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Introduction. Many physical systems, notably in cell and molecular biology, operate in an out-
of-equilibrium regime and are subject to intrinsic stochasticity. Unravelling the structure of the
underlying system from noisy, partial measurements is a central scientific problem that is key to
gaining mechanistic understanding and predictive insights into system behaviour. We consider a
generic class of processes, such as gene expression dynamics in cells, which can be modelled using a
(possibly high-dimensional) continuous stochastic dynamical system of the form

dXt = v(Xt) dt+ σ dBt, X ∈ Rd, (1)
where v models an (a priori unknown) vector field describing deterministic aspects of the system, and
σ determines the noise intensity. Given some set of observations on Xt drawn from equation 1, two
related tasks arise. The first task, which we refer to as dynamical inference, deals with constructing
from measurements an estimate of the underlying vector field v. From a good estimate of v, properties
of the dynamics such as bifurcations or attractors can be deduced. On the other hand, structure
learning aims to reconstruct the causal relationships between each of the d variables in X . A system
with only dyadic causal relationships can be described thus by a directed graph with d vertices,
where an edge i → j implies that variable i “causes” j in some appropriate sense1. Naturally,
some knowledge of v is advantageous for this task, also referred in various literatures as a network
inference, structure learning, and system identification.
We consider the setting where our observations consist of snapshots of particles from equation 1
at a series of time-points t1, . . . , tT . Concretely, we observe the following empirical distributions
for 1 ≤ i ≤ T , p̂ti = N−1

i

∑Ni

j=1 δX(i)
j

, where {X(i)
j }j are independent samples from P(Xti = ·),

and each timepoint is sampled from an independent realization of the process equation 1. We aim to
jointly learn a functional reconstruction of the vector field v as well as a representation of the causal
dependencies between the d variables at play in the form of a d× d graph G.
We build upon a number of recent works [2, 1, 3] and introduce a principled framework for the joint
estimation of v as well as the graph G. We use simulation-free flow and score matching (SF2M) [2]
conditioned on entropy-regularized optimal transport (EOT) couplings to regress v̂. We parameterize
v̂ with a neural graphical model (NGM) [1] which incorporates the causal graph G into its underlying
network structure. Our approach (NGM-SF2M)2 is simulation-free during training, which enables
scaling to high-dimensional systems compared to the counterpart approaches.

Method. Given a pair of snapshot observations p̂ti , p̂ti+1
, solving the EOT problem

min
π a coupling of p̂ti

,p̂ti+1

⟨C, π⟩+ ε⟨π, log π⟩ (2)

with cost C(x, y) = 1
2∥x − y∥22 and ε = σ2(ti+1 − ti) yields the static Schrödinger Bridge (SB)

between the two snapshots. When v = −∇V , this approach is known to be consistent in recovering
the vector field [4]. We thus use the SB (equation 2) as the building block for our estimator. equation 2
is associated with a corresponding vector field u that generates the dynamic SB between ti and ti+1.
SF2M uses the elegant connection of EOT with the dynamic SB along with characterizations of
the Brownian bridge to provide a simulation-free approach to learning a neural estimator of u.
From equation 1 we seek to recover the autonomous field v, while the objective in [2] targets
the SB probability flow u. The quantities of the ground truth process equation 1 are related via
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1We remark that numerous, non-equivalent, definitions of causality (Granger, transfer entropy, etc.) exist.

Here, we consider as our criterion local independence [1] which is well-defined for continuous-time systems.
2We note that [2] introduces an approach for joint structure learning and dynamical inference, but is limited to

unconditional dynamics. Our method differs in several ways, most notably in that we incorporate interventional
data and learn conditional dynamics, improving the structure learning and dynamical inference performance.
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vflow(x) = v(x)−σ2

2 ∇ log pt(x), where ut,∇ log pt are the probability flow field and the score of the
Brownian bridge pinned at (ti, xi), (ti+1, xi+1) respectively. We therefore make the parametrization
choice ut(x) = v̂θ(x)− σ2

2 sϕt (x).

Figure 1: (a) Dynamical inference accuracy (b) AUPR Score Comparison (c) NGM-SF2M vs. NGM-
NODE scaling efficiency (d) Jacobian and Causal Network Heatmaps (e) Network Construction

Results. We consider a synthetic dataset following the paradigm in [3]. We use BoolODE [5] to
simulate gene expression dynamics for a system with 8 genes (d = 8) which exhibits trifurcating
trajectories. We do this for the observational response (wild-type, no interventions) and response under
7 different interventions (knockouts) where we remove the respective gene from the system. After
simulation, we construct 5 marginals with 1,000 cells each in the observational and interventional
settings. We compare with two methods which consider joint inference of underlying network
structure and system dynamics – Reference Fitting (RF) [3] and nonlinear models such as the NGM
which requires simulation during training (trained via NeuralODEs) [1].
We show our results in Figure 1. We observe that using interventions (knockouts) significantly
improves the network inference accuracy for all models, with observable improvements in AUPR and
gene-gene interaction strength Figure 1(b)(d). Although RF outperforms NGM-SF2M, this is likely
due to the linearization process which captures the dominant trends in the transient dynamics, which
were sufficient to explain the key network interactions. To evaluate the performance of NGM-SF2M
for dynamical inference, we use a leave-one-out time point test set, where models were trained
excluding time point t and then used to simulate trajectories from t − 1 to t. Performance was
measured using the Wasserstein-2 distance between simulated and ground truth distributions . As
shown in Figure 1(a), NGM-SF2M outperforms RF across all leave-one-out timepoints, with the
SDE variant achieving the lowest Wasserstein-2 distance. Lastly, we evaluate the performance of
NGM-SF2M (simulation-free) relative to NGM (requires simulation) as d increases. For this, we
consider a toy linear system where we can control d. From Figure 1(c), we observe that NGM-SF2M
can maintain competitive AUPR relative to NGM-NODE at the fraction of the computational cost.

Conclusion. We introduce a principled approach for jointly recovering the underlying network
structure and dynamic response of a physical system. We show that our simulation-free method,
NGM-SF2M, not only exhibits improved scaling relative to NGM on progressively larger linear
systems, but also consistently retrieves a competitive recovery of the underlying network structure.
Moreover, we show that incorporating interventional data yields improved performance for inferring
network interactions. Our results indicate that while RF recovers marginally more accurate network
structure, NGM-SF2M yields improved performance on the joint task – dynamical inference and
structure learning. In future work, we aim to extend our framework to higher-dimensional systems,
real-world settings, and integrate multi-modal data such as chromatin accessibility.
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Meaningfulness. The stochastic dynamical systems we consider here are used ubiquitously in the
biophysics and modelling literature. In a biological context, our vector field v can be related to the
metaphorical “Waddington’s landscape”.
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