016 task 13, including three taxos of the
environment, science, and food. Table 1 shows the
specific statistics of these three datasets. The tax-
onomy of these three datasets is a directed acyclic
graph, which we convert into a tree referring to
HEF. Following previous baseline methods, we ex-
tract 20% leaf concepts as the query concept. The
number of the remaining concepts, which serve as
the seed taxonomy, is displayed as Ng in Table 1.

Table 1: Statistics of SemEval datasets. |[No| and |Eo|
are the number of concepts and edges in the original
taxonomy dataset, respectively. | Ng| is the number of
seed taxonomy concept in TaxoSeq, D is the depth of
the taxonomy.

Dataset |[No| |Eo|l |Ns|

D

Environment 6 261 261 193
8
8

Science 429 452 328

Food 1486 1576 1173

Baseline Methods. We mainly compare the fol-
lowing baseline methods:

* BERT+MLP uses BERT to determine
whether two concepts merged into a sequence
have a hypernym-hyponym relation, which
can be regarded as a binary classification task.

* HypeNet (Shwartz et al., 2016) encodes con-
cept dependency path by recurrent neural net-
work and combines distributional signals to
enhance detecting hypernym relations.

* TaxoExpan (Shen et al., 2020) is a self-
supervised taxonomy expansion method,
which uses graph neural network to integrate
the information around the concept of seed
taxonomy to strengthen the anchor search.

e STEAM (Yu et al., 2020b) learns feature
representations from multiple views and per-
forms co-training to formulate a concept at-
tachment prediction task between anchor mini-
paths and query terms.

* HEF (Wang et al., 2021) is the state-of-the-art
taxonomy expansion model, which constructs
several tree-exclusive features to enhance hy-
pernymy relation detection.

* TEMP (Liu et al., 2021) uses a merging se-
quence formed by the path of root concept to

the concept in seed taxonomy and the query
concept with an explanation to find hypernym.

BERT and HypeNet are the classical hypernym
relationship classification model. TaxoExpan
and STEAM construct local concept information,
which we compare on the performance of extract-
ing different taxonomy feature approaches. In ad-
dition, we experiment with no complement module
of TaxoSeq and BART-large for replacing T5 to
verify the effectiveness of each module.

Metric. We denote the real anchor concept in the
test data as cu1, cq2, - - ., Can, and the anchor con-
cepts predicted by the model as ¢41, Cq2, - - -, Can-
Based on previous work (Wang et al., 2021; Yu
et al., 2020b), we use the following metrics:

Accuracy (ACC) measures the exact proportion
that predicted anchor concept inserted query con-
cept matches the true anchor concept.

Mean reciprocal rank (MRR) measures aver-
age recipocal rank of real anchor concept formed
by inserting query concept.

Wu & Palmer similarity (Wu&P) measures the
distance in taxonomy between the predicted anchor
concept and the true anchor concept. This metric is
often used to evaluate the quality of the taxonomy
structure after inserting query concept:

2 % depth(LC A(cqi, Cai))
depth(cq;) + depth(éqi)

1 n
WU&P = ;Z

=1

where depth() is the depth of the concept in the
taxonomy, and LC'A(, ) is the nearest common an-
cestor of the two concepts in the taxonomy.

5.2 Implementation Details

The above baseline methods, except for BERT-
MLP, are obtained from the source code published
by the author. We perform 5 experiments on each
baseline and select the best result, which are com-
pared with the result of TaxoSeq. Additionally, we
choose an equal number of negative concept pairs
as positive concept pair at random. For each query
concept during inference, we first use the HEF to
obtain a prior ranking of the seed taxonomy con-
cept for no complement and BART-large experi-
ments. Then we chose T5-large as our primary
experimental for HEF prior sorted concepts and
TEMP prior sorted concepts. We adopt AdamW to
optimize the parameters and employ a linear warm-
up that accelerates the learning rate from O to a
maximum value (9e-4) from an initial 10 percent
step, then drops to 0 in subsequent steps.



Table 2: Comparison of TaxoSeq and other baselines. All metrics are presented in percentages (%). The best results
are marked in bold. No Complement is that the TaxoSeq method does not add the sequence complement module
during inference. T5-large replaced with BART-large in HEF pre-sorted module denoted by BART.

Dataset SemEvall6-Eny SemEvall6-Sci SemEvall6-Food
Metric Acc MRR Wu&P | Acc MRR Wu&P | Acc MRR Wu&P
BERT+MLP 11.1 215 479 11.5 157 43.6 10.5 149 47.0
HypeNet 16.7 237 55.8 154 226 50.7 205 273 63.2
TaxoExpan 11.1 323 54.8 27.8 448 57.6 27.6 405 54.2
STEAM 36.1 469 69.6 36.5 483 68.2 342 434 67.0
HEF 50.0 60.1 69.3 51.6 615 73.5 36.6 483 68.8
TEMP 519 659 794 541 64.6 83.0 47.8  60.6 80.9
No Complement | 56.8  63.6 68.2 582  66.7 82.0 425 528 63.9
BART 56.8 64.1 68.9 59.3  60.0 80.5 53.1 58.6 76.8
HEF+TaxoSeq | 58.6  66.7 73.3 59.3 677 83.8 445 539 70.3
TEMP+TaxoSeq | 634 664 67.3 60.0 627 71.3 538 554 70.1
5.3 Experimental Results e
854
As shown in Table 2, our proposed TaxoSeq outper- 80 wose
form state-of-the-art HEF and TEMP with the great- 75 |
est improvement of 21.5% and 22.1% in ACC, re- £ 40 |
spectively. TaxoExpan, STEAM, HEF and TEMP < o
construct the information around anchor concept, £ "
.. . = 1
and the performance is improved dramatically over & o //\/
the other two baselines, which also validates that
50 T T T T s

our bracket tree can improve the performance. In
particular, firstly, ACC has the largest improvement
rate among the three metrics, showing that TaxoSeq
is more helpful in finding sorted first-anchor con-
cept. Secondly, the performance of the food dataset
is worse than the other two datasets, indicating that
the semantic information of concepts from differ-
ent domains impacts concept insertion. When we
perform experiments with no complement mod-
ule, the overall performance is 2% to 5% lower
to HEF+TaxoSeq. This phenomenon is because
the pre-trained language model does not have prior
knowledge of the bracket tree, so two types of er-
rors occur to reduce the performance. Bart-large
also outperforms HEF on all three datasets, but
it outperforms T5 on the food dataset. This indi-
cates that different pre-training language models
influence the improvement in different domains.

5.4 Ablation Experiments

To further explore different components of Tax-
0Seq on performance, we also performed two ex-
periments. One is control the number of negative
of A(c), the other is to investigate the ratio of neg-
ative samples to positive samples. We perform
experiments on the science dataset and apply the
optimized parameters to the other two datasets.

0 1 2 3 4

Figure 4: The performance on different number of neg-
ative ancestor concepts.
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Figure 5: The performance on different ratios of nega-
tive sample to positive sample.

Negative Ancestor. We repeat the number of neg-
ative ancestor concept pair from none to 5 times
and observe the changes in Figure 4. The worst ex-
perimental results were obtained when no ancestor
concept pair were added as negative samples. This
is because the ancestor concept has a hypernym
relationship with the query concept. Without the
ancestor concept as a negative sample, the model
will find the wrong hypernym word. In addition,
the experimental results are the best at 2 times the
number of negative ancestor concept pair samples.
Ratios of Negative to Positive. We also exper-



Table 3: The analysis of 3 error types is based on the failure of TaxoSeq cases in science dataset. “#” refers to the
number of error types, and the red concept is the query concept inserted into taxonomy.

Error Type #  Example

"predict sentence

",

n

((physics(optics)(holography)))"

Bypass Anchor Insertion 12 "true sentence": "((physics(optics(holography))))"
. "predict sentence": "((geostrategy)(politics(geopolitics)))"
No Insertion IS "true sentence": "((politics(geopolitics(geostrategy))))"
"anchor concept": "chemistry"
"inital rank":10
Wrong Ranking 10 "predict sentence": "((chemistry(thermochemistry)(femtochemistry)))"
"true sentence": "((chemistry(thermochemistry)(femtochemistry)))"
"inital ranking": 5
the science dataset and classify them into three
Term : “ph logy” Initial Rank : 1 A . .
{Predict:“ (f;?diciﬁe?;l?;iﬁat%{ogyi;)(;hysai::al gengraphy))”} Categorles m Table 3 (1) Bypass an(:hor mser-

Term : “geography” Initial Rank : 2
Predict : “((earth(geography(physical geography))))”

Figure 6: A case study on the concept of ‘physical
geography’ inserted into concept pair and improving the
ranking of anchor concept.

iment with different negative sample to positive
sample ratios from none to all in Figure 5. We can
see the curve first increase and then decrease as
the negative samples increase. In the absence of
negative sample, TaxoSeq is equivalent to sorting
all concepts. Even so, our experimental results are
better than baselines. This can be attributed to the
design of concept pair that will extend the search of
anchor concepts. The best result is at the same pro-
portion of positive and negative samples. However,
as negative cases continue to increase, the accuracy
rate decreases, whereas too many negative samples
will overfit the model to misclassification.

5.5 Case Studies and Error Analysis

Case Studies. Figure 6 shows a case study on the
query concept of “physical geography” inserted
into seed taxonomy. In the first bracket tree, al-
though the concept “pharmacology‘ was initially
ranked first, the query concept is not inserted, so
“pharmacology” is eliminated. “geography” is cho-
sen as the anchor concept in the second bracket
tree and directly formed the result after insertion.
This example shows that TaxoSeq can eliminate
over-ranked non-anchor nodes, and the insertion
method is very straightforward and can continue to
be extended in future work.

Error Analysis. To further explore the bottlenecks
of TaxoSeq, we analyze all 37 errors resulted in

tion. Query concept bypasses the anchor concept
and inserts directly into the grandfather concept,
e.g., the anchor for “holography” is “optics”, but
“physics” is selected. Ten of these errors had only
one grandfather-father concept pair inserted (single-
edge) in a way that does not have sibling concept,
accounting for 83% of these errors. (2) No in-
sertion. The query concept isn’t inserted into the
anchor concept, e.g., the “geostrategy” concept
should be inserted under “geopolitics”. Although
there are many concept pair containing anchor for
each query concept in this type of error, none of
them have been identified. (3) Wrong ranking
fails to rank the anchor concept first, but it does
move it forward, e.g.,the ranking of the anchor for
“femtochemistry” is lifted from 10 to 5.

In future work, we focus on addressing single-
edge hypernym concept discovery and allowing
the model to identify no finding anchor concept
with a view to being able to resolve bypass anchor
insertion and no insertion.

6 Conclusion

We propose a TaxoSeq model that converts taxon-
omy into sequence and flexibly inserts query con-
cepts into taxonomy using the Seq2Seq architec-
ture. We use the bracketed tree serialization method
and propose three conversion rules to transform any
tree taxonomy into its corresponding sequence. We
systematically design a strategy for sampling the
training set from the seed taxonomy, considering
the hypernym relations of ancestor nodes and the se-
mantic similarity of sibling nodes during insertion,
and also finding the most fine-grained hypernym.
The experimental results in SemEval-task 13 show
that we outperform state-of-the-art algorithms.



Ethic Considerations

In this paper, we conduct an exploration of con-
verting the taxonomy expansion task into seq2seq
paradigm and exploiting pretrained language mod-
els (PLMs) in lifting performance. However, we
only provide primary results on english datasets,
which limits the use of this method in other lan-
guage scenarios. Meanwhile, we just provide the
insight of this strategy by one example implemen-
tation as bracket trees. As there are plenty of other
approaches for converting the taxonomy into se-
quence, we hope our work can call for more tech-
nical attempts via such ideas.
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