
The Expressive Power of Path-Based Graph Neural Networks

Caterina Graziani * 1 Tamara Drucks * 2 Fabian Jogl 2 3 Monica Bianchini 1 Franco Scarselli 1

Thomas Gärtner 2

Abstract
We systematically investigate the expressive
power of path-based graph neural networks.
While it has been shown that path-based graph
neural networks can achieve strong empirical re-
sults, an investigation into their expressive power
is lacking. Therefore, we propose PATH-WL, a
general class of color refinement algorithms based
on paths and shortest path distance information.
We show that PATH-WL is incomparable to a
wide range of expressive graph neural networks,
can count cycles, and achieves strong empirical re-
sults on the notoriously difficult family of strongly
regular graphs. Our theoretical results indicate
that PATH-WL forms a new hierarchy of highly
expressive graph neural networks.

1. Introduction
We investigate the discriminative power of paths to increase
the expressivity of graph neural networks (GNNs). The
expressive power of a GNN commonly refers to its ability to
compute different embeddings for non-isomorphic graphs.
The most common GNN, the message-passing graph neural
network, has been shown to be at most as expressive as the
Weisfeiler-Leman (1-WL) color refinement algorithm (Xu
et al., 2019; Morris et al., 2019). 1-WL is a polynomial-time
heuristic for testing graph isomorphism that identifies al-
most all graphs (Babai et al., 1980) but systematically fails
for some graph instances (see Figure 1 for an example). This
shortcoming can be partially explained by the limitation of
1-WL to recognize and count only simple substructures
such as star graphs (Arvind et al., 2020). The higher-order
extension of 1-WL is k-WL (Babai, 1979; Immerman &

*Equal contribution 1Department of Information En-
gineering and Mathematics, University of Siena, Siena,
Italy 2RUML, TU Wien, Vienna, Austria 3CAIML, TU
Wien, Vienna, Austria. Correspondence to: Caterina
Graziani <caterina.graziani@student.unisi.it>, Tamara Drucks
<tamara.drucks@tuwien.ac.at >.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Lander, 1990), which operates on k-tuples of nodes and is
more powerful due to its ability to count additional substruc-
tures. However, k-WL is impractical due to its prohibitive
complexity and lack of locality (Morris et al., 2019). To
address these well-studied limitations, several novel GNNs
that leverage graph substructures to improve expressivity
have been recently proposed (Geerts, 2020; Thiede et al.,
2021; Zhang & Li, 2021; Bodnar et al., 2021a;b; Bevilacqua
et al., 2022; Bouritsas et al., 2022). Please refer to Papp
& Wattenhofer (2022) for an extensive comparison of the
expressive power of many such GNN extensions.

Related work. Paths are arguably one of the simplest
graph substructures. Despite this, paths have only recently
received attention in the context of GNNs. They can be
broadly categorized into GNNs which incorporate shortest
path information (Abboud et al., 2022; Kong et al., 2022;
Li et al., 2020; Ding et al., 2023; Ying et al., 2021; Niko-
lentzos et al., 2020; Feng et al., 2022; Zhang et al., 2023)
and GNNs which aggregate or sample from the set of all
paths (Sun et al., 2022; Truong & Chin, 2023; Michel et al.,
2023). Please find a more comprehensive related work dis-
cussion in Appendix A. While Michel et al. (2023) proved
that aggregating shortest paths alone is less expressive than
1-WL, they achieve strong empirical results with the incor-
poration of shortest path distance information. However,
a precise characterization of the expressive power of path-
based GNNs with distance information is lacking. In this
paper, we fill the existing gap in the literature and show that
path-based GNNs with shortest path distances form a novel
class of highly expressive graph neural networks.

Main contributions. We propose PATH-WL, a general
class of color refinement algorithms based on paths and
shortest path distance information. PATH-WL is an iterative
procedure that performs message passing on all paths up to a
certain length. We prove that PATH-WL is strictly more ex-
pressive than 1-WL and characterize graph classes that can
be distinguished by PATH-WL. We show that PATH-WL can
count cycles of arbitrary length and is incomparable to the
k-WL algorithm as well as several other expressive GNNs.
We design PAIN, a GNN with expressive power equivalent
to PATH-WL, and empirically verify our theoretical results.

1

The Expressive Power of Path-Based Graph Neural Networks

2. Preliminaries
Graph theory. We consider undirected graphs. Let
G = (V, E) be a graph with node set V and edges E . We
refer to the number of nodes |V| in G as the order of G. Let
N (v) be the neighborhood of a node v ∈ V , i.e. the set
of all nodes adjacent to v, and δ(v) the degree of a node
v ∈ V , i.e., the number of neighbors |N (v)|. For a graph G,
we denote with ∆ the maximum node degree of the graph.
We define a node coloring as a function X : V → Σ with an
arbitrary codomain Σ that we call set of colors. We denote
a graph endowed with a node coloring by G = (V, E ,X)
and X(v) by xv for v ∈ V . In the context of neural net-
works, we refer to the node coloring as the node features.
A path p = (v, v1, . . . , vℓ) of length ℓ in a graph G is a
sequence of non-repeated nodes connected through edges
present in G. A cycle Cℓ = (v1, . . . , vℓ) of length ℓ is a
sequence of adjacent and non-repeated nodes in G with
the additional condition that the first and the last node are
adjacent, i.e., there exists an edge (v1, vℓ). A graph G is
connected if for any u, v ∈ V there exists a path connecting
u and v. A graph G is d-regular if every node has the same
degree d, i.e., ∀v ∈ V δ(v) = d. A strongly regular graph
SR(n, k, λ, µ) is a regular graph with n nodes and degree
k such that (i) every two adjacent nodes have λ common
neighbors, and (ii) every two non-adjacent nodes have µ
common neighbors for some integers λ, µ ≥ 0. A traceable
graph is a graph with a Hamiltonian path, namely a path
that includes all the nodes of the graph. A traceable graph is
homogeneously traceable if every node of the graph is an
endpoint of a Hamiltonian path. A graph is Hamiltonian
if it includes a Hamiltonian cycle, i.e., a cycle that contains
every node in the graph exactly once. Hamiltonian graphs
are homogeneously traceable, but the converse is not nec-
essarily true. For two graphs G and F , we write sub(F,G)
to denote the number of subgraphs of G isomorphic to F .
Similarly, let sub(F,G, u) be the number of subgraphs in
G which include the node u and are isomorphic to F .

Weisfeiler-Leman test. The Weisfeiler-Leman test
(1-WL), also known as color refinement algorithm, is a
coloring procedure employed to test graph isomorphism
(Fortin, 1996; Zemlyachenko et al., 1985).
Definition 2.1. Let G = (V, E ,X) be a graph with node
coloring X and let Σ be a set of colors. Let c(i)v ∈ Σ be
the color of the node v at iteration i and let c(0)v = xv . The
Weisfeiler-Leman test updates the color of node v at each
iteration i > 0 as follows:

c(i)v = HASH
(
c(i−1)
v ,

{{
c(i−1)
u |u ∈ N (v)

}})
,

where HASH bijectively maps its input to a color from Σ.

1-WL partitions the nodes of a graph into equivalence
classes, where equivalent nodes are assigned the same color.

The algorithm terminates with a stable coloring when the
partitioning does not change between iterations. To test
whether two graphs are isomorphic, 1-WL is applied to both
graphs. If the stable coloring of the two graphs differs, i.e.,
the graphs have a different number of nodes with the same
color, the graphs are non-isomorphic. The algorithm is not
conclusive if the stable coloring is the same, i.e., the two
graphs may be isomorphic, but are not guaranteed to be.
Immerman & Lander (1990) devised the more powerful
extension k-WL, which colors k-tuples from Vk instead of
single nodes (see Morris et al., 2019).

Given a coloring algorithm T , nodes u and v are called
T -equivalent, denoted by u ∼T v, if they result in the same
color after the termination of the algorithm T . Similarly,
graphs G and H are T -equivalent if every node v ∈ G is
bijectively mapped to a node u ∈ H s.t. u ∼T v. We
denote the partitioning in equivalence classes induced by
T with p(T). Let T1 and T2 be two coloring algorithms.
We write T1 ⊑ T2 if T2 is not less expressive than T1, that
is, every class in p(T1) is a union of classes in p(T2). We
write T1 ⊏ T2 if T2 is strictly more expressive than T1 and
T1 ≡ T2 iff T1 ⊑ T2 and T2 ⊑ T1.

Graph neural networks. Message-passing GNNs lever-
age the graph structure and the node features to learn a
representation vector (or embedding). The specific task de-
termines whether this embedding is learned for each node
(node-level task) or for the entire graph (graph-level task).

Definition 2.2. Let G = (V, E ,X) be a graph with node
features X. We initialize h

(0)
v = xv for all v ∈ V . The

computation scheme of a message-passing graph neural
network for iteration i > 0 is defined as

h(i)
v = COMB

(
h(i−1)
v , AGG

({{
h(i−1)
u |u ∈ N (v)

}}))
,

where h
(i)
v is the feature vector of node v at iteration i. The

GNN output for a node-level learning task after iteration k
is given by

hv = READOUT
(
h(k)
v

)
,

and the output for a graph-level learning task is given by

hG = READOUT
({{

h(k)
v | v ∈ V

}})
.

The expressive power of message-passing graph neural net-
works can be studied in terms of their capability to dis-
tinguish non-isomorphic graphs. Xu et al. (2019) showed
that with a sufficient number of GNN layers and injective
COMB, AGG, and READOUT functions, the resulting GNN
architecture is as expressive as 1-WL.

2

The Expressive Power of Path-Based Graph Neural Networks

3. Path-WL: A Path-Based WL Test
In this section, we propose PATH-WL, a generalized class
of color refinement algorithms to analyze the expressive
power of path-based graph neural networks. The main dif-
ference between PATH-WL and 1-WL is that instead of
aggregating neighbors, PATH-WL aggregates multisets of
paths. Furthermore, higher-order variants of PATH-WL em-
ploy a distance encoding: for every node within a path of
length ℓ, we concatenate the node color with the shortest
path distance to the starting node. Note that we only add
the shortest path distance to every node in the path that is at
most d ≤ ℓ hops away from the starting node.

We define path multisets with distance encoding as follows.

Definition 3.1. Let P ℓ
v be the set of all paths of length up

to ℓ starting at node v. Based on P ℓ
v , we define the path

multiset with distance encoding as

d-Pℓ
v :=

{{ ((
cv, η

d
vv

)
,
(
cv1 , η

d
vv1

)
, . . . ,

(
cvk , η

d
vvk

))
| (v, v1, . . . , vk) ∈ P ℓ

v , k ≤ ℓ
}}
,

where cv is the color of node v and ηdvvi
is the shortest path

distance from v to vi if the shortest path distance is less or
equal to d and ∅ otherwise.

Now we can introduce the iterative color refinement algo-
rithm PATH-WL.

Definition 3.2 (PATH-WL). Given a graph G = (V, E ,X),
a set of colors Σ and an injective function HASH,
d-PATH-WLℓ refines node colors as follows. The initial
color of node v ∈ V corresponds to the node coloring, that
is c(0)v = xv. The color of node v ∈ V at iteration i > 0 is
updated as

c(i)v = HASH
(
d-Pℓ,(i−1)

v

)
.

We denote d-PATH-WLℓ after i iterations by
d-PATH-WLℓ,(i). To keep notation simple, we some-
times omit the distance d, the path length ℓ, or the number
of iterations i if not relevant in the discussed context. Here,
we highlight two variants of d-PATH-WL with interesting
theoretical properties:

0-PATH-WL. The simplest variant of PATH-WL is
0-PATH-WL, which incorporates no additional distance in-
formation. Despite its simplicity, 0-PATH-WL is strictly
more expressive than 1-WL and a single iteration can dis-
tinguish a variety of 1-WL-equivalent graph families (see
Section 4.3). As an example, consider the graphs G and G′

in Figure 2. With uniform node features, these two graphs
are 1-WL-equivalent. However, the first iteration of 0-PATH-
WL can already distinguish these graphs, as shown in the
following proposition.

Figure 1: Stable graph coloring after the first iteration of the
Weisfeiler-Leman algorithm.

Figure 2: Example of non-isomorphic graphs for which
1-WL fails, but PATH-WL can distinguish them in the first
iteration. In the grey boxes, we visualize the path multisets
up to length 5 for nodes v and v′.

Proposition 3.3. Let G,G′ be the graphs in Figure 1. For
every ℓ ≥ 5, G ≁0-PATH-WLℓ,(1) G′, while G ∼1−WL G′.

Proof sketch. To show G ∼1-WL G′, refer to Figure 1,
where the nodes of the graphs are colored according to
1-WL. The partitioning of the nodes and the node colors
(i.e., ∼1-WL equivalence classes) are the same in the two
graphs, thus G and G′ are 1-WL-equivalent. Figure 2 shows
the graph coloring after the first iteration of 0-PATH-WL
with path length five. The nodes in the two graphs have
different colors, which implies that they are not 0-PATH-
WL-equivalent. On the right-hand side of the figure, inside
the grey boxes, we represent the multiset of paths of length
up to five for two nodes, v in G and v′ in G′. Due to the dif-
ferent multiplicities of paths of length five, we can conclude
that v ≁0-PATH-WL v′. Indeed, 0-P5

v contains four paths of
length five, while 0-P5

v′ contains only two paths of length
five. The complete proof can be found in Appendix C.1.

1-PATH-WL. Distance encoding with d = 1 allows
1-PATH-WL to count cycles at the node level and suffices
to prove that 1-PATH-WL is not contained within the k-WL
hierarchy. Furthermore, this implies that 1-PATH-WL is not
bounded in expressivity by several other powerful GNNs
such as subgraph GNNs (You et al., 2021; Bevilacqua et al.,
2022; Qian et al., 2022) or Local 2-GNNs (Morris et al.,
2020b; 2022; Zhang et al., 2023; Frasca et al., 2022). See
Section 4.1 and Section 4.2 for more details.

3

The Expressive Power of Path-Based Graph Neural Networks

The expressive power of d-PATH-WLℓ is monotonically
non-decreasing with respect to the path length ℓ and shortest
path distance d ≤ ℓ.

Proposition 3.4. For every d′ ≥ d ≥ 0 and ℓ′ ≥ ℓ ≥ 1, it
holds that

d-PATH-WLℓ ⊑ d′-PATH-WLℓ,

and
d-PATH-WLℓ ⊑ d-PATH-WLℓ′ .

Refer to the Appendix C.2 for the proof of Proposition 3.4.
Note that to ensure a monotonic increase of the expressive
power with respect to the path length ℓ, it is important to
consider the multiset of all paths up to length ℓ. Indeed,
shorter paths can be crucial to distinguish two graphs, while
longer paths can be identical.

Time complexity. The time complexity of enumerating
all possible paths of length at most ℓ for one node in a graph
G can be computed in O(∆ℓ) using depth-first-search. For
a graph of order n, this yields an overall time complexity
of O(n∆ℓ) to compute all paths up to length ℓ. Note that
we can compute the distance encoding with minimal com-
putational overhead, as shortest paths are a subset of all
paths. Overall, PATH-WL with i iterations and path length
ℓ has time complexity O(in∆ℓ). Thus, the complexity of
PATH-WL is bounded as a function of the maximum degree
of the graph, whereas k-WL and other higher-order exten-
sions are bounded as a function of the order of the graph
(Morris et al., 2019; Bouritsas et al., 2022; Maron et al.,
2019b; Bodnar et al., 2021a). This means that PATH-WL
can be efficient on sparse graphs such as molecular graphs,
since many real-world molecular datasets have an average
degree of less than three (Wale & Karypis, 2006; Morris
et al., 2020a; Wallach et al., 2015). In practice, it is often
not necessary to compute all paths and a small path length
often suffices for maximal expressivity (see Section 5).

We further point out that the least expressive variant,
0-PATH-WL, is at least as expressive as pathNN, the
path-based GNN proposed by Michel et al. (2023).

Remark 3.5. For every ℓ ≥ 1, it holds that
0-PATH-WLℓ,(ℓ) ⊒ pathNN with path length ℓ.

Both, PATH-WL and pathNN pre-compute all paths of
length up to ℓ. In contrast to PATH-WL, pathNN does
not aggregate all paths of length up to ℓ at the same time,
but instead first aggregates paths of length one, then paths of
length two, and so on. This limits the number of iterations
to at most ℓ whereas PATH-WL is not limited in the number
of iterations. As we compare the two architectures with
respect to the same length ℓ, this constrains the maximum
number of layers of pathNN to be equal to ℓ. Conversely,

in PATH-WL the length of the paths and the number of it-
erations are independent. This is a strength of PATH-WL,
since increasing the number of iterations can reduce the
path length needed for improving the expressive power (see
Section 5 and Appendix C.2). This can lead to a significant
decrease in runtime as it only scales linearly with the num-
ber of iterations but exponentially with the path length. We
refer to the Appendix C.3 for a more in-depth discussion on
Remark 3.5.

4. The Discriminative Power of Paths
In this section, we present our main results on the expressive
power of path-based graph neural networks. For this, we
analyze path-based graph neural networks within the math-
ematical framework of d-PATH-WL. First, in Section 4.1
we show how d-PATH-WL relates to k-WL. Then, in Sec-
tion 4.2 we analyze its ability to count cycles. Finally, in
Section 4.3 we characterize which graph families can be
distinguished by d-PATH-WL in only a single iteration. We
provide a summary of our key theoretical results in Table 1.

4.1. Relation to the k-WL Hierarchy

We first show that for every path length and shortest path
distance, d-PATH-WL is more expressive than 1-WL (cf.
Proposition 4.1 and Remark 4.2). Next, we prove that
1-PATH-WL is incomparable to k-WL (cf. Theorem 4.3).

Proposition 4.1. For every ℓ > 1, every d ≥ 0,
d-PATH-WLℓ is strictly more expressive than 1-WL.

Proof sketch. The proof consists of two parts: first, we
prove that 0-PATH-WL is always at least as expressive
as 1-WL by leveraging the injectivity of the HASH func-
tion. Then, we provide an example of two graphs G,G′

that 0-PATH-WL can distinguish, but such that G ∼1-WL G′

(e.g., see Figures 1 and 2). The conclusion of the proof
follows from the monotonicity of the expressive power of
d-PATH-WL (cf. Proposition 3.4). See Proposition C.4 in
the Appendix for the complete proof.

Remark 4.2. Note that for path length one it holds that
d-PATH-WL1 ≡ 1-WL, for every d ≥ 0.

Proposition 4.1 states that even 0-PATH-WL2, which simply
aggregates path multisets in each iteration, is more expres-
sive than the standard Weisfeiler-Leman test. This implies
that any graph neural network with expressive power greater
than or equal to 0-PATH-WL is more expressive than the
entire class of message-passing graph neural networks since
they are limited by 1-WL.

We show a stronger result on the relation to the k-WL hier-
archy, for d-PATH-WL with d ≥ 1.

4

The Expressive Power of Path-Based Graph Neural Networks

Theorem 4.3. For every d ≥ 1, k ≥ 3, d-PATH-WL and
k-WL are incomparable. Equivalently, the following holds:

(1) for every k ≥ 3 there exists a path length ℓ such that
d-PATH-WLℓ ̸⊑ k-WL;

(2) for every ℓ ≥ 1, there exists a k such that
k-WL ̸⊑ d-PATH-WLℓ.

Proof sketch. For the proof, we construct pairs of non-
isomorphic graphs which are (1) k-WL-equivalent but can
be distinguished by d-PATH-WL with sufficient path length,
and (2) d-PATH-WL-equivalent but can be distinguished by
3-WL. The first direction builds on the fact that d-PATH-WL
with d ≥ 1 can distinguish between graphs with different cy-
cle counts for any cycle length ℓ (see Corollary 4.6) whereas
k-WL fails to do so for cycles of length ℓ ≳ k2

2 (Neuen,
2024, Theorem 1.3). For the other direction, we show that
for any fixed length ℓ, we can always construct two graphs
of treewidth two that cannot be distinguished by d-PATH-
WLℓ but can be distinguished by 3-WL (Kiefer & Neuen,
2022). We refer to the Appendix C.6 for the full proof.

Theorem 4.3 states that for every k, there exist pairs of
non-isomorphic graphs that d-PATH-WL can distinguish
whereas k-WL fails and vice-versa. This shows that the
two hierarchies are incomparable and that d-PATH-WL
with d ≥ 1 thus forms a novel hierarchy of expressive
color refinement algorithms. We point out that the proof of
Theorem 4.3 provides an upper bound on the required path
length; a shorter path length is often sufficient (see Appendix
C.4). Note that this result depends on the ability to count
cycles, which is guaranteed by incorporating neighborhood
information, as shown in the following section.

4.2. Counting Cycles

The expressive power of a test can also be described in terms
of its ability to count substructures in the graph. Similar to
Chen et al. (2020) and Huang et al. (2022), we define the
counting power of a test by its ability to distinguish between
graphs with different substructure counts. We first show that
0-PATH-WL can distinguish between cycles of different
lengths at node level.

Proposition 4.4. Let Cn and Cm be two cycle graphs of
different order, with n > m. For any v ∈ Cn and any
u ∈ Cm,

v ∼1-WL u but v ≁0-PATH-WLℓ,(1) u ∀ℓ ≥ m.

Proof. The left-hand side, i.e., v ∼1-WL u, comes from
the fact that every cycle is a connected 2-regular graph (cf.
Lemma C.7) and that 1-WL cannot distinguish d-regular
graphs for any d at the node level. Let u and v be two

arbitrary nodes in cycles Cn and Cm, respectively, and
compute the first iteration of 0-PATH-WL for u and v. This
consists of computing the multisets of paths 0-Pu and 0-Pv .
Note that the longest path from each node in Cm has length
m− 1 as Cm is a cycle. Since n > m, the multiset of paths
from a node in Cn contains paths of length m so the two
multisets 0-Pℓ

v and 0-Pℓ
u are different for every ℓ ≥ m.

Our next theorem states that with the incorporation of neigh-
borhood information, i.e., d-PATH-WL with d ≥ 1, we can
count cycles of arbitrary length at node level:
Theorem 4.5 (Node-level cycle counting). Let
sub(Cℓ, G, v) ̸= sub(Cℓ, H, u) for some graphs G,H ,
nodes u, v and cycle Cℓ. Then,

u ≁1-PATH-WLℓ−1 v.

Proof sketch. Given a node v, its neighbors vi are identified
by pairs (cvi , 1) (see Definition 3.1). Thus, triangles on
nodes v, v1, v2 are represented by paths of length two such
as ((cv, 0), (cv1 , 1), (cv2 , 1)). These can be counted with
1-PATH-WL2,(1). In general, cycles correspond to paths
where the last node is a neighbor of the starting node. The
full proof can be found in Theorem C.8 in the Appendix.

Note that being able to count cycles at node level is stronger
than counting cycles at graph level. Indeed, node-level
counting implies graph-level counting, but the opposite is
not true. As a corollary of Theorem 4.5, 1-PATH-WL can
distinguish between two graphs with different cycle counts:
Corollary 4.6 (Graph-level cycle counting). Let
sub(Cℓ, G) ̸= sub(Cℓ, H) for some graphs G,H
and cycle Cℓ. Then, G ≁1-PATH-WLℓ−1 H .

While Corollary 4.6 is of great interest from a theoretical
point of view (Arvind et al., 2020; Chen et al., 2020; Huang
et al., 2022), this result is also of practical relevance as it
can reduce the path length needed to distinguish two graphs.
For instance, we can distinguish the smallest pair of non-
isomorphic strongly regular graphs Rook and Shrikhande, cf.
Figure 3, with multisets of paths up to length seven (which is
in line with Arvind et al. (2020, Fig. 7)), but paths of length
up to four are sufficient if we use neighbor information, thus
almost halving the required path length. This reduces the
runtime by a factor of 200.

We further combine Corollary 4.6 with the analysis of Zhang
et al. (2024) that investigates whether different GNNs can
count cycles. This allows us to prove that PATH-WL is
not bounded in expressivity by Subgraph GNNs (You et al.,
2021; Bevilacqua et al., 2022; Qian et al., 2022), Local
2-GNNs (Morris et al., 2020b; 2022; Zhang et al., 2023;
Frasca et al., 2022), and Folklore k-GNNs (Maron et al.,
2019a; Zhang et al., 2023; Feng et al., 2023).

5

The Expressive Power of Path-Based Graph Neural Networks

Figure 3: Rook’s 4x4 graph (left) and Shrikhande
(right). They cannot be distinguished by 3-WL but by
0-PATH-WL7,(1) and 1-PATH-WL4,(1).

Corollary 4.7. For every k ≥ 2, there exists a path length
ℓ such that 1-PATH-WLℓ ̸⊑ {SubgraphGNN, Local 2-GNN,
Folklore k-GNN}.

Please find more details in Corollary C.9 in the Appendix.

4.3. One Iteration Is Almost All You Need

In this section, we investigate graph families that can be
distinguished by 0-PATH-WL with only one iteration. For-
mally, let G and H be two disjoint graph families. We say
that a coloring algorithm T can distinguish G and H, if
for every pair of graphs G ∈ G and H ∈ H it holds that
G ≁T H . Note that all results in this section generalize to
d-PATH-WL with d ≥ 0 as well as to pathNN (Michel et al.,
2023).

Theorem 4.8. There exists a path length ℓ such that
0-PATH-WLℓ,(1) can distinguish the following pairs of infi-
nite graph families:

(1) Hamiltonian graphs of different orders at node and
graph level,

(2) Hamiltonian graphs and non-homogeneously traceable
graphs at graph level, and

(3) almost all connected d-regular graphs and discon-
nected graphs with d-regular connected components
at graph level.

Proof sketch. For the proof, it is sufficient to show that
path multisets can distinguish the graph families, as this is
equivalent to 0-PATH-WL with one iteration. Please refer
to Section C.5.1 in the Appendix for the full proof.

Note that the graph families in Theorem 4.8 (2)−(3) contain
graph classes which are 1-WL-equivalent. For (2), consider
the construction in Corollary 4.9. For (3), it is well known
that 1-WL is not able to distinguish d-regular graphs for any
d. Examples for d = 2 and d = 3 can be found in Figure 5.

H G

Figure 4: Two non-isomorphic 1-WL-equivalent graphs that
can be distinguished by 0-PATH-WL2n−1,(1).

(a) (b)

Figure 5: Graphs that are 1-WL-equivalent but can be distin-
guished by 0-PATH-WLℓ,(1) with (a) ℓ = 3 and (b) ℓ = 4.
The required length ℓ corresponds to the order of the small-
est connected component.

Corollary 4.9. Let H be a graph of order 2n composed
of two cycles Cn+1 with an edge in common. Let G be a
graph of order 2n composed of two cycles Cn connected by
an extra edge. For any n ≥ 3, it holds that

G ≁0-PATH-WL2n−1,(1) H and G ∼1-WL H.

See Figure 4 for an illustration of how H and G are con-
structed. Note that the graphs in Figure 2 represent an
instance of this graph construction for n = 5.

We have shown that even the simplest version of PATH-WL,
0-PATH-WL with one iteration, can already distinguish be-
tween graph families which are 1-WL-equivalent. However,
we prove in the following theorem that 0-PATH-WL with
one iteration is not more expressive than 1-WL.

Theorem 4.10. 1-WL-equivalence at iteration ℓ and
0-PATH-WLℓ,(1)-eqivalence are incomparable for every
ℓ ≥ 3.

Proof sketch. For the proof, it suffices to show that there
exists a pair of nodes such that (i) 0-PATH-WLℓ,(1) is able
to distinguish them, while 1-WL with ℓ iterations fails and
(ii) vice-versa. For (i), please refer to Corollary 4.9 for an
example. For (ii), please see the counterexample in Figure
6. See Theorem C.14 in the Appendix for the full proof.

Note that the graphs in Figure 6 provide a counterexample
for a recent result of Michel et al. (2023, Theorem 3.3). In
contrast, 0-PATH-WL with iterations is able to distinguish
the graphs. Indeed, already path length three and only two
iterations are sufficient.

6

The Expressive Power of Path-Based Graph Neural Networks

Table 1: Summary of our theoretical results.

Theoretical Result Requirement Reference

0-PATH-WLℓ ≡ 1-WL ℓ = 1 Rem. 4.2
0-PATH-WLℓ ⊐ 1-WL ℓ > 1 Thm. 4.1
0-PATH-WLℓ,(1) incomparable to 1-WL(ℓ) ℓ ≥ 3 Thm. 4.10
0-PATH-WLℓ,(ℓ) ⊒ pathNN(ℓ) ℓ ≥ 1 Rem. 3.5
d-PATH-WLℓ ⊑ d′-PATH-WLℓ ℓ ≥ 1, d′ ≥ d ≥ 0 Prop. 3.4
d-PATH-WLℓ ⊑ d-PATH-WLℓ′ ℓ′ ≥ ℓ ≥ 1, d ≥ 0 Prop. 3.4
1-PATH-WLℓ can count n-cycles ℓ ≥ n− 1 Thm. 4.5

1-PATH-WLℓ ̸⊑ k-WL ℓ ≳ k2

2 , k ≥ 3 Thm. 4.3 (1)

k-WL ̸⊑ 1-PATH-WLℓ ℓ ≥ 1, k ≥ 3 Thm. 4.3 (2)

1-PATH-WLℓ ̸⊑ SubgraphGNN
1-PATH-WLℓ ̸⊑ Local 2-GNN ℓ ≥ 7 Cor. 4.7
1-PATH-WLℓ ̸⊑ Folklore 2-GNN

1-PATH-WLℓ ̸⊑ Folklore k-GNN ℓ ≳ k2

2 , k ≥ 3 Cor. 4.7

v v′

v ≁1-WL v′

v ∼0-Path-WL3,(1) v′

but

Figure 6: Counterexample that shows that path multisets
alone are not more expressive than 1-WL.

5. Experimental Analysis
To empirically evaluate our findings, we design PAIN
(PATH ISOMORPHISM NETWORK), a family of GNN ar-
chitectures with expressive power equivalent to PATH-WL
(cf. Remark 5.1). We evaluate PAIN on three datasets de-
signed for studying the expressivity of GNNs and on two
real-world benchmark datasets. We provide additional in-
formation about our experiments in Appendix D.
Remark 5.1. We say that PAIN has expressive power equiv-
alent to PATH-WL if there exists a set of weights that allows
PAIN to match the expressivity of PATH-WL.

The PAIN Family. Let G = (V, E ,X) be a graph with
node features X. Each GNN in the PAIN family has n ≥ 1
layers, uses paths of length up to ℓ ≥ 1, and distances up to
d ≤ ℓ. Analogously to PATH-WL, for a fixed distance d, we
denote such a GNN as d-PAIN. PAIN computes an embed-
ding h

(i)
v for each node v ∈ V in each layer i ∈ {1, . . . n}.

We initialize each node embedding as the node features

h
(0)
v = xv . The embeddings are updated iteratively as

h(i)
v = AGG

({{
z(i−1)
p | p ∈ d-Pℓ

v

}})
where z

(i−1)
p is the embedding of path p of length k ≤ ℓ

defined as

z(i−1)
p = f(p) = f

((
h(i−1)
v , . . . ,h(i−1)

vk

))
.

In order to gain maximal expressive power, the function f
must be injective over sequences and AGG must be injective
over multisets. For f we select an LSTM (Hochreiter &
Schmidhuber, 1997) as they can approximate any function
on sequences (Hammer, 2000). In most experiments we use
the sum for AGG as it allows the representation of injective
functions over multisets (Xu et al., 2019, Lemma 5). To get
a graph-level prediction, we pool all node representations in
the final layer and apply a multi-layer-perceptron. The run-
time complexity of PAIN is equivalent to that of PATH-WL
(see Section 3, par. Time Complexity). For additional inves-
tigation on the runtime of PAIN see Appendix D.

Datasets. To study the expressivity of the PAIN family,
we use the synthetic datasets EXP (Abboud et al., 2021), SR
(Balcilar et al., 2021) and CSL (Murphy et al., 2019). EXP
contains 600 non-isomorphic pairs of graphs representing
propositional formulas. Each pair of graphs in this dataset
cannot be distinguished by 1-WL but can be distinguished
by 3-WL. With SR we refer to the same subset of strongly
regular graphs used by (Michel et al., 2023). Each pair of
graphs in this dataset cannot be distinguished by 3-WL, as
3-WL fails to distinguish strongly regular graphs. An in-
stance of this dataset is visualized in Figure 3. CSL contains
150 graphs with 41 nodes belonging to 10 different isomor-
phism classes that are 1-WL-equivalent. Our experiments

7

The Expressive Power of Path-Based Graph Neural Networks

on EXP and SR evaluate to what degree untrained PAIN can
distinguish graphs. For CSL, we train PAIN to predict the
isomorphism classes. Additionally, we perform an ablation
study to investigate the impact of iterations, path length,
and distance on expressivity. For real-world evaluation, we
use ZINC (Gómez-Bombarelli et al., 2018; Sterling & Irwin,
2015) and OGBG-MOLHIV (Hu et al., 2020; Wu et al., 2018).
Both datasets contain graphs that represent small molecules
and for both the task is to make graph-level predictions.
ZINC contains 12 000 graphs and we perform regression to
predict the solubility of each molecule. OGBG-MOLHIV con-
tains 41 127 graphs and we classify whether these molecules
inhibit HIV replication (Wu et al., 2018).

Experimental setup. For EXP and SR, we closely follow
the experimental setup of Michel et al. (2023). We use an
untrained PAIN with a two-layer LSTM to compute 16-
dimensional embeddings. We use Euclidean normalization
on the input for the LSTM and consider two representations
the same if the Euclidean distance is below ϵ = 10−5. Anal-
ogous to Michel et al. (2023), for SR we restrict the path
length to four due to computational considerations and use
path length five for EXP. All presented results are repeated
over five seeds. We use a one-layer 0-PAIN for EXP and a
one-layer 1-PAIN for SR. For CSL, we perform stratified
5-fold cross validation with a 3:1:1 split. We train a small
PAIN model with an embedding dimension of 16. We train
500 epochs with a fixed learning rate of 10−5. We report
the test set accuracy in the epoch with the highest valida-
tion performance and average this test set accuracy over all
cross-validation splits. We perform ablations for different
values of the path length ℓ ∈ {1, . . . , 6}, number of layers
n ∈ {1, 2}, and distance encoding depth d ∈ {0, 1, ℓ}. As
both real-world datasets contain edge features, we extend
PAIN accordingly (see Appendix D). On ZINC we train a
five-layer 1-PAIN with path length three and embedding
dimension 128. As common on ZINC, we train with an
initial learning rate of 10−3 that we halve whenever the val-
idation metric does not increase for 20 epochs. The training
stops after the learning rate dips below 10−5 or after 1 000
epochs. We train the model 10 times and report the average
test set mean absolute error (MAE) in the epoch with the
lowest validation error. On OGBG-MOLHIV it is folklore
knowledge that smaller networks perform better. We thus
train a one-layer 1-PAIN with path length two, which is
the same path length as used by Michel et al. (2023). To
further avoid over-fitting we use a dropout rate of 0.5. As is
common on this dataset we train with a fixed learning rate
10−3 for a fixed number of 100 epochs. We train the model
ten times and report the average test set ROC-AUC score in
the epoch with the highest validation score.

Results. On EXP, untrained 0-PAIN with path length five
can distinguish all graphs (Table 3), which is consistent with

the results in Michel et al. (2023). Note that we do not use
distance encoding as proposed in Michel et al. (2023) and
could thus verify that the multiplicities of paths of length
five are sufficient. On SR, untrained 1-PAIN is able to
distinguish more than 50% of all graph pairs (cf. Figure 7).
In general, our results are comparable with Michel et al.
(2023) with distance encoding. For SR(29,14,6,7) we obtain
significantly better results of around 40% failure rate in
comparison to the 80% failure rate of pathNN.

3-WL

Figure 7: Results on SR for path length ℓ = 4 and distance
encoding d = 1. The dashed line indicates the failure rate
of 3-WL.

Table 2 shows the results on the CSL dataset, which suggest
that the expressivity increases with the number of layers, the
path length, and the depth of the distance encoding. Most
importantly, increasing the depth d gives a strong boost in
accuracy without increasing the time complexity. For exam-
ple for a single layer and path length ℓ = 5, increasing the
distance encoding depth from 0 to ℓ improves the accuracy
from 50% to 100%. What is especially interesting is that no
0-PAIN model achieves an accuracy of over 50% for CSL
which indicates that the distance encoding is crucial for the
expressive power required for this dataset. Finally, we can
see that increasing the number of layers gives a strong boost
in predictive performance for short path lengths, especially
for ℓ = 2. This is important, as increasing the number of
layers increases the runtime only by a constant factor com-
pared to an exponential increase with ℓ. Table 4 and Table 5
show the results on ZINC and OGBG-MOLHIV, respectively.
We can see that in both cases 1-PAIN outperforms classi-
cal message-passing GNNs, whereas alternative approaches
such as CIN or pathNN still outperform 1-PAIN. This could
be due to the fact that PAIN aggregates all paths up to
length ℓ in each iteration, potentially resulting in a more
complicated learning task. In contrast, pathNN increases
the length of the paths layer-wise and thus needs to extract
information from fewer paths at each layer.

8

The Expressive Power of Path-Based Graph Neural Networks

Table 2: Mean and standard deviation of the accuracy (↑) on CSL.

1 Layer 2 Layers
ℓ 0-PAIN 1-PAIN 2-PAIN 0-PAIN 1-PAIN 2-PAIN
2 12± 4 20± 0 20± 0 12± 4 64± 8 70± 9
3 18± 4 40± 0 50± 0 20± 0 47± 6 64± 4
4 29± 5 54± 5 90± 0 32± 3 64± 5 90± 0
5 50± 0 59± 1 100± 0 46± 5 67± 2 100± 0
6 50± 0 90± 0 100± 0 46± 5 90± 0 100± 0

Table 3: Pairs of graphs in EXP that cannot
be distinguished by the given models. Bold
marks the strongest result.

Model EXP ↓
GIN (Xu et al., 2019) 600
3-WL (Maron et al., 2019a) 0
pathNN (Michel et al., 2023) 0
PAIN (ours) 0

Table 4: Mean and standard deviation of the MAE on
ZINC. GIN, GCN, and GAT experiments were conducted by
Dwivedi et al. (2023). All other GNNs were benchmarked
by the cited authors. Bold marks the strongest architecture.

Model MAE (↓)
GIN (Xu et al., 2019) 0.387± 0.015
GCN (Kipf & Welling, 2017) 0.278± 0.003
GAT (Velickovic et al., 2018) 0.384± 0.007
CIN (Bodnar et al., 2021a) 0.079± 0.006
ESAN (Bevilacqua et al., 2022) 0.102± 0.003
pathNN (Michel et al., 2023) 0.090± 0.004
PAIN (ours) 0.148± 0.003

Table 5: Mean and standard deviation of the ROC-AUC
score on OGBG-MOLHIV. GIN and GCN experiments were
conducted by Hu et al. (2020). All other GNNs were bench-
marked by the cited authors. Bold marks the strongest
architecture.

Model ROC-AUC (↑)
GIN (Xu et al., 2019) 75.58± 1.40
GCN (Kipf & Welling, 2017) 76.06± 0.97
ESAN (Bevilacqua et al., 2022) 78.00± 1.42
CIN (Bodnar et al., 2021a) 80.94± 0.57
GSN (Bouritsas et al., 2022) 77.99± 1.00
Graphormer (Ying et al., 2021) 80.51± 0.53
pathNN (Michel et al., 2023) 79.17± 1.09
PAIN (ours) 78.50± 1.4

6. Conclusion and Future Work
In this paper we investigated the discriminative power
of paths to distinguish between non-isomorphic graph in-
stances. For this, we proposed PATH-WL, a general class
of color refinement algorithms that allows us to investigate
the expressivity of path-based graph neural networks. We
proved that PATH-WL is incomparable in expressivity to
several other powerful GNNs such as subgraph GNNs or
k-GNNs. Furthermore, PATH-WL is able to count cycles
which is important for learning tasks on molecular struc-
tures. All of this indicates that path-based GNNs form a
novel class of highly expressive graph neural networks.

Limitations. For general graphs, the enumeration of all
paths can be intractable. Thus, PATH-WL might not be well
suited for dense graphs. Our experimental results also sug-
gest that, while maximally expressive in theory, considering
all paths does not outperform state of the art for real-world
benchmark datasets. This could be due to the large number
of paths that PAIN aggregates in each layer. It might be nec-
essary to adapt PAIN to better select relevant information
from all possible paths.

Future work. As the computational cost of our approach
is strongly dependent on the chosen path length, we plan to
characterize graph classes for which a reasonably low path
length is sufficient for maximal expressivity. Furthermore,
we intend to investigate approaches that only require the
computation of a subset of all paths of a certain length.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

ACKNOWLEDGEMENTS

This research has been partially supported by the Italian
MUR PRIN 2022 project “MEDICA” (2022RNTYWZ), the
Next Generation EU program project PNRR ECS00000017
- “THE - Tuscany Health Ecosystem” - Spoke 3 - CUP
I53C22000780001, and the Vienna Science and Technol-
ogy Fund (WWTF) project ICT22-059. We thank Silvia
Beddar-Wiesing and Alice Moallemy-Oureh for their es-
sential contributions to the brainstorming process and for
their valuable comments in every phase of this project. We
further express our gratitude to Sagar Malhotra, Giuseppe
Alessio D’Inverno, Marco Tanfoni, Patrick Indri, Veronica
Lachi, and David Penz for the useful discussions, insightful
suggestions, and constant support. We especially thank Max
Thiessen and Pascal Welke for providing fundamental hints
about the proofs and for their helpful feedback on the paper.
Lastly, we are grateful to the anonymous reviewers who
significantly improved our work with their suggestions.

9

The Expressive Power of Path-Based Graph Neural Networks

References
Abboud, R., Ceylan, I. I., Grohe, M., and Lukasiewicz, T.

The surprising power of graph neural networks with ran-
dom node initialization. In International Joint Conference
on Artificial Intelligence, pp. 2112–2118, 2021.

Abboud, R., Dimitrov, R., and Ceylan, I. I. Shortest path
networks for graph property prediction. In Learning on
Graphs Conference, pp. 5–1. PMLR, 2022.

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,
Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In In-
ternational Conference on Machine Learning, pp. 21–29.
PMLR, 2019.

Arvind, V., Fuhlbrück, F., Köbler, J., and Verbitsky, O.
On Weisfeiler-Leman invariance: Subgraph counts and
related graph properties. Journal of Computer and System
Sciences, 113:42–59, 2020.

Babai, L. Lectures on graph isomorphism. Uni-
versity of Toronto, Department of Computer Science.
Mimeographed lecture notes, 3:15, 1979.

Babai, L., Erdos, P., and Selkow, S. M. Random graph
isomorphism. SIAM Journal on computing, 9(3):628–
635, 1980.

Balakrishnan, V. Schaum’s Outline of Graph Theory: In-
cluding Hundreds of Solved Problems. McGraw Hill
Professional, 1997.

Balcilar, M., Héroux, P., Gauzere, B., Vasseur, P., Adam, S.,
and Honeine, P. Breaking the limits of message passing
graph neural networks. In International Conference on
Machine Learning, pp. 599–608. PMLR, 2021.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai,
C., Balamurugan, G., Bronstein, M. M., and Maron, H.
Equivariant subgraph aggregation networks. In The Tenth
International Conference on Learning Representations,
2022.

Biggs, N., Lloyd, E. K., and Wilson, R. J. Graph Theory,
1736-1936. Oxford University Press, 1986.

Bodnar, C., Frasca, F., Otter, N., Wang, Y., Lio, P., Montufar,
G. F., and Bronstein, M. Weisfeiler and Lehman go cel-
lular: CW networks. In Advances in Neural Information
Processing Systems, volume 34, pp. 2625–2640. Curran
Associates, Inc., 2021a.

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montufar, G. F.,
Lio, P., and Bronstein, M. Weisfeiler and Lehman go
topological: Message passing simplicial networks. In
International Conference on Machine Learning, pp. 1026–
1037. PMLR, 2021b.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M. M.
Improving graph neural network expressivity via sub-
graph isomorphism counting. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 45(1):657–668,
2022.

Cai, J., Fürer, M., and Immerman, N. An optimal lower
bound on the number of variables for graph identification.
Comb., 12(4):389–410, 1992.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? In Advances in
Neural Information Processing Systems, volume 33, pp.
10383–10395. Curran Associates, Inc., 2020.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive uni-
versal generalized pagerank graph neural network. In 9th
International Conference on Learning Representations,
2021.

Ding, Y., Orvieto, A., He, B., and Hofmann, T. Recurrent
distance-encoding neural networks for graph representa-
tion learning. CoRR, abs/2312.01538, 2023.

D’Inverno, G. A., Bianchini, M., Sampoli, M. L., and
Scarselli, F. On the approximation capability of GNNs
in node classification/regression tasks. arXiv preprint
arXiv:2106.08992, 2023.

Dong, Z., Zhang, M., Payne, P., Province, M. A., Cruchaga,
C., Zhao, T., Li, F., and Chen, Y. Rethinking the power
of graph canonization in graph representation learning
with stability. In The Twelfth International Conference
on Learning Representations, 2023.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio,
Y., and Bresson, X. Benchmarking graph neural networks.
J. Mach. Learn. Res., 24:43:1–43:48, 2023.

Feng, J., Chen, Y., Li, F., Sarkar, A., and Zhang, M. How
powerful are k-hop message passing graph neural net-
works. In Advances in Neural Information Processing
Systems, volume 35, pp. 4776–4790. Curran Associates,
Inc., 2022.

Feng, J., Kong, L., Liu, H., Tao, D., Li, F., Zhang, M., and
Chen, Y. Towards arbitrarily expressive GNNs in O(n2)
space by rethinking Folklore Weisfeiler-Lehman. CoRR,
abs/2306.03266, 2023.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Fortin, S. The graph isomorphism problem. Technical report,
Department of Computing. Science, The University of
Alberta, Edmonton, Alberta, Canada,, 1996.

10

The Expressive Power of Path-Based Graph Neural Networks

Frasca, F., Bevilacqua, B., Bronstein, M., and Maron, H. Un-
derstanding and extending subgraph GNNs by rethinking
their symmetries. In Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 31376–31390. Curran
Associates, Inc., 2022.

Geerts, F. Walk message passing neural networks
and second-order graph neural networks. CoRR,
abs/2006.09499, 2020.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS Central Science, 4(2):268, 2018.

Hammer, B. On the approximation capability of recur-
rent neural networks. Neurocomputing, 31(1-4):107–123,
2000.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In Advances
in Neural Information Processing Systems, volume 33.
Curran Associates, Inc., 2020.

Huang, N. T. and Villar, S. A short tutorial on the Weisfeiler-
Lehman test and its variants. In International Conference
on Acoustics, Speech and Signal Processing, pp. 8533–
8537. IEEE, 2021.

Huang, Y., Peng, X., Ma, J., and Zhang, M. Boosting the
cycle counting power of graph neural networks with I2-
GNNs. In The Eleventh International Conference on
Learning Representations, 2022.

Immerman, N. and Lander, E. Describing graphs: A first-
order approach to graph canonization. Springer, 1990.

Kiefer, S. and Neuen, D. The power of the Weisfeiler–
Leman algorithm to decompose graphs. SIAM Journal
on Discrete Mathematics, 36(1):252–298, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations, 2017.

Kong, L., Chen, Y., and Zhang, M. Geodesic graph neural
network for efficient graph representation learning. In
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 5896–5909. Curran Associates, Inc., 2022.

Kriege, N. M. Weisfeiler and Leman go walking: Random
walk kernels revisited. In Advances in Neural Information

Processing Systems, volume 35. Curran Associates, Inc.,
2022.

Li, P., Wang, Y., Wang, H., and Leskovec, J. Distance
encoding: Design provably more powerful neural net-
works for graph representation learning. In Advances in
Neural Information Processing Systems, volume 33, pp.
4465–4478. Curran Associates, Inc., 2020.

Lim, D., Robinson, J. D., Zhao, L., Smidt, T., Sra, S., Maron,
H., and Jegelka, S. Sign and basis invariant networks for
spectral graph representation learning. In International
Conference on Learning Representations, 2022.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman,
Y. Provably powerful graph networks. In Advances in
Neural Information Processing Systems, volume 32, pp.
2153–2164. Curran Associates, Inc., 2019a.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. In 7th Interna-
tional Conference on Learning Representations, 2019b.

Michel, G., Nikolentzos, G., Lutzeyer, J. F., and Vazir-
giannis, M. Path neural networks: Expressive and accu-
rate graph neural networks. In International Conference
on Machine Learning, volume 202, pp. 24737–24755.
PMLR, 2023.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and Leman
go neural: Higher-order graph neural networks. In The
Thirty-Third AAAI Conference on Artificial Intelligence,
pp. 4602–4609. AAAI Press, 2019.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. TUDataset: A collection of bench-
mark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond
(GRL+ 2020), 2020a.

Morris, C., Rattan, G., and Mutzel, P. Weisfeiler and Leman
go sparse: Towards scalable higher-order graph embed-
dings. In Advances in Neural Information Processing Sys-
tems, volume 33, pp. 21824–21840. Curran Associates,
Inc., 2020b.

Morris, C., Rattan, G., Kiefer, S., and Ravanbakhsh, S. Spe-
qnets: Sparsity-aware permutation-equivariant graph net-
works. In International Conference on Machine Learning,
pp. 16017–16042. PMLR, 2022.

Murphy, R. L., Srinivasan, B., Rao, V. A., and Ribeiro, B.
Relational pooling for graph representations. In Interna-
tional Conference on Machine Learning, volume 97, pp.
4663–4673. PMLR, 2019.

11

The Expressive Power of Path-Based Graph Neural Networks

Neuen, D. Homomorphism-distinguishing closedness for
graphs of bounded tree-width. In 41st International Sym-
posium on Theoretical Aspects of Computer Science, vol-
ume 289, pp. 53:1–53:12. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2024.

Nikolentzos, G., Dasoulas, G., and Vazirgiannis, M. k-hop
graph neural networks. Neural Networks, 130:195–205,
2020.

Papp, P. A. and Wattenhofer, R. A theoretical comparison
of graph neural network extensions. In International Con-
ference on Machine Learning, pp. 17323–17345. PMLR,
2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Qian, C., Rattan, G., Geerts, F., Niepert, M., and Morris, C.
Ordered subgraph aggregation networks. In Advances in
Neural Information Processing Systems, volume 35, pp.
21030–21045. Curran Associates, Inc., 2022.

Robertson, N. and Seymour, P. D. Graph minors. II. Algo-
rithmic aspects of tree-width. Journal of algorithms, 7
(3):309–322, 1986.

Robinson, R. W. and Wormald, N. C. Almost all regular
graphs are Hamiltonian. Random Structures & Algo-
rithms, 5(2):363–374, 1994.

Sterling, T. and Irwin, J. J. Zinc 15–ligand discovery for
everyone. Journal of chemical information and modeling,
55(11):2324–2337, 2015.

Sun, Y., Deng, H., Yang, Y., Wang, C., Xu, J., Huang, R.,
Cao, L., Wang, Y., and Chen, L. Beyond homophily:
Structure-aware path aggregation graph neural network.
In International Joint Conference on Artificial Intelli-
gence, pp. 2233–2240, 2022.

Thiede, E., Zhou, W., and Kondor, R. Autobahn:
Automorphism-based graph neural nets. In Advances
in Neural Information Processing Systems, volume 34,
pp. 29922–29934. Curran Associates, Inc., 2021.

Truong, Q. and Chin, P. Generalizing topological graph neu-
ral networks with paths. CoRR, abs/2308.06838, 2023.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In 6th
International Conference on Learning Representations,
2018.

Wale, N. and Karypis, G. Acyclic subgraph based descriptor
spaces for chemical compound retrieval and classifica-
tion. In IEEE International Conference of Data Mining,
volume 23, 04 2006.

Wallach, I., Dzamba, M., and Heifets, A. Atomnet: A deep
convolutional neural network for bioactivity prediction in
structure-based drug discovery. CoRR, abs/1510.02855,
2015.

Wang, G., Ying, R., Huang, J., and Leskovec, J. Multi-
hop attention graph neural networks. In Proceedings of
the Thirtieth International Joint Conference on Artificial
Intelligence, August 2021, pp. 3089–3096, 2021.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: A benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How pow-
erful are graph neural networks? In 7th International
Conference on Learning Representations, 2019.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do transformers really perform badly
for graph representation? In Advances in Neural Informa-
tion Processing Systems, volume 34, pp. 28877–28888.
Curran Associates, Inc., 2021.

You, J., Ying, R., and Leskovec, J. Position-aware graph
neural networks. In International Conference on Machine
Learning, pp. 7134–7143. PMLR, 2019.

You, J., Gomes-Selman, J. M., Ying, R., and Leskovec,
J. Identity-aware graph neural networks. In AAAI con-
ference on artificial intelligence, volume 35, pp. 10737–
10745, 2021.

Zemlyachenko, V. N., Korneenko, N. M., and Tyshkevich,
R. I. Graph isomorphism problem. Journal of Soviet
Mathematics, 29:1426–1481, 1985.

Zhang, B., Feng, G., Du, Y., He, D., and Wang, L. A com-
plete expressiveness hierarchy for subgraph GNNs via
subgraph Weisfeiler-Lehman tests. In International Con-
ference on Machine Learning, pp. 41019–41077. PMLR,
2023.

Zhang, B., Gai, J., Du, Y., Ye, Q., He, D., and Wang, L.
Beyond Weisfeiler-Lehman: A quantitative framework
for GNN expressiveness. In The Twelfth International
Conference on Learning Representations, 2024.

Zhang, M. and Li, P. Nested graph neural networks. In
Advances in Neural Information Processing Systems, vol-
ume 34, pp. 15734–15747. Curran Associates, Inc., 2021.

12

The Expressive Power of Path-Based Graph Neural Networks

A. Related work
In this section, we provide a more comprehensive discussion on related work.

Walks vs. Paths. Although walks and paths in a graph are rather similar concepts, they have different implications for
GNN expressivity. By definition, walks are sequences of adjacent nodes, and therefore paths are particular walks without
node repetitions. However, due to the local nature of the message-passing procedure, which iteratively updates the feature of
a node based on its neighborhood, GNNs at layer ℓ encode all the walks up to length ℓ for each node (see Kriege (2022)).
Conversely, GNNs do not encode the identity of a node and therefore cannot identify repetitions of the same node in a walk.
We thus argue that aggregating paths, in contrast to walks, does contribute additional information that can be helpful to
distinguish between non-isomorphic graphs. Other approaches utilize walks in a way that increases the expressive power of
GNNs. For example, Geerts (2020) proposes the walk Message Passing Neural Network (walk-MPNN), generalizing the
second-order non-linear invariant network by Maron et al. (2019b). This model computes embeddings for pairs of nodes
by encoding the walks between the two nodes. This architecture is strictly more powerful than 1-WL but is bounded in
expressive power by 3-WL, regardless of the length of the walks. Indeed, increasing the length may allow to distinguish
graphs with less iterations but cannot enhance expressivity. Conversely, the power of PATH-WL increases with the length of
the paths. Therefore, PAIN is more powerful than walk-MPNN for some graph families such as strongly regular graphs (see
Theorem 4.3).

Path-based GNNs. As argued in the previous paragraph, using paths to update node embeddings in GNNs can increase
their expressive power. Several architectures have been devised that encode path information in different ways. For instance,
Abboud et al. (2022) propose shortest path networks, which replace the topological neighborhood with shortest paths.
They are provably more expressive than 1-WL, but not more expressive than 3-WL. Kong et al. (2022) consider geodesic
information between pairs of nodes and show that they distinguish almost all d-regular graphs for which 1-WL consistently
fails. Closely related to using shortest paths directly is the incorporation of distance information. This can be done either
explicitly (You et al., 2019; Li et al., 2020; Ding et al., 2023) or implicitly (Ying et al., 2021; Nikolentzos et al., 2020; Feng
et al., 2022). Li et al. (2020); You et al. (2019); Ding et al. (2023) propose position aware GNNs, whereas Ying et al. (2021)
introduce a transformer architecture with spatial encoding. These approaches are quite similar to the general idea of using
positional encodings in the context of graph representation learning (Abboud et al., 2021; Lim et al., 2022; Dong et al.,
2023). Recently, several GNNs have been proposed that consider all paths instead (Sun et al., 2022; Michel et al., 2023;
Truong & Chin, 2023). Truong & Chin (2023) introduce a color refinement test based on path complexes, a topological
generalization of paths, which is strictly more expressive than 1-WL and not bounded by 3-WL. Sun et al. (2022) propose
a graph neural network which samples from the set of all paths. Their model additionally learns structure and distance
information with the help of a recurrent cell. Michel et al. (2023) propose pathNN, which aggregates paths instead of the
standard topological neighborhood. They achieve strong empirical performance by additionally encoding shortest path
distances in an LSTM cell. Please refer to the discussion of Remark C.3 for a detailed comparison between PATH-WL and
pathNN.

k-Hop GNNs. Standard message-passing GNNs aggregate messages from the direct neighbors of each node, which are
called the first-hop neighbors. Recently, many architectures have generalized the message-passing scheme by aggregating
information from all the nodes within the k-hop neighborhood simultaneously (Nikolentzos et al., 2020; Chien et al., 2021;
Abu-El-Haija et al., 2019; Wang et al., 2021). The idea of aggregating distant nodes, beyond the first-order neighborhood, is
similar to that of path-based GNNs. However, in the k-hop aggregation we gather nodes with the same shortest path distance
from a reference node, which is at most k. In contrast, the path-based aggregation provides a richer and context-aware
representation, as it includes information such as the order of nodes within the same k-hop. Feng et al. (2022) and Papp &
Wattenhofer (2022) extended the k-hop GNNs by encoding, respectively, the subgraph induced by the nodes in the k-th
hop (KP-GNN) and the subgraph induced by the whole k-hop neighborhood (Nk). All these modifications increase the
expressive power of GNNs beyond 1-WL (Feng et al., 2022, Prop.1). The k-hop GNNs are limited by 3-WL, including the
KP-GNN (Feng et al., 2022, Thm. 2). On the contrary, considering the complete k-hop increases the expressivity because
Nk is incomparable to 3-WL (Papp & Wattenhofer, 2022, Thm. 6.3). However, d-PATH-WL and Nk are fundamentally
different graph coloring procedures: d-PATH-WL aggregates only paths up to a certain length which are endowed with
distance information, while Nk aggregates the subgraph induced by the entire k-hop neighborhood.

13

The Expressive Power of Path-Based Graph Neural Networks

B. Additional preliminaries
In the following, we provide some additional preliminaries.

FWL vs. OWL. As both are used in GNN literature, we point out the existence of two variants of the same algorithm,
which are the folklore k-WL (k-FWL) and the oblivious k-WL (k-OWL). Whenever we mention k-WL, we are referring to
k-OWL, for which the following properties hold:

• 1-WL is equivalent in expressive power to 2-WL (Huang & Villar, 2021).

• (k + 1)-WL is more expressive than k-WL for any k ≥ 2 (Cai et al., 1992).

The existing relation between k-OWL and k-FWL is the following:

k-OWL ≡ (k − 1)-FWL,

for any k ≥ 3 (Huang & Villar, 2021).

Definition B.1. A tree is a connected acyclic graph. A rooted tree is a tree in which one node is chosen as the root.

Definition B.2 (Neuen (2024)). Let G = (VG, EG,) and H = (VH , EH) be two graphs. We say that H is a homomorphic
image of G if there is a surjective homomorphism ϕ : VG → VH such that:

EH = {(ϕ(u), ϕ(v)) | (u, v) ∈ EG}

We denote with spasm(G) the set of homomorphic images of G.

The tree-width of a graph H , denoted by tw(H), can be defined in terms of a tree decomposition.

Definition B.3 (Robertson & Seymour (1986)). A tree decomposition of a graph G = (V, E) is a pair (X,T) where
T = (I, A) is a tree, and X = {Xi | i ∈ I} is a family of subsets of V , such that:

(i)
⋃
i∈I

Xi = V ,

(ii) every edge of G has both of its endpoints in some Xi, for i ∈ I , and

(iii) for all i, j, k ∈ I , if j lies on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The tree-width of a tree decomposition is maxi∈I |Xi| − 1. The tree-width of G is the minimum tree-width taken over all
possible tree decompositions of G.

Definition B.4 (Neuen (2024)). The hereditary tree-width of G, denoted by hdtw(G), is the maximum tree-width among
the tree-widths of the homomorphic images of G, i.e.,

hdtw(G) := max
H∈spasm(G)

tw(H)

Definition B.5 (Balakrishnan (1997)). An Eulerian cycle, also called an Eulerian circuit or Euler tour, in an undirected
graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph is called Eulerian.

Definition B.6 (Degree-invariant transformation). Let G = (V, E ,X) be a graph. Let T : E → V × V be a transformation
on the edges of G, such as the deletion and/or the creation of edges. The transformation is said to be degree-invariant if
changing the edges does not change the degree of the nodes.

Definition B.7 (Incomparability). A relation R is an equivalence if and only if it is reflexive, symmetric, and transitive.
Let R1, R2 be two relations and let ≥ be an ordering between them. If it holds that R1 ≱ R2 and R1 ≰ R2, the ordering
relation is partial, and R1 and R2 are said to be incomparable.

Another equivalent way of testing the isomorphism of two graphs is comparing the unfolding trees (UT) rooted at their
nodes.

14

The Expressive Power of Path-Based Graph Neural Networks

Definition B.8 (Unfolding Tree). The unfolding tree UTl
v in graph G = (V, E ,X) of node v ∈ V up to depth l ∈ N0 is

defined as

UTl
v =

{
Tree(xv, ∅) if l = 0

Tree
(
xv,UTl−1

N (v)

)
if l > 0 ,

where Tree(xv, ∅) is a tree consisting of node v with feature xv. Tree
(
xv,UTl−1

N (v)

)
is the tree consisting of the

root node v and subtrees UTl−1
N (v) =

{{
UTl−1

u | u ∈ N (v)
}}

of depth l − 1. The unfolding tree of v is defined as

UTv = liml→∞ UTl
v .

D’Inverno et al. (2023) and Kriege (2022) showed that the unfolding tree and 1-WL are equivalent for testing the isomorphism
of two graphs, i.e., the colors of the nodes after i iterations of 1-WL are the same if and only if the unfolding trees of depth i
are isomorphic.

C. Proofs
In this section, we provide proofs and some additional discussion for our theoretical contributions.

C.1. Path-WL: A Path-Based WL test

Proposition C.1. Let G,G′ be the graphs in Figure 1. For every ℓ ≥ 5, G ≁0-PATH-WLℓ,(1) G′, while G ∼1-WL G′.

Proof. Let G = (V, E ,X) and G′ = (V ′, E ′,X′) be the graphs in Figure 1. The partitioning induced on nodes by 1-WL
is represented in Figure 1, where each color corresponds to a ∼1−WL equivalence class. We can see that there exists a
bijection from the equivalence classes in G to the equivalence classes in G′ and we can thus conclude G ∼1-WL G′. For
the other direction, first, let us notice the symmetry of the two graphs, where we can group the nodes into three different
equivalence classes: (i) nodes with degree three, (ii) neighbors of degree three nodes, and (iii) nodes which are not adjacent
to nodes with degree three. We now consider the path multisets up to length five, denoted by 0-P5, for each of the three
node equivalence classes. In Figure 2, we can see that 0-P5 for nodes v ∈ G, v′ ∈ G′ which belong to equivalence class (i)
differ, as 0-P5

v contains four paths of length five, while 0-P5
v′ contains only two paths of length five. Given the injectivity of

the HASH function, for two nodes to obtain different colors it is sufficient to have different path multisets, as this ensures
different colors from the first iteration onwards. The same argument applies to the remaining nodes in (ii) and (iii), which
differ with respect to their multiplicities of paths of length five: (ii) in G, these nodes have five paths of length five, whereas
in G′ they have three paths of length five and for (iii) the nodes in G have three paths of length five, whereas in G′ they
have two paths of length five. Due to the different multiplicities of paths of length five, we conclude that 0-PATH-WL is
able to distinguish the two graphs.

Proposition C.2. For every d′ ≥ d ≥ 0, ℓ′ ≥ ℓ ≥ 1 it holds that

d-PATH-WLℓ ⊑ d′-PATH-WLℓ,

and
d-PATH-WLℓ ⊑ d-PATH-WLℓ′ .

Proof. Due to the transitivity of the order relation ⊑, it suffices to prove the statement for d′ = d+ 1 and ℓ′ = ℓ+ 1. To
demonstrate the non-decreasing expressive power of d-PATH-WLℓ with respect to d, first we need to show that for every ℓ,
if two nodes u and v are s.t. u ∼(d+1)-PATH-WLℓ v then u ∼d-PATH-WLℓ v. Let cdvi := HASH

(
d-Pℓ

vi

)
be the color of node vi

after termination of d-PATH-WL. Hence, cd+1
u = cd+1

v by hypothesis. Due to the injectivity of the HASH function, this
implies that the multiset of paths with distance encoding up to length d + 1 are equal, that is (d + 1)-Pℓ

u = (d + 1)-Pℓ
v.

What we aim to infer is that d-Pℓ
u = d-Pℓ

v. By definition, for every path ((cv, η
d
vv), (cv1 , η

d
vv1

), . . . , (cvℓ , η
d
vvℓ

)) ∈ d-Pℓ
v,

ηdvvi ̸= ∅ if ηdvvi ≤ d < d+ 1. Therefore, it holds for any path in (d+ 1)-Pℓ
v that all tuples (cvi , η

d+1
vvi) are the same in d-Pℓ

v

if the distance between the nodes v and vi is less or equal than d, otherwise ηdvvi is ∅. Hence, we conclude that d-Pℓ
u = d-Pℓ

v .
To prove the monotonicity of d-PATH-WLℓ as the path length increases, it is enough to consider two facts. The first is the
injectivity of the HASH function, and the second is that d-Pℓ

v contains paths up to length ℓ. Hence, if we can distinguish two
nodes with a certain length ℓ, these different paths are also included in d-Pℓ+1

v .

15

The Expressive Power of Path-Based Graph Neural Networks

C.2. Importance of iterations.

In the following, we want to provide some intuition on the importance of iterations for improving expressivity. For instance,
consider the two graphs G and H in Figure 8a. The two highlighted nodes v and u are 0-PATH-WL3-equivalent, as they
have the same multiset of paths of length up to three (see Figure 15). Hence, the output of the first iteration of 0-PATH-WL
will result in the same color for u and v, as shown in Figure 8a. However, if we perform another iteration, we can distinguish
the two nodes. Notably, with iterations, we can also observe that we may reduce the required path length to distinguish two
non-isomorphic graphs. For example, in Figure 8b, we can see that the two graphs, which are indistinguishable with one
iteration of 0-PATH-WL3, can be distinguished with two iterations of 0-PATH-WL2, reducing the required runtime by a
factor of three.

HASH

HASH

(a) The two nodes v and u are 0-PATH-WL3,(1)-equivalent, in-
deed they have the same color after the first iteration. Performing
another iteration with the already colored nodes allows us to dis-
tinguish v and u. That is, 0-PATH-WL3,(2)

v ̸= 0-PATH-WL3,(2)
u

HASH

HASH

(b) The two graphs are colored from the first iteration of
0-PATH-WL2. The nodes u and v are not distinguishable, but
their path multisets in the second iteration contain different paths.
The output of the second iteration will thus result in different
colors. That is, 0-PATH-WL2,(2)

v ̸= 0-PATH-WL2,(2)
u

Remark C.3. For every ℓ ≥ 1, it holds that 0-PATH-WLℓ,(ℓ) ⊒ pathNN (Michel et al., 2023) with path length ℓ.

Discussion of Remark C.3. We compare d-PATH-WL and the annotation scheme characterizing pathNN with respect to the
same number of iterations ℓ. We claim that one iteration of d-PATH-WL contains all information of the corresponding layer
of pathNN. For example, in the first layer pathNN computes paths of length one (= the neighborhood) whereas 0-PATH-WL
computes paths of length up to ℓ. At the second layer, pathNN aggregates paths of length two where each node feature
is updated given the paths of length one, computed at the first layer. 0-PATH-WL aggregates the same set of paths up to
length ℓ, but each node is updated with the paths of length up to ℓ, computed in the first layer. After the second iteration of
0-PATH-WL, one node may receive information from nodes at distance 2ℓ from it. At each step, 0-PATH-WL has access to
all information that pathNN contains, with the same asymptotic complexity. Hence, the expressivity of 0-PATH-WL cannot
be bounded by pathNN. Moreover, in the pathNN framework, the length of the paths must coincide with the number of
iterations while these two parameters are independent in our algorithm. We often observe that these parameters positively
affect each other: increasing the length may decrease the number of iterations needed to distinguish two graphs, and vice
versa (see Section C.2).

C.3. The discriminative power of paths

C.3.1. RELATION TO THE k-WL HIERARCHY.

Proposition C.4. For every path length ℓ > 1 and every d ≥ 0, d-PATH-WLℓ is strictly more expressive than 1-WL.

Proof. It is sufficient to prove the theorem for d = 0 because the addition of distance information d > 0 does not decrease
the expressive power of the test. The proof consists of two parts: (i) we demonstrate that 0-PATH-WL is as expressive as

16

The Expressive Power of Path-Based Graph Neural Networks

1-WL, and (ii) we prove that 0-PATH-WL is more expressive than 1-WL. For (i), we prove that for every length ℓ > 1, for
every node u, v and every iteration i ∈ N,

u ≁1-WL(i) v ⇒ u ≁0-PATH-WLℓ,(i) v.

By the definition of the two coloring algorithms, this corresponds to

HASH
(
c(i)v ,

{{
c(i)w |w ∈ N (v)

}})
̸= HASH

(
c(i)u ,

{{
c(i)w |w ∈ N (u)

}})
⇒ HASH(0-Pℓ,(i)

v) ̸= HASH(0-Pℓ,(i)
u)

Let α be the left-hand side of the implication. Due to the injectivity of the HASH function it is sufficient to show that α
implies 0-Pℓ,(i)

v ̸= 0-Pℓ,(i)
u . α is true if c(i)v ̸= c

(i)
u or if

{{
c
(i)
w |w ∈ N (v)

}}
̸=

{{
c
(i)
w |w ∈ N (u)

}}
, or both. Given that

every element of 0-Pℓ,(i)
v is a sequence whose first element is c(i)v , i.e.,

0-Pℓ,(i)
v :=

{{
(c(i)v)

}}
∪
{{
(c(i)v , c(i)w)w∈N (v)

}}
∪ · · · ∪

{{
(c(i)v , c(i)w , . . . , c(i)y)w∈N (v)∧ y=πℓ(pℓ

v)

}}
,

where πj(p
ℓ
v) denotes the j-th node of path pℓv, we can simply conclude that if c(i)v ̸= c

(i)
u , then 0-Pℓ,(i)

v ̸= 0-Pℓ,(i)
u .

Suppose that c
(i)
v = c

(i)
u . Then,

{{
c
(i)
w |w ∈ N (v)

}}
̸=

{{
c
(i)
w |w ∈ N (u)

}}
implies

{{
(c

(i)
v , c

(i)
w)w∈N (v)

}}
̸={{

(c
(i)
u , c

(i)
w)w∈N (u)

}}
. Due to the fact that 0-Pℓ,(i) is a multiset of sequences of heterogeneous length, the fact that

paths of length one are different is enough to conclude that 0-Pℓ,(i)
v ̸= 0-Pℓ,(i)

u .

For (ii), we prove that PATH-WL is more expressive than 1-WL. This is accomplished by showing an instance of non-
isomorphic graphs which 1-WL fails to distinguish but PATH-WL is able to distinguish (see Figure 9 for one such example).

Figure 9: The coloring after one iteration of PATH-WL is enough to distinguish the two non-isomorphic graphs that 1-WL
cannot distinguish. Note that the partitioning is the same but the colors of the nodes are different.

In order to prove Theorem C.6 we need the following Lemma.

Lemma C.5. Let Cℓ be a cycle of length ℓ = ⌊k
2 ⌋k. Then Cℓ has hereditary tree-width hdtw(Cℓ) ≥ k − 1.

Proof. Recall that a graph G has hereditary tree-width k − 1 if the maximal treewidth among the graphs in the set of
homomorphic images of G is k − 1 (See Definition B.4). In order to prove the lemma, it suffices to provide a lower bound
on hdtw(G), i.e., that there exists a graph H with treewidth k − 1, which is a homomorphic image of Cℓ. We claim that H
is a k-clique. Note that the tree-width of a k-clique (cf. Definition B.3) corresponds to the node degree, that is k − 1. It
remains to prove that a k-clique is a homomorphic image of the cycle Cℓ, with ℓ = ⌊k

2 ⌋k, that is, ℓ = k k−1
2 for odd k and

ℓ = k2

2 for even k.

First, consider k to be odd (and therefore k − 1 is even). Then, from Euler’s Theorem, which states that a connected graph
has an Eulerian cycle if and only if every node has even degree (Biggs et al., 1986), we can conclude that a k-clique,
with k odd, contains an Eulerian cycle. Based on that, we claim that we can map the Eulerian cycle of a k-clique to the
k-clique itself, via a surjective homomorphism ϕ (cf. Definition B.2). This corresponds to proving that the k-clique is the
homomorphic image of a cycle Cℓ (in this case, Cℓ coincides with the Eulerian cycle). In particular, the number of edges of
the Eulerian cycle1 is equal to the number of edges of the clique, that is ℓ = k k−1

2 . To guarantee that ϕ is a homomorphism,
the nodes in the cycle must be connected in a way that for every edge (u, v) in the cycle, there exists a corresponding edge

1Note that in a cycle, the number of edges corresponds to the number of nodes.

17

The Expressive Power of Path-Based Graph Neural Networks

(ϕ(u), ϕ(v)) in the clique. This is ensured by the definition of Eulerian cycle, which traverses the edges of the clique exactly
once. See Figure 10 for an example of such a homomorphism for k = 5. The resulting function ϕ is surjective because it
maps a cycle of k k−1

2 nodes to a clique of k nodes. Hence, we proved the claim for k odd.

Now consider the case of an even k. We aim to show that a k-clique is the homomorphic image of some cycle Cℓ, with
ℓ = k2

2 . Let us now remove a node from the k-clique (as shown in Figure 11a for the case k = 6). Deleting a node results in
a (k − 1)-clique, which we have just shown to be the homomorphic image of its Eulerian cycle. The following procedure
illustrates how to build the cycle which will be homomorphically mapped to the k-clique. We begin with the cycle on
k−2
2 (k − 1) edges, the Eulerian cycle of the (k − 1)-clique (See Figure 11b). We want to add the edges that correspond to

the missing edges in the k-clique to the cycle (cf. the dotted edges in Figure 11a). First, consider the minimal walk in the
cycle, which starts at one node and ends in the same node. This corresponds to ”opening” the cycle, doubling one node,
and leaving the edges fixed. See for example Figure 12, where we doubled the node a. To preserve the homomorphism,
the new node will be mapped to ϕ(a). As a second step, we need to add to the cycle the edge corresponding to the k − 1
edges linking the deleted node x to all the other nodes. We want to do this using the minimal number of edges. Each node
in the cycle has degree two but x has k − 1 neighbors, which is odd. Therefore we will connect x to pairs of neighbors
(until k − 2) and we know that one neighbor will be repeated twice. In order to utilize the minimum number of edges, the
neighbor that will be repeated twice is the node that has been doubled in the previous step (that is a)2. The number of copies
of x will be k

2 and therefore the number of added edges will be (2 · k
2), because with x we add two neighbors at a time. It

remains to link the neighbors together, with (k2 − 1) edges. The total amount of edges in the cycle will be:

(k − 1)
k − 2

2
+ k +

(
k

2
− 1

)
=

k2

2

Theorem C.6. Let d ≥ 1 and k ≥ 3. Then, d-PATH-WL and k-WL are incomparable. Equivalently, the following holds:

(1) for every k ≥ 3 there exists a path length ℓ such that d-PATH-WLℓ ̸⊑ k-WL;

(2) for every ℓ ≥ 1, there exists a k such that k-WL ̸⊑ d-PATH-WLℓ.

Proof. To prove the first part of the statement, we make use of a recent result from Neuen (2024, Theorem 1.3). This result
states that for every graph F such that hdtw(F) > k, the k-WL algorithm fails to detect subgraph counts of the pattern F .
In our case, let F be a cycle on ⌊k+2

2 ⌋(k + 2) nodes. From Lemma C.5, we know that the hereditary tree-width of a cycle
on ⌊k+2

2 ⌋(k + 2) nodes is at least k + 1 > k. Then, from Corollary 4.6, we assert that for every d ≥ 1, d-PATH-WLℓ can
count cycles of any length. In particular, the path length needed to count the pattern F is ℓ ≥ ⌊k+2

2 ⌋(k + 2)− 1. That is, to
distinguish two k-WL-equivalent graphs after the first iteration of d-PATH-WLℓ, we need path length ℓ ≳ k2

2 .

To prove the second statement, we show that for every path length ℓ, we can always construct two graphs that are d-PATH-
WL-equivalent but distinguishable by k-WL for k ≥ 3. Consider the following graph construction (inspired by the proof for
Papp & Wattenhofer (2022, Theorem 6.3)). We set µ := 2ℓ+ 1 and construct two graphs in the following way: C2µ, which
is a cycle of length 2µ, and Cµ,µ, which consists of two disconnected cycles of length µ each. Next, we set d = ℓ, which
aligns with the maximum expressive power of d-PATH-WLℓ. If the two graphs are indistinguishable by d-PATH-WL with
d = ℓ, they are indistinguishable for every 0 ≤ d ≤ ℓ (cf. Prop. 3.4). With d-PATH-WLℓ, each node aggregates all the paths
of length up to ℓ with shortest path distances d ≤ ℓ. Since each node in C2µ as well as Cµ,µ is the starting point for exactly
two paths for every length up to ℓ, it will have the same color assignment and the two graphs cannot be distinguished by
d-PATH-WL. On the other hand, k-WL can distinguish the two graphs for every k ≥ 3 (Kiefer & Neuen, 2022, Theorem
6.1).

C.4. How is the path length related to the order of WL?

In Theorem 4.3, we compare the d-PATH-WL hierarchy with the k-WL one. The proof is constructive and provides, for
each k, a pair of non-isomorphic graphs for which k-WL fails, but which can be distinguished by d-PATH-WLℓ with length
ℓ ≳ k2

2 . However, the required length is always dependent on the graph at hand and it is not necessarily increasing with k.

2Of course, we can obtain a valid surjective homomorphism by creating a double copy of a node different from a but it will result in
the addition of more edges.

18

The Expressive Power of Path-Based Graph Neural Networks

Figure 10: The construction of the homomorphism ϕ from the cycle C10 to the 5-clique. The arrows connect the nodes via
the function ϕ, which is surjective. The fact that the nodes are connected such that ϕ is a homomorphism is guaranteed by
the presence of the Eulerian cycle in the clique. Indeed, to construct the cycle it is enough to follow the Eulerian cycle on
the clique, starting from any edge.

19

The Expressive Power of Path-Based Graph Neural Networks

(a) (b)

Figure 11: (a) Deleting one node from the 6-clique, the red node x, results in a 5-clique. (b) A 5-clique is the homomorphic
image of a 10-cycle.

Figure 12: First step of the procedure: double the red node a and open the cycle. The new node is mapped to ϕ(a).

We present two examples to support this claim: The first one can be seen in Figure 4. For every n > 2, we can distinguish
the two graphs with d = 0 and path length ℓ = n whereas 1-WL cannot distinguish them. With d = 1 the required length is
ℓ = n− 1 because we can count the number of n-cycles. The second one is the pair of strongly regular graphs in Figure 3.
While 3-WL cannot distinguish them, d = 1 and paths of length ℓ = 4 are sufficient for our approach. These examples
show that there are 3-WL-equivalent graphs that require shorter path lengths than some 1-WL-equivalent graphs. This is in
line with Zhang et al. (2024), where it is reported that 3-WL is not able to count cycles of length greater than seven. In this
case, the required length to distinguish two graphs with a different cycle count is not ℓ ≥ ⌊k+2

2 ⌋(k + 2)− 1 = 9 but shorter,
ℓ = 7. In this brief analysis of the relations between ℓ and k, we are not considering two parameters that play an important
role in decreasing the required length: the addition of shortest path information and the iterative procedure. We refer to
Table 2 in the paper to appreciate the empirical effectiveness of this information and to Appendix C.2 to see an example of
the importance of iterations.

C.5. Counting cycles

We start with the following Lemma.

Lemma C.7. Each connected 2-regular graph of n nodes is isomorphic to a cycle Cn.

Proof. We prove the statement above by induction on the number of nodes. The smallest connected 2-regular graph is a
triangle, hence the induction base is n = 3. Suppose that G′ = (V ′, E ′) is a connected 2-regular graph with n+ 1 nodes.
Consider one node v ∈ V ′, which, by definition, has degree two and therefore two neighbors denoted by v1 and v2. v1 and
v2 each have another neighbor u1 and u2 respectively, with u1 ̸= u2 ̸= v, and we thus exclude that they are connected
to each other. Indeed, if this were the case, G′ would have a disconnected component with three nodes. Let G be the
graph obtained by removing node v from G′ and connecting (v1, v2) with a new edge (see Figure 13). The resulting G is
connected, 2-regular with n nodes. Hence, for the inductive hypothesis, it is isomorphic to a cycle on n nodes Cn. If G is
a cycle, then adding back the node v and connecting it to v1 and v2 as well as deleting the edge (v1, v2) is equivalent to
adding a path of length two to the cycle. In this way, we obtain a cycle of length n+ 1, which is isomorphic to G′.

20

The Expressive Power of Path-Based Graph Neural Networks

v

v1 v2 v2v1

v

G′ G

Figure 13: Sketch for the proof of Lemma C.7.

Theorem C.8. Let sub(Cℓ, G, v) ̸= sub(Cℓ, H, u) for some graphs G,H , nodes u, v and cycle Cℓ. Then,
u ≁1-PATH-WLℓ−1 v.

Proof. The cycle Cℓ is identified by a path of length ℓ− 1 where the last node is a marked node. That is, a cycle corresponds
to paths of the form: ((cv1 , 0), . . . , (cvℓ , 1)). Due to the different cycle counts for the nodes v and u, their multisets of paths
1-Pℓ−1

v and 1-Pℓ−1
u , will contain a different number of such paths. That is, 1-Pℓ−1

v ̸= 1-Pℓ−1
u and given the injectivity of

the HASH function, 1-PATH-WL can distinguish the two nodes.

Corollary C.9. For every k ≥ 2, there exists a path length ℓ such that 1-PATH-WLℓ ̸⊑ {SubgraphGNN, Local 2-GNN,
Folklore k-GNN}.

Proof. The proof is a direct consequence of the fact that 1-PATH-WL can count arbitrary cycles given a sufficient path length
(cf. Corollary 4.6). In particular, with path length ℓ, 1-PATH-WL can count cycles on ℓ+ 1 nodes, while SubgraphGNN,
Local 2-GNN, and Folklore 2-GNN are limited to count cycles on maximum 7 nodes (Zhang et al., 2023). Moreover, the
Folklore k-GNNs are characterized in expressive power by k-FWL ≡ (k + 1)-WL, for every k ≥ 1 (cf. B). Hence, given
that 1-PATH-WLℓ is not bounded by k-WL (cf. Theorem 4.3) for length ℓ ∼ k2, this concludes the proof.

C.5.1. ONE ITERATION IS ALMOST ALL YOU NEED

Theorem C.10. There exists ℓ such that 0-PATH-WLℓ can distinguish the following pairs of infinite graph families:

1. Hamiltonian graphs of different orders at node and graph level,

2. Hamiltonian graphs and non-homogeneously traceable graphs at graph level, and

3. almost all connected d-regular graphs and disconnected d-regular graphs with n connected components at graph level.

In order to prove Theorem C.10 we prove (1)− (3) separately.

(1) Hamiltonian graphs of different order.

Corollary C.11. Let Hn and Hm be two Hamiltonian graphs with n and m nodes, respectively, and n > m. For any
v ∈ Hn and any u ∈ Hm, it holds that

v ≁0-PATH-WLℓ u ∀ℓ ≥ m.

Proof. By definition, a Hamiltonian graph H is a graph that contains a cycle C including all the nodes of the graph.
Therefore, the length of the Hamiltonian path in Hm is m− 1, which is the longest path in the graph, containing all possible
nodes. The same argument holds for Hn, with n > m. In particular, we are able to distinguish two graphs Hn and Hm by
comparing their path multisets, i.e., after the first iteration, 0-PATH-WLℓ

v ̸= 0-PATH-WLℓ
u ∀ℓ ≥ m.

21

The Expressive Power of Path-Based Graph Neural Networks

Figure 14: Example of a degree-invariant transformation. (a) The two graphs G and H can be any two graphs, with at least
one edge. (b) − (c) represent the two steps of the transformation: first remove one edge and then link together the two
structures in such a way that the degree of the nodes is preserved.

(2) Hamiltonian graphs and non-homogenously traceable graphs. The following theorem states that with sufficiently
large ℓ, 0-PATH-WLℓ can always distinguish between two classes of graphs: non-homogeneously traceable graphs and
Hamiltonian graphs.

Theorem C.12. Let G and H be two graphs of the same order n. G is a non-homogeneously traceable graph and H a
Hamiltonian graph. Then,

G ≁0-PATH-WLn−1 H.

Proof. By definition, a non-homogeneously traceable graph is a traceable graph such that at least one node in the graph is
not an ending point of a Hamiltonian path. We denote with hn−1

v a generic Hamiltonian path from v. Formally, there exists
a node v ∈ G such that hn−1

v /∈ 0-Pn−1
v (G). A Hamiltonian graph is a graph with a Hamiltonian cycle. Any node in the

Hamiltonian cycle is an ending point of a Hamiltonian path. Hence, for any node u ∈ H , hn−1
u ∈ 0-Pn−1

u (H). At graph
level, the conclusion follows.

(3) Connected regular graphs vs. disconncected regular graphs. Another property of graphs that is closely related to
the concept of paths is connectivity. In the following, we prove that paths can distinguish pairs of regular graphs that are
1-WL-equivalent but not isomorphic because one is connected and the other is disconnected. This implies that 1-WL is
unable to detect connectivity.

Theorem C.13 (Connectivity). Let G be a disconnected graph with n connected components which are all d-regular graphs,
with d ≥ 2. Let s be the size of the smallest component. Let G′ be a connected d-regular graph, such that |VG′ | = |VG|.
0-PATH-WL can then distinguish almost every1 couple of such graphs G, G′, whereas 1-WL cannot. In particular,

G ∼WL G′ but G ≁0-PATH-WLs G′.

Proof. Theorem 1 of Robinson & Wormald (1994) states that for d ≥ 3 almost every d-regular graph is Hamiltonian and
from Lemma C.7 we know that every connected 2-regular graph is Hamiltonian. Hence let us consider all the connected
components of G and the graph G′ as Hamiltonian graphs. Then, from Corollary C.11 we know that two Hamiltonian
graphs of different order can be distinguished by 0-PATH-WLℓ. The required length ℓ in this case is the size of the smallest
connected component of G, i.e. ℓ = s. Indeed, for every node v in G′, 0-Ps

v contains a path of length s while 0-Ps
u =

0-Ps−1
u for every u in the smallest component of G. We can extend this reasoning to the graph level and conclude that

G ≁0-PATH-WLs G′.

Note that it is always possible to construct a connected d−regular graph by merging two d-regular disconnected components
via a degree-invariant transformation; See Figure 14 for an example of the transformation process which preserves the
degree of the nodes.

Theorem C.14. 1-WL-equivalence at iteration ℓ and 0-PATH-WLℓ,(1)-eqivalence are incomparable for every ℓ ≥ 3.
1Almost all d-regular graphs of order n having a property P means lim

n→∞
Pr(P) = 1; refer to Robinson & Wormald (1994) for

details.

22

The Expressive Power of Path-Based Graph Neural Networks

Figure 15: Graphs G and H and their respective path multisets for paths of length up to three for the node v ∈ G and u ∈ H .
These two graphs serve as a counterexample for paths being more discriminative than unfolding trees (and thus 1-WL).

Figure 16: Counterexample showing that PT-equivalence is not more expressive than 1-WL. Indeed v ≁1-WL u but the
path-based unfolding trees for u and v are identical.

Proof. We prove the following equivalent formulation of the statement. There exist nodes u, v such that for some k ∈ N

u ≁0-PATH-WLk,(1) v and u ∼1-WL v at iteration k.

and there exist nodes u′, v′ such that for some t ∈ N

u′ ∼0-PATH-WLt,(1) v′ and u′ ≁1-WL v′ at iteration t.

In order to prove the theorem it suffices to show two examples: (i) one example, where 0-PATH-WL is able to distinguish
between two nodes but 1-WL fails, and (ii) a second example where the converse holds. For (i), we can choose any graph
class described before, or the famous instance shown in Figure 2. For (ii), we refer to Figure 15. The highlighted nodes in
the figure have different unfolding trees at depth three (hence, u ≁1-WL v) but they are indistinguishable by the multiset of
paths, at least for path length three.

Counterexample for Michel et al. (2023, Theorem 3.3) In Figure 16 we computed the path-based unfolding trees PT
(cf. Michel et al. (2023, Definition 3.1) for the two nodes v ∈ G and u ∈ H .

D. Additional Information on Experiments
In this section, we provide additional remarks on the experiments.

Distance Encoding. We do not use distance encoding for EXP. For SR we mark neighbors by adding a constant value
of 1.0 to all the neighbors of the starting node within a path. For CSL and ZINC we use a different type of neighborhood
encoding better suited for a learning task. For every distance encoding (even depth 0) we attach to each embedding in
each path a learned vector that encodes some type of distance. In the case of d ≤ 1, this vector encodes the position in the
sequence. For the case of d > 1, this encodes the shortest path distance between the starting node and the current node in

23

The Expressive Power of Path-Based Graph Neural Networks

the path. Finally, when d ≥ 1 we add an additional feature to the embedding of each node in the path that is one if it is a
neighbor to the starting node in the path and zero otherwise.

Experimental Setup. For EXP, SR, ZINC and OGBG-MOLHIV we use a two-layer LSTM for f and summation for path-level
pooling (AGG). We use summation as graph-level (READOUT) pooling for all of these datasets except OGBG-MOLHIV for
which we use mean pooling. For ZINC we use a shared LSTM for f to reduce the number of parameters. The datasets ZINC
and OGBG-MOLHIV also contain categorical node features which we project to the embedding dimension. We incorporate
edge features by embedding them and then concatenating them to the vector embeddings in each path. For example in a path
(v1, v2, v3) we would attach to the embedding of v2 the embedded feature of edge (v1, v2) and to v3 the feature of (v2, v3).
As the first node v1 has no associated edge we simply concatenate an all-zeros vector to it. Finally, we reverse the paths on
ZINC and OGBG-MOLHIV as this gives us a small boost in performance. We note that this has also been noticed by Michel
et al. (2023). Due to numerical instabilities encountered with CSL, we vary some parameters for this dataset to combat these
instabilities. For CSL we use a one-layer LSTM for f and the mean function for graph-level (READOUT) and path-level
pooling (AGG). For CSL and ZINC, we add a two-layer multi-layer-perceptron (MLP) with ReLU activations and batch norm
after each LSTM. For OGBG-MOLHIV this MLP has only a single layer to keep the final model as small as possible. We
use PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019). We conduct our experiments on servers
equipped with an RTX-3080 GPU and Intel Core i7-10700KF/i9-11900KF CPU.

Our code can be found at https://github.com/ocatias/ExpressivePathGNNs and https://github.
com/tamaramagdr/synthetic-pain.

Training Time Comparison. In practice, it can be computationally infeasible to compute all paths. However, as current
research on the expressivity of GNNs commonly focuses on molecules that have sparse structures this means that path-based
GNNs such as our PAIN can be run efficiently on such datasets. We benchmark the run-time of PAIN on ZINC against
GIN (Xu et al., 2019) and two subgraph GNNs: DS and DSS (Bevilacqua et al., 2022). For all four models, we select
hyperparameters that yield the best validation set performance. For this, we train all four models on ZINC and report the
mean and the standard deviation of the training time of each model. For DS and DSS we use a policy that extracts the 3-hop
neighborhood (egonets) of every node. PAIN is identical to the model described in Section 5. All other models use an
embedding dimension of 256 with a dropout rate of 0.5. GIN uses four message-passing layers, and both DS and DSS use
five layers. All models are trained with early stopping. Table 6 shows that PAIN with path length three is only slightly
slower than DS and DSS on ZINC (12k graphs) on consumer grade hardware. Finally, we would like to point out that it is
not necessary to store every path up to length ℓ. For the sake of expressivity, it suffices to only store paths that are not part of
larger paths. In preliminary experiments, this improved the runtime of PAIN by a speed-up factor of two.

Table 6: Average training time for different GNNs on ZINC. All models were trained with early stopping.

Model Average Training Time (↓)
GIN (Xu et al., 2019) 0.11± 0.02 h
DS (Bevilacqua et al., 2022) 0.62± 0.06 h
DSS (Bevilacqua et al., 2022) 0.69± 0.06 h
PAIN (ours) 0.97± 0.09 h

24

https://github.com/ocatias/ExpressivePathGNNs
https://github.com/tamaramagdr/synthetic-pain
https://github.com/tamaramagdr/synthetic-pain

