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Abstract

Graph Neural Networks (GNNs) have shown
immense potential in improving the perfor-
mance of large-scale models by effectively in-
corporating structured relational information.
However, current approaches face two key chal-
lenges: (1) achieving robust semantic align-
ment between graph representations and large
models, and (2) ensuring interpretability in the
generated outputs. To address these challenges,
we propose ExGLM (Explainable Graph
Language Model), a novel training framework
designed to seamlessly integrate graph and lan-
guage modalities while enhancing transparency.
Our framework introduces two core compo-
nents: (1) a graph-language synergistic align-
ment module, which aligns graph structures
with language model to ensure semantic consis-
tency across modalities; and (2) a judge-and-
improve paradigm, which allows the language
model to iteratively evaluate, refine, and pri-
oritize responses with higher interpretability,
thereby improving both performance and trans-
parency. Extensive experiments conducted on
three benchmark datasets—ogbn-arxiv, Cora,
and PubMed—demonstrate that ExGLM not
only surpasses existing methods in efficiency
but also generates outputs that are significantly
more interpretable, effectively addressing the
primary limitations of current approaches.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable success across various natu-
ral language processing tasks, including dialogue
generation (Aboussalah and Ed-dib, 2025), ma-
chine translation (Zhu et al., 2024), question an-
swering (Zhang et al., 2024), and text summariza-
tion (Zhang et al., 2025). These models exhibit an
impressive capacity for understanding and gener-
ating human-like text. However, LLMs face inher-
ent limitations in effectively modeling structured
knowledge, such as graphs, which are essential
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Figure 1: Overview of two mainstream methods (a) tex-
tualizing graph and inference via LLM and (b) aligning
the semantic representation of LLMs and GNNs.

for capturing complex relationships and dependen-
cies in diverse real-world domains like social net-
works, biological systems, and knowledge graphs.
To address these limitations, recent research has ex-
plored the integration of GNNs (Kipf and Welling,
2017; Hamilton et al., 2018; Velickovi¢ et al., 2018)
with LLMs (OpenAl et al., 2024; Yang et al,,
2024; DeepSeek-Al et al., 2025), leveraging GNNs’
strengths in modeling structured information along-
side LLMs’ powerful language capabilities, cre-
ating opportunities for enhanced performance in
graph-related tasks.

Current approaches (Yang et al., 2021; Zhao
et al., 2023; Xue et al., 2024) to combining GNNs
and LLMs can be broadly classified into two
categories. The first category involves textual-
izing graph structures and feeding them into
LLMs (Figure 1(a)). For example, some meth-
ods (Zhao et al., 2023; Wang et al., 2024; Chen
et al., 2024; Wu et al., 2025) describe nodes and
their relationships using natural language templates
to generate textual representations of subgraphs.
Other approaches (Ye et al., 2024; Tang et al.,



2024) employ special tokens to represent nodes
and edges, effectively converting graph structures
into sequences compatible with LLLM processing.
However, these methods have notable pitfalls: the
textualization process can result in the loss of struc-
tural information, and the sequential representa-
tions may fail to fully capture the intricate relation-
ships within the graph. Additionally, these methods
face scalability challenges due to the token length
constraints of LLMs, making them unsuitable for
handling large graphs with extensive neighborhood
information.

The second category of approaches (Chai et al.,
2023; Tang et al., 2024; Liu et al., 2024) focuses
on aligning the representation spaces of GNNs
and LLMs in the semantic domain (Figure 1(b)).
For instance, certain methods (Xia et al., 2024,
Huang et al., 2023, 2024; Guo et al., 2025) project
GNN-generated node embeddings into the embed-
ding space of LLMs to achieve semantic consis-
tency. Other techniques, such as those employing
attention mechanisms (Ying et al., 2021; Kuang
et al., 2022), integrate graph structure information
directly into the language model’s representations.
While these approaches improve the integration of
graph and language modalities, challenges remain.
The alignment process may not be optimal, lead-
ing to performance bottlenecks in tasks requiring a
precise understanding of graph structures and lan-
guage semantics. Moreover, such methods often
suffer from a lack of interpretability, making it dif-
ficult to elucidate how the model leverages graph
information to make decisions or derive outputs.

To address the limitations of existing approaches,
we propose ExGLM (Explainable Graph Lan-
guage Model), a novel framework designed to ef-
fectively and interpretably integrate graph struc-
tures with LLMs. Our framework introduces a
graph-language synergistic alignment module to
achieve semantic consistency between graph struc-
tures and LLM outputs, while also maintaining
interpretability. Specifically, we assign a textual at-
tribute to each node in the graph, describing its adja-
cent relationships, with different nodes represented
by special tokens. We then perform reasoning us-
ing the LLM and enhance its representation by
incorporating the graph representation into the hid-
den state. To further improve interpretability, we
propose a judge-and-improve paradigm where
the LLM evaluates and selects responses with bet-
ter interpretability. These optimized responses are
subsequently used to refine the GNN-LLM model.

Our main contribution can be summarized as
follows:

* We propose a novel graph-language synergis-
tic alignment module that effectively bridges
the gap between graph-structured data and
LLM outputs, ensuring robust semantic con-
sistency across modalities.

* We propose a judge-and-improve paradigm,
enabling the model to iteratively evaluate and
refine its responses for enhanced interpretabil-
ity and generation quality, thereby improving
both performance and transparency.

* We conduct comprehensive experiments on
multiple datasets, demonstrating the supe-
rior performance and effectiveness of our ap-
proach compared to existing methods.

2 Related Work

2.1 Graph-Large Language Models

LLMs (OpenAl et al., 2024; Yang et al., 2024;
DeepSeek-Al et al., 2025) achieve state-of-the-
art performance on various natural language tasks,
however, it lacks explicit mechanisms to effectively
model structured information, such as graphs. To
address this limitation, recent studies (Shu et al.,
2024; Tang et al., 2024) have explored ways to inte-
grate the benefits of GNNs into LLM-based frame-
works. For instance, Zhang et al. (2020) adapts the
self-attention mechanism of BERT (Devlin et al.,
2019) to capture the relational structure of nodes
and edges within a graph. However, its perfor-
mance is highly dependent on the presence and
quality of node features, which may limit its ap-
plicability when such features are sparse or noisy.
InstructGLM (Ye et al., 2024) leverages the nat-
ural language modeling capabilities of LLMs to
describe multi-scale geometric structures within
graphs, thereby improving representation and anal-
ysis of graph data. Nonetheless, it suffers from
token-length limitations, making it challenging
to process large graphs with extensive neighbor
information. Jin et al. (2024) propose a frame-
work named Graph-COT that enhances LLMs by
encouraging them to perform iterative reasoning
over graph structures. However, fine-tuning LLMs
within this framework remains challenging, and
potential misalignment between the graph structure
and the text attribution can lead to inaccuracies. An-
other recent work, PromptGFM (Zhu et al., 2025),



explicitly prompts LL.Ms to mimic the workflow
of GNNs within the text space, achieving natu-
rally alignment between graph representations and
textual modeling. While this approach improves
graph-text integration, it struggles to differentiate
between graphs with similar semantic structures.
In this work, we propose a novel graph-language
synergistic alignment module that aligns GNNs
and LLMs at both the text attribution and semantic
representation levels. This alignment enables seam-
less and effective incorporation of the strengths of
GNNs and LLMs.

2.2 Self-Judge-and-Improve Paradigm

The self-judge-and-improve paradigm highlights
the capacity of LLMs to autonomously evaluate
and enhance their own performance and capabili-
ties, thereby reducing dependence on external su-
pervision. This approach enables models to inter-
nally refine their understanding and outputs. For
instance, Self-Insturct (Wang et al., 2022) embod-
ies this paradigm through a two-step process to
improve instruction-following abilities. First, the
model generates sample outputs and evaluates them
using its internal mechanisms, filtering out sub-
optimal results. These filtered samples are then
leveraged to fine-tune the model. Similarly, Self-
Refine (Madaan et al., 2023) demonstrates how
LLMs can provide feedback on their own genera-
tions and use this feedback to optimize their out-
puts iteratively. Expanding on this concept, Yuan
et al. (2025) introduced self-rewarding language
models, wherein LLMs assign self-generated re-
wards to their outputs. Preference pairs selected
based on these rewards are then utilized to opti-
mize the models using DPO (Rafailov et al., 2023).
While these approaches effectively minimize ex-
ternal intervention, the quality of self-judgment is
inherently constrained by the performance of the
LLM. To address this limitation, we propose the
Judge-and-Improve paradigm, which incorporates
a superior language model to evaluate the gener-
ated outputs. By introducing an external judgment
mechanism, our approach enhances the reliability
and accuracy of evaluations, enabling more effec-
tive refinement of the model’s outputs.

3 Method

The training framework of our method, illustrated
in Figure 2, is composed of two key modules:
(1) Graph-language synergistic alignment mod-

ule and (2) Judge-and-improve paradigm. The
graph-language synergistic alignment module en-
sures effective integration between the GNNs and
the LLMs by aligning textual attributes and se-
mantic representations, thereby maintaining con-
sistency across modalities. The judge-andimprove
paradigm operates in two stages: first, it generates
and selects accurate and explainable results through
prompting, creating a supervised fine-tuning (SFT)
and preference dataset; second, it uses these two
datasets to optimize the model, progressively en-
hancing both performance and interpretability.

3.1 Problem Setup

Graph structure. Generally, a graph can be for-
mally defined as G = (V,E, X), where V =
{v1,v2,...,v,} represents the set of nodes, F C
V' x V represents the set of edges, encoding pair-
wise relationships between nodes, and X € R™*¢
is the node feature matrix. Each z; € R% corre-
sponds to the feature vector of node v;, where d
represents the dimensionality of the node features.
Node classification with LLM. Consider a node
classification problem over a graph G = (V, E, X)),
where the goal is to assign one of k discrete class
labels to each node. Let Y = {1,2,...,k} denote
the set of class labels. The training data consists
of labeled examples (z;,%;), where z; € R? rep-
resents the graph feature vector of node v; € V,
and y; € Y is the corresponding class label. The

objective is to learn a classifier f : X <, Y, such
that f(x;) accurately predicts the class label y; for
each node. In this work, we first derive textual attri-
butions 7}, of each node v, capturing its structural
and feature information in a textual format. We
then leverage both the graph structure and an LLM
to perform reasoning. Consequently, the classifi-

cation objective is refined to learning a classifier

—LLM
T GoLLM, 'y where T represents the textual

descriptions derived from the graph’s structural and
feature information. This approach integrates the
representational strengths of both GNNs and LLMs,
enabling a more interpretable and semantically rich
node classification framework.

Classification with interpretability. In real-world
applications where interpretability is paramount,
it is essential for classification models to not only
make accurate decisions but also provide clear ex-
planations for those decisions. Therefore, our ulti-
mate goal is to train a classifier that not only per-
forms classification tasks but also generates an-
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Figure 2: The training framework of ExGLM.

([Task introduction]
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hops through , respectively.
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Which category should (<node, >, description,) be

J

Figure 3: Example of text attribution.

alytical content to elucidate its decision-making
process. This can be represented as a function

f:X <R Y, Analysis. where Analysis provides
the explanatory content.

3.2 Graph-Language Synergistic Alignment
Module

To effectively leverage both structural information
from graphs and textual attributes from LLMs, we
integrate GNNs and LLMs to obtain node repre-
sentations. To bridge the gap between these two
modalities, we propose a graph-language syner-
gistic alignment module. This module consists of
two core components:(1) Textual attribution of ad-
jacency relationships, which captures the textual
representation of graph structures. (2) Incorporat-
ing graph semantic information into textual attri-
bution, which enriches textual descriptions with
graph-based semantics. We detail these compo-
nents below.

Textual attribution of adjacency relationships.

We derive the textual attribution of each node
through a two-step process: (1) Subgraph sampling
for node information. In the context of large graphs,
subgraph sampling is crucial to mitigate computa-
tional complexity and enable scalable processing.
In this work, we adopt a k-hop sampling strategy
extract localized subgraphs centered around each
node. Specifically, for a central node v, we sam-
ple its neighbors within & hops, and represent it as
./\/;Sn). v and /\/'U(n) are then further utilized to derive
the textual attribution of adjacency relationships.

(2) Node description via text. For each cen-
tral node v, we construct multiple text descrip-
tions. Each description is represented as a tu-
ple T,: (task introduction, <node info>,
instruction). Here, task introduction pro-
vides a brief overview of the task, <node info>
contains textual descriptions of the central node’s
neighbors sampled from ¢-hop neighborhoods
(where 0 < i < k, selected randomly), and
instruction specifies a task-related question tai-
lored to the node and its neighborhood information.
Specifically, in the <node info> part, each indi-
vidual graph node is represented by a special token
node; with its brief text descriptions description;.
Detailed examples are provided in Figure 3. This
approach enables the attribution of each graph node
to be naturally expressed in textual form, bridging
the structural information of graphs with the repre-
sentational capabilities of LLMs.

Incorporating graph semantic information into
textual attribution. Since the aforementioned spe-
cial tokens for each node cannot be effectively rep-
resented by LLMs alone, we integrate them with
representations derived from GNNs. To obtain



the representations of the GNNs, we adopt Graph-
SAGE, which primarily consists of three steps:
neighbor sampling, message aggregation, and node
updating. For each node v, we sample its m-hop
neighbors and denote them as /(™) (v). In this pa-
per, we set m = 2 in all scenarios. For the aggrega-
tion representation is calculated via mean-pooling
of neighborhood features:

1
R _ RU=1) 4 R-1)
N ()41 Y UGNZU;)(U) u
(1)

in which hq(,l_l) denotes the representation of node
v atlayer (I—1) Then each node is updated via Non-
linear projection with learnable parameters which
is denoted as:

hY =g (W(l) - hffg)g) , )

WU is the layer-specific weight matrix, sigmal-)
denotes the ReLU activation function, d*) is the
dimensionality at layer [.

After obtaining hq()l), we directly add it to the
LLM’s hidden states corresponding to the special
token v which is shown in Figure 2 left.

To achieve better alignment between the LLM
and GNN in the semantic space, we perform
joint training. First, we construct a dataset First
Datign = {(Tv,Yy)},v € V, where YV, =
[c1, ¢, ..., cy] denotes the label sequence associ-
ated with node v. The alignment is achieved using
the Negative Log-Likelihood (NLL) loss function:

n
Latign = — ZlogP (ct | e<t, Tv; O, Oann)

t=1
(3)
where 0y denotes the parameters of the LLM,
and fgnN denotes the parameters of the GNN en-
coder.

3.3 Judge and Improve

Building upon the dual-projection constrained
mechanism, we achieve a deep collaboration be-
tween Graph Neural Networks (GNNs) and Large
Language Models (LLMs). Beyond mere decision-
making, providing reasonable and trustworthy anal-
yses significantly enhances the interpretability of
these decisions, which is crucial for various real-
world applications. To ensure the interpretability
of model decisions, we require the LLMs to not
only generate accurate answers but also provide
comprehensive explanations for their decisions.

However, we have observed that the explana-
tions generated by the LLMs are often suboptimal,
indicating a need for further training. Considering
the challenge of obtaining training data with anno-
tated explanations, we adopt a judge-and-improve
paradigm (Yuan et al., 2025) to enhance the inter-
pretability of the LLMs. Specifically, our approach
involves the following steps:

(1) Generating multiple responses: For a given
input, the LLM generates multiple responses, each
'accompanied by an explanation.

(2) Judging quality: Superior LLM acts as a
judge to evaluate these responses, selecting the
one that is not only accurate but also provides a
reasonable explanation.

(3) Optimizing through annotated data: The gen-
erated responses and explanations are then used to
optimized the LLM, thereby improving the quality
of its explanations.

Responses generation. As illustrated in Figure 3,
we construct the text attributes of node v using a
tuple T}, (task introduction, <node info>,
instruction). To assemble a high-quality and
diverse dataset, we first replace the instruction with
several predefined instruction templates that convey
the same intent, denoted as 7},. Subsequently, we
generate a response Y, or each T aset {(7,Y,)},
forallv e V.

Judging quality. We require the superior LLM
such as GPT-4 to evaluate the generated responses
based on three criteria: correctness of the response,
adherence to instructions, and reasonableness of
the explanation. If none of the samples meet all
three criteria, we repeat the response generation
procedure. Ultimately, for each T),, we obtain a
set of candidates (Y, Yy, ,...,Y, ), wheren
denotes the number of generated responses.
Optimizing through annotated data. Build-
ing upon the generated responses, we construct
a supervised fine-tuning (SFT) dataset: Dyp; =
{(1},Y,...},v € V, which aims to teach the LLM
to learn the pattern of the best response. The loss
is computed as follows:

n
L =—» log P (c, | ¢y, T; 6rin, BNy 5

t=1
“)
where Y, = [, - 5 Chest, ) @nd best; denotes
the i-th token of the best response.
This procedure is trained alongside the align-

ment process, and the overall loss becomes:
Etotal =A1- ﬁalign + A2 - £sft (5)



where A; and )2 denotes the hyperparameters.

Moreover, to enable the LLM to distinguish be-
tween good and bad responses, we construct a pref-
erence dataset: Dpre = {(T3,, Yy, . Yy ) v €V
where Y, denotes the best response (positive ex-
ample), and Yv’neg denotes any other response (neg-
ative example) corresponding to the same input 7).
This dataset pairs each best response with its cor-
responding non-optimal responses for every node
velV.

We then utilize the preference dataset to optimize
the LLM using DPO loss:

£DPO = —E(T{”yépos’yéneg)wppre llog O’(

0 (Vo[ T0) (Ve I T2) )

et (Y |T7) -

Upos

Blog

?

(6)

where ms denotes the reference model, which we
adopt as the model before DPO training, and (3 is a
hyperparameter.

(0]
® Tt (Y7_|T0)

Uneg

4 Experiments

4.1 Experimental Setup

Datasets. We utilize three graph datasets of vary-
ing scales: Cora, comprising 2,708 nodes and 5,429
edges (Yang et al., 2016); Pubmed, containing
19,717 nodes and 44,338 edges (Namata et al.,
2012); and ogbn-arxiv, consisting of 169,343 nodes
and 1,166,243 edges (Hu et al., 2020). For our ex-
periments, we adopt the same dataset partitioning
strategy as proposed in (Ye et al., 2024).

Metrics. Following (Namata et al., 2012), we use
accuracy as the primary metric to evaluate node
classification performance. To assess the inter-
pretability of the generated outputs, we utilize GPT-
4 (Brown et al., 2020) as an automated evaluator.
Additionally, to ensure a more robust and reliable
assessment of interpretability, we complement this
with a questionnaire-based survey, which provides
valuable human-centered insights (Sperrle et al.,
2021).

Baselines. We compare the proposed method
against three categories of existing approaches:
(1) GNN-based models, including GCN (Kipf
and Welling, 2017),GraphSAGE(Hamilton et al.,
2018),GAT(Velickovi¢ et al., 2018),TransGAT,
(Louis et al., 2020) etc.; (2) Transformer-
based models, such as Graphormer(Ying et al.,

2021),GT(Dwivedi and Bresson, 2021) and Coar-
Former (Kuang et al., 2022); and (3) LLM-based
models, such as InstructGLM (Ye et al., 2024).
Implementations. In our implementation, we uti-
lize Llama-7B (Touvron et al., 2023) and Llama3.1-
8B-Instruct (Touvron et al., 2023) as the LLM back-
bones. For Llama3.1-8B-Instruct, when it serves
as the backbone for InstructGLM, we make mini-
mal adjustments to the inputs to align with its re-
quirements, such as embedding dialogue templates
and mapping node IDs to token IDs . During the
data generation and annotation phase, we use the
Qwen2.5-7B-Instruct model (Bai et al., 2023) to
generate decision-analysis content for node classi-
fication tasks. To ensure high-quality annotations,
we further employ the more powerful Qwen2.5-
72B-Instruct model (Bai et al., 2023) as a "super
annotator," automatically refining and validating
the generated analyses. The model training is per-
formed on 8 A100 GPUs, and all experiments are
conducted over 1-3 epochs.

4.2 Performance Comparison

Tables 1 compares the performance of various mod-
els on the Cora and PubMed datasets, showcasing
the effectiveness of different approaches.
Accuracy on Cora dataset. Among the GNN-
based methods, ACM-GCN+ achieves the best ac-
curacy on the Cora dataset (89.75%). Transformers-
based methods, on the other hand, generally exhibit
relatively lower performance. Notably, the hybrid
InstructGLM approach, which combines GNN and
LLM techniques, is the most comparable to our
method, achieving competitive performance with
an accuracy of 87.08% on Cora. In contrast, our
proposed method achieves 88.8% accuracy, sur-
passing all existing Transformers-based and GNN-
LLM-based approaches.

Accuracy on PubMed dataset. On the PubMed
dataset, InstructGLM sets a strong baseline with
the best performance among prior methods. Our
method outperforms all baselines, achieving a new
state-of-the-art accuracy of 94.6%. These results
highlight the superiority of our training framework.
Accuracy on Ogbn-Arxiv dataset. Table 2 sum-
marizes the performance of various models on
the Ogbn-Arxiv dataset. Among traditional GNN-
based approaches, DRGAT achieves the highest
accuracy at 76.11%, outperforming simpler archi-
tectures such as GraphSAGE (74.35%) and GAT
(74.15%), which exhibit moderate performance.
Notably, methods that integrate large language



Table 1: Accuracy on Cora and PubMed datasets.

Method Type Cora (%) PubMed (%)
MixHop GNN 75.65 90.04
GAT GNN 76.70 83.28
Geom-GCN GNN 85.27 90.05
SGC-v2 GNN 85.48 85.36
GraphSAGE GNN 86.58 86.85
GCN GNN 87.78 88.90
BernNet GNN 88.52 88.48
FAGCN GNN 88.85 89.98
GCNII GNN 88.93 89.80
RevGAT GNN 89.11 88.50
Snowball-V3 GNN 89.59 91.44
ACM-GCN+ GNN 89.75 90.96
Graphormer Transformers 80.41 88.24
GT Transformers 86.42 88.75
CoarFormer Transformers 88.69 89.75
InstructGLM GNN-LLM  87.08 93.84
ExGLM GNN-LLM 88.8 94.6

models (LLMs) with GNN frameworks surpass all
conventional GNN models, demonstrating the po-
tential of combining structured graph data with the
rich semantic understanding of LLMs. For instance,
InstructGLM achieves an accuracy of 76.42%, fur-
ther highlighting the effectiveness of this hybrid
approach. Our proposed method achieves the high-
est overall accuracy at 77.4%, setting a new state-
of-the-art performance on this task. This result
underscores the advantages of our framework in
effectively leveraging both graph structures and
textual information to improve predictive perfor-
mance.

Table 2: Accuracy on Ogbn-Arxiv dataset.

Method Type Accuracy (%)
GAT GNN 74.15
GraphSAGE GNN 74.35
GCN GNN 73.29
AGDN GNN 76.02
RvGAT GNN 75.90
DRGAT GNN 76.11
InstructGLM ~ GNN-LLM 76.42
ExGLM GNN-LLM 77.4

Accuracy with Other LLMs. Table 3 compares
the performance of our proposed method against
InstructGLM on the Cora and PubMed datasets,
utilizing two different LLM backbones: LLaMA
and LLaMA3. Two key observations can be drawn
from the results: (1) Our method consistently out-
performs the baseline InstructGLM across both
datasets, regardless of the underlying LLM back-
bone. This demonstrates the robustness and ef-

Table 3: Performance comparison with different LLMs.

Method Cora (%) PubMed (%)
InstructGLM (LLaMA)  87.08 93.84
Ours (LLaMA) 88.8 94.6
InstructGLM (LLaMA3) 88.01 94.17
ExGLM (LLaMA3) 89.30 94.42

fectiveness of our approach. (2) The use of a
more advanced backbone does not always guaran-
tee a significant performance improvement. While
both methods perform slightly better with LLaMA3
compared to LLaMA, the relative gain is marginal.
Notably, when applying LLaMA3, the performance
on the PubMed dataset drops slightly from 94.6%
to 94.42%. This indicates that the integration mech-
anism and model design play a more critical role
than simply using a stronger LLM.

GPT-4 evaluation. To evaluate the different meth-
ods more comprehensively, we use GPT-4 as a
proxy for human judgment. Specifically, we task
GPT-4 with performing pairwise evaluations to se-
lect the better response based on three key criteria:
correctness of the response, adherence to instruc-
tions, and reasonableness of the explanation. The
evaluation results, presented in Table 4, demon-
strate that our method outperforms InstructGLM
on both datasets. The low performance of Instruct-
GLM may be attributed to its overfitting on the
dataset, which can lead to less fluent or less adapt-
able language generation. Additionally, the integra-
tion of DPO enhances overall performance on both
datasets.

Table 4: GPT-4 evaluation results with LLaMA?3 as base
model.

ExGLM vs. Dataset Win (%) Lose (%)
Cora 81.61 0

InstructGLM PubMed 9245 0
Cora 8.46 6.80

EXGLM (WoDPO) p, = r 'l 4an

4.3 Interpretability

DPO influence for accracy. In the judge-and-
improve paradigm, DPO is utilized to priori-
tize generations that exhibit better interpretability.
However, it remains essential to evaluate how this
prioritization affects reasoning accuracy. The re-
sults presented in Table 5 demonstrate that enhanc-
ing interpretability does not compromise accuracy
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genetic algorithms

The article “<node_id> A Parallel Genetic Algorithm for the Set
Partitioning Problem” is connected to ” <node_id> A Survey of Parallel
Genetic Algorithms” and " < node.id > Genetic Algorithms for I!:
Combinatorial Optimization: The Assembly Line Balancing Problem” ;-
through a citation. The article ” < node_id > A Parallel Genetic Algorithm
for the Set Partitioning Problem” is a follow-up to the survey article, which
discusses the application of genetic algorithms to the set partitioning
problem. The article ” < node_id > A Survey of Parallel Genetic Algorithms”
provides a comprehensive overview of the topic, and the article ” < node_id >
Genetic Algorithms for Combinatorial Optimization: The Assembly Line
Balancing Problem” is a specific example of the application of genetic
algorithms to a real-world problem. The article ” < node_id > A Parallel
Genetic Algorithm for the Set Partitioning Problem” is a theoretical
contribution to the field, which builds upon the foundations established by
the survey article and the other articles in the genetic algorithms category.
Therefore, the article should be classified as "genetic algorithms”.

Figure 4: A show case of explanation provided by (left) GNN-based method (2) ExGLM.

and may even lead to improvements in reasoning
performance.

Table 5: Ablation study of DPO with LLaMA as base
model.

Method Cora (%) PubMed (%)
ExGLM w/o dpo 88.92 94.85
ExGLM 90.03 94.75

A showcase. We present a showcase in Figure 4
to illustrate the interpretability of our method in
comparison with GNN-based approaches. While
GNN-based methods provide explanations for their
reasoning through attention weights, these weights
may not accurately capture the underlying infer-
ence process and can be challenging for humans to
interpret. In contrast, our method generates natural
language explanations directly, thereby enhancing
comprehensibility and interpretability.

Human evaluation. We aim to evaluate whether
the use of DPO in the judge-and-improve paradigm
enhances interpretability. However, assessing in-
terpretability is challenging due to the lack of a
standardized metric. To address this, we conducted
a human evaluation. Specifically, we designed
a questionnaire involving 20 human participants,
each answering 20 questions. Participants were
asked to select the response they deemed more in-
terpretable based on three key criteria: coherency,
logical consistency, and factuality. The results of
this evaluation, presented in Table 6, demonstrate
the effectiveness of our approach. The baseline In-
structGLM suffers from overfitting on the training
dataset, which harms its language generation capa-

bilities and limits its ability to provide meaningful
explanations.

Table 6: Human evaluation results with LLaMA3 as
base model.

ExGLM vs. Dataset Win (%) Lose (%)
Cora  100.00 0

InstructGLM p pvied 10000 0
Cora 23.25 13.75

EXGLM (Wo DPO) pypved 975 9.50

5 Conclusion

This work investigates how to better leverage Large
Language Models (LLMs) for reasoning with struc-
tured data. Concretely, we aim to address two
main limitations identified in recent studies: cross-
modality alignment and interpretability. We pro-
pose a novel training framework named ExGLM,
within which a graph-language synergistic align-
ment module is introduced to ensure semantic con-
sistency across modalities. Additionally, we intro-
duce a judge-andimprove paradigm that adopts a
superior language model to evaluate and select gen-
erated responses with better interpretability. The
selected data is subsequently utilized to optimize
the reasoning model. Experiments across various
scenarios demonstrate the effectiveness of our ap-
proach, showcasing its potential to advance reason-
ing with structured data.



6 Limitations

While our work achieves promising results, there
are several limitations that warrant attention. First,
the effectiveness of the judge-and-improve module
depends heavily on the performance of the supe-
rior language model used for evaluation. If the
evaluating model introduces biases or provides in-
accurate assessments, the refinement process may
be suboptimal, potentially constraining the overall
improvement of the target model’s outputs. Sec-
ond, the current framework does not implement the
judgment-and-improvement process iteratively. It-
erative refinement, which involves multiple rounds
of evaluation and optimization, could further en-
hance the quality and robustness of the model’s
outputs. However, this remains an unexplored av-
enue and is left for future work.
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