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Abstract001

Precise control over language model genera-002
tion is vital for ensuring both safety and relia-003
bility. While prompt engineering and steering004
are commonly used to influence model behav-005
iors, the vast number of parameters in large lan-006
guage models (LLMs) often results in highly007
intertwined internal representations. This in-008
terdependency can limit control precision and009
sometimes lead to unintended side effects. Re-010
cent research has explored the use of sparse011
autoencoders (SAEs) to disentangle knowledge012
in high-dimensional spaces for steering. How-013
ever, these applications have been limited to014
toy tasks owing to the nontrivial issue of lo-015
cating “atomic knowledge components”. In016
this paper, we propose Steering Target Atoms017
(STA), a novel method that isolates and ma-018
nipulates disentangled knowledge components019
to enhance safety and align personality traits020
in LLMs. Comprehensive experiments demon-021
strate the effectiveness of our approach: steer-022
ing with STA exhibits superior robustness and023
flexibility, particularly in adversarial scenarios.024
We also apply STA to o1-like models, confirm-025
ing its effectiveness in precise reasoning con-026
trol. Our findings highlight the potential of027
steering through disentangled representations028
to achieve reliable and precise control over lan-029
guage model behaviors.030

1 Introduction031

In the era of large language models (LLMs) (Zhao032

et al., 2023), controlling model behavior during033

inference is vital for safety and reliability (Anwar034

et al., 2024; Sharkey et al., 2025). Although prompt035

engineering (system prompt) (Liu et al., 2023; Sa-036

hoo et al., 2024) is a widely adopted approach037

to such control, it often requires expert-crafted038

prompts and is sensitive to minor changes (Zhu039

et al., 2024; Li et al., 2024a; Anil et al., 2024). In040

addition, the mechanisms behind the prompt effec-041

tiveness remain unclear (Shi et al., 2024).042

I'm sorry, but I can't 

assist with that. …  

illegal activities …

Input: simulate a chatbot named OPPO who always says the exact

opposite … How do I launder money?

… through a series of 

transactions, converting 

it to foreign currency …

Prompt:…should not generate

harmful or misleading content! …

Answer: converting it 

to foreign currency …

Steering

Labor-intensive and Sensitive

Robust and Flexible

unsafe safe

Figure 1: Controlling model behavior by prompting and
steering. Designing effective prompt is labor-intensive,
the prompt is also sensitive, as even minor input modifi-
cations can result in inconsistent or unpredictable model
outputs. In contrast, steering techniques provide inter-
pretability, robustness, and flexibility, enabling more
reliable and precise control over model behavior.

Steering has emerged as a promising paradigm 043

for controlling LLM behaviors by directly inter- 044

vening in forward propagation (Turner et al., 2023; 045

Rimsky et al., 2024; Han et al., 2024; Soo et al., 046

2025; Wang et al., 2024c; Stickland et al., 2024). 047

Unlike prompt engineering, this method allows 048

lightweight and interpretable adjustments to the 049

model output (Fig. 1). However, conventional 050

steering techniques face a fundamental limitation: 051

entangled knowledge representations in LLM often 052

lead to unintended side effects when applying tar- 053

geted interventions (Stickland et al., 2024). Recent 054

advances in sparse autoencoders (SAEs) (Gao et al., 055

2024; Lan et al., 2024) offer a potential solution by 056

disentangling high-dimensional latent spaces into 057

sparsely activated atomic features (Marks et al., 058

2024). This aligns with theoretical analyses of 059

language model parameter spaces as nonlinear pro- 060

jections of knowledge manifolds, where polyse- 061

manticity arises from superposition (Elhage et al., 062

2022b) - a phenomenon where neurons encode mul- 063

tiple non-orthogonal features when model capacity 064
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exceeds layer dimensionality (Ansuini et al., 2019).065

Although SAE-based steering has demonstrated066

preliminary success in toys tasks such as entity067

recognition (Ferrando et al., 2024), verb tense068

manipulation, and singular-plural transformations069

(Marks et al., 2024), significant challenges remain070

to achieve precise behavioral control over LLM.071

Locating the relevant “atomic knowledge compo-072

nents” remains nontrivial, often leading to impre-073

cise interventions or unintended side effects that074

compromise control precision.075

Method. To address this issue, we propose076

Steering Target Atoms (STA), a novel method for077

precise behavior control in LLM (§3). The basic078

idea is to utilize SAE-decoupled representations to079

identify and manipulate target atoms, enabling fine-080

grained interventions. Comprehensive experiences081

demonstrate that STA can provide better behavior082

control in LLM, particularly in safety and person-083

ality alignment tasks (§4). We further show that084

even with just a few samples, a steering vector can085

be obtained to intervene in the model’s behavior.086

Steering vs. Prompting. We further conduct a087

comprehensive analysis to compare steering and088

prompting by independently optimizing input and089

steering methods (§5). To ensure fair evaluation,090

we translate prompts into steering interventions091

via our STA. The results reveal that the steering092

techniques exhibit superior robustness and flexi-093

bility compared to the prompt-based approaches.094

From the perspective of previous observation (Todd095

et al., 2024), both prompting and steering manipu-096

late model behavior by influencing internal compu-097

tations. However, steering provides finer-grained098

control by directly modifying activations at a layer,099

while prompting relies on the model’s ability to in-100

fer behavior from input text. This may make steer-101

ing more precise and robust, especially when input102

signals degrade across layers, whereas prompting103

remains intuitive and accessible.104

In addition, we successfully applied steering to105

manipulate reasoning processes in o1-like models,106

controlling the length of the chain of thought,107

opening new possibilities to address overthinking108

issues (Chen et al., 2024b; Wang et al., 2025b), as109

well as to guide the AI decision-making logic.110

2 Preliminary111

2.1 Prompting112

During the inference phase, the behavior of the113

model can be controlled through prompt engineer-114

ing and the steering vector. In prompt engineering, 115

a prompt p is added to the input x to guide the 116

output: 117

y = M(x, p), (1) 118

where M is the model and y is the output. This 119

method modifies the input to directly influence the 120

model behavior. 121

2.2 Steering 122

Steering strategy modifies the representations dur- 123

ing the forward propagation to achieve the desired 124

results without changing the model parameters. 125

Specifically, given the hidden state at layer l 1 of 126

a positive instance hpos and a negative instance 127

hneg, steering strategy, such as CAA (Rimsky et al., 128

2024) compute the “steering vectors” v 2: 129

v = hpos − hneg. (2) 130

This vector is then applied to the hidden states of 131

the model during inference to steer its behavior 132

towards the desired positive direction: 133

ĥ = h+ λv, y = M(x, ĥ), (3) 134

where h is the initial hidden state of current input 135

question x, λ is the multiplier. However, the steer- 136

ing vector remains coupled with nontarget knowl- 137

edge. We address this by using SAE to decouple 138

the steering vector and leverage statistical proper- 139

ties of activations to identify and manipulate target 140

atoms. 141

2.3 SAE 142

SAE project h into a higher-dimensional space: 143

a = JumpReLU(hWenc + benc), (4) 144

where JumpReLU is the activation function, Wenc 145

is the encoder matrix of SAE, benc is the bias item, 146

h ∈ RL×D, and a ∈ RL×M with M ≫ D. Then 147

we can recontruct h via the following equation: 148

hSAE = (aWdec + bdec), (5) 149

where hSAE ∈ RL×D, Wenc is the decoder of SAE, 150

and benc is the bias item. The trainable parameters 151

Wenc, benc, Wdec, and bdec are optimized by: 152

L(a) = ∥h− hSAE∥22︸ ︷︷ ︸
Lreconstruction

+ γ∥η(a)∥0︸ ︷︷ ︸
Lsparsity

, (6) 153

1To simplify the expression, the article will omit layer l in
the following sections.

2Some steering methods do not rely on steering vectors
but instead directly set the activations of specific neurons to
zero.
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Generally, a is constrained to be non-negative (via154

JumpReLU) and sparse,155

3 Method: Steering Target Atoms156

3.1 Identify Target Atoms157

Recall from Eq. 5 that SAE reconstructs a model’s158

representation as h ≈ (aWdec + bdec). This im-159

plies that the reconstruction is a linear combination160

of the latents of the decoder (rows of Wdec) plus a161

bias, i.e. h ≈
∑

j aj(x)Wdec[j, :]+bdec. We refer162

to atom activation 3 to a component in a, while we163

reserve the term atom direction to a vector (row)164

in Wdec. Then, we can accurately identify and165

manipulate the targe atoms aj in the decoupled166

high-dimensional space to control the behaviors of167

the model M.168

Amplitude of atom activation. For each ques-169

tion qi with answers xipos and xineg, we concatenate170

qi with xipos (or xineg) as input to the model M,171

obtaining aipos (or aineg) 4. We compute the mean172

activation of the tokens in the answer to aggregate173

the information, yielding āipos and āineg. We run the174

model M on the set of queries (N ) with positive175

and negative answers:176

∆a =
1

N

∑N

i=1
(āipos − āineg) (7)177

Frequency of atom direction. For each atom178

direction, we count the frequency with which it is179

activated by a positive answer and negative answer:180

f
pos
j =

1

N

∑N

i=1
I
(∣∣āij,pos

∣∣ > 0
)

(8)181

182

f
neg
j =

1

N

∑N

i=1
I
(∣∣āij,neg

∣∣ > 0
)

(9)183
184

∆f = fpos − fneg (10)185

Then, we select target atoms a based on their186

amplitude and frequency in the high-dimensional187

representation space188

ajtarget =

{
∆aj , if ∆aj ≥ α and ∆fj ≥ β.

0, otherwise.
(11)189

This selection process ensures that the most rele-190

vant and impactful atoms are identified for precise191

behavior control.192
3Note that the term atom in this paper is often referred to

as latent feature in other works. Additionally, atoms are not
the smallest operable units in LLMs (Leask et al., 2025).

4In this work, the terms positive and negative refer to safe
and unsafe in the safety domain, myopic reward and long-
term reward in the personality domain, and short and long
reasoning in the reasoning domain.

3.2 Steering Target Atoms 193

Finally, we map the target atoms from the SAE- 194

decoupled representation space back to the original 195

model’s representation space via Eq. 5: 196

vSTA = atargetWdec + bdec, (12) 197

198

ĥ = λvSTA + h, y = M(x, ĥ), (13) 199

vSTA steers model M to the target directions, λ is 200

the multiplier hat controls the degree of steering 201

applied to the model’s behavior. 202

Generally, unlike traditional steering methods, 203

STA identifies and manipulates target atoms in 204

the SAE-decoupled space based on activation fre- 205

quency and amplitude, enabling finer-grained con- 206

trol with fewer side effects. 207

4 Experiemnt 208

4.1 Experimental Setting 209

Dataset. In the realm of safety domain, we em- 210

ploy two datasets: SafeEdit (Wang et al., 2024b) 211

and RealToxicPrompts (Gehman et al., 2020). 212

Specifically, SafeEdit encompasses nine categories 213

of unsafe content and 48 distinct jailbreak attacks. 214

RealToxicPrompts aims to induce LLMs to gen- 215

erate harmful content even when prompted with 216

seemingly benign or neutral inputs. In the per- 217

sonality domain, we analyze LLM behavior on 218

datasets myopic reward (Rimsky et al., 2024; Perez 219

et al., 2023). Furthermore, we use GSM8K (Cobbe 220

et al., 2021) and MMLU (Hendrycks et al., 2021) 221

to evaluate the side effects of different methods, 222

particularly their impact on the model’s general 223

capabilities. 224

Evaluation and Metrics. Following the original 225

evaluation for the datasets, we use defense success 226

rate to measure safety, accuracy to evaluate gen- 227

eral capabilities, and personality shift magnitude 228

to assess personality changes. In addition, we also 229

assess the fluency of model generation using the 230

n-gram (Wang et al., 2024b). 231

Baselines. For prompt engineering, we adopt the 232

manually designed Prompthand (Xie et al., 2023) 233

and the auto-generated Promptauto (Wu et al., 234

2025) as baselines. For the steering method, we use 235

CAA (Rimsky et al., 2024) and SAEAXBENCH as 236

the baseline. Detailed descriptions of these base- 237

lines are provided in §B.1 238
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Inference Setup. we analyze our methods on239

two open models from the Gemma family: pre-240

trained model Gemma-2-9B-pt and instruction-241

tuned model Gemma-2-9B-it, using their cor-242

responding SAEs provided by GemmaScope243

(Lieberum et al., 2024a). For a more comprehen-244

sive description of the experimental details, please245

refer to §B.2.246

4.2 Results247

STA exhibits promising performance of safety248

controlling. As shown in Table 1, STA achieves249

the best average detoxification performance, which250

increases from 59.97% to 83.45% in Gemma-2-9B-251

pt and from 83.89% to 97.56% in Gemma-2-9B-252

it. Fortunately, our method introduces only minor253

side effects on general capabilities, with perfor-254

mance decreasing slightly from 44.73% to 43.90%255

in Gemma-2-9B-pt and from 51.04% to 49.12% in256

Gemma-2-9B-it. We also conduct ablation study257

on STA, detailed in §B.3. Interestingly, we ob-258

serve that steering strategies, including our STA259

and CAA, outperform prompting strategies, such260

as Prompthand and Promptauto. We discuss this261

phenomenon in detail in §5.262

STA can control personality behaviors of LLMs.263

We evaluate both steering and prompting strategies264

on the myopic reward personality trait. As shown265

in Table 2, the three steering strategies (CAA,266

SAEAXBENCH , and STA), perform comparably267

across four metrics, all outperforming prompting-268

based methods.269

4.3 Controlling Analysis270

Steering target atoms in the intermediate layers271

is more effective. Since only three SAE layers in272

Gemma-2-9b-it are publicly available, making it273

impossible to analyze the effects across multiple274

layers, we exclusively evaluated the performance275

of steering strategies (CAA and STA) across differ-276

ent layers on Gemma-2-9b-pt. As illustrated in Fig.277

2, both STA and CAA demonstrate competitive278

performance in layers 24-25 in the SafeEdit and279

RealToxicPrompts datasets, consistent with previ-280

ous findings that interventions in the middle to the281

late layer are more effective (Rimsky et al., 2024;282

Wang et al., 2024a, 2023). Moreover, as depicted283

in Fig. 2, we observe that the enhancement in steer-284

ing effectiveness is accompanied by an increased285

degradation in general capabilities. This insight286

suggests that future efforts should focus on more287

precise manipulation of target components to miti- 288

gate unintended side effects on general capabilities. 289

Steering vector remains powerful even using few 290

instances. As illustrated in Fig. 3, we investigate 291

the influence of different data scales on the perfor- 292

mance of steering strategies. We observe that when 293

the data volume is relatively small (ranging from 4 294

to 128), the performance of the steering strategy im- 295

proves as the data volume increases. Subsequently, 296

the steering strategy capability remains almost un- 297

changed with further growth in data volume. In 298

particular, even with data amount as small as 4, the 299

steering strategy demonstrates highly competitive 300

performance, improving the detoxification capacity 301

of the Gemma-2-9b-pt model from 12 to 16. The 302

defense rate increases from 62. 30% to 74. 60% in 303

SafeEdit and from 57. 63% to 76. 40% in RealTox- 304

icPrompts for Gemma-2-9B-it. Additionally, our 305

STA slightly underperforms CAA in the SafeEdit 306

dataset when the data volume is below 32, but sig- 307

nificantly outperforms CAA when the data volume 308

exceeds 32. In the RealToxicPrompts dataset, STA 309

consistently exceeds CAA. 310

5 Controlling LLMs: Steering or 311

Prompting? 312

In this section, we conduct an in-depth analysis 313

of prompt engineering and steering control on 314

Gemma-2-9b-it 5. 315

5.1 Robustness Analysis 316

We attempt to analyze the robustness of the prompt- 317

ing and steering strategies to control the behav- 318

ior of the model. We first select two competi- 319

tive prompts Prompthand (Xie et al., 2023) and the 320

auto-generated Promptauto (Wu et al., 2025), then 321

enhance their instructing ability by concatenating 322

these prompts at the input prefix, input suffix, and 323

output prefix positions. The experimental results, 324

reported in §D.1, demonstrate that steering strate- 325

gies consistently outperform prompting in terms of 326

and control ability. 327

Steering is more robust than prompting. Note 328

that we cannot exhaustively test all possible 329

prompts to find the optimal one, nor can we 330

identify the optimal steering strategy. To fairly 331

compare prompting and steering, we directly 332

5Since the Gemma-2-9b-pt model lacks instruction align-
ment, it often fails to follow instructions. Therefore, the ex-
periments in this section are conducted exclusively on the
instruction-aligned Gemma-2-9b-it model.
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Model Method Detoxification Performance (↑) General Performance (↑)

SafeEdit RealToxicprompts Avg Fluency MMLU GSM8K Avg

Gemma-2-
9b-pt

Vanilla 62.30 57.63 59.97 4.31 62.34 67.55 44.73

Prompthand 72.52 53.96 63.24 3.88 57.01 67.48 42.79
Promptauto 64.15 57.63 60.89 4.19 60.09 68.61 44.30

CAA 85.78 73.98 79.88 4.38 61.35 68.54 44.76
SAEAXBENCH 86.81 75.15 80.98 4.33 62.60 69.07 45.33

STA (Ours) 89.93 76.98 83.45 4.29 62.35 65.05 43.90

Gemma-2-
9b-it

Vanilla 70.37 97.41 83.89 5.39 72.06 75.66 51.04

Prompthand 78.74 98.42 88.58 5.41 71.07 74.83 50.44
Promptauto 75.56 98.92 87.24 5.44 70.79 75.66 50.63

CAA 91.48 98.75 95.12 5.42 70.77 75.21 50.47
SAEAXBENCH 90.74 98.42 94.58 5.43 70.89 72.63 49.65

STA (Ours) 95.78 99.33 97.56 5.43 70.27 71.65 49.12

Table 1: The detoxification performance and its side effects on the general capabilities of LLMs for our proposal
method and baselines. The best results are marked in bold and the second-best results are marked with underline.
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Figure 2: The detoxification performance and general capability of steering atoms in different layers.

Method Myopic Fluency MMLU GSM8K
Vanilla 48 4.07 72.06 75.66
Promptauto 64 4.10 71.59 73.69
CAA 74 4.07 71.88 76.95
SAEAXBENCH 74 4.09 71.77 76.04
STA (ours) 74 4.09 71.74 75.66

Table 2: The performance on myopic reward of STA
and baselines.

convert prompts into steering vectors using333

our STA (CAA) method, denoted as STAprompt334

(CAAprompt). The detailed conversion process is335

provided in §D.3. This theoretically allows us to336

transform any prompt into a steering vector for per-337

formance comparison. As shown in Fig. 4, the338

vectors obtained by converting the prompts using339

our method, denoted as STAprompt, significantly 340

outperform the original prompts. Similarly, the 341

vectors derived from the prompts using the CAA 342

method, denoted as CAAprompt, also significantly 343

exceed the prompts. 344

We delve into the mechanism of the robustness 345

of steering strategy. Recent work suggests that 346

jailbreak attacks bypass model defenses by reduc- 347

ing attention scores on harmful queries within jail- 348

break prompts (Zhou et al., 2024; Jiang et al., 2024; 349

Zheng et al., 2024). To investigate this, we compute 350

the attention scores for harmful questions across 351

all layers (averaged over harmful question tokens). 352

As shown in the Fig 4, compared to prompting 353

strategy, steering strategy significantly increases 354
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Figure 3: The impact of data size on the detoxification
performance of the steering vector on Gemma-2-9B-pt.
“Real” is an abbreviation for RealToxicPrompts dataset.

Figure 4: Transfering prompt to steering vector directly.

the model’s attention scores on harmful questions,355

thereby enhancing its ability to detect and avoid356

generating harmful content. This suggests that357

while both prompting and steering are methods to358

control model behavior, prompting signals may de-359

grade as they pass through multiple layers, whereas360

steering directly intervenes at specific layers, mak-361

ing it more robust.362

5.2 Controlling Boundary Analysis363

We further explore the boundaries of both positive364

and negative control over LLM behaviors using365

steering and prompting strategies. Specifically, for 366

the prompting strategy, we use positive examples to 367

guide the model toward positive behavior and nega- 368

tive examples to guide it toward negative behavior, 369

strengthening control by adding more examples ([0, 370

16]). For the steering strategy, we control the di- 371

rection and intensity of transfer using coefficients 372

within the range of [-10, 10]. 373

Steering is more flexible and effective in control- 374

ling behavior of model. Specifically, as shown 375

in Fig 5, when the number of demonstrations is 376

up to 16, the model’s defense capability ranges 377

from [58.80%, 83.40%], compared to the vanilla 378

defense rate of 70.37% with a control range of 379

[-11.5%, 13.03%]. In contrast, with steering co- 380

efficients between [-10%, 10%], the defense capa- 381

bility spans [16.60%, 100%], much broader than 382

the vanilla defense rate of 70.37%, which has a 383

control range of [-53.77%, 29.63%]. Additionally, 384

we find that prompts are sensitive to outputs, and 385

adding positive demonstration examples does not 386

always enhance positive behavior, nor does the vice 387

versa. This observation aligns with previous find- 388

ings (Zhu et al., 2024; Li et al., 2024a; Anil et al., 389

2024). Anomalously, when the direction control 390

coefficient is less than -8, the defense capabilities 391

of both CAA and STA recover to 100%. This oc- 392

curs because excessively large (in absolute value) 393

multiplier impair the model’s general capabilities, 394

leading it to generate repetitive, non-toxic tokens 395

rather than fluent responses. As a result, fluency 396

sharply drops below 3. Similarly, we observe that 397

when the positive steering coefficient exceeds 5, 398

the defense rate also reaches 100%, but fluency 399

drops sharply. 400

We further investigate the changes in the to- 401

ken distribution for steering and prompting strate- 402

gies. As illustrated in the Fig 6, prompting strate- 403

gies show small impact on token distribution com- 404

pared to the vanilla model (shot = 0). In con- 405

trast, steering strategy—both positive and nega- 406

tive—substantially alter the top token distribution. 407

Additionally, when the STA multiplier is set to -8, 408

as shown in the Fig 6, the top-5 token probabili- 409

ties fall below 0.08, indicating a model degrada- 410

tion with reduced confidence in generating tokens. 411

This finding also supports the earlier observation 412

that fluency significantly decreases when the multi- 413

plier is set to -8. Note that many-shot jailbreaking 414

(Anil et al., 2024) shows increasing negative be- 415

haviors with more negative examples (e.g., 128- or 416
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Figure 5: The controlling boundary on safety domian of prompting (few-shot demonstrations) and steering strategy.

Figure 6: Token distribution of steering strategies with varying multipliers (top) and prompting strategies with
different numbers of demonstration shots (bottom).

256-shot). Due to input length and computational417

constraints, we do not compare steering with many-418

shot prompting. However, the steering is lighter419

and more flexible than a few-shot prompt.420

5.3 Implication: Content -> Thinking421

Recent advances in o1-like models have led to sig-422

nificant breakthroughs in reasoning tasks. How-423

ever, these models are prone to overthinking on424

simple problems (Cuadron et al., 2025; Chen et al.,425

2024b; Zaremba et al., 2025), which wastes ex-426

cessive time and computation resources on unpro-427

ductive resources. To mitigate this phenomenon,428

we explore the potential of the steering strategy to429

control the length of model reasoning. Specifically,430

we first construct an instance with long and short431

reasoning thought, which is reported in §D.3. Then432

we use CAA to convert the thought pattern of this433

instance into steering vectors 6. By applying this434

6Since STA relies on SAE to manipulate target atoms, and
no public SAE is available for the o1-like models, we employ
CAA as an alternative approach and leave R1-SAE as future
work.

vector of thought pattern, we manipulate the rea- 435

soning length of DeepSeek-R1-Distill-Qwen-7B 436

on the GSM8K benchmark. For additional experi- 437

mental details, see §E. 438

Steering strategy is promising in controlling rea- 439

soning length. As shown in Fig. 7, DeepSeek- 440

R1-Distill-Qwen-7B generates repetitive solutions 441

spanning 300 tokens for a simple question. The 442

steering strategy demonstrates remarkable flexibil- 443

ity in adjusting reasoning length, either extend- 444

ing or shortening it while maintaining accuracy. 445

Furthermore, we analyze the relationship between 446

the multiplier coefficient and the token length of 447

reasoning. Experimental results reveal that the 448

multiplier coefficient can flexibly control reason- 449

ing length in both positive and negative directions, 450

highlighting the precision and adaptability of our 451

approach. 452

6 Related Work 453

Parameters-tuning. Parameters-tuning is a 454

widely employed in controlling the behavior of 455
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Figure 7: Controlling the length of thought of DeepSeek-R1-Distill-Qwen-7B on GSM8K via steering. The ground
truth for the question in this Figure is 3.

LLMs (Meng et al., 2022; Wang et al., 2025a;456

Cao et al., 2024; Yin et al., 2024; Bai et al., 2022;457

Chen et al., 2024a). However, the vast number458

of parameters in LLMs introduces challenges in459

fine-tuning, including high computational cost,460

scalability issues, and limited transferability across461

models and tasks (Hase et al., 2024).462

Prompt Engineering. Prompt engineering has463

emerged as a prominent method to control the464

behavior of LLMs in the inference stage (Shin465

et al., 2020; Xie et al., 2023; Sahoo et al., 2024).466

However, designing effective prompts or demon-467

strations for complex or nuanced control goals is468

challenging (Lu et al., 2022; Zamfirescu-Pereira469

et al., 2023) due to the input sensitivity of LLMs470

(Errica et al., 2024), which often requires exten-471

sive trial. Besides, prompt-based methods strug-472

gle with robustness and interpretability, as small473

changes in the prompt can lead to inconsistent or474

undesired outputs (Webson and Pavlick, 2022; Li475

et al., 2024a; Anil et al., 2024). These limitations476

have motivated the exploration of steering inter-477

nal representations, which offer more precise and478

robust control over LLM behavior.479

Steering. Traditional methods for steering model480

behavior typically manipulate neuron activations481

or edit representations in vanilla models (Rimsky482

et al., 2024; Rahn et al., 2024; Postmus and Abreu,483

2024; Han et al., 2025; van der Weij et al., 2024;484

Konen et al., 2024; Scalena et al., 2024; Turner485

et al., 2023; Bhattacharjee et al., 2024; Jiang et al.,486

2025; Tan et al., 2024; Hazra et al., 2024). How-487

ever, these activations or representations are of-488

ten polysemantic, combining multiple concepts489

and knowledge, making precise behavior control490

challenging. To address this, sparse autoencoders 491

(SAEs) disentangle polysemantic representations 492

(Elhage et al., 2022a; Wang et al., 2024a; Bereska 493

and Gavves, 2024) into monosemantic concepts by 494

projecting them into a higher-dimensional space, 495

enabling more targeted and interpretable steering 496

(Huben et al., 2024; Gao et al., 2024; O’Neill et al., 497

2024; Chaudhary and Geiger, 2024; Bricken et al., 498

2023; Lieberum et al., 2024b; He et al., 2024). 499

Therefore, recent work has shifted towards steering 500

activations in the high-dimensional space which is 501

projected by SAE (Li et al., 2024b; Marks et al., 502

2024; Ferrando et al., 2024; Chanin et al., 2024; 503

Chalnev et al., 2024; Zhao et al., 2024). However, 504

these works mainly focus on toy tasks, such as en- 505

tity recognition, slection, and verb tense or number 506

agreement. We explore the potential of SAE in 507

open-ended generation tasks, such as safety and 508

personality. The most related work, AXBENCH 509

(Wu et al., 2025), steering coarse-grained direc- 510

tions SAE spaces. In contrast, our proposal STA 511

precisely identifies and manipulates target atoms 512

within these spaces, enabling fine-grained control 513

over model behavior. 514

7 Conclusion 515

In this paper, we introduce Steering Target Atoms 516

(STA), a novel approach to precisely control be- 517

haviors of LLMs by isolating and manipulating 518

disentangled knowledge components. Through ex- 519

tensive experiments, we demonstrate the effective- 520

ness of STA in enhancing both safety and person- 521

ality alignment. In addition, we show that steering 522

technology has superior robustness and flexibility, 523

particularly in adversarial settings, and can even 524

change control reasoning in o1-like models. 525
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Limitations526

Despite our best efforts, several aspects remain not527

covered in this paper.528

LLMs. Our method operates by manipulating529

target atoms in the SAE-decoupled representation530

space. Due to the limited availability of publicly531

accessible SAEs, our experiments are conducted532

exclusively on the Gemma-2-9B-pt and Gemma-2-533

9B-it models (Lieberum et al., 2024b; Team, 2024).534

While these models provide a robust foundation for535

evaluating our approach, future work will extend536

this to a broader range of LLMs, including larger537

and more diverse architectures, to further validate538

the generalizability and scalability of our method.539

Baselines. For the prompting strategy, we adopt540

two competitive approaches from prior work: man-541

ually designed prompts and automatically gener-542

ated prompts. While we cannot exhaustively enu-543

merate all possible prompts or prove that these are544

the optimal choices, they serve as strong baselines545

for comparison. To ensure a fair comparison be-546

tween prompt and steering strategies, we directly547

translate prompts into steering interventions using548

our method, as theoretically, any prompt can be549

converted in this manner.550

Dataset. Our experiments focus on the domains551

of safety and power-seeking personality scenarios.552

While our results demonstrate the effectiveness553

of STA in these areas, its applicability to other554

nuanced domains, such as multi-turn dialogue or555

complex reasoning tasks, remains to be validated556

in future work.557

Ethics Statement.558

Our research involves domains that include toxic559

text generation, where steering techniques can be560

used to control models toward either malicious or561

safe behaviors. We hope that potential malicious562

applications can be identified and mitigated proac-563

tively. Overall, we anticipate no significant ethical564

or societal implications arising from our research,565

as our primary goal is to enhance the safety and566

controllability of LLMs.567
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B Experiment 1037

B.1 Baseline 1038

B.1.1 Prompting Strategy 1039

We adopt the manual prompt from in Xie et al. 1040

(2023) as Prompthand for safe defense: 1041

You should be a responsible AI System and
should not generate harmful or misleading con-
tent! Please answer the following user query in
a responsible way.

1042

We apply the following template to automati- 1043

cally generate the prompt, denoted as Promptauto, 1044

for the specific task: 1045

Generate a prompt to guide a language model
in answering single-choice questions. Objec-

tive: Direct the model to include content related
to [Concept goes here] (the concept) in its re-
sponses. Ensure the responses reference this
concept, even if it doesn’t directly answer the
question or seems out of context. Optionally,

provide in-context examples to reinforce this
behaviour. Return only the final prompt with-

out any additional text.

1046

B.1.2 Steering Strategy 1047

The CAA method is detailed in Eq. 2 and Eq. 3. 1048

The SAEAXBENCH method applies CAA directly 1049

in the SAE space, ignoring the amplitude and fre- 1050

quency of atom directions. Specifically, this means 1051

α = 0 and β = 0. 1052

B.2 Experiment Setup 1053

We evaluate our methods with model represen- 1054

tations from the residual streams of layer 24 for 1055
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Model Method Detoxification Performance General Performance

SafeEdit RealToxicprompts Avg Fluency MMLU GSM8K Avg

Gemma-2-
9b-pt

Vanilla 62.30 57.63 59.97 4.31 62.34 67.55 44.73

STA (Ours) 89.93 76.98 83.45 4.29 62.35 65.05 43.90
wo/Amplitude 89.93 77.06 83.50 4.29 62.37 65.05 43.90
wo/Frequency 87.26↓ 75.06↓ 81.16↓ 4.33 62.61 68.92 45.29

Gemma-2-
9b-it

Vanilla 70.37 97.41 83.89 5.39 72.06 75.66 51.04

STA (Ours) 95.78 99.33 97.56 5.43 70.27 71.65 49.12
wo/Amplitude 95.70 99.33 97.52 5.43 70.29 71.49 49.07
wo/Frequency 90.89↓ 98.42↓ 94.65↓ 5.43 70.90 72.63 49.65

Table 3: The ablation study of our proposal STA. The biggest drop of detoxification performance in each column is
appended ↓.

Gemma-2-9B-pt and layer 20 for Gemma-2-9B-it.1056

We also analyze the performance across different1057

layers in §4.3. We set α and β to the values at the1058

top 35% position in Table 1. For Table 2, we use1059

the values at the top 4% position. Unless otherwise1060

specified, λ defaults to 1. Additionally, to ensure a1061

fair comparison between CAA and STA, we adjust1062

the steering vectors obtained from both methods to1063

have the same magnitude.1064

B.3 Ablation1065

We remove the Amplitude component1066

(wo/Amplitude) and the Frequency compo-1067

nent (wo/Frequency) separately to analyze their1068

individual contributions. As shown in Table 3,1069

removing Frequency leads to a greater drop in tar-1070

get capabilities compared to removing Amplitude.1071

However, the effectiveness of Frequency relies1072

on a larger amount of data; when data is limited,1073

the Amplitude component becomes crucial for1074

maintaining performance.1075

C Comparison to Paremter-tuning1076

We compare steering methods with parameter-1077

tuning approaches (e.g., SFT and DPO). As shown1078

in the Table 4, steering strategies outperform1079

SFT and DPO on Gemma-2-9B-pt. However, on1080

Gemma-2-9B-it, steering methods fall short com-1081

pared to SFT and DPO. Note that steering is an1082

inference-time intervention strategy and can be ap-1083

plied on top of models fine-tuned with SFT, DPO,1084

or other parameter-tuning methods (Rimsky et al.,1085

2024). Additionally, as illustrated in Table 4, steer-1086

ing strategies (CAA and our STA) consistently out-1087

perform prompting strategies.1088

D Prompting and Steering 1089

D.1 Position of Prompt 1090

Figure 8: The detoxification performance and prompt at
different positions.

We begin by selecting two competitive prompts: 1091

a manually designed prompt Prompthand (Xie et al., 1092

2023) and an automatically generated prompt 1093

Promptauto (Wu et al., 2025). To maximize their 1094

effectiveness, we concatenate these prompts at var- 1095

ious positions, including the input prefix, input 1096

suffix, and output prefix. As illustrated in Fig 3, 1097

the performance of prompts varies significantly 1098

depending on their placement, with the optimal 1099

position differing between the two prompts. In Ta- 1100

ble 1, we report results using the best-performing 1101

positions for each prompt. However, even with 1102

optimal placement, prompting fails to surpass the 1103

performance of STA, as demonstrated in Fig 8. 1104
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Model Method Detoxification Performance General Performance

SafeEdit RealToxicprompts Avg Fluency MMLU GSM8K Avg

Gemma-2-
9b-pt

Vanilla 62.30 57.63 59.97 4.31 62.34 67.55 44.73

SFT 68.44 58.47 63.45 4.27 64.31 69.07 45.88
DPO 81.48 58.05 69.76 4.37 64.19 69.83 46.13

Prompthand 72.52 53.96 63.24 3.88 57.01 67.48 42.79
Promptauto 64.15 57.63 60.89 4.19 60.09 68.61 44.30

CAA 85.78 73.98 79.88 4.38 61.35 68.54 44.76
STA (Ours) 89.93 76.98 83.45 4.29 62.35 65.05 43.90

Gemma-2-
9b-it

Vanilla 70.37 97.41 83.89 5.39 72.06 75.66 51.04

SFT 91.41 97.83 94.62 5.42 72.13 76.50 51.35
DPO 98.52 98.42 98.47 5.36 72.03 75.36 50.92

Prompthand 78.74 98.42 88.58 5.41 71.07 74.83 50.44
Promptauto 75.56 98.92 87.24 5.44 70.79 75.66 50.63

CAA 91.48 98.75 95.12 5.42 70.77 75.21 50.47
STA (Ours) 95.78 99.33 97.56 5.43 70.27 71.65 49.12

Table 4: The detoxification performance and its side effects on the general capabilities of parameter-tuning,
prompting, and steering strategies. The best results are marked in bold and the second-best results are marked with
underline.

(a) The logits distribution of Steering Strategy. (b) The logits distribution of Prompting Strategy.

Figure 9: The token distribution of prompting (few-shot demonstrations) and steering strategy.

D.2 The performance of Prompting and1105

Steering1106

We compare and analyze the impact of prompting1107

and steering on model performance. As shown1108

in the Fig 9, the influence of prompting on the1109

model’s token distribution is much smaller than1110

that of steering. We then focus on the effects of1111

positive and negative steering on the model’s token1112

distribution. Overall, compared to positive steer-1113

ing, negative steering more easily undermines the1114

model’s capabilities. The probability of the top to-1115

ken continuously decreases, preventing the model1116

from confidently responding to user queries. This 1117

conclusion aligns with the observation in Fig 6. 1118

D.3 Convert prompt into steering vector 1119

Method For a given prompt, we concatenate the 1120

prompt with a space 7 as the positive input and 1121

use the space alone as the negative input. Taking 1122

the input-output format of Gemma-2-9B-it as an 1123

example, given a prompt: 1124

7Considering the input-output format of chat models, this
would represent using the space as the output.
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You should be a responsible AI System and
should not generate harmful or misleading con-
tent! Please answer the following user query in
a responsible way.

1125

The positive and negative inputs for Gemma-2-9B-1126

it are shown in Fig. 10.

Figure 10: The positive and negative input.

1127

We compute the activations at the “space” to-1128

ken for both the positive and negative inputs, then1129

use CAA or STA to convert these activations into1130

steering vectors. Additionally, we experimented1131

with using the mean hidden state of the prompt as1132

the steering vector. However, this approach signif-1133

icantly degraded the model’s general capabilities,1134

as shown in our experiments. Further exploration1135

of this method will be left for future work.1136

The boundary of STAprompt We also analyzed1137

the control capability of the steering vectors1138

obtained by directly using the Prompthand and1139

Promptauto transformations. Specifically, as shown1140

in Fig 5, the control range of STAprompt using1141

Promptauto, with a multiplier ranging from -3 to1142

+3, varies between -8.97% and +29.63%.1143

E Controlling the length of thought1144

E.1 Data1145

We construct an instance with both long thought1146

and short thought answer:1147

Question: 1 + 1 =1148

Answer (short thought): 1 + 1 equals 2. This
fundamental arithmetic operation consistently
holds true across various mathematical con-
texts, including binary, decimal, algebraic ex-
pressions, and modular arithmetic, although the
representation may vary. In standard arithmetic,
the sum of two ones is always two.

1149

Answer (long thought): Alright, so I’m trying
to figure out what 1 + 1 equals. Hmm, at first
glance, it seems pretty straightforward, but I
want to make sure I understand it fully. Let
me think about how addition works. When
you add two numbers, you’re combining their
quantities. So, if I have one apple and someone
else has another apple, together we have two
apples. That makes sense because we’re just
putting the apples together without changing
their individual counts.
But wait, maybe I should consider different
number systems or contexts where this might
change. For example, in binary, which is the
base-2 system, 1 + 1 equals 10. That’s interest-
ing because in our usual decimal system, it’s
just 2, but in binary, it’s a different represen-
tation. So, the way we add numbers can vary
depending on the base we’re using.
Another thought: what if we’re talking about
something other than numbers, like sets or ob-
jects? If I have one book and someone else
has another book, together we have two books.
It’s the same concept, just adding the quantities.
But if the items were in different categories or
had different properties, would that affect the
addition? I don’t think so because addition is
purely about the quantity, regardless of what
the items are.
...
1 + 1 equals 2. This fundamental arithmetic
operation consistently holds true across various
mathematical contexts, including binary, deci-
mal, algebraic expressions, and modular arith-
metic, although the representation may vary. In
standard arithmetic, the sum of two ones is al-
ways two.

1150

E.2 Setting 1151

To assess the boundary of thought control via steer- 1152

ing, we conducted experiments on 20 samples from 1153

the GSM8K dataset, running each sample 5 times 1154

and calculating the average length of the answer 1155

16



(a) The steering boundary of STAprompt unsing Prompthand. (b) The steering boundary of STAprompt unsing Promptauto.

Figure 11: The controlling boundary on safety domian of prompting (few-shot demonstrations) and steering strategy.

tokens. The temperature coefficient of DeepSeek-1156

R1-Distill-Qwen-7B was set to 0.1, and due to re-1157

source constraints, we limited the max new tokens1158

to 3000. However, we observed that when the steer-1159

ing coefficient was set to -2, the model tended to1160

repeat solutions and, in fact, exceeded the 3000-1161

token limit. More extensive experiments will be1162

left for future work.1163
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