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Abstract
To date, most investigations on surprisal and en-
tropy effects in reading have been conducted on
the group-level, disregarding individual differ-
ences. In this work, we revisit the predictive
power (PP) of different language models’ (LMs’)
surprisal and entropy measures on data of hu-
man reading times by incorporating information
of language users’ cognitive capacities. To do
so, we assess the PP of surprisal and entropy
estimated from generative LMs on reading data
from subjects for which scores from psychomet-
ric tests targeting different cognitive domains are
available. Specifically, we investigate if modulat-
ing surprisal and entropy relative to the readers’
cognitive scores increases prediction accuracy of
reading times, and we examine whether LMs ex-
hibit systematic biases in the prediction of reading
times for cognitively high- or low-scoring groups,
allowing us to investigate what type of psycholin-
guistic subjects a given LM emulates. We find
that incorporating cognitive capacities mostly in-
creases PP of surprisal and entropy on reading
times, and that individuals performing high in
cognitive tests are less sensitive to predictability
effects. Our results further suggest that the ana-
lyzed LMs emulate readers with lower verbal in-
telligence, suggesting that for a given target group
(i.e., individuals with high verbal intelligence),
these LMs provide less accurate predictability es-
timates. Finally, our study underlines the value of
incorporating individual-level information to gain
insights into how LMs operate internally.

1 Introduction
Human language comprehension and, by extension, human
reading is incremental in nature: humans process words se-
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quentially (Rayner & Clifton Jr, 2009), and different words
in varying contexts impose different amounts of cognitive
processing efforts. Similarly, language models’ conditional
probability distributions assign different probabilities for
potential continuations for a given prefix. The relationship
between cognitive effort and predictability measures derived
from LMs was operationalized in surprisal theory (Hale,
2001; Levy, 2008). Since then, a large body of research
has investigated the details of the relationship between sur-
prisal and entropy, and human processing effort (Linzen &
Jaeger, 2016; Kuribayashi et al., 2021; de Varda & Marelli,
2022; Wilcox et al., 2023b; Shain et al., 2024, i.a.). So
far, most studies have tested these predictions on the group-
level, neglecting individual cognitive differences that might
influence readers’ capacities to make predictions about up-
coming material.
In this work, we revisit the relationship between both sur-
prisal and contextual entropy and data of human processing
effort by considering language users’ individual cognitive
differences. More specifically, we examine whether cogni-
tive capacities induce a higher surprisal or entropy effect
for individuals with a certain cognitive profile, whether the
predicted individual effect is similar across different lan-
guage models (LMs), and the impact of cognitive scores
on the predictive power of surprisal and entropy estimated
from a range of LMs. We therefore investigate the following
hypotheses:
H1: Modulating surprisal and entropy effects relative to

individual cognitive capacities improves the predictive
power on reading times on unseen data.

H2: Individuals with higher cognitive performance exhibit
a lower surprisal or entropy effect.

H3: LMs are significantly better at predicting reading times
for certain cognitive profiles.

To address these hypotheses, we utilize the Individual Differ-
ences Corpus (InDiCo; Haller et al., 2023), which contains
both reading data and scores of a comprehensive psycho-
metric assessment targeting various cognitive capacities,
including: verbal and non-verbal working memory, verbal
and non-verbal cognitive control, verbal and non-verbal in-
telligence, and reading fluency. We deploy five pre-trained
generative LMs from three language-families—GPT2 base
and large, Llama 7B and 13B, and Mixtral—to estimate
both surprisal and contextual entropy and quantify their
predictive power by including them as predictors in linear
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regressors, fitted to predict by-word reading times from
InDiCo. We then assess the regressors’ log-likelihood af-
ter including these predictors and their interaction with the
psychometric scores against a baseline model.

2 Related work

2.1 Predictive power of surprisal and entropy
Surprisal (Hale, 2001; Levy, 2008) is a measure of pre-
dictability of a word and shown to be proportional to cogni-
tive effort in human sentence processing. It is quantified as
the negative log probability of a word given its preceding
context. Since the formalization of surprisal theory, many
studies have corroborated that surprisal correlates with read-
ing times (Demberg & Keller, 2008; Shain, 2021; Hoover
et al., 2023; Pimentel et al., 2023) and deploying different
LMs (Wilcox et al., 2020; 2023a; Goodkind & Bicknell,
2018). Recently, Oh & Schuler (2023b) revealed that large
models, despite their lower perplexity, provide worse PP of
RTs, and Oh & Schuler (2023a) further demonstrated that
LMs provide the best fit to RTs when trained on around 2B
tokens. Linzen & Jaeger (2016) first examined how sentence
processing is affected by readers’ uncertainty, measured via
entropy or entropy reduction, and found that contextual
entropy does not correlate with reading times. Later, van
Schijndel & Schuler (2017) showed that entropy is indeed
predictive of RTs. Wilcox et al. (2023b) later found that
adding entropy as an additional predictor (while keeping
surprisal) improves the model’s PP, while replacing surprisal
with entropy leads to a decrease in PP. However, Pimentel
et al. (2023) also show that using contextual entropy as a
predictor can be as good as surprisal when analyzing an-
ticipatory effects reflected in skipping rates, as opposed to
responsive effects captured by gaze duration.

2.2 Individual differences in sentence processing
Theories of sentence processing generally assume that the
cognitive mechanisms involved in language processing are
qualitatively identical across speakers. However, this per-
spective has been challenged, and evidence is emerging that
differences in cognitive abilities among language users do
indeed have a significant impact on processing (Vuong &
Martin, 2014; Nicenboim et al., 2015; Farmer et al., 2017,
i.a.). For instance, Kuperman & Van Dyke (2011) demon-
strate that measures related to cognitive control interact with
word length and lexical frequency effects on fixation times,
and Nicenboim et al. (2015) show that readers ranking lower
in working-memory tests exhibit more regressive saccades
in regions with high memory load.
Several studies have also investigated individual differences
in surprisal effects, particularly in the realm of native and
non-native reading (Berzak & Levy, 2023; Schneider et al.,
2023). For instance, Berzak & Levy (2023) demonstrate that
higher L2 proficiency is associated with increased sensitivity
to a word’s predictability in context (surprisal). Moreover,

Škrjanec et al. (2023) show that specialized surprisal from
domain-adapted LMs improves reading-time predictions for
expert readers.

3 Methods

3.1 Estimating predictability effects
Given a vocabulary Σ and an augmented vocabulary Σ̄ =
Σ ∪ {EOS}, which contains a special EOS (end-of-sentence)
token, the surprisal (Shannon, 1948) of a given sequence is
defined as

s(un)
def
= − log p(un | u<n), (1)

where p(· | u<n) is the true distribution over words u ∈ Σ̄
in context u<n. Since we do not have access to the true
distribution p(· | u<n), we approximate it using an auto-
regressive LM.
The contextual entropy of a Σ̄-valued random variable Un

at index n is the expected value of its surprisal, i.e.:

H(Un | U<n = u<n)
def
= Eu∼p(·|u<n) [sn(u)]

= −
∑
u∈Σ̄

p(u|u<n) log2 p(u|u<n).
(2)

It is a specific version of the Shannon entropy H(U)
def
=

−
∑

u∈U p(u) log p(u), conditioned on the left context.

3.2 Assessing predictive power
We utilize linear-mixed models (LMMs) M to predict a
reading time measure yij , obtained from a subject j on word
i, from a set of standardized word-level and subject-level
predictors xij , i.e., M : xij 7→ yij .
For our analyses, we aim to quantify the predictive power of
a given predictor of interest xq (e.g., surprisal). To do so, we
first define a baseline model Mb : xb

ij 7→ yij that includes
a set of baseline predictors xb

ij , and a target model Mt :

xb
ij ⊕ xq

ij 7→ yij that additionally includes the predictor of
interest xq

ij , where ⊕ represents the concatenation of two
sets of predictors. Following previous work (Wilcox et al.,
2020, i.a.), we operationalize the predictive power as the
mean difference in log-likelihood (∆LL) between the target
and the baseline model. To avoid overfitting, we perform
10-fold cross validation. A positive ∆LL indicates a better
fit of the target model to the data.

4 Experiments
Data. We employ German eye-tracking-while-reading
data from InDiCo (Haller et al., 2023). In addition to the
reading data from 61 native German speakers, the corpus
contains a battery of individual psychometric scores in four
cognitive domains: cognitive control, working memory, in-
telligence, and reading fluency. Specifically, we use the
first-pass reading times (FPRT), as well as the standardized
scores of 13 psychometric tests. For a detailed description
of the data, see Appendix B.
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Cognitive domain Test Effect size of interaction term
GPT-2 base GPT-2 large Llama-2 7b Llama-2 13b Mixtral

E
nt

ro
py

Cognitive control
FAIR −0.002 (±0.001)

† −0.001 (±0.001)
† −0.003 (±0.001)

† −0.003 (±0.001)
† −0.003 (±0.001)

†

Simon 0.003 (±0.001)
† 0.002 (±0.001)

† 0.005 (±0.001)
† 0.004 (±0.001)

† 0.005 (±0.001)
†

Stroop −0.001 (±0.001)
† −0.001 (±0.001)

† 0 (±0.001) 0 (±0.001) 0 (±0.001)

Intelligence

MWT −0.006 (±0.001) −0.005 (±0.001)
† −0.008 (±0.001) −0.008 (±0.001) −0.009 (±0.001)

RIAS non-verbal 0 (±0.001)
† 0 (±0.001) 0 (±0.001) 0 (±0.001) −0.001 (±0.001)

†

RIAS total −0.005 (±0.001)
† −0.004 (±0.001)

† −0.005 (±0.001)
† −0.005 (±0.001)

† −0.006 (±0.001)

RIAS verbal −0.007 (±0.001) −0.005 (±0.001) −0.007 (±0.001) −0.007 (±0.001) −0.007 (±0.001)

Reading fluency SLRT pseudo-words −0.006 (±0.001) −0.004 (±0.001)
† −0.008 (±0.001) −0.007 (±0.001) −0.007 (±0.001)

SLRT words −0.005 (±0.001)
† −0.003 (±0.001)

† −0.009 (±0.001) −0.007 (±0.001) −0.007 (±0.001)

Working memory

Memory updating −0.003 (±0.001)
† −0.002 (±0.001)

† −0.004 (±0.001)
† −0.003 (±0.001)

† −0.003 (±0.001)
†

Operation span −0.005 (±0.001)
† −0.003 (±0.001)

† −0.008 (±0.001) −0.007 (±0.001) −0.008 (±0.001)

Sentence span −0.003 (±0.001)
† −0.002 (±0.001)

† −0.007 (±0.001) −0.006 (±0.001) −0.007 (±0.001)

Spatial short-term memory −0.001 (±0.001)
† 0 (±0.001)

† 0.002 (±0.001)
† 0.001 (±0.001)

† 0 (±0.001)
†

Su
rp

ri
sa

l

Cognitive control
FAIR −0.01 (±0.001) −0.009 (±0.001) −0.008 (±0.001) −0.008 (±0.001) −0.007 (±0.001)

Simon 0.01 (±0.001) 0.01 (±0.001) 0.009 (±0.001) 0.008 (±0.001) 0.007 (±0.001)

Stroop −0.001 (±0.001)
† −0.001 (±0.001)

† −0.001 (±0.001)
† 0 (±0.001) 0 (±0.001)

Intelligence

MWT −0.016 (±0.001) −0.015 (±0.001) −0.014 (±0.001) −0.014 (±0.001) −0.014 (±0.001)

RIAS non-verbal 0 (±0.001)
† 0 (±0.001) 0.001 (±0.001)

† 0 (±0.001) 0.001 (±0.001)
†

RIAS total −0.011 (±0.001) −0.011 (±0.001) −0.009 (±0.001) −0.009 (±0.001) −0.007 (±0.001)

RIAS verbal −0.015 (±0.001) −0.014 (±0.001) −0.012 (±0.001) −0.012 (±0.001) −0.01 (±0.001)

Reading fluency SLRT pseudo-words −0.018 (±0.001) −0.017 (±0.001) −0.015 (±0.001) −0.014 (±0.001) −0.012 (±0.001)

SLRT words −0.019 (±0.001) −0.017 (±0.001) −0.015 (±0.001) −0.014 (±0.001) −0.012 (±0.001)

Working memory

Memory updating −0.011 (±0.001) −0.01 (±0.001) −0.008 (±0.001) −0.008 (±0.001) −0.006 (±0.001)

Operation span −0.018 (±0.001) −0.018 (±0.001) −0.015 (±0.001) −0.015 (±0.001) −0.012 (±0.001)

Sentence span −0.016 (±0.001) −0.015 (±0.001) −0.014 (±0.001) −0.013 (±0.001) −0.012 (±0.001)

Spatial short-term mem. 0 (±0.001)
† 0 (±0.001) 0.001 (±0.001)

† 0.001 (±0.001)
† 0.001 (±0.001)

†

Table 1: Effect sizes of interaction terms ± standard error between entropy(top)/surprisal(bottom) and psychometric test
scores.† indicates that the inclusion of the interaction term did not lead to a significant increase or decrease in ∆LL.

Word-level predictors. To extract surprisal and contex-
tual entropy estimates, we deploy the German versions of
five pretrained transformer-based LMs of different families
and sizes, namely GPT-2 base and large (Radford et al.,
2019), Llama 2 7b and 13b (Touvron et al., 2023), and
Mixtral (Jiang et al., 2024). For details, see Appendix A.1.
We compute word-level surprisal by summing the surprisal
values of the sub-word tokens (Sennrich et al., 2016; Song
et al., 2021). Similarly, to obtain the word-level contex-
tual entropy, we use the sum of the sub-word token-level
contextual entropy values as proxy for the joint entropy of
the sub-word tokens’ distributions (see Appendix A.2 for
details).
We further include lexical frequency and word length in our
analyses as they are known to have an impact on human
reading behavior (see Appendix A.1 for details).

Psychometric scores. The psychometric assessment in In-
DiCo includes a total of 13 tests targeting different cognitive
domains such as verbal and non-verbal working memory,
cognitive control and intelligence, as well as reading flu-
ency. A list of tests and their abbreviations can be found in
Appendix B. We transform all test scores such that higher
scores indicate higher performance.

4.1 Assessing the PP and magnitude of interactions
between surprisal/entropy and psychometric
scores (H1,2)

First, we investigate whether the interaction between cog-
nitive scores and surprisal, or entropy, leads to an in-

crease in predictive power on reading times (H1). We
define a baseline model Mb

1 with predictors xb1
ij includ-

ing the word-level predictors li (word length), fi (lexical
frequency), si, hi, and the subject-level predictor cj de-
noting the test score of a specific psychometric test (e.g.,
word-reading fluency) obtained for subject j. We addition-
ally include a by-subject intercept β0j , thus, Mb

1 : yij ∼
β0 + β0j + β1 li + β2 fi + β3 si + β4 hi + β5 cj ., where
yij refers to the log-transformed first-pass reading time of
subject j for the ith word in the stimulus corpus across all
texts.
The target models are defined as Mts

1 and Mth
1 , including

an additional interaction term between either surprisal or en-
tropy and a given psychometric score cj (e.g., word-reading
fluency score) obtained for subject j, xq1

ij ∈ {si · cj , hi · cj}:
Mt

1 : yij ∼ β0 + β0j + β1 li + β2 fi + β3 si + β4 hi +
β5 cj + β6 xq1

ij . A positive ∆LL between the target and
the baseline model indicates that including the participant’s
score of a given psychometric test improves the prediction
on the held-out test data. We run paired permutation tests
to establish whether a given ∆LL is significantly different
from 0 at α = .05. We then re-run the target models Mts

1

and Mth
1 on the entire dataset to examine the effect sizes

(coefficients) of the interaction term between the scores and
the surprisal and entropy estimates, β6.

3



On language models’ cognitive biases in reading time prediction

Figure 1: Difference in PP (∆PP) (mean and 95% CI) of surprisal and contextual entropy for reading times. Positive ∆PP
indicate higher PP for high-performing individuals; negative ∆PP indicates higher PP for low-performing individuals.

Results. We present the effect sizes of the interaction
between scores and predictability measures in Tab.1.1

Coloured cells indicate significant increases in PP. Overall,
the interaction terms between surprisal/entropy and most
psychometric scores lead to significant increases in PP, ex-
cept for Stroop, non-verbal RIAS and spatial short-term
memory. Notably, PP is not significant or, if significant,
extremely small for these three scores across all models.
Additionally, there are notable differences among different
cognitive domains: modulating surprisal with scores tar-
geting reading fluency or the working-memory span tests
yields the highest predictive power, followed by verbal in-
telligence scores. Finally, we note that interactions with
surprisal extracted from the GPT-2 family have the highest
PP. Conversely, interactions with GPT-based entropy have
the lowest PP.
Next, we assess the magnitude of the interaction term coeffi-
cients (H2). We notice that for a given psychometric test, all
models consistently modulate surprisal and entropy effects
in the same direction. For most psychometric tests, higher
scores result in a reduction of surprisal and entropy effects,
indicated by the negative interaction term coefficients. This
suggests that individuals with higher scores show lower sen-
sitivity to a word’s predictability. This holds true across all
tests, the only exception being the Simon test, providing a
measure of non-verbal inhibitory cognitive control. Here,
high-performing individuals exhibit larger surprisal effects.
Positive coefficients are also found for the Stroop task and
the non-verbal part of the RIAS (intelligence), although they
are extremely small.

1Fig. 4 additionally shows the ∆LL across all psychometric
tests and models.

4.2 Assessing the difference in predictive power
between cognitive profiles (H3)

Finally, we investigate whether there are differences in the
predictive power of LM surprisal and entropy for reading
times obtained from individuals with different cognitive
profiles. In other words, we ask the question what type of
psycholinguistic subject a given language model emulates.
To do so, we split the reading time data into subsets of high-
performing (↑) and low-performing individuals (↓) at the
median of each score. Then, for each group, we compute
the ∆LL between the baseline model Mb

3 and the target
model Mt

3 with an additional predictor of interest xq3
i ∈

{si, hi}, i.e. either surprisal or entropy. The individual
∆LL↓ and ∆LL↑ indicate the predictive power of surprisal
and entropy for each group separately. In order to answer
which group exhibited a higher relative gain in PP, we assess
the difference in predictive power ∆PP

def
= ∆LL↑ −∆LL↓.

Results. Fig.1 presents the differences (mean and 95% CI)
in predictive power (∆PP) of surprisal or entropy between
two groups that performed above or below the median, re-
spectively, in a given psychometric test. ∆PP > 0 indicates
higher PP for the high-performing group, ∆PP < 0 indi-
cates higher PP for the low-performing group.
First, looking at the results for entropy, we note that across
all models, entropy predicts the RTs of individuals among
the high-performing groups in the memory-updating and
operation-span tests significantly better. For surprisal, we
find that across all models, RT predictions are significantly
better for the low-performing group in the operation span
test as well as the vocabulary size test MWT. Moreover,
surprisal extracted from GPT-large and Llama 7B leads to
significant gains in PP for the low-performing group in the
RIAS test, which like MWT assesses verbal intelligence.
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5 Discussion
In summary, our findings suggest that (1) individuals exhibit
surprisal and entropy effects relative to certain cognitive
capacities, and that (2) a given language model may have
higher predictive power of reading times for individuals
with a certain cognitive profile.

5.1 Implications for the cognitive mechanisms of
language processing

In our first two experiments, we found a negative coeffi-
cient for the interaction terms between surprisal and reading
fluency. Compared to other psychometric scores, these co-
efficients are relatively large (see Tab. 1) and the interaction
terms’ ∆LL are high (see Fig. 4). The coefficient can be
interpreted from two perspectives. From the participants’
perspective, it underlines that individuals with high reading
fluency exhibit lower surprisal effects. These results might
indicate that less fluent readers rely more on predictive pro-
cessing, hence their reading is easily interrupted by less
predictable continuations, leading to longer reading times.
Experienced readers, on the other hand, might be more
trained to integrate unexpected material effortlessly. From
the models’ perspective, on the other hand, it means that
LMs overestimate the surprisal effect exhibited by highly
fluent readers. Similar arguments can be made for the ver-
bal intelligence test (RIAS-verbal), which is correlated with
reading fluency (cf. Figure 2).
Regarding working memory, the span tests (operation and
sentence span) lead to substantial increases in PP, and the
magnitude of their interaction terms indicate that individu-
als with higher scores in both tests show weaker surprisal
effects. This might be explained by the fact that high work-
ing memory can be associated with the capability to hold
competing continuations in memory, including less likely
ones that sometimes turn out to be the actual continuation.

5.2 Cognitive profiles of language models
Regarding the bias analyses, the results presented in Fig-
ure 1 revealed that surprisal estimates across all tested mod-
els predicted RTs better for the group of individuals with
low verbal intelligence scores, measured with two largely
complementary tests: one that assesses word knowledge
(MWT-B), and one that assesses verbal logical thinking via
question answering and sentence completion (RIAS-verbal).
At first glance, this result is surprising since a language
model has been exposed to billions of tokens, and there-
fore, one might expect that it emulates a psycholinguistic
subject with high verbal intelligence. However, a language
model’s predictions are always relative, i.e., even if it has
seen infrequent words, it will still have a preference in terms
of likelihood for the more regular, frequent continuation.
Individuals with high verbal intelligence do not struggle
with such contexts since they are very familiar even with
uncommon terminology.

Additionally, we found that the PP of entropy is significantly
higher for individuals with high working memory capacities,
measured via memory updating and sentence span. This
result suggests that uncertainty measures about upcoming
material exhibited by LMs are more in line with the way
high-working memory individuals process language, po-
tentially driven by taking into account longer contexts, or
keeping track of relevant long dependencies.
Even though most results from all three experiments are
consistent within and across different LM families, there
are exceptions. For instance, entropy estimated from GPT-
2 large showed the strongest increase in PP for the high
reading-fluency word reading group (Figure 1). For the high
reading-fluency pseudo-word reading group, it represents
the only measure with a significant increase in PP. This
suggests that entropy extracted from GPT-2 large is a better
proxy of processing effort for readers with lower verbal
intelligence than entropy estimated with GPT-2 base. This
illustrates that the choice of LM to estimate predictability
measures is crucial for downstream analyses in psycholin-
guistic studies or NLP applications, especially when work-
ing with specific target groups. In such settings, it might be
worthwhile considering a model that is less biased, or, in
other words, whose predictability measures are well-aligned
with the target group at hand as it will most likely lead to
more accurate results.
While this study was aimed at uncovering model-internal
biases, it might be worthwhile to, in turn, extend the inves-
tigation to whether text produced by a given LM is biased
towards being processed more easily by individuals with
specific cognitive characteristics. This is particularly impor-
tant for tasks such as text summarization or simplification
that might need to be tailored to specific groups.

6 Conclusion
To date, most investigations on predictability effects have
been conducted on the group-level, assuming that the pre-
dictive power of next-word predictability metrics such as
surprisal or entropy on human reading times is uniform
across cognitive profiles. Our work illustrates how the use
of LMs in the context of psycholinguistic studies can be
reveal aspects about how these systems process language.
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Impact Statement
Our work underscores the importance of considering
individual-level information to better understand how LMs
function internally and enhance their predictive accuracy
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in modeling human reading behavior. As mentioned in the
discussion, it needs to be investigated whether our findings
are corroborated when studying whether text produced by a
given LM is biased towards being processed differently by
individuals with specific cognitive characteristics. Neverthe-
less, by understanding how individual cognitive differences
influence reading comprehension and processing, educa-
tional tools can be tailored (i.e., by using specific LMs)
to meet the specific needs of different learners, possibly
leading to more effective teaching strategies and improved
learning outcomes, particularly for students with diverse
cognitive profiles.
From a Human-Computer Interaction point-of-view, incor-
porating individual differences into LMs could lead to more
personalized and user-friendly interfaces. This can enhance
user experience across various applications, and can eventu-
ally help in developing more fair and unbiased systems.
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A Details on predictors

A.1 Language Models
We deployed the following German LMs from the Huggingface library (Wolf et al., 2019):

• GPT-2 base: https://huggingface.co/benjamin/gerpt2
• GPT-2 large: https://huggingface.co/benjamin/gerpt2-large
• Llama 2 7b: https://huggingface.co/LeoLM/leo-hessianai-7b
• Llama 2 13b: https://huggingface.co/LeoLM/leo-hessianai-13b
• Mixtral: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1

Lemma frequencies were extracted from dlexDB (Heister et al., 2011), based on the reference corpus underlying the Digital
Dictionary of the German Language (DWDS; Berlin-Brandenburgische Akademie der Wissenschaften, 2016). Word length
is defined as the number of characters including punctuation. Henceforth, we denote the word-level predictors surprisal si,
contextual entropy hi, log-lemma frequency fi, and word length li for a word i.

A.2 Pooling of surprisal and contextual entropy to word level
We compute word-level surprisal by summing up the surprisal values of the individual sub-word tokens. Given k sub-word
tokens un, un+1, . . . , un+k belonging to the same word token, the word token’s surprisal is computed as

s(un, un+1, . . . , un+k) = − log p(un, un+1, . . . , un+k | u<n)

= − log [p(un | u<n)p(un+1 | u<n+1) . . . p(un+k | u<n+k)]

= − log p(un | un) +− log p(un+1 | u<n+1) + · · ·+− log p(un+k | u<n+k),

which shows that summing up sub-word token surprisal values is equivalent to computing the surprisal of the joint distribution
of the sub-word tokens.
As regards entropy, we use the sum of the sub-word token-level contextual entropies as proxy for the joint entropy of the
sub-word tokens’ distribution. Given k Σ̄-valued random variables Un, Un+1, . . . , Un+k belonging to the same word token,
their joint entropy is defined as:

H(Un, Un+1, . . . , Un+k)
def
= −

∑
un∈Σ̄

∑
un+1∈Σ̄

· · ·
∑

un+k∈Σ̄

P (un, un+1, . . . , un+1) log2 [P (un, un+1, . . . , un+1)] .

However, depending on the tokenizer, the cardinality of Σ̄ could be over 50,000, which makes the computation of the joint
entropy computationally unfeasible. Instead, we use the sum of the individual entropies as proxy. This is only a proxy, since

H(Un, Un+1, . . . , Un+k) ≤ H(Un) + H(Un+1) + · · ·+H(Un+k).

This inequality is an equality iff Un, Un+1, . . . , Un+k are statistically independent. Since this is not the case here, the sum
of the sub-word token-level entropies is used as an upper bound.

B Individual Differences Corpus (InDiCo)
As mentioned in the main text, following previous work (Wilcox et al., 2023b, i.a.), we employ first-pass reading time
(FPRT) –also referred to as gaze duration; the sum of all fixations on a word when fixating it for the first time–as a proxy for
processing load: whereas total fixation duration can incorporate words from the right context due to regressive saccades,
FPRT most strongly reflects the initial processing difficulty. Given that in our study, we only deploy auto-regressive LMs
(cf.§4), FPRTs are also more in line with the fact that these models only have access to a word’s left context.
We provide abbreviations and a brief summary of all psychometric tests in Tab. 2. More details can be found in Haller et al.
(2023). A correlation matrix between all tests can be found in Fig.2. We can see strong correlations between many tests, in
particular for the ones of the same psychological construct.

C Additional results

C.1 Baseline analyses
To corroborate results from previous work, we also assess the predictive power of entropy and surprisal in general, not
taking into account individual psychometric scores. We define a baseline model Mb

0 with predictors xb0
i including the
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Figure 2: Correlations between scores of all psychometric tests. Red cells indicate positive correlation coefficients, blue
cells negative correlation coefficients. Significant coefficients are displayed, blank cells indicate that the correlation was not
significant with α = .05.
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word-level predictors word length li, log-lemma frequency fi, a global intercept β0, and an additional random by-subject
intercept β0j , i.e.,

Mb
0 : yij ∼ β0 + β0j + β1 li + β2 fi, (3)

where yij refers to the log-transformed first-pass reading time of subject j for the ith word in the stimulus corpus across all
texts and following a log-normal distribution. The target models Mts

0 and Mth
0 solely include an additional surprisal or

entropy term, i.e., si or hi.

0e+00

1e−03

2e−03

3e−03

Entropy Surprisal Combined

Model GPT−2 base GPT−2 large Llama 7B Llama 13B Mixtral

Figure 3: Predictive power of entropy and surprisal on reading times. Combined refers to the regression model where
both predictors were included. Higher ∆LL indicates higher predictive power.

As depicted in Fig.3 surprisal and contextual entropy exhibit predictive power (PP), albeit consistently lower for the latter.
For GPT-2 base and large, adding both surprisal and contextual entropy as predictors increases the PP; for the other models,
the combined version yields the same PP as using surprisal alone. Across models, GPT-2 base has the highest PP, with PP
decreasing as model size increases.
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Figure 4: ∆LL (mean and 95% CI) for the interactions between psychometric scores and model surprisal or entropy as
additional predictors for reading times. Empty dots indicate that the ∆LL is not significantly different from zero.
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