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1 Introduction1

The recent success of large language models has unlock remarkable advancements in many real-world2

prediction and generation tasks. However, their reliance on training with massive text corpora,3

potentially including data collected from unknown sources or without proper authorization, raises4

significant concerns regarding privacy risks of exposing unintended information [Sun et al., 2024,5

Carlini et al., 2021]. Such privacy risk has been shown to emerge in model pre-training, as well as6

when fine-tuning on downstream tasks [Mireshghallah et al., 2022]. Differential Privacy (DP) in7

an effective privacy mechanism with formal and rigorous guarantee, commonly incorporated into8

the model training process to establish upper-bounds on information leakage from the training data.9

However, training language models with DP often results in substantial performance degradation. In10

this work, we build upon two recent findings—the ill-conditioning of optimization under heavy-tail11

class imbalance, and bias in the Adam optimizer introduced by DP noise—to analyze the performance12

of privately learning with heavy-tail imbalanced labels, a common setting in next-token-prediction13

tasks used to learn language models.14

Performance Gap between SGD and Adam in Language Models. The empirical observation that15

Adam often outperforms Stochastic Gradient Descent (SGD) on language tasks, in contrast to the other16

tasks, has motivated many studies investigating Adam’s optimization behaviour in language models.17

Liu et al. [2023] shows that Adam updates parameters uniformly despite potentially larger difference18

in gradient scales in transformer models. Following the line of work, Zhang et al. [2020] attributes19

the performance gap to gradient noise in language transformers compared to vision tasks, and shows20

that Adam exhibits greater robustness to heavy-tailed noise in stochastic gradients. Subsequently,21

Kunstner et al. [2023] shows that the performance gap persists even in the full-batch training setting22

and differentiates Adam from SGD by relating Adam’s behaviour to sign descent. Recently, Kunstner23

et al. [2024] investigates the performance gap from a novel perspective of heavy-tail class imbalance.24

They show that the gradient and Hessian with respect to model parameters for each class are both25

dominated by the relative class frequency. As a consequence, they show in the scenario which the26

classes comprise a few high-frequency classes and many low-frequency classes, Adam benefits from27

estimating the curvature and could learn low-frequency classes faster than Gradient Descent (GD)28

while maintain comparable performance for the high-frequency classes.29

Bias Correction in Differentially Private Learning with Adam. One common approach to train30

modern deep learning models with privacy guarantee is to integrate DP guarantee with (Stochastic)31

Gradient Descent, i.e. DP-(S)GD [Abadi et al., 2016]. The key steps in DP-(S)GD are to (1) clip per-32

sample gradients with ℓ2-clipping-threshold C such that the change in model output when changing33

the model input is well-bounded, and (2) add isotropic DP noise randomly drawn from aN (0, σ2C2)34

Gaussian distribution to the aggregated clipped gradients. With the same ‘recipe’ to privatize gradient,35

previous works have also use DP-Adam that replace the gradient with private gradient in the Adam36

optimizer. While a performance gap between Adam and SGD in language tasks is consistently37

observed in non-private learning, this difference appears to be smaller in private learning scenarios.38

Tang et al. [2023] shows that DP-Adam behaves like DP-SGD (with momentum) since the second39

moment estimates in Adam’s update is largely dominated by the variance of DP noise. As Adam uses40

second moment as an estimate of curvature to normalize the gradient, the dominating additive bias41

caused by DP noise potentially makes the estimation ineffective. The authors show that by removing42

the bias, the corrected algorithm (DP-AdamBC) more closely resembles sign descent—similar to43



Adam’s behaviour in non-private learning—and empirically improves classification performance in44

several tasks. Appendix A includes the pseudo-code for the three DP optimization algorithms.45

Contributions. In this work, we analyze the optimization behaviour of common private learning46

optimization algorithms under heavy-tail class imbalanced distribution. We show that, in a stylized47

model, optimizing with Gradient Descent with differential privacy (DP-GD) suffers when learning48

low-frequency classes, whereas optimization algorithms that estimate second-order information do49

not (§2). In particular, DP-AdamBC that removes the DP bias from estimating loss curvature is a50

crucial component to avoid the ill-condition caused by heavy-tail class imbalance, and empirically fits51

the data better with ≈ 8% and ≈ 5% increase in training accuracy when learning the least frequent52

classes on both controlled experiments (§3) and real data (Appendix B) respectively.53

2 An Analysis on Linear Models54

We use the same linear model setup as Kunstner et al. [2024] to mathematically demonstrate the55

difficulty of learning heavy-tail imbalanced datasets with differential privacy, and the advantage of bias56

correction in Adam to relieve the ill-conditioning due to class imbalance. The inputs X are generated57

from a d-dimensional uniform distribution on [0, 1]d. The classes y are generated to approximately58

follow the Zipf distribution, in which the k-th frequent class has frequency ∝ 1/k, k ∈ [1, . . . , c].59

We train a linear model with weights W ∈ Rc×d to minimize the loss ℓ(W,x, y) = − log(s(Wx)y)60

where s(z)k = ezk/
∑

j e
zj is the softmax function. The optimization objective is to minimize the61

mean loss over n training samples L(W,x,y) = 1
n

∑n
i=1 ℓ(W,xi, yi). The linear model setup62

allows analyzing the gradient vector and Hessian matrix with respect to each row w1, . . . ,wc of63

the weight matrix W, which is used to illustrate ill-condition from heavy-tail class imbalance in64

non-private learning (§2.1). We use the mathematical expressions of private gradient and Hessian65

to demonstrate the ill-condition under private learning in §2.2,2.3 and demonstrate the empirical66

experiments on such setup with synthetic data in §3. We refer to Kunstner et al. [2024] for the67

complete detail of derivations.68

2.1 Hessian Ill-condition from Heavy-tail Imbalance in Non-private Learning69

In an optimization problem, the gradient indicates the direction of fastest local change in the loss70

function, whereas the Hessian indicates the curvature of the loss function, i.e. the rate of change of the71

gradient with respect to each parameter. Intuitively, optimization is more difficult if the loss curvature72

differs significantly along different directions: following the the gradient vector alone could bounce73

back and forth in high curvature directions and make slow progress in low curvature directions [Duchi74

et al., 2011, Yang et al., 2023, Anil et al., 2021]. Since the learning rate scales gradients equally in all75

directions, adapting this hyper-parameter cannot alleviate such curvature challenges.76

Kunstner et al. [2024] demonstrate that, under a heavy-tail imbalanced class distribution where most77

samples come from low-frequency classes, the learning problem is ill-conditioned. Indeed, under the78

assumption that the model correctly assigns data samples to class k with a large output probability79

(logit) p (Assumption 1, Kunstner et al. [2024]), the gradient and Hessian with respect to model80

parameters of each class are dominated by the relative class frequency πk = nk/n. Specifically, Kun-81

stner et al. [2024] show that in that case, gt := ∇wk
L = (1−p)πkx̄

k+O(1/c), and Ht := ∇2
wk
L =82

p(1− p)πkH̄
k +O(1/c), where x̄k = (1/nk)

∑nk

i=1|yi=k xi, H̄k = (1/nk)
∑nk

i=1|yi=k xix
⊤
i .83

Gradient Descent does not account for the underlying loss curvature and only updates the parameters84

following the gradient. Under the above class imbalance model, we can see that the gradient is small85

for low-frequency classes (small πk): this leads to slow update in low-curvature regions since the86

Hessian values are also small. At the opposite, the gradient is large for high-frequency classes (large87

πk), resulting in large updates in high-curvature directions, as the Hessian is also large. As a result,88

Gradient Descent suffers from slow convergence in learning low-frequency classes, while increasing89

the learning rate makes updates to high-frequency classes unstable (the parameters oscillates around90

good regions).91

A natural fix to the ill-conditioning is to take into account the curvature information [Duchi et al.,92

2011], using second-order methods that update parameters with ∆ = gtH
−1
t . Since calculating H−1

t93

is computationally expensive, and can be instable, Adam uses the inverse of the gradients’ second94
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moment as a proxy to the diagonal of Hessian with cheap computation cost, which adapts gradients95

to the curvature and alleviates the effect of ill-conditioning [Kingma and Ba, 2017, Duchi et al., 2011,96

Martens and Grosse, 2020].97

2.2 Effect of DP Noise with Heavy-tail Imbalance98

We first assume that no gradients are clipped, which is empirically achievable by setting a large99

ℓ2-clipping threshold such that ∀i, C ≥ ||gt(xi)||. We discuss the effect of gradient clipping in the100

next section. Let σ be the noise multiplier that controls the privacy level: the private gradient g̃t101

is obtained by adding DP noise sampled from the Gaussian distribution zt ∼ N (0, σ2C2I). For102

the linear model defined above, we have g̃t = ∇wk
L + zt ≈ (1 − p)πkx̄

k + zt. As before, the103

Hessian is Ht = ∇2
wk
L ≈ p(1− p)πkH̄

k. It is usually not explicitly calculated in DP optimization104

algorithms, but it reflects the true loss curvature with respect to the model parameters at step t. In the105

following, we compare the scale of the private gradient and the Hessian matrix with respect to the106

rows w1, . . . ,wc of the weight matrix W, for different DP optimization algorithms.107

DP-GD updates parameters using the private gradient only: ∆DP-GD = g̃t. Since the DP noise108

distribution is mean zero, the private gradient is the same as the non-private gradient in expectation,109

EZ [g̃t] = ∇wk
L. Under heavy-tail imbalanced labels ill-conditioning persists, because on average110

DP-GD takes large steps for high-frequency classes in high-curvature regions (large EZ [g̃t] and large111

Ht from large πk), and small steps for low-frequency classes in low-curvature regions (small EZ [g̃t]112

and small Ht from small πk). Since the model parameters are updated with the same scalar learning113

rate ηt across the whole private gradient vector, θt+1 ←− θt − ηtg̃t, DP-GD is either slow in learning114

the low-frequency classes or unstable in learning the high-frequency classes.115

Adam relieves the ill-conditioning in non-private learning. However, under additive DP noise,116

achieving a similar effect requires applying bias correction in estimating curvature with noisy117

gradients. Adam preconditions the gradient by (the square root of) the moving average of squared118

gradient vt =
∑t

τ=1 β
t−τg2

τ , 1 which approximates the second moment of the gradient in expectation,119

E[vt] ≈ E[g2
t ] [Kingma and Ba, 2017]. With the privacy constraint,120

DP-Adam estimates the curvature from the noisy gradient using ṽt =
∑t

τ=1 β
t−τ g̃2

τ , which biases121

the estimation as E[ṽt] ≈ E[g̃2
t ] = E[g2

t ]+Var[zt]. Tang et al. [2023] shows that empirically Var[zt]122

often dominates E[g2
t ]. In that case, DP noise makes the second moment estimation inaccurate123

and lead to incorrectly scaling the gradient, thus failing to alleviate ill-conditioning. In the linear124

model example, as EZ [g̃t] ≈ (1 − p)πkx̄
k, the curvature estimate from DP-Adam is E[ṽt] ≈125

((1− p)πkx̄
k)2 + σ2C2. When the DP noise is large, either from a large σ to ensure higher privacy126

guarantee or a large C for better empirical performance, E[ṽt] cannot effectively rescale EZ [g̃t]127

as expected. For low/high-frequency classes with small/large EZ [g̃t] values from small/large πk128

respectively, the gradients are scaled similarly with Var[zt]. Therefore, similar to DP-GD, the129

low/high-frequency classes continue to update with small/large steps.130

DP-AdamBC corrects the bias by replacing ṽt by ṽt −Var[zt], which restores E[ṽt] ≈ E[g2
t ] better131

adapting gradients with respect to unbiased estimates of curvature. For low/high-frequency classes132

with small/large EZ [g̃t] values, scaling by E[g2
t ] magnifies/shrinks the update for low/high-frequency133

classes by dividing a small/large value of E[g2
t ], respectively. Therefore, as scaling gradient by the134

curvature relieves the heavy-tail imbalanced ill-conditioning in the non-private case, scaling the135

private gradient by the curvature estimator with DP bias removed better relieves the ill-conditioning136

in private learning.137

2.3 Effect of Gradient Clipping with Heavy-tail Imbalance138

Gradient clipping is essential for providing a valid privacy guarantee in neural networks. One139

might have thought that it would also partially alleviate the effect of ill-conditioning by damp-140

ening the gradient’s dependency on class frequency (large gradients for high frequency classes141

would get clipped more). And indeed, in non-private learning cases Kunstner et al. [2024] no-142

tice that normalized Gradient Descent, i.e. update parameters with ∆ = gt/||gt||2, can improve143

performance in heavy tailed class imbalanced datasets. DP gradient clipping, however, clips the144

1The constant scaling of 1− β applies to all the estimates and is ignored here. We also exclude the numerical
stability constants in Adam’s update in both DP-Adam and DP-AdamBC.
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gradients of individual data points before aggregation: g̃t = (1/n)(
∑n

i=1 clip(∇wk
L(xi), C) + zt),145

where clip(gt(xi), C) = gt(xi)/max (1, ||gt(xi)||2/C) clips per-sample gradient with ||g||2 ≥ C146

to have ℓ2-norm equals C. For each clipping per-sample gradient, the magnitude decreases147

((gt(xi)/||gt(xi)||2)·C), but the direction is preserved. The gradient’s component towards the correct148

class k (the values of the gradient in wk) remains the largest, and accumulates over data points propor-149

tionally to the class frequency πk. The problem is hence still ill-conditioned, and changing the learning150

rate is not sufficient: one needs to account for curvature, as Adam does. Empirically, we can examine151

the cosine-similarity among per-sample gradient pairs, to confirm that gradients for the same class are152

more aligned (smaller angle), and will thus accumulate proportionally to πk despite clipping. Figure 1153

shows the cosine similarities for the gradients with respect to the weight matrix W in the linear model154

example. We observe that the values are higher among samples within the same class than across dif-155

ferent classes, which means the gradient of examples within the same class are more aligned, whereas156

the gradients of examples from different classes then to be orthogonal to each other. Since gradient157

clipping in private learning re-aggregates clipped per-sample gradients, we could rewrite the expres-158

sion and split by classes, (1/n)
∑n

i=1 clip(gt(xi), C) = (1/n)
∑c

k=1

∑
i|yi=k clip(gt(xi), C) =159 ∑c

k=1(πk/nk)
∑

i|yi=k clip(gt(xi), C) =
∑c

k=1 πk

∑
i|yi=k clip((gt(xi), C)

nk
. As a consequence, as160

per-sample gradients within the same class are more aligned, the aggregated clipped gradient before161

adding DP noise also has a similar dependence on relative class frequency πk.162
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Figure 1: The pairwise cosine similarity between (520 randomly sampled) per-sample gradient at
different training steps. The gradients are more aligned within the same class with higher cosine
similarity values and less aligned across classes with lower values.

3 Experiments on Linear Model with Synthetic Data163

To examine the claims above, we generate synthetic data that exhibit heavy-tail class imbalance which164

has m groups of classes with class sizes equals c = 2m+1 − 1. We set a minimum class size equals165

5 since extremely rare classes are difficult to learn under empirically meaningful DP guarantees.166

The inputs are drawn independent of the class labels with n = m2m examples in d = 2m + n167

dimensions. We run under the full batch setting (batch size = n) to eliminate sampling bias with class168

imbalance. We show the result with C = 1 where all per-sample gradients are clipped and σ = 10169

as the privacy level, with additional experiments included in Appendix C. We tune the learning rate170

of half a power (1e2, 5e2, 1e3, ...) for all optimizers and additionally tune the numerical stability171

constants in DP-Adam and DP-AdamBC. Since we focus on the training behaviour of the optimizers,172

we let it run until the overall training loss stops decreasing to observe the complete training trajectory,173

where the x-axis shows the epsilon value for the privacy guarantee over steps. We report the results174

of each optimizer with the lowest overall training loss.175

Figure 2 and 3 shows the training loss and accuracy on the synthetic dataset with n = 8192, d =176

9216, c = 255, where the class distribution follows heavy-tail class imbalance as shown in Figure 2(a).177

From the training losses, we observe that DP-GD has a flatter trends comparing to the others which178

has decreasing training losses especially for lower-frequency classes. For the lowest frequency group179

that has 128 classes with 8 samples in each class, the final training loss for the optimizers are DP-GD:180

6.7, DP-GDM (DP-GD with Momentum): 4.9, DP-Adam:5.1 and DP-AdamBC: 4.8 respectively. We181

see that DP-GD fits the low-frequency classes the worst with the largest loss, whereas DP-AdamBC182

has the lowest loss even though the values among DP-GDM, DP-Adam and DP-AdamBC have183

smaller distinctions. From the training accuracies, we see that the gap in the overall accuracy is small184
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when we aggregate samples over different classes, but the gap becomes larger for lower-frequency185

classes when separating samples by class sizes. For the highest frequency class with 1024 samples,186

DP-GD achieves 100.0% training accuracy whereas the other optimizers have DP-GDM: 92.3%,187

DP-Adam: 93.0%, DP-AdamBC: 87.5%. We observe that DP-GD performs better for high-frequency188

classes whereas the optimizers perform adequately well, whereas DP-AdamBC gains more advantage189

for lower-frequency classes. For the medium-frequency group with 8 classes and 128 samples each,190

DP-AdamBC has 47% training accuracy while the other optimizers have DP-GD: 0%, DP-GDM:191

41% and DP-Adam: 36%. For the lowest frequency group with 128 classes and 8 samples each,192

DP-AdamBC performs the best with 9.5%, which is approximately 9%, 7% and 8% better than193

DP-GD, DP-GDM and DP-Adam respectively. In general, We observe that DP-GD learns the high194

frequency classes better than the other optimizers but cannot efficiently learn the low-frequency195

classes with comparable accuracies. Momentum (DP-GDM) that accumulates gradient over steps196

and pre-conditioning by a biased estimate of curvature (DP-Adam) helps relieving the situation, but197

DP-AdamBC has more balanced results as learning the high-frequency classes with comparable198

accuracy and gaining advantages in learning the lower-frequency classes.199
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Figure 2: Results from synthetic dataset with linear model with C = 1, σ = 10. (a) The class
distribution of the synthetic dataset. (b) The mean training loss from averaging all samples. (c)-(f)
The mean training loss separated by averaging samples with the same label frequency.
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Figure 3: Results from synthetic dataset with linear model with C = 1, σ = 10. (a) The mean training
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samples with the same label frequency.
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A Pseudo-code for Common DP Optimization Algorithms248

Algorithm 1 DP-GD and DP-GD with Momentum
Require: Dataset D, loss function L(θ, x), learning rate ηt, noise scale σ, clipping norm C, sample size L,

number of iterations T , momentum parameter µ
1: Initialize model parameters θ0
2: for t = 1 to T do
3: for all xi do
4: Compute gradient: gt(xi)← ∇θL(θt−1, xi)

5: Clip gradient: ḡt(xi)← gt(xi)/max
(
1, ∥gt(xi)∥2

C

)
6: end for
7: Aggregate and add noise: g̃t ← 1

L

(∑L
i=1 ḡt(xi) +N (0, σ2C2I)

)
8: Update parameters:

(DP-GD) θt ← θt−1 − ηtg̃t

9:

(DP-GDM) bt ←

{
g̃t t = 1

µbt−1 + g̃t t > 1

θt ← θt−1 − ηtbt

10: end for

Algorithm 2 DP-Adam and DP-AdamBC
Require: Dataset D, loss function L(θ, x), learning rate ηt, noise scale σ, clipping norm C, sample

size L, number of iterations T , Adam hyperparameters β1, β2, γ, γ′

1: Initialize parameters θ0, first moment vector m0 = 0, second moment vector v0 = 0
2: for t = 1 to T do
3: for all xi do
4: Compute gradient: gt(xi)← ∇θL(θt−1, xi)

5: Clip gradient: ḡt(xi)← gt(xi)/max
(
1, ∥gt(xi)∥2

C

)
6: end for
7: Aggregate and add noise: g̃t ← 1

L

(∑L
i=1 ḡt(xi) +N (0, σ2C2I)

)
8: Update biased first moment estimate: mt ← β1mt−1 + (1− β1)g̃t
9: Update biased second moment estimate: vt ← β2vt−1 + (1− β2)g̃

2
t

10: Compute moving average bias-corrected estimates: m̂t ← mt

1−βt
1
, v̂t ← vt

1−βt
2

11: Update parameters:

(DP-Adam) θt ← θt−1 − ηt
m̂t√
v̂t + γ

12:

(DP-AdamBC) θt ← θt−1 − ηt
m̂t√

max(v̂t − (σC/L)2, γ′)

13: end for

B Experiments on Real Heavy Tail Imbalanced Datasets249

While linear models are convenient to demonstrate the idea mathematically, they are often limited250

in prediction power to fit more complex datasets. In this section we show experiment results that251

use deep learning models on a modified heavy-tail imbalanced image classification dataset and two252

next-token-prediction language datasets.253

Datasets and Models. We use the Barcode MNIST dataset which is modified from MNIST with254

additional classes consist of examples of original MNIST image plus a 10-bit number encoded in255

the corner of the image. We follow the steps of Kunstner et al. [2024](Appendix A2) to generate256

the imbalanced dataset, and we subsample examples from classes to make the labels heavy-tail257
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imbalanced. The Barcode MNIST dataset used in our experiment has n = 23770 images and258

c = 330 numbers of classes with label distribution shown in Figure 4(a). We train the dataset with a259

2-convolution-layer CNN model. For examples of real-world heavy-tail class imbalance datasets,260

we evaluate the training performance on two language datasets with next-token prediction task. We261

use the TinyPTB dataset Kunstner et al. [2024](Appendix A2) and load pre-trained weights and262

tokenizer from GPT2. We finetune the dataset with a Transformer head with the implementation of263

‘GPT2LMHeadModel’ from the transformers package. The token distribution is highly imbalanced264

and is shown in Figure 6(a). We omit the highest frequency token (‘the’) with frequency > 400000265

to better visualize of the label distribution. In addition, we use the End-to-End (E2E) NLG challenge266

dataset Novikova et al. [2017] with n = 42000 training examples, which contains structured input267

representations in the restaurant domain that are mapped to natural language through end-to-end268

training. We finetune the dataset using LoRA Hu et al. [2021] applied to pretrained GPT-2-medium269

weights and the GPT-2 tokenizer, following the implementation from Yu et al. [2022]. The token270

distribution exhibits heavy-tail class imbalance as shown in Figure 8(a). We use the default model271

and LoRA hyperparameters as Yu et al. [2022] for both optimizer setups. The hyperparameter tuning272

procedure is the same as described in section 3. For the DP hyperparameters, we try two levels of273

σ = {1, 10} and tune a coarse set of C = {0.1, 1, 10} and report the result from the best C.274

Results and Discussion. We observe that the result on Barcode MNIST much resembles the results275

on the linear model example. When separating the performance by label frequency, we see that276

DP-GD has oscillating training loss for the medium-frequency classes, indicating these parameters277

potentially steps too aggressively in high curvature regions that causes unstable performances. Except278

the the lowest-frequency class which all optimizers seem to suffer, we observe that DP-AdamBC279

has lower training loss for low-frequency classes than the other optimizers, e.g. DP-AdamBC has a280

training loss of 3.6 which is 0.3, 2.3, 1.2 lower than the loss of DP-GD, DP-Adam and DP-GDM281

respectively on the group that has 200 classes with 10 samples each. For training accuracy, we282

observe that all the optimizers behave similarly for the high-frequency class, with DP-GD: 97.6%,283

DP-GDM: 91.7%, DP-Adam: 97.4%, DP-AdamBC: 96.5%. The accuracy are overall smaller for the284

low-frequency classes, which indicates that rare classes are indeed more difficult to optimize, though285

DP-AdamBC has an advantage from potentially estimating the curvature information more accurately286

with 11.5% training accuracy for the lowest-frequency group, whereas other optimizers’ performance287

degrade more, with DP-GD: 6.6%, DP-GDM: 4.1%, DP-Adam: 6.3% training accuracies respectively.288

Figure 6 and 7 shows the training loss and accuracy for the TinyPTB dataset when finetuning a289

transformer head from the pretrained GPT2 model. The token distribution is highly imbalanced with290

≈ 40% of tokens of frequency f < 10, and the top 20 high-frequency tokens spread over a wide291

range from f ≈ 400000 to 5000. Therefore we group examples such that the high-frequency tokens292

are grouped by coarse magnitude (group 1 with f > 400000, group 2 with 400000 > f > 20000,293

etc.), the medium-frequency tokens with 5000 < f < 5 are grouped evenly into 30 groups, and all294

tokens with f < 5 are combined into one group. We observe that all optimizers could learn the295

highest frequency class well with low training loss, with values around 0.1 for all optimizers. For296

the high to medium-frequency tokens, DP-GD generally has higher training loss while the other297

optimizers have lower values, e.g. for the token with frequency of ≈ 30000, DP-GD has a loss of298

1.7 whereas DP-Adam, DP-AdamBC and DP-GDM has 1.3, 1.2, 1.2 respectively. For the training299

accuracies, DP-GD have lower training accuracy than the other three optimizers in predicting medium300

to high-frequency tokens whereas DP-AdamBC has larger values, e.g. on the same token of frequency301

≈ 30000, DP-GD, DP-Adam, DP-AdamBC and DP-GDM has 66%, 73%, 75%, 74% training302

accuracy respectively. For the lowest frequency class with median frequency = 8, all optimizers seem303

to behave equally poorly in terms of training accuracy though DP-GD seems to have lower training304

loss. In general, we see a similar but milder effect with the next-token prediction task. In addition to305

the more extreme imbalanced distribution and a more complex task, we suspect that finetuning from306

pretrained models potentially make each sample more orthogonal to each other in the embedding307

space, which decreases correlation between within class examples thus relieving the dependence on308

class frequency.309

C Experiments with Varying DP Hyperparameters310

We examine the empirical performance on the linear model with synthetic data setup when changing311

DP hyperparameters C and σ. Figure 2 and 10 show the training loss and accuracy when C = 1, σ =312
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Figure 4: Results from Barcode MNIST with CNN. (a) The class distribution of the synthetic dataset.
(b) The mean training loss from averaging all samples. (c)-(f) The mean training loss separated by
averaging samples with the same label frequency.
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Figure 5: Results from Barcode MNIST with CNN. (a) The mean training accuracy from averaging
all samples. (b)-(f) The mean training accuracy separated by averaging samples with the same label
frequency.

10. Figure 9 and 10 show the results with the same σ = 10 and with a larger clipping threshold313

of C = 10. Figure 11 and 12 shows the results with the same C = 10 and with a smaller privacy314

parameter σ = 5. We set the number of epochs such that all the experiments run until reaching the315

same final ϵ = 28. From Figure 9 and 10 we observe that changing the clipping threshold shows316

approximately the same trends as in Figure 2 and 10, which supports the claim in §2.3 that clipping317

per-sample gradients to smaller scales does not relieve the ill-condition in DP-GD and requires more318

accurate estimates of curvature with DP bias removed to see better performance in learning the319

low-frequency classes. Comparing Figure 11 and 12 to the others, we observe that DP-GD suffer320

from learning lower-frequency classes due to the ill-condition. However, when the DP noise variance321

(σC/n)2 is smaller, DP-Adam could learn the low-frequency classes similarly as DP-AdamBC,322

potentially from estimating the second moments more accurately.323
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Figure 6: Results from TinyPTB with finetuned Transformer head. (a) The class distribution of the
synthetic dataset. (b) The mean training loss from averaging all samples. (c)-(f) The mean training
loss separated by averaging samples with the same label frequency.

20 40 60
20

40

Tr
ai

n 
Ac

cu
ra

cy

Overall Accuracy

DP-GD
DP-Adam
DP-AdamBC
DP-GDM

20 40 60
0

25

50

75
Median Class Size = 35878

20 40 60
0

20

Median Class Size = 648

20 40 60
Epsilon

0

10

20

Tr
ai

n 
Ac

cu
ra

cy

Median Class Size = 40

20 40 60
Epsilon

0

5

10

15

Median Class Size = 11

20 40 60
Epsilon

0

10

Median Class Size = 8

Figure 7: Results from TinyPTB with finetuned Transformer head. (a) The mean training accuracy
from averaging all samples. (b)-(f) The mean training accuracy separated by averaging samples with
the same label frequency.
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Figure 8: Results from finetuning E2E dataset with with C = 1, σ = 0.6. (a) The heavy-tail token
frequency distribution. (b) The mean training loss from all samples. (c)-(e) The mean training loss
separated by high, medium and low token frequency groups.
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Figure 9: Results from synthetic dataset with linear model with C = 10, σ = 10. (a) The class
distribution of the synthetic dataset. (b) The mean training loss from averaging all samples. (c)-(f)
The mean training loss separated by averaging samples with the same label frequency.
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Figure 10: Results from synthetic dataset with linear model with C = 10, σ = 10. (a) The mean
training accuracy from averaging all samples. (b)-(f) The mean training accuracy separated by
averaging samples with the same label frequency.
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Figure 11: Results from synthetic dataset with linear model with C = 1, σ = 5. (a) The class
distribution of the synthetic dataset. (b) The mean training loss from averaging all samples. (c)-(f)
The mean training loss separated by averaging samples with the same label frequency.
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Figure 12: Results from synthetic dataset with linear model with C = 1, σ = 5. (a) The mean training
accuracy from averaging all samples. (b)-(f) The mean training accuracy separated by averaging
samples with the same label frequency.
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