
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PLICOTABTRANSFORMER: FOLDING TABULAR EM-
BEDDINGS INTO M VECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tabular data represents the most prevalent and extensively utilized form of struc-
tured data in various domains. Traditionally dominated by tree-based algorithms,
researchers are actively exploring the application of deep neural networks on tab-
ular data. Notably, the TabTransformer (Huang et al., 2020) and FT-transformer
(Gorishniy et al., 2021) showed that feeding column embeddings of the tabular
features into a transformer could learn a representation of the columns and how
the embeddings interact with one another. This paper introduces PlicoTabTrans-
former, an enhancement of the previous methods, which is designed to learn mul-
tiple representations of the column embeddings. By incorporating a transformer
with multiple learnable position embeddings and a contrastive learning loss, our
method learns multiple distinct and orthogonal representations (denoted as plico
vectors) of the column embeddings. We evaluated the PlicoTabTransformer with
the pytorch-frame benchmark. Our experimental demonstrated that the PlicoTab-
Transformer is overall top ranked algorithm and achieves state of the art perfor-
mance in several datasets compared to other deep learning method closing the gap
with tree based algorithms. Our method provides an added advantage to visualise
redundancies and a potential dimensionality reduction technique.

1 INTRODUCTION

Figure 1: Visual representation of plico vectors: Training on the soil coverage dataset, we can
assess the attention of each plico vector (centre nodes) towards each column features (outer nodes)
from the soil coverage dataset. More details in Section 4.3.

Structured tabular data is among the most prevalent and extensively utilized form across various
domains and industries. Sectors including healthcare (e.g., patient outcomes and treatment effi-
cacy), financial services (market trends, assess risks), and retail (sales patterns, manage inventory)
rely heavily on tabular data to enhance data-driven decision-making processes. Neural networks
have great success in unstructured data including computer vision and natural language processing
(NLP) beating traditional machine learning and decision tree algorithms in tasks ranging from image
classification, language translation, time series forecasting, etc. However, decision tree algorithms
generally still outperform perform neural networks in tabular data.

The recent works in neural networks bring down the performance gap by utilizing attention mech-
anisms for tabular data (Arik & Pfister, 2021; Du et al., 2021; Huang et al., 2020; Somepalli et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2021; Gorishniy et al., 2022; 2021). In general, researchers have found that embedding both cate-
gorical and numerical features and feeding the embeddings into a transformer could learn a repre-
sentation of the columns and how the columns interact with one another. The representation is then
fed into a downstream model to predict the dataset’s task.

We present the PlicoTabTransformer (plico is Latin for folding) that builds upon previous methods
to learn multiple distinct representations of the embeded categorical and numerical tabular features.
In our method, we feed the embedded input features into the transformer architecture multiple times
each with a separate learnable positional embedding to encourage the transformer to attend to dif-
ferent columns within the dataset. Each pass of the input features through the transformer produces
a representation of the embedded input features (denoted as plico vectors). We adapted a contrastive
loss paradigm to force the plico vectors to be distinct and orthogonal to each other. The plico vectors
are then fed into a downstream predictor for the dataset’s task.

We evaluated our model with pytorch-frame (Hu et al., 2024), which includes state of the art decision
tree algorithms and neural network models. We evaluated our method using the framework’s stan-
dard benchmarking scripts, datasets, and the dataset splits. When compared to other deep learning
methods, we found that PlicoTabTransformer achieved state of the art performance on a subset of the
standard datasets and achieved comparable performance on the remaining datasets. Our experiments
revealed that PlicoTabTransformer was the highest ranked among deep learning methods.

Our key contributions are:

• Feeding embeddings into a transformer multiple times each with different positioning em-
beddings to learn multiple representations of tabular data

• Creating distinct and orthogonal representations of the tabular data using contrastive learn-
ing

• PlicoTabTransformer achieves state-of-the-art performance among deep learning models

2 RELATED WORK

This section begins by exploring deep learning techniques applied to tabular data. We then discuss
methods for learning the positional embeddings, and different contrastive loss functions.

2.1 TABULAR DEEP NETWORKS

Tabular deep networks are specialized for structured tabular data, using embeddings, attention mech-
anisms, knowledge graphs, etc. to build representations of the input data facing challenges like
missing values, categorical features, and sparsity. TabNet (Arik & Pfister, 2021) introduced a novel
method which uses sequential attention mechanisms to selectively process input features at each de-
cision step. On the other hand, TabularNet (Du et al., 2021) decodes the intricate semantic structures
inherent in tabular formats, going beyond traditional spatial relationships to also consider relational
information between data elements. TabTransformer (Huang et al., 2020) aimed to build a strong
representation for categorical features by embedding the features and feeding it into a transformer.
SAINT (Somepalli et al., 2021) extends TabTransformer by integrating self-attention mechanisms
not only across the features but also along the sequence of rows with a contrastive self-supervised
pre-training method. By doing this, SAINT was able to capture more complex inter-feature and
intra-feature relationships. FT-Transformer (Gorishniy et al., 2022) and (Gorishniy et al., 2021) fur-
ther refines the transformer approach by incorporating feature tokenization, transforming categori-
cal and numerical features into a unified representation before processing them through transformer
blocks. Suggesting that input feature embeddings (for both categorical and numerical respectively)
was a major contributor to improving neural network’s performance. Trompt introduces prompt
learning in tabular data to derive feature importances instead of focusing on the interactions among
column like the regular transformer based models (Chen et al., 2023b). Authors of ExcelFormer
(Chen et al., 2023a) introduce an inductive bias into the self-attention mechanism (semi-permeable
attention) that selectively limits the influence of less informative features. By doing this only more
informative features are permitted to propagate. In Ruiz et al. (2024), the authors use auxilary knowl-
edge graphs describing input features to regularize multi layer perceptron. It updates each feature

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

embedding using a trainable message-passing function, which is optimized based on the supervised
loss objective for the tabular data.

2.2 LEARNABLE POSITION EMBEDDINGS

Unlike recurrent neural networks, transformers do not have information on the relative or absolute
position of the tokens in the sequence (Vaswani et al., 2017). Learnable positional embeddings
(Gehring et al., 2017) was introduced by feeding the sequence indexes into embeddings layers to
provide positional information to the neural network. Vaswani et al. (2017) showed that feeding the
sequence indexes through sinusoidal functions at different frequencies could effectively inject posi-
tional information into a transformer, reducing the computational requirements. Recent works have
shown the possibility of enhancing positional embeddings. Learnable sinusoidal positional encod-
ing (LSPE) showed that feeding sinusoidal positional encoding through a feed forward network had
better performance that just the sinusoidal positional encoding for document understanding tasks
(Wang et al., 2022). Flow based Transformer (FLOATER) introduces a flexible positional encoding
scheme that learns position information dynamically and is not restricted to the maximum length of
the input (Liu et al., 2020).

2.3 CONSTRASTIVE LOSS

Contrastive learning aims to minimize the distance between embeddings of certain samples while
maximizing the distance between embeddings of other samples. Chopra et al. (2005) trained a
network to minimize the distance between image embeddings from image pairs in the same class and
maximize the distance if they come from different classes. Chen et al. (2020) presented SimCLR
where augmentations of images are generated and the embedding of the augmentations (positive
samples) are trained to be close to the original image (anchor) and far from other images (and
their augmentations). Supervised Contrastive Learning (Khosla et al., 2020) extended SimCLR
incorporating label supervision, encouraging clusters of similar instances in the embedding space.
StableRep (Tian et al., 2024) addresses the instability in contrastive learning by introducing methods
to stabilize representation learning, ensuring robustness across diverse training scenarios.

3 METHODS

PlicoTabTransformer consists of three main components: columns embedding, plico vectors en-
coder, and downstream predictor. Let (X,y) be the feature-target pair. X ≡ {Xcat,Xcont} where
Xcat denotes categorical features and Xcont continuous features. X has a total of D columns, we
denote D1 as the number of columns of categorical features and D2 as the number of columns of
continuous features so D1 +D2 ≡ D. Xcat ≡ {x1, . . .xD1} where xi is a column of categorical
features and Xcont ∈ RD2 . Depending on the dataset, y could also be categorical or continuous
leading to classification or regression task, respectively.

We first feed the input X into the columns embedding component to obtain embeddings for each
D columns. The embedded input feature is then fed through the plico vector encoder to extract
M distinct representations from the D columns. The downstream predictor is an MLP trained for
classification or regression.

The overall architecture is present in Figure 2. We describe the components in the subsequently
sections.

Input

X

Columns
embedding

Plico vectors
encoder

{p1 . . .pM}

Downstream
predictor

ypred

Figure 2: Overall architecture of our method.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 COLUMNS EMBEDDING

Similar to most recent architectures for tabular data, categorical and continuous input features are
separately analysed. Categorical features are tokenized and fed through an embedding layer. Con-
tinuous features are embedded through a dense layer. Similar to Trompt (Chen et al., 2023b), we fed
the embedded input features through normalisation layers to ensure that categorical and continuous
input features are relatively equal in magnitude.

The embedded input features are concatenated to E ∈ RB×D×C , where B is the batch size, D is
the number of columns in the dataset, and C is the number of channels in the embedding or dense
layers. The columns embedding architecture is shown in Figure 3.

Input

X

Categorical

Embeddings

Layer norm

Continuous

Dense

ReLU

Layer norm

concat

E ∈ RB×D×C

Figure 3: Architecture of the columns embedding component.

3.2 PLICO VECTORS ENCODER

The plico Vectors encoder takes the embedded input features E and returns M plico vectors
{p1,p2 . . .pM} where pm ∈ RB×C . M is a hyperparameter that could be tuned depending on
the dataset.

Similar to the FT-transformer (Gorishniy et al., 2021), we model each column within E ≡
{e1, e2 . . . eD} as a sequence and feed them through transformer layers so that each column em-
bedding can learn to attended to the other column embeddings. Unlike the FT-transformer, we fed
E through the transformer M times (denoted as multi-pass) each with different learnable positional
embeddings (LPE, details are described in Subsection 3.2.1). Column-wise sum was performed
during each of the M passes resulting in M plico vectors. We included a contrastive loss to ensure
that the plico vectors are distinct and orthogonal to one another (details are described in Subsection
3.2.2). Figure 4 presents the architecture.

3.2.1 LEARNING POSITIONAL EMBEDDING AND MULTI-PASS TRANSFORMER

We trained M separate positional embeddings to encourage the transformer to attend to different
columns for each pass. We found that tokenizing the column indexes {1 . . . D} to an embedding
layer as a mapping of the position provided the best results (Gehring et al., 2017). For each m ∈
{1 . . .M} pass, we trained positional embeddings is in the form of PEm = {pem,1, . . . ,pem,D}.
The positional embedding is combined with Em resulting in {e1 + pem,1, e2 + pem,2 . . . eD +
pem,D} then fed into the transformer. Column-wise sum was performed on the output of the trans-
former to get a plico vector pm ∈ RB×C .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Embedded input features E

RB×N×C

+ + +. . .

LPE1 LPE2 LPEM

Transformer

Column-wise sum

p1 p2 pM pi ∈ RB×CContrastive loss

Figure 4: Architecture of the Plico Vectors encoder.

3.2.2 MAXIMISE DIFFERENCES BETWEEN PLICO VECTORS

To encourage the plico vectors to be distinct and orthogonal, we included a loss function on the plico
vectors where vectors from the same mth pass are pulled together and vectors from other passes are
pushed away, similar to a contrastive learning paradigm.

We adapted the self-supervised contrastive loss, as described in (Khosla et al., 2020), to our appli-
cation that takes the form of:

Lc =
∑
i∈I

log
exp(pi · pj(i)/τ)∑

a∈A(i) exp(pi · pa/τ)
(1)

where I ≡ {1 . . .M}, pi are plico vectors for index i and pj(i) are other plico vectors from
{1 . . .M} \ {i}. · is the dot product, τ is a temperature parameter, and A(i) ≡ I \ {i}.

Please note that in equation 1 of (Khosla et al., 2020), the authors designed their loss function to pull
the embeddings of different augmentations (a.k.a "views") together. Our contrastive loss needs to
perform the opposite (push the embeddings within the same view away from one another). Hence,
we removed the negative sign in Equation 1.

We also experimented with other loss functions including the cross entropy and multi margin loss.
To feed the plico vectors into the other loss functions, the plico vectors are concatenated and flattened
to R(B·M)×C . The label for the loss function was generated by tiling {1 . . .M} B times resulting
in labels of size B ·M .

3.3 DOWNSTREAM PREDICTOR

The output plico vectors {p1,p2 . . .pM} are concatenated and fed into an MLP.

Depending if downstream task is a classification or regression problem, we used cross-entropy loss
and mean squared error respectively. Combining the downstream task and plico vector contrastive
loss function, we get:

L = H + αLc (2)

where H is a classification or regression loss with the labels y, Lc is the contrastive loss between
plico vectors described in Section 3.2.2, and α is a tunable hyperparameter weighting the relative
strength between H and Lc.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

p1

p2

pM

co
nc

at

Dense Layer norm ReLU Dense Layer norm ReLU ypred

Figure 5: Downstream MLP.

4 EXPERIMENTS

4.1 SETUP

We built upon the pytorch-frame library (Hu et al., 2024) for experimentation. Pytorch-frame in-
cludes 23 binary classification datasets and 19 regression datasets collected from (Gorishniy et al.,
2021; 2022; Blake, 1998). A descriptions of the datasets can be found in 1.

4.2 EVALUATION RESULTS

In our experiments, we directly used pytorch-frame’s benchmark scripts which includes standardised
splits for the data and inbuilt hyperparameter tuning (with default parameters) using optuna (Akiba
et al., 2019). The hyperparameter search space for PlicoTabTransformer is presented in Table 1.

Table 1: Hyperparameters used for Plico

Search space Default DS_1 Default DS_5

Number of Plico vectors M [2, 4, 8, 12, 16] 4 4
Channels C [256, 320, 512, 768] 320 768
Transformer heads [8, 16, 32, 64] 16 32
Transformer layers [1, 2, 3] 2 2
Alpha α [0.01, 0.05, 0.1] 0.05 0.05
Batch size [128, 256] 256 128
Learning rate [1e-4, 5e-4] 1e-4 1e-4

We also used pytorch-frame’s implementations of existing algorithm, including Trompt (Chen et al.,
2023b), Excelformer (Chen et al., 2023a), and TabTransformer (Huang et al., 2020), as a comparison
to our method. We focused on experimenting with the medium datasets for binary classification. The
results for the small dataset are provided in Appendix A.1. DS_0 was omitted as there are out of
memory errors on the benchmark. The performance of our method was compared against pytorch-
frame’s leaderboard1.

Table 2 presents the classification performance. Similar to the analysis in (Chen et al., 2023b), we
ranked the algorithms based on the performance, where 1 is the best and 12 is the worst performing
algorithm. Furthermore, we measured each algorithm’s consistency by calculating the difference
between the algorithm’s performance and the best performing algorithm. The ranking and difference
from best algorithm is shown in Table 3.

From Table 3 we can observe that our method is the highest ranked deep learning method for binary
classification. Plico also has comparable performance to ExcelFormer (Chen et al., 2023a) when
using the difference from best measurement for binary classification.

1https://github.com/pyg-team/pytorch-frame/tree/master/benchmark

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Binary classification performance for medium datasets DS_1 to 8 (AUC - higher the better)

DS_1 DS_2 DS_3 DS_4 DS_5 DS_6 DS_7 DS_8

XGBoost 0.955 0.653 0.986 0.721 0.998 0.868 0.888 0.803
CatBoost 0.956 0.649 0.986 0.719 0.987 0.863 0.896 0.803
LightGBM 0.955 0.652 0.986 0.723 0.997 0.881 0.914 0.809
Trompt 0.95 0.652 0.982 0.716 0.966 0.882 0.883 0.705
ResNet 0.948 0.649 0.983 0.705 0.989 0.871 0.89 0.719
MLP 0.946 0.65 0.978 0.699 0.991 0.869 0.883 0.727
FTTrans.Buc. 0.947 0.649 0.986 0.651 0.832 0.866 0.877 0.688
ExcelFormer 0.948 0.651 0.982 0.716 0.995 0.879 0.883 0.814
FTTransformer 0.946 0.652 0.981 0.704 0.984 0.871 0.878 0.713
TabNet 0.945 0.65 0.977 0.706 0.993 0.862 0.889 0.797
TabTransformer 0.942 0.642 0.98 0.698 0.968 0.867 0.873 0.788
Plico 0.952 0.652 0.982 0.716 0.996 0.873 0.887 0.808

Table 3: Algorithm ranking for binary classification on medium datasets
Binary classification

Ranking Diff. from best

XGBoost 2.625 ± 2.233 0.007 ± 0.009
CatBoost 4.375 ± 3.773 0.008 ± 0.007
LightGBM 1.125 ± 1.166 0.001 ± 0.002
Trompt 5.875 ± 3.295 0.024 ± 0.034
ResNet 5.875 ± 2.088 0.022 ± 0.029
MLP 7.500 ± 1.581 0.023 ± 0.026
FTTransformerBucket 8.375 ± 3.462 0.054 ± 0.058
ExcelFormer 3.875 ± 1.965 0.007 ± 0.009
FTTransformer 7.000 ± 2.398 0.025 ± 0.031
TabNet 7.000 ± 3.000 0.013 ± 0.007
TabTransformer 9.375 ± 1.654 0.021 ± 0.011
Plico 3.000 ± 1.323 0.007 ± 0.008

4.3 EMBEDDING VISUALIZATIONS

To analyze the representation learned by Plico, we focus on the M positional embeddings (LPE in
Figure 4), which determines the contribution of the categorical and numerical features towards the
plico vectors. We trained the model with the default parameters in Table 1 on the soil covertype
dataset2 (input medium dataset DS_5).

In the first experiment, we visualised four positional embeddings using 3D t-SNE visualizations
(van der Maaten & Hinton, 2008) corresponding to M = 4 plico vectors. Figure 6 show distinct
clustering patterns, indicating that each encoder captures unique features. While there is some over-
lap between clusters, suggesting shared information across encoders, the variation in cluster density
and separation implies that each encoder contributes differently to the model’s understanding of the
data. This combination of redundancy and complementary suggests that the positional encoders
collectively enhance the model’s ability to represent and differentiate features effectively.

We then compared the differences between the gradients that pass through the four LPE (shown
in Figure 4). Specifically during back-propagation, we collected the gradients of the positional
encoder and represented it as a 2D matrix. The cosine similarity was then used to calculate the angle
between the 2D gradients and we plot them against each other in Figure 7. The graph provides a
visual representation of the angles of deviation between the gradients of four positional encoders
in a model, namely pos-encoder-1, pos-encoder-2, pos-encoder-3 and pos-encoder-4. Each radar
plot corresponds to one positional encoder and compares its gradient’s deviation with the other three

2https://www.openml.org/d/44120

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Visualization of four Plico position encoders trained on medium dataset DS_5

Figure 7: Angle between the gradients of Plico position vectors on medium dataset DS_5

encoders. A smaller angular deviation means that the encoders have more similar gradient directions
(i.e., they are learning similar features), whereas larger angles indicate they are learning different
positional features. For instance, in the plot for pos-encoder-1, it has a smaller deviation from pos-
encoder-3, indicating these two encoders are more alike in their learning behavior, while the larger
deviation from pos-encoder-4 indicates more distinct learning. The resulting angles between these
gradient vectors reveal significant divergence, indicating that the positional encoders have effectively
learned to capture different features or columns from the input data. This high angular separation
suggests that each encoder is specializing in distinct aspects of the data, enhancing the model’s
ability to represent diverse features.

Finally, we wanted to provide deeper insight into how the model allocates attention across different
columns of tabular inputs. The attention weights in Plico are extracted directly from the multi head
attention layers within the Transformer during the forward pass. When the input passes through the
transformer, weights of the attention layers are obtained. These weights represent how each position
in the input attends to every other position. The weights of the final forward pass then stored for later

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 8: Attention map of Plico position encoders on medium dataset DS_5

visualization, allowing for analysis of the model’s attention patterns across layers and heads. Figure
8 shows the heatmap visually illustrates how each of plico vectors learn distinct groups of inputs
and how they receive different levels of attention, indicating that the model has learned to identify
which features are most informative for making accurate predictions. The fact that the attention
is distributed in a structured way across the input data suggests that Plico is capturing meaningful
patterns and relationships between features, which contributes to its ability to generalize effectively
across the data. By doing so Plico achieves better representation of the input data, which plays a
critical role in achieving state-of-the-art results. This approach helps the model not only reduce
noise from less relevant features but also effectively group and process important patterns within the
data, further improving its predictive capabilities.

4.4 ABLATION STUDY

We conducted ablation studies to investigate the effects of different contrastive loss functions for
the plico vectors and different learnable positional embeddings. For this experiment, we fixed the
dataset to the KDD Census Income dataset (medium, binary classification - dataset_1)3 and the
hyperparameters to the default values as shown in Table 1.

4.4.1 PLICO VECTORS CONTRASTIVE LOSSES

Table 4 shows that the adapted self-supervised contrastive loss presented in Equation 1 had the best
results. In general, including a contrastive loss function on the plico vectors had improvements
compared to not included a loss function. We also presented the results of the contrastive loss as is
from Khosla et al. (2020), which is designed to pull the embeddings from different passes together.
This loss had degradation of performance even compared to not including a loss function.

4.4.2 LEARNABLE POSITIONAL EMBEDDINGS

From Table 5, we can observe that using learnable positioning embeddings outperform sinusoidal
positional embeddings described in (Vaswani et al., 2017). Furthermore, a standard embedding layer
had better performance compared to LSPE (Wang et al., 2022). With multiple passes to the trans-

3https://archive.ics.uci.edu/dataset/117/census+income+kdd

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Performance of plico contrastive losses

AUC

Self-supervised contrastive loss (Khosla et al., 2020) 0.9497
No loss function 0.9514
Cross entropy 0.9513
Stable Rep (Tian et al., 2024) 0.9516
Multi margin loss 0.9515
Adapted self-supervised contrastive loss (Equation 1) 0.9518

former, it is clear that using learnable positional embeddings could shift attention towards different
columns for each m pass.

Table 5: Performance of learnable positional embeddings

Learnable AUC

Sinusoidal (Vaswani et al., 2017) × 0.9511
LSPE (Wang et al., 2022) ✓ 0.9515
Embeddings (Gehring et al., 2017) ✓ 0.9518

5 CONCLUSION

In this paper, we introduced the PlicoTabTransformer, a novel approach that leverages multiple
passes of data through a transformer model with separate learnable position embeddings to learn
multiple distinct and orthogonal representations of tabular datasets. Our method demonstrated
state-of-the-art performance when compared to existing deep learning techniques in a subset of
the datasets and was among the top ranked deep learning algorithms.

Given the inherent diversity in structured tabular datasets, including variations in the number of
columns and the nature of column data, it is evident that different algorithms have different advan-
tages. We believe that PlicoTabTransformer is a compelling option among the available algorithms
which could be used for tabular data.

To our knowledge, PlicoTabTransformer is among the first works to perform multiple passes of em-
beddings into transformer with multiple positional embeddings and creating distinct representations
with contrastive learning. We hope that researchers could build upon this framework and apply this
method to other neural network architecture and applications.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework. In The 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 2623–2631, 2019.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 6679–6687, 2021.

C. L Blake. Uci repository of machine learning databases. 1998. URL http://www.ics.uci.
edu/Ëœmlearn/MLRepository.html.

Jintai Chen, Jiahuan Yan, Danny Ziyi Chen, and Jian Wu. Excelformer: A neural network surpassing
gbdts on tabular data. arXiv preprint arXiv:2301.02819, 2023a.

Kuan-Yu Chen, Ping-Han Chiang, Hsin-Rung Chou, Ting-Wei Chen, and Tien-Hao Chang. Trompt:
Towards a better deep neural network for tabular data. arXiv preprint arXiv:2305.18446, 2023b.

10

http://www. ics. uci. edu/˜ mlearn/MLRepository.html
http://www. ics. uci. edu/˜ mlearn/MLRepository.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE computer society conference on computer vision
and pattern recognition (CVPR’05), volume 1, pp. 539–546. IEEE, 2005.

Lun Du, Fei Gao, Xu Chen, Ran Jia, Junshan Wang, Jiang Zhang, Shi Han, and Dongmei Zhang.
Tabularnet: A neural network architecture for understanding semantic structures of tabular data.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pp. 322–331, 2021.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In International conference on machine learning, pp. 1243–1252.
PMLR, 2017.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. Advances in Neural Information Processing Systems, 35:24991–25004,
2022.

Weihua Hu, Yiwen Yuan, Zecheng Zhang, Akihiro Nitta, Kaidi Cao, Vid Kocijan, Jure Leskovec,
and Matthias Fey. Pytorch frame: A modular framework for multi-modal tabular learning. arXiv
preprint arXiv:2404.00776, 2024.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. arXiv preprint
arXiv:2004.11362, 2020.

Xuanqing Liu, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Learning to encode position for
transformer with continuous dynamical model. In International conference on machine learning,
pp. 6327–6335. PMLR, 2020.

Camilo Ruiz, Hongyu Ren, Kexin Huang, and Jure Leskovec. High dimensional, tabular deep
learning with an auxiliary knowledge graph. Advances in Neural Information Processing Systems,
36, 2024.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, and Dilip Krishnan. Stablerep: Synthetic
images from text-to-image models make strong visual representation learners. Advances in Neural
Information Processing Systems, 36, 2024.

Laurens van der Maaten and Geoffrey E. Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9:2579–2605, 2008. URL https://api.semanticscholar.org/
CorpusID:5855042.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Guoxin Wang, Yijuan Lu, Lei Cui, Tengchao Lv, Dinei Florencio, and Cha Zhang. A simple yet
effective learnable positional encoding method for improving document transformer model. In
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pp. 453–463,
2022.

11

https://api.semanticscholar.org/CorpusID:5855042
https://api.semanticscholar.org/CorpusID:5855042


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 Small DATASET PERFORMANCE

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ta
bl

e
6:

B
in

ar
y

cl
as

si
fic

at
io

n
sm

al
ld

at
as

et
re

su
lts

0
1

2
3

4
5

6
7

8
9

10
11

12
13

X
G

B
oo

st
0.

93
1

1
0.

94
0.

94
7

0.
88

5
0.

96
6

0.
86

2
0.

77
9

0.
98

4
0.

71
4

0.
78

7
0.

95
1

0.
99

9
0.

92
5

C
at

B
oo

st
0.

93
1

0.
93

8
0.

92
4

0.
88

1
0.

96
3

0.
86

1
0.

77
2

0.
93

0.
62

8
0.

79
6

0.
94

8
0.

99
8

0.
92

6
L

ig
ht

G
B

M
0.

93
1

0.
99

9
0.

94
3

0.
94

3
0.

88
7

0.
97

2
0.

86
2

0.
77

4
0.

97
9

0.
73

2
0.

78
7

0.
95

1
0.

99
9

0.
92

7
Tr

om
pt

0.
91

9
1

0.
94

5
0.

94
2

0.
88

1
0.

96
4

0.
85

5
0.

77
8

0.
93

3
0.

68
6

0.
79

3
0.

95
2

1
0.

91
6

R
es

N
et

0.
91

7
1

0.
93

7
0.

93
8

0.
86

5
0.

96
0.

82
8

0.
76

8
0.

92
5

0.
66

5
0.

79
4

0.
94

6
1

0.
91

1
M

L
P

0.
91

3
1

0.
93

4
0.

93
8

0.
86

3
0.

95
3

0.
83

0.
76

9
0.

90
3

0.
66

6
0.

78
9

0.
94

1
0.

91
FT

Tr
an

sf
or

m
er

B
uc

ke
t

0.
91

5
0.

99
9

0.
93

6
0.

93
9

0.
87

6
0.

96
0.

85
7

0.
77

1
0.

90
9

0.
63

6
0.

78
8

0.
95

0.
99

9
0.

91
3

E
xc

el
Fo

rm
er

0.
91

8
1

0.
93

9
0.

93
9

0.
88

3
0.

96
9

0.
83

3
0.

78
0.

94
0.

67
0.

79
4

0.
95

0.
99

9
0.

91
9

FT
Tr

an
sf

or
m

er
0.

91
8

1
0.

94
0.

93
6

0.
87

4
0.

95
9

0.
82

8
0.

77
3

0.
90

9
0.

63
5

0.
79

0.
94

9
1

0.
91

2
Ta

bN
et

0.
91

1
1

0.
93

1
0.

93
7

0.
86

4
0.

94
4

0.
82

8
0.

77
1

0.
91

3
0.

60
6

0.
79

0.
93

6
1

0.
91

Ta
bT

ra
ns

fo
rm

er
0.

91
1

0.
92

8
0.

91
8

0.
82

9
0.

92
8

0.
81

6
0.

75
7

0.
88

5
0.

65
2

0.
78

0.
93

7
0.

99
6

0.
90

5
Pl

ic
oT

ab
Tr

an
sf

or
m

er
0.

91
7

0.
99

9
0.

94
3

0.
93

5
0.

87
5

0.
96

2
0.

85
6

0.
77

5
0.

92
8

0.
64

0
0.

79
3

0.
94

8
0.

99
7

0.
91

1

13


	Introduction
	Related work
	Tabular Deep networks
	Learnable position embeddings
	Constrastive loss

	Methods
	Columns embedding
	Plico Vectors encoder
	Learning positional embedding and multi-pass transformer
	Maximise differences between plico vectors

	Downstream predictor

	Experiments
	Setup
	Evaluation results
	Embedding visualizations
	Ablation study
	Plico vectors contrastive losses
	Learnable positional embeddings


	Conclusion
	Appendix
	Small dataset performance


