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Abstract001

Graph Neural Networks (GNNs) have shown002
immense potential in improving the perfor-003
mance of large-scale models by effectively in-004
corporating structured relational information.005
However, current approaches face two key chal-006
lenges: (1) achieving robust semantic align-007
ment between graph representations and large008
models, and (2) ensuring interpretability in the009
generated outputs. To address these challenges,010
we propose ExGLM (Explainable Graph011
Language Model), a novel training framework012
designed to seamlessly integrate graph and lan-013
guage modalities while enhancing transparency.014
Our framework introduces two core compo-015
nents: (1) a graph-language synergistic align-016
ment module, which aligns graph structures017
with language model to ensure semantic consis-018
tency across modalities; and (2) a judge-and-019
improve paradigm, which allows the language020
model to iteratively evaluate, refine, and pri-021
oritize responses with higher interpretability,022
thereby improving both performance and trans-023
parency. Extensive experiments conducted on024
three benchmark datasets—ogbn-arxiv, Cora,025
and PubMed—demonstrate that ExGLM not026
only surpasses existing methods in efficiency027
but also generates outputs that are significantly028
more interpretable, effectively addressing the029
primary limitations of current approaches.030

1 Introduction031

Large Language Models (LLMs) have demon-032

strated remarkable success across various natu-033

ral language processing tasks, including dialogue034

generation (Aboussalah and Ed-dib, 2025), ma-035

chine translation (Zhu et al., 2024), question an-036

swering (Zhang et al., 2024), and text summariza-037

tion (Zhang et al., 2025). These models exhibit an038

impressive capacity for understanding and gener-039

ating human-like text. However, LLMs face inher-040

ent limitations in effectively modeling structured041

knowledge, such as graphs, which are essential042

enhance
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Figure 1: Overview of two mainstream methods (a) tex-
tualizing graph and inference via LLM and (b) aligning
the semantic representation of LLMs and GNNs.

for capturing complex relationships and dependen- 043

cies in diverse real-world domains like social net- 044

works, biological systems, and knowledge graphs. 045

To address these limitations, recent research has ex- 046

plored the integration of GNNs (Kipf and Welling, 047

2017; Hamilton et al., 2018; Veličković et al., 2018) 048

with LLMs (OpenAI et al., 2024; Yang et al., 049

2024; DeepSeek-AI et al., 2025), leveraging GNNs’ 050

strengths in modeling structured information along- 051

side LLMs’ powerful language capabilities, cre- 052

ating opportunities for enhanced performance in 053

graph-related tasks. 054

Current approaches (Yang et al., 2021; Zhao 055

et al., 2023; Xue et al., 2024) to combining GNNs 056

and LLMs can be broadly classified into two 057

categories. The first category involves textual- 058

izing graph structures and feeding them into 059

LLMs (Figure 1(a)). For example, some meth- 060

ods (Zhao et al., 2023; Wang et al., 2024; Chen 061

et al., 2024; Wu et al., 2025) describe nodes and 062

their relationships using natural language templates 063

to generate textual representations of subgraphs. 064

Other approaches (Ye et al., 2024; Tang et al., 065
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2024) employ special tokens to represent nodes066

and edges, effectively converting graph structures067

into sequences compatible with LLM processing.068

However, these methods have notable pitfalls: the069

textualization process can result in the loss of struc-070

tural information, and the sequential representa-071

tions may fail to fully capture the intricate relation-072

ships within the graph. Additionally, these methods073

face scalability challenges due to the token length074

constraints of LLMs, making them unsuitable for075

handling large graphs with extensive neighborhood076

information.077

The second category of approaches (Chai et al.,078

2023; Tang et al., 2024; Liu et al., 2024) focuses079

on aligning the representation spaces of GNNs080

and LLMs in the semantic domain (Figure 1(b)).081

For instance, certain methods (Xia et al., 2024;082

Huang et al., 2023, 2024; Guo et al., 2025) project083

GNN-generated node embeddings into the embed-084

ding space of LLMs to achieve semantic consis-085

tency. Other techniques, such as those employing086

attention mechanisms (Ying et al., 2021; Kuang087

et al., 2022), integrate graph structure information088

directly into the language model’s representations.089

While these approaches improve the integration of090

graph and language modalities, challenges remain.091

The alignment process may not be optimal, lead-092

ing to performance bottlenecks in tasks requiring a093

precise understanding of graph structures and lan-094

guage semantics. Moreover, such methods often095

suffer from a lack of interpretability, making it dif-096

ficult to elucidate how the model leverages graph097

information to make decisions or derive outputs.098

To address the limitations of existing approaches,099

we propose ExGLM (Explainable Graph Lan-100

guage Model), a novel framework designed to ef-101

fectively and interpretably integrate graph struc-102

tures with LLMs. Our framework introduces a103

graph-language synergistic alignment module to104

achieve semantic consistency between graph struc-105

tures and LLM outputs, while also maintaining106

interpretability. Specifically, we assign a textual at-107

tribute to each node in the graph, describing its adja-108

cent relationships, with different nodes represented109

by special tokens. We then perform reasoning us-110

ing the LLM and enhance its representation by111

incorporating the graph representation into the hid-112

den state. To further improve interpretability, we113

propose a judge-and-improve paradigm where114

the LLM evaluates and selects responses with bet-115

ter interpretability. These optimized responses are116

subsequently used to refine the GNN-LLM model.117

Our main contribution can be summarized as 118

follows: 119

• We propose a novel graph-language synergis- 120

tic alignment module that effectively bridges 121

the gap between graph-structured data and 122

LLM outputs, ensuring robust semantic con- 123

sistency across modalities. 124

• We propose a judge-and-improve paradigm, 125

enabling the model to iteratively evaluate and 126

refine its responses for enhanced interpretabil- 127

ity and generation quality, thereby improving 128

both performance and transparency. 129

• We conduct comprehensive experiments on 130

multiple datasets, demonstrating the supe- 131

rior performance and effectiveness of our ap- 132

proach compared to existing methods. 133

2 Related Work 134

2.1 Graph-Large Language Models 135

LLMs (OpenAI et al., 2024; Yang et al., 2024; 136

DeepSeek-AI et al., 2025) achieve state-of-the- 137

art performance on various natural language tasks, 138

however, it lacks explicit mechanisms to effectively 139

model structured information, such as graphs. To 140

address this limitation, recent studies (Shu et al., 141

2024; Tang et al., 2024) have explored ways to inte- 142

grate the benefits of GNNs into LLM-based frame- 143

works. For instance, Zhang et al. (2020) adapts the 144

self-attention mechanism of BERT (Devlin et al., 145

2019) to capture the relational structure of nodes 146

and edges within a graph. However, its perfor- 147

mance is highly dependent on the presence and 148

quality of node features, which may limit its ap- 149

plicability when such features are sparse or noisy. 150

InstructGLM (Ye et al., 2024) leverages the nat- 151

ural language modeling capabilities of LLMs to 152

describe multi-scale geometric structures within 153

graphs, thereby improving representation and anal- 154

ysis of graph data. Nonetheless, it suffers from 155

token-length limitations, making it challenging 156

to process large graphs with extensive neighbor 157

information. Jin et al. (2024) propose a frame- 158

work named Graph-COT that enhances LLMs by 159

encouraging them to perform iterative reasoning 160

over graph structures. However, fine-tuning LLMs 161

within this framework remains challenging, and 162

potential misalignment between the graph structure 163

and the text attribution can lead to inaccuracies. An- 164

other recent work, PromptGFM (Zhu et al., 2025), 165
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explicitly prompts LLMs to mimic the workflow166

of GNNs within the text space, achieving natu-167

rally alignment between graph representations and168

textual modeling. While this approach improves169

graph-text integration, it struggles to differentiate170

between graphs with similar semantic structures.171

In this work, we propose a novel graph-language172

synergistic alignment module that aligns GNNs173

and LLMs at both the text attribution and semantic174

representation levels. This alignment enables seam-175

less and effective incorporation of the strengths of176

GNNs and LLMs.177

2.2 Self-Judge-and-Improve Paradigm178

The self-judge-and-improve paradigm highlights179

the capacity of LLMs to autonomously evaluate180

and enhance their own performance and capabili-181

ties, thereby reducing dependence on external su-182

pervision. This approach enables models to inter-183

nally refine their understanding and outputs. For184

instance, Self-Insturct (Wang et al., 2022) embod-185

ies this paradigm through a two-step process to186

improve instruction-following abilities. First, the187

model generates sample outputs and evaluates them188

using its internal mechanisms, filtering out sub-189

optimal results. These filtered samples are then190

leveraged to fine-tune the model. Similarly, Self-191

Refine (Madaan et al., 2023) demonstrates how192

LLMs can provide feedback on their own genera-193

tions and use this feedback to optimize their out-194

puts iteratively. Expanding on this concept, Yuan195

et al. (2025) introduced self-rewarding language196

models, wherein LLMs assign self-generated re-197

wards to their outputs. Preference pairs selected198

based on these rewards are then utilized to opti-199

mize the models using DPO (Rafailov et al., 2023).200

While these approaches effectively minimize ex-201

ternal intervention, the quality of self-judgment is202

inherently constrained by the performance of the203

LLM. To address this limitation, we propose the204

Judge-and-Improve paradigm, which incorporates205

a superior language model to evaluate the gener-206

ated outputs. By introducing an external judgment207

mechanism, our approach enhances the reliability208

and accuracy of evaluations, enabling more effec-209

tive refinement of the model’s outputs.210

3 Method211

The training framework of our method, illustrated212

in Figure 2, is composed of two key modules:213

(1) Graph-language synergistic alignment mod-214

ule and (2) Judge-and-improve paradigm. The 215

graph-language synergistic alignment module en- 216

sures effective integration between the GNNs and 217

the LLMs by aligning textual attributes and se- 218

mantic representations, thereby maintaining con- 219

sistency across modalities. The judge-andimprove 220

paradigm operates in two stages: first, it generates 221

and selects accurate and explainable results through 222

prompting, creating a supervised fine-tuning (SFT) 223

and preference dataset; second, it uses these two 224

datasets to optimize the model, progressively en- 225

hancing both performance and interpretability. 226

3.1 Problem Setup 227

Graph structure. Generally, a graph can be for- 228

mally defined as G = (V,E,X), where V = 229

{v1, v2, . . . , vn} represents the set of nodes, E ⊆ 230

V × V represents the set of edges, encoding pair- 231

wise relationships between nodes, and X ∈ Rn×d 232

is the node feature matrix. Each xi ∈ Rd corre- 233

sponds to the feature vector of node vi, where d 234

represents the dimensionality of the node features. 235

Node classification with LLM. Consider a node 236

classification problem over a graph G = (V,E,X), 237

where the goal is to assign one of k discrete class 238

labels to each node. Let Y = {1, 2, . . . , k} denote 239

the set of class labels. The training data consists 240

of labeled examples (xi, yi), where xi ∈ Rd rep- 241

resents the graph feature vector of node vi ∈ V , 242

and yi ∈ Y is the corresponding class label. The 243

objective is to learn a classifier f : X
G−→ Y , such 244

that f(xi) accurately predicts the class label yi for 245

each node. In this work, we first derive textual attri- 246

butions Tv of each node v, capturing its structural 247

and feature information in a textual format. We 248

then leverage both the graph structure and an LLM 249

to perform reasoning. Consequently, the classifi- 250

cation objective is refined to learning a classifier 251

f : T
G−LLM−−−−−→ Y where T represents the textual 252

descriptions derived from the graph’s structural and 253

feature information. This approach integrates the 254

representational strengths of both GNNs and LLMs, 255

enabling a more interpretable and semantically rich 256

node classification framework. 257

Classification with interpretability. In real-world 258

applications where interpretability is paramount, 259

it is essential for classification models to not only 260

make accurate decisions but also provide clear ex- 261

planations for those decisions. Therefore, our ulti- 262

mate goal is to train a classifier that not only per- 263

forms classification tasks but also generates an- 264
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Figure 2: The training framework of ExGLM.
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Example!: (<𝑛𝑜𝑑𝑒!>, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛!) is connected with [k-hop
neighbor nodes](<𝑛𝑜𝑑𝑒"!>,𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛"!), …, (<𝑛𝑜𝑑𝑒"">,𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛"") 
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Example": (<𝑛𝑜𝑑𝑒!>, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛!) is connected with [k-hop neighbor
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Figure 3: Example of text attribution.

alytical content to elucidate its decision-making265

process. This can be represented as a function266

f : X
G−→ Y,Analysis. where Analysis provides267

the explanatory content.268

3.2 Graph-Language Synergistic Alignment269

Module270

To effectively leverage both structural information271

from graphs and textual attributes from LLMs, we272

integrate GNNs and LLMs to obtain node repre-273

sentations. To bridge the gap between these two274

modalities, we propose a graph-language syner-275

gistic alignment module. This module consists of276

two core components:(1) Textual attribution of ad-277

jacency relationships, which captures the textual278

representation of graph structures. (2) Incorporat-279

ing graph semantic information into textual attri-280

bution, which enriches textual descriptions with281

graph-based semantics. We detail these compo-282

nents below.283

Textual attribution of adjacency relationships.284

We derive the textual attribution of each node 285

through a two-step process: (1) Subgraph sampling 286

for node information. In the context of large graphs, 287

subgraph sampling is crucial to mitigate computa- 288

tional complexity and enable scalable processing. 289

In this work, we adopt a k-hop sampling strategy 290

extract localized subgraphs centered around each 291

node. Specifically, for a central node v, we sam- 292

ple its neighbors within k hops, and represent it as 293

N (n)
v . v and N (n)

v are then further utilized to derive 294

the textual attribution of adjacency relationships. 295

(2) Node description via text. For each cen- 296

tral node v, we construct multiple text descrip- 297

tions. Each description is represented as a tu- 298

ple Tv: (task introduction, <node info>, 299

instruction). Here, task introduction pro- 300

vides a brief overview of the task, <node info> 301

contains textual descriptions of the central node’s 302

neighbors sampled from i-hop neighborhoods 303

(where 0 < i ≤ k, selected randomly), and 304

instruction specifies a task-related question tai- 305

lored to the node and its neighborhood information. 306

Specifically, in the <node info> part, each indi- 307

vidual graph node is represented by a special token 308

nodei with its brief text descriptions descriptioni. 309

Detailed examples are provided in Figure 3. This 310

approach enables the attribution of each graph node 311

to be naturally expressed in textual form, bridging 312

the structural information of graphs with the repre- 313

sentational capabilities of LLMs. 314

Incorporating graph semantic information into 315

textual attribution. Since the aforementioned spe- 316

cial tokens for each node cannot be effectively rep- 317

resented by LLMs alone, we integrate them with 318

representations derived from GNNs. To obtain 319
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the representations of the GNNs, we adopt Graph-320

SAGE, which primarily consists of three steps:321

neighbor sampling, message aggregation, and node322

updating. For each node v, we sample its m-hop323

neighbors and denote them as N (m)(v). In this pa-324

per, we set m = 2 in all scenarios. For the aggrega-325

tion representation is calculated via mean-pooling326

of neighborhood features:327

h
(l)
agg =

1

|N (m)(v)|+ 1

h(l−1)
v +

∑
u∈N (m)(v)

h(l−1)
u

 ,

(1)328

in which h
(l−1)
v denotes the representation of node329

v at layer (l−1) Then each node is updated via Non-330

linear projection with learnable parameters which331

is denoted as:332

h(l)v = σ
(
W (l) · h(l)agg

)
, (2)333

W (l) is the layer-specific weight matrix, sigma(·)334

denotes the ReLU activation function, d(l) is the335

dimensionality at layer l.336

After obtaining h
(l)
v , we directly add it to the337

LLM’s hidden states corresponding to the special338

token v which is shown in Figure 2 left.339

To achieve better alignment between the LLM340

and GNN in the semantic space, we perform341

joint training. First, we construct a dataset First342

Dalign = {(Tv, Yv)}, v ∈ V , where Yv =343

[c1, c2, . . . , cn] denotes the label sequence associ-344

ated with node v. The alignment is achieved using345

the Negative Log-Likelihood (NLL) loss function:346

Lalign = −
n∑

t=1

logP (ct | c<t, Tv; θLLM, θGNN) ,

(3)347

where θLLM denotes the parameters of the LLM,348

and θGNN denotes the parameters of the GNN en-349

coder.350

3.3 Judge and Improve351

Building upon the dual-projection constrained352

mechanism, we achieve a deep collaboration be-353

tween Graph Neural Networks (GNNs) and Large354

Language Models (LLMs). Beyond mere decision-355

making, providing reasonable and trustworthy anal-356

yses significantly enhances the interpretability of357

these decisions, which is crucial for various real-358

world applications. To ensure the interpretability359

of model decisions, we require the LLMs to not360

only generate accurate answers but also provide361

comprehensive explanations for their decisions.362

However, we have observed that the explana- 363

tions generated by the LLMs are often suboptimal, 364

indicating a need for further training. Considering 365

the challenge of obtaining training data with anno- 366

tated explanations, we adopt a judge-and-improve 367

paradigm (Yuan et al., 2025) to enhance the inter- 368

pretability of the LLMs. Specifically, our approach 369

involves the following steps: 370

(1) Generating multiple responses: For a given 371

input, the LLM generates multiple responses, each 372

accompanied by an explanation. 373

(2) Judging quality: Superior LLM acts as a 374

judge to evaluate these responses, selecting the 375

one that is not only accurate but also provides a 376

reasonable explanation. 377

(3) Optimizing through annotated data: The gen- 378

erated responses and explanations are then used to 379

optimized the LLM, thereby improving the quality 380

of its explanations. 381

Responses generation. As illustrated in Figure 3, 382

we construct the text attributes of node v using a 383

tuple Tv (task introduction, <node info>, 384

instruction). To assemble a high-quality and 385

diverse dataset, we first replace the instruction with 386

several predefined instruction templates that convey 387

the same intent, denoted as T ′
v. Subsequently, we 388

generate a response Y ′
v or each T ′

v a set {(T ′
v, Y

′
v)}, 389

for all v ∈ V . 390

Judging quality. We require the superior LLM 391

such as GPT-4 to evaluate the generated responses 392

based on three criteria: correctness of the response, 393

adherence to instructions, and reasonableness of 394

the explanation. If none of the samples meet all 395

three criteria, we repeat the response generation 396

procedure. Ultimately, for each T ′
v, we obtain a 397

set of candidates (Y ′
vbest

, Y ′
v1 , . . . , Y

′
vn−1

), where n 398

denotes the number of generated responses. 399

Optimizing through annotated data. Build- 400

ing upon the generated responses, we construct 401

a supervised fine-tuning (SFT) dataset: Dsft = 402

{(T ′
v, Y

′
vbest

}, v ∈ V , which aims to teach the LLM 403

to learn the pattern of the best response. The loss 404

is computed as follows: 405

Lsft = −
n∑

t=1

logP
(
c′t | c′<t, T

′
v; θLLM, θGNN

)
,

(4) 406

where Y ′
vbest

= [c′best1 , . . . , c
′
bestn ] and besti denotes 407

the i-th token of the best response. 408

This procedure is trained alongside the align- 409

ment process, and the overall loss becomes: 410

Ltotal = λ1 · Lalign + λ2 · Lsft (5) 411
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where λ1 and λ2 denotes the hyperparameters.412

Moreover, to enable the LLM to distinguish be-413

tween good and bad responses, we construct a pref-414

erence dataset: Dpre = {(T ′
v, Y

′
vpos

, Y ′
vneg

)}, v ∈ V415

where Y ′
vpos

denotes the best response (positive ex-416

ample), and Y ′
vneg

denotes any other response (neg-417

ative example) corresponding to the same input T ′
v.418

This dataset pairs each best response with its cor-419

responding non-optimal responses for every node420

v ∈ V .421

We then utilize the preference dataset to optimize422

the LLM using DPO loss:423

LDPO = −E(T ′
v ,Y

′
vpos ,Y

′
vneg )∼Dpre

[
log σ

(
424

β log
πθ(Y

′
vpos

|T ′
v)

πref(Y ′
vpos

|T ′
v)

− β log
πθ((Y

′
vneg

|T ′
v)

πref((Y ′
vneg

|T ′
v)

)]
,

(6)

425

where πref denotes the reference model, which we426

adopt as the model before DPO training, and β is a427

hyperparameter.428

4 Experiments429

4.1 Experimental Setup430

Datasets. We utilize three graph datasets of vary-431

ing scales: Cora, comprising 2,708 nodes and 5,429432

edges (Yang et al., 2016); Pubmed, containing433

19,717 nodes and 44,338 edges (Namata et al.,434

2012); and ogbn-arxiv, consisting of 169,343 nodes435

and 1,166,243 edges (Hu et al., 2020). For our ex-436

periments, we adopt the same dataset partitioning437

strategy as proposed in (Ye et al., 2024).438

Metrics. Following (Namata et al., 2012), we use439

accuracy as the primary metric to evaluate node440

classification performance. To assess the inter-441

pretability of the generated outputs, we utilize GPT-442

4 (Brown et al., 2020) as an automated evaluator.443

Additionally, to ensure a more robust and reliable444

assessment of interpretability, we complement this445

with a questionnaire-based survey, which provides446

valuable human-centered insights (Sperrle et al.,447

2021).448

Baselines. We compare the proposed method449

against three categories of existing approaches:450

(1) GNN-based models, including GCN (Kipf451

and Welling, 2017),GraphSAGE(Hamilton et al.,452

2018),GAT(Veličković et al., 2018),TransGAT,453

(Louis et al., 2020) etc.; (2) Transformer-454

based models, such as Graphormer(Ying et al.,455

2021),GT(Dwivedi and Bresson, 2021) and Coar- 456

Former (Kuang et al., 2022); and (3) LLM-based 457

models, such as InstructGLM (Ye et al., 2024). 458

Implementations. In our implementation, we uti- 459

lize Llama-7B (Touvron et al., 2023) and Llama3.1- 460

8B-Instruct (Touvron et al., 2023) as the LLM back- 461

bones. For Llama3.1-8B-Instruct, when it serves 462

as the backbone for InstructGLM, we make mini- 463

mal adjustments to the inputs to align with its re- 464

quirements, such as embedding dialogue templates 465

and mapping node IDs to token IDs . During the 466

data generation and annotation phase, we use the 467

Qwen2.5-7B-Instruct model (Bai et al., 2023) to 468

generate decision-analysis content for node classi- 469

fication tasks. To ensure high-quality annotations, 470

we further employ the more powerful Qwen2.5- 471

72B-Instruct model (Bai et al., 2023) as a "super 472

annotator," automatically refining and validating 473

the generated analyses. The model training is per- 474

formed on 8 A100 GPUs, and all experiments are 475

conducted over 1-3 epochs. 476

4.2 Performance Comparison 477

Tables 1 compares the performance of various mod- 478

els on the Cora and PubMed datasets, showcasing 479

the effectiveness of different approaches. 480

Accuracy on Cora dataset. Among the GNN- 481

based methods, ACM-GCN+ achieves the best ac- 482

curacy on the Cora dataset (89.75%). Transformers- 483

based methods, on the other hand, generally exhibit 484

relatively lower performance. Notably, the hybrid 485

InstructGLM approach, which combines GNN and 486

LLM techniques, is the most comparable to our 487

method, achieving competitive performance with 488

an accuracy of 87.08% on Cora. In contrast, our 489

proposed method achieves 88.8% accuracy, sur- 490

passing all existing Transformers-based and GNN- 491

LLM-based approaches. 492

Accuracy on PubMed dataset. On the PubMed 493

dataset, InstructGLM sets a strong baseline with 494

the best performance among prior methods. Our 495

method outperforms all baselines, achieving a new 496

state-of-the-art accuracy of 94.6%. These results 497

highlight the superiority of our training framework. 498

Accuracy on Ogbn-Arxiv dataset. Table 2 sum- 499

marizes the performance of various models on 500

the Ogbn-Arxiv dataset. Among traditional GNN- 501

based approaches, DRGAT achieves the highest 502

accuracy at 76.11%, outperforming simpler archi- 503

tectures such as GraphSAGE (74.35%) and GAT 504

(74.15%), which exhibit moderate performance. 505

Notably, methods that integrate large language 506
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Table 1: Accuracy on Cora and PubMed datasets.

Method Type Cora (%) PubMed (%)

MixHop GNN 75.65 90.04
GAT GNN 76.70 83.28
Geom-GCN GNN 85.27 90.05
SGC-v2 GNN 85.48 85.36
GraphSAGE GNN 86.58 86.85
GCN GNN 87.78 88.90
BernNet GNN 88.52 88.48
FAGCN GNN 88.85 89.98
GCNII GNN 88.93 89.80
RevGAT GNN 89.11 88.50
Snowball-V3 GNN 89.59 91.44
ACM-GCN+ GNN 89.75 90.96
Graphormer Transformers 80.41 88.24
GT Transformers 86.42 88.75
CoarFormer Transformers 88.69 89.75
InstructGLM GNN-LLM 87.08 93.84
ExGLM GNN-LLM 88.8 94.6

models (LLMs) with GNN frameworks surpass all507

conventional GNN models, demonstrating the po-508

tential of combining structured graph data with the509

rich semantic understanding of LLMs. For instance,510

InstructGLM achieves an accuracy of 76.42%, fur-511

ther highlighting the effectiveness of this hybrid512

approach. Our proposed method achieves the high-513

est overall accuracy at 77.4%, setting a new state-514

of-the-art performance on this task. This result515

underscores the advantages of our framework in516

effectively leveraging both graph structures and517

textual information to improve predictive perfor-518

mance.519

Table 2: Accuracy on Ogbn-Arxiv dataset.

Method Type Accuracy (%)

GAT GNN 74.15
GraphSAGE GNN 74.35
GCN GNN 73.29
AGDN GNN 76.02
RvGAT GNN 75.90
DRGAT GNN 76.11
InstructGLM GNN-LLM 76.42
ExGLM GNN-LLM 77.4

Accuracy with Other LLMs. Table 3 compares520

the performance of our proposed method against521

InstructGLM on the Cora and PubMed datasets,522

utilizing two different LLM backbones: LLaMA523

and LLaMA3. Two key observations can be drawn524

from the results: (1) Our method consistently out-525

performs the baseline InstructGLM across both526

datasets, regardless of the underlying LLM back-527

bone. This demonstrates the robustness and ef-528

Table 3: Performance comparison with different LLMs.

Method Cora (%) PubMed (%)

InstructGLM (LLaMA) 87.08 93.84
Ours (LLaMA) 88.8 94.6

InstructGLM (LLaMA3) 88.01 94.17
ExGLM (LLaMA3) 89.30 94.42

fectiveness of our approach. (2) The use of a 529

more advanced backbone does not always guaran- 530

tee a significant performance improvement. While 531

both methods perform slightly better with LLaMA3 532

compared to LLaMA, the relative gain is marginal. 533

Notably, when applying LLaMA3, the performance 534

on the PubMed dataset drops slightly from 94.6% 535

to 94.42%. This indicates that the integration mech- 536

anism and model design play a more critical role 537

than simply using a stronger LLM. 538

GPT-4 evaluation. To evaluate the different meth- 539

ods more comprehensively, we use GPT-4 as a 540

proxy for human judgment. Specifically, we task 541

GPT-4 with performing pairwise evaluations to se- 542

lect the better response based on three key criteria: 543

correctness of the response, adherence to instruc- 544

tions, and reasonableness of the explanation. The 545

evaluation results, presented in Table 4, demon- 546

strate that our method outperforms InstructGLM 547

on both datasets. The low performance of Instruct- 548

GLM may be attributed to its overfitting on the 549

dataset, which can lead to less fluent or less adapt- 550

able language generation. Additionally, the integra- 551

tion of DPO enhances overall performance on both 552

datasets. 553

Table 4: GPT-4 evaluation results with LLaMA3 as base
model.

ExGLM vs. Dataset Win (%) Lose (%)

InstructGLM Cora 81.61 0
PubMed 92.45 0

ExGLM (w/o DPO) Cora 8.46 6.80
PubMed 5.81 4.42

4.3 Interpretability 554

DPO influence for accracy. In the judge-and- 555

improve paradigm, DPO is utilized to priori- 556

tize generations that exhibit better interpretability. 557

However, it remains essential to evaluate how this 558

prioritization affects reasoning accuracy. The re- 559

sults presented in Table 5 demonstrate that enhanc- 560

ing interpretability does not compromise accuracy 561
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through a citation. The article " < node_id > A Parallel Genetic Algorithm
for the Set Partitioning Problem" is a follow-up to the survey article, which
discusses the application of genetic algorithms to the set partitioning
problem. The article " < node_id > A Survey of Parallel Genetic Algorithms"
provides a comprehensive overview of the topic, and the article " < node_id >
Genetic Algorithms for Combinatorial Optimization: The Assembly Line
Balancing Problem" is a specific example of the application of genetic
algorithms to a real-world problem. The article " < node_id > A Parallel
Genetic Algorithm for the Set Partitioning Problem" is a theoretical
contribution to the field, which builds upon the foundations established by
the survey article and the other articles in the genetic algorithms category.
Therefore, the article should be classified as "genetic algorithms".

ExGLM Analysis

theory, reinforcement learning, genetic algorithms, neural networks, probabilistic methods, case based, rule learning
decision-making analysis

Struct summery

Figure 4: A show case of explanation provided by (left) GNN-based method (2) ExGLM.

and may even lead to improvements in reasoning562

performance.

Table 5: Ablation study of DPO with LLaMA as base
model.

Method Cora (%) PubMed (%)

ExGLM w/o dpo 88.92 94.85
ExGLM 90.03 94.75

563
A showcase. We present a showcase in Figure 4564

to illustrate the interpretability of our method in565

comparison with GNN-based approaches. While566

GNN-based methods provide explanations for their567

reasoning through attention weights, these weights568

may not accurately capture the underlying infer-569

ence process and can be challenging for humans to570

interpret. In contrast, our method generates natural571

language explanations directly, thereby enhancing572

comprehensibility and interpretability.573

Human evaluation. We aim to evaluate whether574

the use of DPO in the judge-and-improve paradigm575

enhances interpretability. However, assessing in-576

terpretability is challenging due to the lack of a577

standardized metric. To address this, we conducted578

a human evaluation. Specifically, we designed579

a questionnaire involving 20 human participants,580

each answering 20 questions. Participants were581

asked to select the response they deemed more in-582

terpretable based on three key criteria: coherency,583

logical consistency, and factuality. The results of584

this evaluation, presented in Table 6, demonstrate585

the effectiveness of our approach. The baseline In-586

structGLM suffers from overfitting on the training587

dataset, which harms its language generation capa-588

bilities and limits its ability to provide meaningful 589

explanations. 590

Table 6: Human evaluation results with LLaMA3 as
base model.

ExGLM vs. Dataset Win (%) Lose (%)

InstructGLM Cora 100.00 0
PubMed 100.00 0

ExGLM (w/o DPO) Cora 23.25 13.75
PubMed 9.75 9.50

5 Conclusion 591

This work investigates how to better leverage Large 592

Language Models (LLMs) for reasoning with struc- 593

tured data. Concretely, we aim to address two 594

main limitations identified in recent studies: cross- 595

modality alignment and interpretability. We pro- 596

pose a novel training framework named ExGLM, 597

within which a graph-language synergistic align- 598

ment module is introduced to ensure semantic con- 599

sistency across modalities. Additionally, we intro- 600

duce a judge-andimprove paradigm that adopts a 601

superior language model to evaluate and select gen- 602

erated responses with better interpretability. The 603

selected data is subsequently utilized to optimize 604

the reasoning model. Experiments across various 605

scenarios demonstrate the effectiveness of our ap- 606

proach, showcasing its potential to advance reason- 607

ing with structured data. 608
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6 Limitations609

While our work achieves promising results, there610

are several limitations that warrant attention. First,611

the effectiveness of the judge-and-improve module612

depends heavily on the performance of the supe-613

rior language model used for evaluation. If the614

evaluating model introduces biases or provides in-615

accurate assessments, the refinement process may616

be suboptimal, potentially constraining the overall617

improvement of the target model’s outputs. Sec-618

ond, the current framework does not implement the619

judgment-and-improvement process iteratively. It-620

erative refinement, which involves multiple rounds621

of evaluation and optimization, could further en-622

hance the quality and robustness of the model’s623

outputs. However, this remains an unexplored av-624

enue and is left for future work.625
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