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Figure 1: Overview of VIPER-R1, a multimodal framework for physics formula discovery. The
model is trained via Motion Structure Induction (MSI) with Causal CoT supervision and Reward-
Guided Symbolic Calibration (RGSC) for structural refinement. During inference, VIPER-R1 acts
agentically by invoking an external symbolic regression tool for Symbolic Residual Realignment
(SR²), reconciling symbolic hypotheses with empirical data. The model achieves state-of-the-art
performance in both structural and accuracy scores on the PhysSymbol dataset.

Abstract

Automated discovery of physical laws from observational data in the real world is a
grand challenge in AI. Current methods, relying on symbolic regression or LLMs,
are limited to uni-modal data and overlook the rich, visual phenomenological
representations of motion that are indispensable to physicists. This “sensory
deprivation" severely weakens their ability to interpret the inherent spatio-temporal
patterns within dynamic phenomena. To address this gap, we propose VIPER-R1,
a multimodal model that performs Visual Induction for Physics-based Equation
Reasoning to discover fundamental symbolic formulas. It methodically integrates
visual perception, trajectory data, and symbolic reasoning to simulate the scientific
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discovery process. The model is trained via a curriculum of Motion Structure
Induction (MSI), using supervised fine-tuning to interpret kinematic phase portraits
and construct hypotheses guided by a Causal Chain of Thought (C-CoT), followed
by Reward-Guided Symbolic Calibration (RGSC) to purify the formula’s structure
with reinforcement learning. During inference, the trained VIPER-R1 acts as an
agent: it first posits a high-confidence symbolic ansatz, then proactively invokes
an external symbolic regression tool to perform Symbolic Residual Realignment
(SR²). This final step, analogous to a physicist’s perturbation analysis, reconciles
the theoretical model with empirical data. To support this research, we introduce
PhysSymbol, a new 10,000-instance multimodal corpus. Experiments show that
VIPER-R1 consistently outperforms state-of-the-art VLM baselines in accuracy
and interpretability, enabling more precise discovery of physical laws.

1 Introduction

The automated discovery of fundamental physical laws in the form of equations from observational
data stands as a grand challenge at the intersection of artificial intelligence and the natural sciences [47,
49, 12]. This endeavor is pivotal for augmenting human scientific intuition and accelerating the pace
of discovery by uncovering novel principles within vast, high-dimensional datasets [23, 39]. Recent
advances have established two parallel yet distinct research tracks: sophisticated symbolic regression
(SR) algorithms that navigate immense combinatorial spaces to identify fitting equations [17, 8],
and the emergence of Large Language Models (LLMs) demonstrating remarkable ability to perform
in-context symbolic reasoning from textual data [25, 10, 42]. While both approaches have laid critical
foundations, they share a disconnect with the actual process of human scientific inquiry, operating
without a key perceptual faculty that is central to human discovery.

This limitation can be seen as a form of “sensory deprivation,” where reliance on uni-modal symbolic
data blinds models to the rich visual representations that physicists routinely exploit. Human
scientific reasoning is inherently multimodal: physicists interpret visual patterns in phase portraits
to infer conservation laws, recognize decay envelopes to hypothesize damping forces, and identify
superposition effects to constrain theoretical possibilities [44]. Such visual intuition provides powerful
pre-symbolic heuristics for navigating the vast space of candidate theories.

Recent advances in LLM-based scientific discovery partly address these issues. LLM-SR [42]
generates equation hypotheses from embedded scientific knowledge, while frameworks like Scientific
Generative Agents [25] pair LLM-based generation with simulation validation. Yet these methods
still suffer from “sensory deprivation,” lacking the ability to incorporate visual evidence. Furthermore,
concerns about memorization versus genuine discovery [53, 43] underscore the need for approaches
that perform authentic data-driven reasoning rather than recalling known formulas.

By neglecting the crucial visual perceptual channel, existing methods are fundamentally constrained.
They often resort to computationally expensive searches through vast equation spaces [48], exhibit
brittle token-matching behaviors, and fail to achieve the intuitive leaps that characterize human
scientific breakthroughs. This limitation becomes particularly pronounced when dealing with complex
dynamical systems where visual patterns in phase space and temporal evolution provide crucial
insights that are difficult to extract from purely numerical data.

To bridge the gap between raw perception and abstract formalism, we introduce VIPER-R1, a
Visual Induction model for Physics-based Equation Reasoning. Rather than a mere pattern matcher,
VIPER-R1 acts as a “computational phenomenologist," grounding symbolic reasoning in visual
evidence by integrating plots, trajectory data, and symbolic logic to autonomously derive governing
laws of motion.

Our framework draws inspiration from human scientific reasoning and follows a two-stage pipeline.
In the first stage, Motion Structure Induction (MSI), the model undergoes Supervised Fine-Tuning
(SFT), learning to interpret kinematic evidence under joint supervision of Chain-of-Thought (CoT)
rationales and ground-truth equations, before producing initial symbolic hypotheses guided by causal
CoT prompts. In the second stage, Reward-Guided Symbolic Calibration (RGSC), reinforcement
learning with Group Relative Policy Optimization (GRPO) [41] refines these hypotheses using a
structural reward function that favors topological correctness over coefficient matching. Finally, the
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model invokes an external symbolic regression tool for Symbolic Residual Realignment (SR²),
aligning theoretical expressions with empirical details to yield interpretable, precise formulas.

To support this research, we also release PhysSymbol, a large-scale multimodal corpus of 10,000
instances designed for training and evaluating models on physics formula discovery.

Our contributions can be summarized as follows:

• We propose VIPER-R1, a multimodal framework that simulates the scientific reasoning
process by deeply integrating visual perception with symbolic derivation.

• A hierarchical reasoning strategy is developed, consisting of Motion Structure Induction
(MSI) for hypothesis generation, Reward-Guided Symbolic Calibration (RGSC) for refine-
ment, and an agentic stage, Symbolic Residual Realignment (SR²), where external tools are
employed to reconcile theoretical hypotheses with empirical data.

• We introduce PhysSymbol, a large-scale benchmark of 10,000 multimodal physics instances,
created to advance research in vision-grounded scientific discovery.
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Figure 2: The performance of different SOTA VLMs on physics formula discovery tasks.

2 Related Work

2.1 Symbolic Regression for Scientific Discovery

Symbolic regression (SR) aims to discover mathematical expressions from data, a field founded on
techniques like genetic programming [15]. Modern methods have significantly advanced this area,
with physics-inspired recursive algorithms like AI Feynman [47] and high-performance evolutionary
tools like PySR [8]. Recent deep learning approaches leverage Transformer architectures to map
numerical data directly to symbolic expressions [6, 14], while hybrid systems combine neural
networks with methods like reinforcement learning [37], Monte Carlo tree search [46], and guided
genetic programming [33, 30]. Despite these advances, SR faces the persistent, NP-hard challenge [48,
42] of navigating a vast search space without strong priors, often leading to computationally expensive
searches for physically implausible equations [48]. Our work confronts this by using a VLM to
generate a strong, visually-grounded prior, transforming SR from a blind search into a targeted
refinement.
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Figure 3: Framework of VIPER-R1. VIPER-R1 introduces a two-phase training framework for
visual formula discovery and reasoning. First, a two-step curriculum, called Motion Structure
Induction (MSI), is designed to imbue the VIPER-R1 with the ability to deduce the latent symbolic
structure of a system’s dynamics at stage 1. Subsequently, in stage 2, we employ reinforcement
learning to “anneal" the model’s generation policy, sharpening its focus on producing topologically
correct physical laws.

2.2 LLMs for Scientific Discovery

The advent of LLMs has created transformative possibilities for automating science [12, 49, 23].
Several recent frameworks now leverage LLMs for equation discovery by generating equation
skeletons [42], using in-context learning [31], implementing bilevel optimization with simulators [25],
and building libraries of scientific concepts [10]. A key concern in this area is the models’ tendency
to memorize formulas, an issue addressed by specialized benchmarks [53, 32, 43]. Concurrently,
LLMs are being explored as powerful optimization and evolution engines [20, 40, 19] for tasks
such as prompt optimization [11, 18], neural architecture search [7, 57], and heuristic discovery.
While LLMs also demonstrate remarkable capabilities in general scientific hypothesis generation and
reasoning [58, 38, 52, 27, 21, 51, 26], their uni-modal nature renders them blind to the holistic visual
patterns apparent to human scientists. Our work bridges this sensory gap.

2.3 Multimodal Models for Scientific Discovery

VLMs are increasingly being applied in scientific domains for their ability to reason about visual
content [56, 45], from interpreting research figures [24, 55] to general scientific understanding with
models like GPT-4V [34], Qwen-VL [3], and Gemini [9]. Pioneering work has utilized Multimodal
LLMs to discover governing equations from video data by first identifying intrinsic coordinates
and then performing symbolic reasoning [22]. Our work addresses a different and complementary
aspect of the scientific workflow; we focus on the 2D graphical representations (e.g., phase plots)
that scientists create for analysis. The VLM’s role is not coordinate discovery but direct visual
reasoning on these plots to hypothesize functional forms, mimicking a physicist who recognizes
patterns like “damped oscillation" and sketches initial formulas. While many scientific benchmarks
exist [17, 29, 28, 50], they often face memorization issues with LLMs [43]. Our approach is the first
to leverage a fine-tuned VLM for direct, plot-based hypothesis generation in physics, more closely
emulating the human observation-and-reasoning cycle.

3 Methodology

Our proposed framework consists of a two-stage pipeline, as illustrated in Figure 3. The first stage
involves two-step Motion Structure Induction with CoT reasoning that activates the model’s reasoning
potential and the ability of formula structure induction. At stage 2, a RL-based refinement method is
employed to help the model further calibrate the symbolic solution. When inferencing, a symbolic
regression module is design as a optimal parameter searching tool to refine this hypothesis.
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3.1 Problem Definition

The automated discovery of physical laws from multimodal empirical data can be formally defined as
learning a mapping from a set of observations to the underlying symbolic law that governs the system.
This process seeks to infer an interpretable symbolic expression S from a diverse set of empirical
evidence E . The mapping can be represented as:

πθ : E → E,

where:

• E = {V,D} represents the complete set of Empirical Evidence, comprising both visual and
numerical data modalities.

• V = {V1, V2, . . . } is a set of visual representations of the system’s dynamics. For instance,
in the context of the kinematic systems studied in this work, V typically includes a phase-
space portrait (Iphase) and a time-series trajectory plot (Itrajectory). More broadly, V could
encompass video frames of a real-world experiment, heatmaps of a field distribution, or
other scientific visualizations.

• D = {D1, D2, . . . } is a set of quantitative measurements of the system’s state variables. For
the mechanical systems we investigate, D consists of time-series data of position, velocity,
and acceleration, i.e., {(ti, x(ti), v(ti), a(ti))}.

• E is the target output: an interpretable symbolic expression representing the governing
physical law.

• πθ is the parameterized model (in our case, the VIPER-R1) that we aim to train.

Through this mapping, our system integrates both visual information from dynamic plots and
structured motion data to emulate the observation-and-reasoning workflow of physicists.

3.2 Motion Structure Induction (MSI)

The foundational stage of our framework is Motion Structure Induction (MSI), a specialized two-step
curriculum designed to imbue the VIPER-R1 with the ability to deduce the latent symbolic structure
of a system’s dynamics from its visual phenomenological representations. This process explicitly
emulates the cognitive progression from qualitative observation to quantitative hypothesis.

3.2.1 Step 1: Joint Induction of Causal Reasoning and Symbolic Structure

The initial stage mirrors a physicist’s first encounter with a new phenomenon: concurrently observing,
reasoning, and formulating a preliminary idea. Here, the VIPER-R1 is trained to jointly generate
both a Causal Chain of Thought (C-CoT) and an initial Symbolic Ansatz. The input is the complete
set of Empirical Evidence E = (V,D). The model’s objective is to maximize the likelihood of the
entire structured output, which comprises the reasoning chain C followed by the symbolic law S.

This joint objective is crucial; it compels the VIPER-R1 to ground its symbolic output in an explicit,
physically-motivated reasoning process. The model must learn not just what the governing law is, but
why it takes that form, based on visual cues within the evidence. Formally, we define the training
objective for this stage by maximizing the log-probability of the target sequence Y = (C, S):

LMSI-1 = −E(E,Y )∼Dphys

|Y |∑
t=1

log πθ(yt | E, y<t), (1)

where D is our PhysSymbol Corpus, Y = (y1, ..., y|Y |) is the concatenated sequence of the C-CoT
and the symbolic law, and πθ is the policy of the VIPER-R1.

3.2.2 Step 2: C-CoT-Guided Symbolic Formulation

The second stage of our curriculum refines the VIPER-R1’s ability to translate a well-formed physical
argument into a precise symbolic form. This is analogous to a physicist taking their detailed notes
and meticulously composing the final equation. In this stage, the model is provided with both the
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empirical evidence E and the ground-truth C-CoT, C, and is tasked only with generating the correct
symbolic law S.

By conditioning on an ideal reasoning chain, we allow the model to dedicate its full representational
capacity to mastering the complex syntax and semantics of physical formalisms. This decouples the
task of reasoning from the task of formulation. The loss is computed exclusively on the tokens of the
symbolic law S:

LMSI-2 = −E(E,C,S)∼Dphys

|S|∑
t=1

log πθ(st | E,C, s<t). (2)

The two-stage MSI curriculum is designed with two key considerations. First, by decoupling the
complex cognitive task of causal reasoning from the intricate syntactic task of symbolic formulation,
it enhances both the stability and the effectiveness of learning. Second, this curriculum reflects a
hierarchical abstraction process: it encourages the model to first construct a high-level qualitative
understanding through C-CoT, and only then proceed to generate a low-level, precise symbolic
output—thereby mirroring effective human problem-solving strategies.

Upon completion of MSI, the resulting model, πVIPER, possesses a robust, physically-grounded
foundation, ready for the subsequent Reward-Guided Symbolic Calibration stage.

3.3 Reward-Guided Symbolic Calibration (RGSC)

Following the foundational MSI phase, the VIPER-R1 possesses the ability to generate plausible
symbolic hypotheses. However, to further enhance the structural purity and reliability of these
hypotheses, we introduce a refinement phase: Reward-Guided Symbolic Calibration (RGSC). This
stage employs reinforcement learning to “anneal" the model’s generation policy, sharpening its focus
on producing topologically correct physical laws. We select the Group Relative Policy Optimization
(GRPO) algorithm [41] for this task, as it is highly efficient for large-scale models and circumvents
the need for a separate, computationally expensive value network. GRPO’s design, which computes
advantages relative to a batch of sampled actions, is exceptionally well-suited for our task where a
direct, analytical reward can be computed for any generated symbolic expression.

Sampling a Distribution of Symbolic Hypotheses. For each instance of Empirical Evidence
E = (V,D) from our PhysSymbol Corpus, we sample a group of G candidate symbolic expressions
{S1, S2, . . . , SG} from the current policy πθ, which is initialized from the model fine-tuned during
MSI. This sampling process is defined as:

Si ∼ πθ(S | E), for i = 1, 2, . . . , G. (3)

This strategy encourages exploration within the vast space of possible physical theories, allowing the
model to discover and reinforce more robust and accurate symbolic structures.

Formulating the Structural Reward. Each sampled ansatz Si is evaluated and assigned a reward
R(Si). Our reward function is designed to align with the central goal of discovering structurally cor-
rect physical laws, regardless of specific coefficient values. It consists of three weighted components:
a Format Reward (Rformat), our novel Parameter-Agnostic Structural Reward (Rstructural), and an Exact
Match Accuracy Reward (Raccuracy).

R(Si) = wfRformat(Si) + wsRstructural(Si, SGT) + waRaccuracy(Si, SGT). (4)

• Format Reward (Rformat): This binary reward component ensures the model’s output adheres
strictly to the predefined <think>...<answer> template, which is crucial for interpretability and
reliable parsing. It awards 1 for correct formatting and 0 otherwise.

• Parameter-Agnostic Structural Reward (Rstructural): This is the core of our reward mechanism,
evaluating the fundamental correctness of the generated law’s structure. As detailed in Appendix B.3,
it calculates the Jaccard similarity between the “structural skeletons" of the generated ansatz and the
canonical equation. This metric rewards topological correctness over superficial coefficient matching,
aligning the optimization objective with the VIPER-R1’s primary role.
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• Exact Match Accuracy Reward (Raccuracy): This component provides the strictest evaluation,
awarding a binary reward of 1 only if the generated formula Si is symbolically identical to the ground
truth SGT. This encourages ultimate precision of the model’s output.

Policy Update with Relative Advantage. The rewards {r1, r2, . . . , rG} for the group of sampled
hypotheses are normalized to compute their relative advantages, preventing instability from high-
variance rewards. The relative advantage Ai for each ansatz Si is defined as:

Ai =
ri −mean(r1, . . . , rG)

std(r1, . . . , rG) + ϵ
. (5)

The policy πθ is then updated to increase the likelihood of generating hypotheses with positive
advantages. This process is further regularized by a Kullback–Leibler divergence penalty between
the updated policy and the original reference policy from the MSI stage, ensuring stable learning and
preventing the model from deviating too far from its physically-grounded foundation.

3.4 Agentic Refinement via Symbolic Residual Realignment (SR²)

Upon completing its internal calibration, the VIPER-R1 has produced a high-confidence Symbolic
Ansatz, denoted as S0. This expression represents a robust, first-order approximation of the system’s
dynamics. In the final stage of our framework, the VIPER-R1 transitions into an agentic role. It
recognizes that while its ansatz predicts a target variable âVLM, a discrepancy or “residual field" may
exist between this theoretical model and the precise empirical evidence.

To characterize and correct for this residual, the VIPER-R1 agentically invokes an external tool:
a high-performance symbolic regression engine [8]. We term this sophisticated tool-use process
Symbolic Residual Realignment (SR²). This technique mirrors a physicist performing a perturbation
analysis to account for higher-order effects, thereby realigning their theory with empirical reality.

The SR² Process. The core principle of SR² is to dramatically simplify the task for the symbolic
regression tool. Instead of tasking it with searching the entire, near-infinite space of possible physical
laws, we constrain its search to the much smaller, well-behaved space of the residual error. The
process unfolds as follows:

Step 1: Residual Field Calculation: The residual field, r(t), is computed as the difference
between the ground-truth target values from the empirical data, aGT(t), and the prediction from the
VIPER-R1’s Symbolic Ansatz:

r(t) = aGT(t)− âVLM(x, v, t). (6)

Step 2: Symbolic Regression on the Residual: The SR engine is then deployed with the explicit
goal of finding a parsimonious and accurate symbolic expression, Sresidual, that best models the
residual field r(t). This focused task allows the SR tool to operate with maximum efficiency.

aresidual(x, v, t)← SR(x, v, t, r(t)). (7)

Step 3: Theory Realignment: The final, empirically-realigned Law of Motion, Sfinal, is constructed
by composing the VIPER-R1’s initial ansatz with the discovered residual expression. This yields a
complete and highly accurate model of the system’s dynamics.

afinal(x, v, t) = âVLM(x, v, t) + aresidual(x, v, t). (8)

The whole process of SR² is summarized in Algorithm 2.

4 Experiments

4.1 Experimental Setup

Dataset. To avoid data contamination, where models might have seen common benchmarks during
pre-training, we adopt the strategy of constructing a new synthetic dataset, as advocated in prior work
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such as LLM-SR [42]. All experiments are performed on our purpose-built PhysSymbol corpus,
where each instance represents a distinct and complex physical system. Further details on data
generation and statistics are provided in Appendix C.

Models and Baselines. Our primary models, VIPER-R1-3B and VIPER-R1-7B, are based on the
Qwen-VL-2.5 3B and 7B architectures, respectively. We compare against a diverse set of state-of-
the-art MLMs, including GPT-5 [35], GPT-5 mini [35], GPT-4o mini [36], GPT-4o [34], Grok 3 [54],
GPT-o3 [36], Claude-4 Sonnet [1], Claude-3.7 Sonnet [2], Qwen-VL-Max [3], Qwen-VL-2.5-72B-
Instruct [5], and Gemini 2.5 Pro [9].

Evaluation Metrics. We evaluate the models across several dimensions to capture different aspects
of performance:

• Structural Score (Sstruct): This is our primary metric for the VLM’s hypothesis generation
capability. It is the parameter-agnostic Jaccard similarity between the terms of the generated formula
and the canonical equation. A score of 1.0 indicates a perfect structural match.
• Accuracy Score (Sacc): A stricter metric that measures the rate of exact symbolic matches between
the generated formula and the canonical equation.
• Post-SR² MSE: The final Mean Squared Error of the complete, realigned formula after the SR²
stage. This measures the end-to-end performance of the entire framework. A lower value is better.

Further experimental details, including model architectures, training procedures, and evaluation
protocols, are provided in Appendix B.

4.2 Main Results and Analysis

To validate the effectiveness of our approach, we benchmarked VIPER-R1 against a comprehensive
suite of SOTA VLMs. The main results, as shown in Table 1, show that our framework outperforms
other general-purpose VLMs.

Table 1: Main results comparing VIPER-R1 against SOTA VLMs on the PhysSymbol test set. Our
method achieves the highest structural and accuracy scores, leading to the lowest final error.

Category Method Structural Score (Sstruct) ↑ Accuracy Score (Sacc) ↑ Post-SR² MSE ↓

VLMs
GPT-5 0.494 0.363 0.192
GPT-5-mini 0.455 0.350 0.154
GPT-4o mini 0.463 0.235 0.109
GPT-4o 0.449 0.274 0.286
Grok 3 0.026 0.019 0.177
GPT-o3 0.502 0.335 0.234
Claude-4-Sonnet 0.518 0.257 0.091
Claude-3.7-Sonnet 0.485 0.294 0.136
Qwen-VL-Max 0.493 0.285 0.210
Qwen-VL-2.5-72B-Instruct 0.466 0.284 0.198
Gemini 2.5 Pro 0.302 0.237 0.107

Ours VIPER-R1-3B 0.728 0.488 0.081
VIPER-R1-7B 0.812 0.487 0.032

Superiority in Initial Hypothesis Generation. The first two metrics, Structural Score (Sstruct) and
Accuracy Score (Sacc), evaluate the quality of the initial formula generated by the model before any
symbolic refinement. Our specialized models demonstrate a commanding lead in this crucial first step.
Our VIPER-R1-7B achieves an Sstruct of 0.812, representing a 56.7% relative improvement over the
best-performing baseline, Claude-4-Sonnet. Similarly, its Sacc of 0.487 surpasses the top zero-shot
model by over 45.4%. These results shows that while capable of broad multimodal tasks, they lack the
specialized reasoning abilities required to interpret the nuanced patterns of physical phenomena. Our
two-stage training curriculum successfully imbues the model with this domain-specific, physicist-like
intuition.

Excellence in Final Law Discovery. The ultimate goal is to find the most accurate physical law, a
performance captured by the final Post-SR² MSE. A high-quality initial hypothesis from the VLM is
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Figure 4: Quantitative comparison of model performance on the PhysSymbol test set. We report
three metrics: structural score , accuracy score, and post-symbolic-regression MSE. VIPER-R1 (ours)
outperforms all VLM baselines across all metrics, demonstrating significant improvements in both
symbolic structure induction and predictive accuracy.

critical, as it provides a much better starting point for the symbolic regression tool to find the true
global optimum. Our results confirm this synergy. The superior initial guesses from VIPER-R1 lead
to significantly more accurate final discoveries. VIPER-R1-7B model achieves a final MSE of only
0.032, an error rate nearly three times lower than the best baseline result of 0.091. It is noteworthy
that even our smaller 3B model, with a final MSE of 0.081, outperforms all other SOTA VLMs.

5 Conclusion

In this work, we introduced the VIPER-R1, a Visual Induction model for Physics-based Equation
Reasoning, which emulates the scientific workflow by grounding symbolic reasoning in visual
perception. Through a carefully designed curriculum of Motion Structure Induction and Reward-
Guided Symbolic Calibration, we trained a “computational phenomenologist" capable of generating
high-quality symbolic hypotheses from visual data. The subsequent agentic deployment of a Symbolic
Residual Realignment stage demonstrated how this VLM use external tools to refine its own theories,
achieving remarkable precision. Experiments on the PhysSymbol benchmark demonstrate that this
multimodal, multi-stage approach significantly outperforms state-of-the-art VLMs. In the future,
our approach invites further exploration. Scaling to larger and more diverse datasets, including
chaotic systems and PDEs, promises even stronger performance. Moving from simulated plots to real
experimental videos would expose the model to the full complexity of empirical observation.

Ethics Statement. All authors have read and comply with the ICLR Code of Ethics. This work
involves no human subjects or sensitive data, and we are unaware of any potential misuse, harm, or
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A Appendix

This supplementary material provides additional details on the proposed method and experimental
results that could not be included in the main manuscript due to page limitations. Specifically, this
appendix is organized as follows.

• Sec. B outlines the models, training processes, and more evaluation details, providing more
detailed experimental specifics.

• Sec. C provides more details about PhysSymbol and discusses how we collected, filtered,
and reconstructed a high-quality dataset.

• Sec. D includes more visualization cases.

B Details of Training and Evaluation

B.1 Training Settings

We utilize Qwen2.5-VL-3B and Qwen2.5-VL-7B [4] as the backbone models for our experiments.
Our implementation is built on the open-source frameworks Open-R1 [13] and vLLM [16], ensuring
reproducibility and scalability. All experiments were conducted on a cluster of servers, each equipped
with 8×A800 GPUs. During MSI(SFT) stage, we train model for 5 epoch at each step. At RL
refinement stage, the model is trained for 2 epoch.

B.2 System Prompts

The behavior and reasoning process of VIPER-R1 are carefully guided by a series of structured
system prompts tailored to each stage of our training and inference pipeline. These prompts define
the model’s role as a scientific assistant and establish the expected format for its reasoning and final
output. This structured approach is crucial for decoupling complex tasks and progressively building
the model’s capability for scientific discovery. Below, we detail the specific prompts used in each
phase.

B.2.1 Prompt for MSI step 1

In the initial MSI step, as shown in Figure 5, the goal is to teach the model to perform end-to-end
reasoning, connecting raw visual phenomena directly to a final governing equation. The prompt
instructs the model to act as a scientific assistant, verbalize its step-by-step analysis, and provide a
conclusive answer in a structured format.

System Prompt

You are a helpful scientific assistant. Given trajectory
images and motion data from a physical system, reason
step-by-step to explain the observed behavior, then
output the governing equation. Wrap your reasoning
process in <think> </think> and your final equation
in <answer> </answer>.

Figure 5: System prompt for the first SFT stage (MSI).

B.2.2 Prompt for MSI step 2

In the second step of MSI, as shown in Figure 6, we decouple the task: the model is provided with the
pre-computed reasoning chain (C-CoT) and is tasked only with translating this analysis into a precise
symbolic equation. This prompt focuses the model’s training on the final, crucial step of symbolic
formulation.
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System Prompt

You are a helpful scientific assistant. Given the
reasoning steps for a physical system and its
trajectory images, output the corresponding governing
equation. The reasoning is provided in <think> </think>
tags, and your answer should be placed in
<answer> </answer> tags.

Figure 6: System prompt for the second SFT stage (CoT-Aware).

B.2.3 Prompt for RGSC

During the reinforcement learning phase, as shown in Figure 7, the prompt is refined to encourage
more abstract and generalized symbolic reasoning. It explicitly asks the model to use symbolic
placeholders for unknown parameters, which is essential for discovering general physical laws rather
than fitting to specific numerical instances. This prompt guides the generation of hypotheses that are
then evaluated by our reward function.

System Prompt

The user provides visual and trajectory data of a
physical phenomenon. The Assistant’s task is to act
as a physicist. First, think step-by-step about the
underlying physical principles in <think> tags. Then,
derive and state the final governing equation in
<answer> tags. The equation should use symbolic
placeholders for unknown parameters (e.g., k, c, F)
and standard variables for the system (x, v, t).

Figure 7: System prompt for the RGSC stage.

B.3 Detailed Reward Function Formulation for RGSC

The total reward signal R(Si) used during the Reward-Guided Symbolic Calibration (RGSC) stage
is a weighted sum of three distinct components. Each component is designed to evaluate a specific
aspect of the generated Symbolic Ansatz Si, allowing for a balanced and effective policy optimization.
The composite reward is defined as:

R(Si) = wfRformat(Si) + wsRstructural(Si, SGT) + waRaccuracy(Si, SGT), (9)
where SGT is the Canonical Governing Equation, and wf , ws, wa are hyperparameters that weight
the contribution of each reward component. Below, we detail the formulation of each component.

Format Reward (Rformat). The primary purpose of this reward is to enforce a consistent and
parsable output structure, which is crucial for both interpretability and automated evaluation. We
use regular expressions to verify that the model’s output strictly adheres to our predefined template,
which requires a reasoning process enclosed within <think>...</think> tags followed by a final
symbolic formula within <answer>...</answer> tags. This is a binary reward:

Rformat(Si) =

{
1 if format is correct
0 otherwise

(10)

Parameter-Agnostic Structural Reward (Rstructural). This is the most critical component for
our task, designed to assess the fundamental topological correctness of the posited physical law. It
rewards the model for identifying the correct basis functions and their relationships (e.g., −k ∗ x,
−c ∗ v), irrespective of the specific values or symbols used for the coefficients (e.g., k, c). The
calculation involves two steps:
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1. Both the generated ansatz Si and the ground truth SGT are parsed into symbolic expressions.
We then decompose each expression into a set of constituent terms. For additive expressions,
these are the terms separated by addition. For non-additive expressions, the term is the
expression itself.

2. Each term is then normalized into a “structural skeleton" by replacing all numerical coef-
ficients and symbolic parameters with a signed unit (i.e., +1 or −1), while preserving the
core physical variables (x, v, t) and mathematical operators.

The final reward is the Jaccard similarity between the set of skeletonized terms from the generated
formula (Tgen) and the ground truth (TGT). This provides a fine-grained score between 0 and 1.

Rstructural(Si, SGT) =
|Tgen ∩ TGT|
|Tgen ∪ TGT|

(11)

Exact Match Accuracy Reward (Raccuracy). This component provides the strictest evaluation,
rewarding the model only if its generated symbolic formula is mathematically identical to the
ground truth. This encourages ultimate precision, especially for formulas where parameters are also
represented symbolically (e.g., using ‘k’ instead of a number). We leverage the sympy library to
perform a robust symbolic comparison. Both the generated answer and the ground truth are parsed
into symbolic expressions, and we check if their simplified difference is zero. This is also a binary
reward:

Raccuracy(Si, SGT) =

{
1 if sympy.simplify(Si − SGT) = 0

0 otherwise
(12)

By combining these three reward signals, we create a rich and nuanced optimization landscape. The
model is primarily guided by the structural reward (ws is typically the largest weight) to learn the
correct physics, while also being encouraged to produce well-formatted and, when possible, exactly
correct symbolic expressions.

B.4 Algorithm Pseudocode

To provide a comprehensive and reproducible overview of our methodology, we present the detailed
pseudocode for our framework’s two primary components: the end-to-end training process and the
inference-time refinement procedure.

Algorithm 1 outlines the complete training framework for the VIPER-R1. This algorithm details
the two primary phases through which the model is forged: first, the supervised Motion Structure
Induction curriculum, which teaches the model to form hypotheses from visual data; and second, the
subsequent reinforcement learning phase of Reward-Guided Symbolic Calibration, which purifies the
model’s symbolic generation policy.

Following this, Algorithm 2 describes the inference procedure. This algorithm formalizes the
Agentic Refinement via Symbolic Residual Realignment process, wherein the fully trained VIPER-R1
generates an initial hypothesis and then proactively invokes an external symbolic regression tool to
produce a final, empirically-realigned physical law.

B.5 Evaluation Metrics

To provide a holistic assessment of our framework’s performance, we employ a suite of distinct
metrics, each designed to capture a different facet of success, from high-level structural correctness
to final empirical accuracy.

Structural Score (Sstruct) This is our primary metric for evaluating the core capability of the
VIPER-R1: its ability to generate a topologically correct symbolic hypothesis. This score measures
the structural similarity between the generated formula and the canonical equation, intentionally
ignoring numerical coefficients to focus purely on the underlying physical structure.

Accuracy Score (Sacc) To measure the exactness of the generated formulas, we use a strict symbolic
accuracy score. This metric evaluates whether the generated formula is mathematically identical to
the canonical equation. It serves as a challenging measure of the model’s ultimate precision.
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Algorithm 1: VIPER-R1 Training Framework: MSI and RGSC
Inputs :The PhysSymbol Corpus D,

Initial model parameters θ0 from a pre-trained VLM,
Number of MSI steps NMSI-1, NMSI-2,
Number of RGSC steps NRGSC,
GRPO group size G,
Reward weights wf , ws, wa

Outputs :The final, calibrated VIPER-R1 policy πRGSC

// Phase 1: Motion Structure Induction (MSI)
1 πθ ← InitializeModel(θ0);
// Step 1.1: Joint Induction of C-CoT and Symbolic Structure

2 for i = 1 to NMSI-1 do
3 Sample a batch (E, Y ) ∼ D, where Y = (C, S);
4 Update θ by descending the gradient of LMSI-1 w.r.t. Eq. equation 1;
5 end
// Step 1.2: C-CoT-Guided Symbolic Formulation

6 for i = 1 to NMSI-2 do
7 Sample a batch (E,C, S) ∼ D;
8 Update θ by descending the gradient of LMSI-2 w.r.t. Eq. equation 2;
9 end

10 πMSI ← πθ

// Phase 2: Reward-Guided Symbolic Calibration (RGSC)
11 πθ ← πMSI; πref ← πMSI
12 for k = 1 to NRGSC do
13 Sample a batch of Empirical Evidence E ∼ D;
14 for j = 1 to G do
15 Sj ∼ πθ(S | E);
16 end
17 for j = 1 to G do
18 rj ← wfRformat(Sj) + wsRstructural(Sj , SGT) + waRaccuracy(Sj , SGT);
19 end
20 A← Normalize(r1, . . . , rG);
21 Update θ using advantages A and a KL penalty against πref;
22 end
23 πRGSC ← πθ;
24 return πRGSC;

Post-SR² Mean Squared Error (MSE) This metric evaluates the end-to-end performance of the
entire VIPER-R1 framework by measuring how well the final, refined formula fits the observed data.
It quantifies the empirical accuracy after the SR² stage has been completed.

Calculation: Let Sfinal be the final symbolic law produced by our framework. This expression is
converted into a callable function afinal(x, v, t). The MSE is then computed over the N data points in
the test set’s trajectory data:

MSE =
1

N

N∑
i=1

(aGT(ti)− afinal(xi, vi, ti))
2
, (13)

where aGT(ti) is the ground-truth acceleration at time ti. A lower MSE indicates a better fit to the
observed physical reality and thus a more successful discovery.

B.6 Ablation Studies

To dissect and quantify the contribution of each core component of our framework, we conducted
a series of ablation studies on both the 3B and 7B model sizes. We systematically evaluate the
performance of: (i) the base Qwen-VL-2.5 model, (ii) the model after only the SFT-based Motion
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Algorithm 2: Agentic Refinement via Symbolic Residual Realignment (SR²)
Inputs :Trained VIPER-R1 policy πVIPER-R1,

Empirical Evidence E = (I,D),
Symbolic Regression engine SR

Outputs :The final, realigned Law of Motion Sfinal

// Stage 1: VLM Hypothesis Generation
1 S0 ← GenerateAnsatz(πVIPER-R1, E);
2 aVLM ← CompileFunction(S0)

// Stage 2: Residual Field Calculation
3 aGT(x, v, t)← ExtractData(E.D) r ← aGT − âVLM(x, v, t)

// Stage 3: Tool-Using for Residual Modeling
4 Sresidual ← SR(inputs = (x, v, t), target = r)

// Stage 4: Theory Realignment
5 Sfinal ← S0 + Sresidual

6 return Sfinal;

Structure Induction stage, and (iii) our full model, which includes the subsequent RL-based Reward-
Guided Symbolic Calibration stage. The results are presented in Table 2.

The results in Table 2 reveal several findings. First, applying MSI alone yields a substantial perfor-
mance boost over the base model—improving structural scores by over 40 points, which confirms
that our two-stage SFT process effectively grounds symbolic reasoning in visual perception and
physical intuition. Second, the addition of RGSC further elevates performance across both metrics.
For instance, the 7B model’s structural score improves from 0.554 (MSI-only) to 0.812 after applying
RGSC, and its accuracy score increases from 0.399 to 0.487. Similar trends are observed in the
3B model. These improvements highlight the importance of RL-based symbolic calibration: by
optimizing outputs through reward-guided refinement, the model learns to produce more structurally
sound and numerically accurate symbolic expressions.

Table 2: Ablation study on the contribution of MSI and RGSC stages for both 3B and 7B models.
Each stage provides a significant performance boost.

Model Size Model Version Structural Score (Sstruct) ↑ Accuracy Score (Sacc) ↑

7B
Qwen-VL-2.5 (Base) 0.096 0.179
+ MSI (SFT only) 0.554 0.399
+ MSI + RGSC (Ours) 0.812 0.487

3B
Qwen-VL-2.5 (Base) 0.043 0.100
+ MSI (SFT only) 0.474 0.350
+ MSI + RGSC (Ours) 0.728 0.488

C PhysSymbol: A Comprehensive Multimodal Dataset for Physics Formula
Discovery

C.1 Dataset Overview and Motivation

To train and evaluate our proposed VIPER-R1 framework and provide comprehensive resources for
the broader scientific AI community, we constructed PhysSymbol, a large-scale synthetic multimodal
dataset that systematically emulates the analytical workflow of physicists studying complex dynamical
systems across multiple physics disciplines.

PhysSymbol comprises 10,000 instances organized into two complementary parts:

• Part 1 (Training Data): 5,000 instances focused on classical mechanics and nonlinear
dynamics, used for training and evaluating VIPER-R1
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Figure 8: (a) Ablation results show that integrating symbolic regression (+SR²) and our full VIPER-R1
pipeline progressively improves structural and accuracy scores. (b) VIPER-R1 achieves significant
relative improvements over zero-shot VLM baselines across all evaluation metrics.

• Part 2 (Research Data): 5,000 instances spanning five physics disciplines, provided for
community research and model evaluation

Each instance contains a complete multimodal representation of a physical system: (1) comprehensive
visualizations showcasing differential operator properties, (2) high-resolution numerical field data,
(3) ground-truth governing equations, and (4) expert-level causal reasoning annotations for Part 1.
This comprehensive design enables frameworks like ours to learn the crucial mapping from visual
observations to symbolic mathematical expressions that characterizes human scientific discovery.

C.2 Part 1: Classical Mechanics and Dynamics (Training Data)

C.2.1 Physics Term Library and Formula Generation

The foundation of PhysSymbol Part 1 lies in a carefully designed physics term library that encom-
passes the fundamental mechanisms commonly encountered in classical mechanics and nonlinear
dynamics. Our term library includes 11 distinct categories of physical phenomena:

Linear and Nonlinear Restoring Forces:

• Linear elasticity: −kx with k ∈ [0.1, 10]

• Cubic nonlinearity: −βx3 with β ∈ [0.01, 5]

• Quintic nonlinearity: −δx5 with δ ∈ [0.001, 1]

Velocity-Dependent Damping:

• Linear damping: −cv with c ∈ [0.01, 2]

• Cubic velocity damping: −αv3 with α ∈ [0.01, 5]

• Quintic velocity damping: −ηv5 with η ∈ [0.001, 1]

External and Coupling Forces:

• Temporal periodic forcing: F sin(ωt) with F ∈ [0.1, 5], ω ∈ [0.5, 5]

• Spatial periodic forcing: F sin(ωx) with parameters in similar ranges

• Position-velocity coupling: −γxv with γ ∈ [0.01, 5]

Specialized Nonlinear Terms:

• Trigonometric nonlinearity: −x cos(x), −x sin(x) (parameter-free)

• Stochastic perturbations: σN (0, 1) with σ ∈ [0.01, 0.5]
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The formula generation process employs a structured combinatorial approach. Each governing
equation is constructed by sampling 2-5 terms from the library, with a mandatory linear restoring
force to ensure physical stability. Parameters are sampled uniformly from their respective ranges, and
the resulting symbolic expression is converted into an executable function for numerical integration.

C.2.2 High-Fidelity Trajectory Simulation

For each generated governing equation of the form ẍ = f(x, ẋ, t), we perform high-
resolution numerical integration using the adaptive Runge-Kutta method implemented in
scipy.integrate.solve_ivp. The simulation protocol follows these specifications:

Temporal Parameters:

• Integration duration: T = 20 time units
• Sampling resolution: N = 1000 uniformly spaced points
• Time step: ∆t = 0.02 (adaptive refinement as needed)

Initial Conditions: Initial position x0 and velocity v0 are independently sampled from uniform
distributions over [−1, 1] to ensure diversity in trajectory patterns while maintaining numerical
stability.

Data Output: Each simulation yields a trajectory dataset {(ti, xi, vi, ai)}Ni=1 containing temporal
evolution of position, velocity, and acceleration. This data is exported as CSV files with full numerical
precision for downstream analysis.

C.2.3 Dual Visualization Strategy for Part 1

Part 1 employs a specialized visualization approach tailored for dynamical systems analysis, generat-
ing complementary visualizations that capture different aspects of system dynamics:

Phase-Space Portraits (v vs x): These plots encode the kinematic structure and stability properties
of the dynamical system. Phase portraits reveal crucial qualitative features such as:

• Closed orbits indicating conservative dynamics
• Spiral trajectories suggesting damped oscillations
• Multiple attractors or limit cycles in nonlinear systems
• Geometric signatures of different restoring force types

Temporal Trajectories (x vs t): These plots emphasize the time-domain behavior and temporal
patterns:

• Oscillation frequencies and amplitude modulation
• Exponential growth or decay envelopes
• Periodic forcing signatures and resonance effects
• Transient dynamics and approach to steady states

Both visualizations are rendered as high-resolution images with consistent styling, axis labeling, and
grid structures to ensure visual uniformity across the dataset.

C.2.4 Expert-Level Reasoning Annotation for Part 1

A key challenge in automated scientific discovery lies in bridging the gap between raw visual obser-
vation and symbolic reasoning. To address this, the PhysSymbol Part 1 corpus incorporates detailed
Causal Chain-of-Thought (C-CoT) annotations, designed to emulate the step-by-step reasoning of a
human physicist. These annotations are generated through a carefully engineered prompting strategy
with GPT-4o, ensuring both consistency and expert-level interpretability.

For each physical system, the annotation protocol provides GPT-4o with both trajectory visualizations
and the ground-truth governing equation, along with a structured prompt that explicitly requests
analysis of visual-symbolic correspondences. The resulting C-CoT traces follow a systematic
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analytical framework, beginning with visual pattern recognition, followed by physical interpretation,
term-by-term analysis, hypothesis formation, and validation logic.

C.3 Part 2: Cross-Disciplinary Physics Fields (Research Data)

C.3.1 Expanded Physics Coverage

PhysSymbol Part 2 significantly expands the scope beyond classical mechanics to encompass fun-
damental physics across five major disciplines, providing a comprehensive testbed for evaluating
physics discovery models across diverse domains. This expansion includes:

Electromagnetic Physics (3 equation types):

• Point Charge Field: ∇2ϕ = −ρ/ε0 (Poisson’s equation)
• Electric Dipole Field: ϕ = p⃗ · r⃗/(4πε0r3) (Dipole potential)

• Magnetic Dipole Field: ∇× A⃗ = B⃗ (Magnetic field from vector potential)

Thermodynamics (3 equation types):

• Steady Heat Conduction: ∇2T = 0 (Laplace equation)
• Heat Conduction with Source: ∇2T = −S/k (Poisson equation)
• Boundary Layer Temperature: Thermal boundary layer equation

Fluid Mechanics (3 equation types):

• Potential Flow: ∇2ϕ = 0, v⃗ = ∇ϕ (Inviscid potential flow)
• Point Vortex: ∇× v⃗ = Γδ(r⃗ − r⃗0) (Point vorticity)
• Stagnation Flow: Linear strain flow equations

Quantum Mechanics (3 equation types):

• 2D Harmonic Oscillator: (−ℏ2/2m∇2 + 1
2mω

2r2)ψ = Eψ (Schrödinger equation)

• Free Particle Wavefunction: ∇2ψ + k2ψ = 0 (Free Schrödinger equation)
• Scattering State: Cylindrical wave scattering equations

General Partial Differential Equations (3 equation types):

• Diffusion Equation: ∇2u− α2u = −S (Modified Helmholtz equation)
• Standing Wave Equation: ∇2u+ k2u = 0 (Wave equation)
• Helmholtz Equation: ∇2u+ k2u = f (Helmholtz equation)

C.3.2 Comprehensive Differential Operator Visualization

A key contribution of PhysSymbol Part 2 is its systematic generation of eight complementary
visualizations for each physics field, providing complete coverage of differential operator properties
essential for field analysis:

• Scalar Field: Original physical quantity ϕ(x, y) distribution

• Vector Field: Corresponding vector field F⃗ (x, y) distribution
• X Gradient: ∂ϕ/∂x, rate of change in X direction
• Y Gradient: ∂ϕ/∂y, rate of change in Y direction
• Gradient Magnitude: |∇ϕ|, field change intensity

• Divergence: ∇ · F⃗ , source/sink distribution

• Curl: (∇× F⃗ )z , rotation intensity
• Laplacian: ∇2ϕ, field curvature distribution
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This visualization approach enables models to learn the relationships between different differential
operators and their visual signatures across diverse physics domains, providing a rich foundation for
cross-disciplinary physics understanding.

C.3.3 High-Resolution Field Generation

Each field in Part 2 is computed on high-resolution 256× 256 grids with domain coverage [−1, 1]×
[−1, 1]. Mathematical expressions are implemented with full precision, and parameters are sampled
from physically meaningful ranges specific to each equation type. All visualizations maintain
consistent color mapping and scaling within each field type to enable systematic comparison and
analysis.

C.4 Dataset Assembly and Multi-Format Generation

The final dataset assembly process integrates all components into a unified multimodal format suitable
for different training stages and research applications:

Data Instance Structure for Part 1: Each complete instance follows the tuple format:
(Images: Iphase, Itrajectory, Trajectory Data: M, Ground-Truth Formula: E, C-CoT Reasoning: C)

Data Instance Structure for Part 2: Each complete instance follows the format:
(Images: {Iscalar, Ivector, I∇x, I∇y, I|∇|, Idiv, Icurl, I∇2}, Field Data: F, Equation: E, Parameters: P )

Multi-Stage Training Variants: To support our three-stage training pipeline, Part 1 generates three
dataset variants:

1. Stage 1 (MSI-Joint): Full format requiring both reasoning generation and formula prediction
2. Stage 2 (MSI-Guided): C-CoT provided as input, only formula prediction required
3. Stage 3 (RGSC): Streamlined format for reinforcement learning with structural rewards

C.5 Dataset Statistics and Quality Assurance

The complete PhysSymbol corpus consists of 10,000 multimodal instances distributed as follows:

Part 1 Statistics (Training Data):

• 5,000 complete instances with trajectory-based visualizations
• Formula complexity: 2-5 terms per equation (average 3.2 terms)
• Coverage: 11 distinct physical mechanism types

Part 2 Statistics (Research Data):

• 5,000 complete instances with comprehensive field visualizations
• Coverage: 15 equation types across 5 physics disciplines
• Total files: 85,000 (8 visualizations + 8 data files + 1 info file per instance)
• Purpose: Community research and model evaluation (not used in our training/testing)

To guarantee reliability and usability, we apply comprehensive quality control measures across both
parts. Each generated equation undergoes numerical stability verification to avoid degenerate or
divergent solutions. Representative samples are visually inspected to confirm clarity and readability
of plots. For Part 1, the accompanying C-CoT rationales are validated through automated keyword
analysis to ensure coherence with underlying formulas. Finally, file integrity checks are conducted
across all multimodal components, ensuring the dataset is complete, consistent, and ready for large-
scale experimentation.

The two-part design addresses both the specific needs of training robust physics discovery models
(Part 1) and the broader goal of evaluating generalization across diverse physics domains (Part 2). By
combining specialized training data with comprehensive evaluation resources, PhysSymbol enables
the development and assessment of AI systems that more closely emulate human scientific discovery
processes across the full spectrum of physics disciplines.
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D Case Analysis

In this section, we present detailed qualitative results for several challenging physical systems to
provide a more intuitive understanding of the VIPER-R1 framework’s capabilities. We first provide
an in-depth analysis of a complex non-linear system (Case 1) and then present the visual results for
three additional, distinct cases.

D.1 In-Depth Analysis: Non-linear Damping with Stochastic Noise

To showcase our method’s full capabilities, we first examine a complex system governed by a linear
restoring force, a non-linear damping term, and stochastic noise. The canonical governing equation
is of the form a(t) = −kx − cv3 + η(t), where η(t) represents a random noise component. This
type of system is particularly challenging as it requires identifying and integrating components with
fundamentally different mathematical and physical characteristics.

As illustrated in Figure 9, our VIPER-R1 leverages its C-CoT process to perform a sophisticated,
physicist-like workflow. It correctly identifies distinct visual cues from the provided plots and maps
each one to its underlying physical term.

<Question> Can you analyze the two 
trajectory plots and motion data points to 
derive the governing equation explaining the 
system's dynamics?

1.542 ∗ 	x− 2.766 ∗ 𝑣!	+ 0.450 ∗ random.normal(0,1)

<think>To analyze the given dynamical system, we need to consider both the x(t) plot and 
the v(x) phase-space plot. Based on the plots, I would hypothesize the presence of:- A 
linear restoring force due to any observed oscillatory behavior.- A nonlinear damping 
term if there is evidence of spiraling or complex attractor structures in the phase space.- 
A stochastic component if there are visible irregularities or noise-like features in the 
trajectory.
Key visual features:
- Oscillatory Behavior in x(t): Likely due to the linear restoring force \(-1.454 \cdot x\).
- Irregular Fluctuations in x(t): Likely due to the stochastic noise term.
- Spiraling or Complex Attractor Structures in v(x): Likely due to the nonlinear damping 

term \(-2.834 \cdot v^3\).
- Likely terms : \n- Linear restoring force (\(-k \cdot x\))\n- Nonlinear damping (\(-v^3\))\n- 

Stochastic noise\n
</think>

<answer>   1.454 ∗ 	x− 2.834 ∗ 𝑣!	+ 0.447 ∗ random.normal(0,1)<answer>

Groundtruth

VIPER-R1

Figure 9: Case 1 Reasoning Process: The VIPER-R1 infers the governing equation of a non-linear
dynamical system. Given the x(t) and v(x) plots, the model performs structured visual reasoning to
identify key dynamics, including the linear restoring force, non-linear damping, and stochastic noise,
before outputting an interpretable symbolic equation.

The model’s internal reasoning, extracted from its output, is as follows:

<think> To analyze the given dynamical system, we consider both the x(t) plot
and the v(x) phase-space plot. Key visual features:

• Oscillatory Behavior in x(t): Suggests a linear restoring force (−k · x).
• Distorted, Spiraling Attractor in v(x): Indicates a non-linear damping term,

likely dependent on a higher power of velocity (−c · v3).
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• Irregular, High-Frequency Fluctuations in x(t): Points to a stochastic noise
term.

Conclusion: The system likely combines a linear restoring force, non-linear
damping (−v3), and stochastic noise. </think>

This detailed analysis leads the model to propose a hypothesis that is not only structurally correct but
also quantitatively close to the true solution, providing an excellent starting point for the subsequent
SR² stage. The quantitative success of this process is detailed in Figure 10 and Figure 11, which show
the improvements at both the signal and system levels.

Figure 10: Case 1 Acceleration Signal Evaluation: Comparison of the predicted acceleration signals
before (VLM-only) and after (VLM + SR²) symbolic refinement. The refined result demonstrates
significantly improved alignment with the ground truth, as shown by the reduced residuals and errors.
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Figure 11: Case 1 System-Level Trajectory Comparison: The phase-space, position, velocity, and
energy trajectories generated by the final (VLM + SR²) model show much closer adherence to
the ground truth dynamics compared to the raw VLM predictions, indicating physically consistent
long-term behavior.
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D.2 Additional Qualitative Results

To further demonstrate the robustness of our framework, we present the results for three additional
cases, each representing a different class of physical system.

VIPER-R1

<think>To analyze the given dynamical system, we need to consider both the x(t) plot and the v(x) phase-space plot. Based on the 
plots, I would hypothesize the presence of:
- A linear restoring force (due to oscillatory behavior).
- Nonlinear terms (due to any observed complexity or irregularity in the trajectory).\n- Periodic forcing (if there are regular 

periodic patterns).
- Noise (if there are small random fluctuations).
Key visual features:
- Oscillatory Behavior：Likely due to the linear restoring force \(-2.498 \cdot x\).
- Irregular Fluctuations: Likely due to the stochastic term \(0.326 \cdot \text{random.normal}(0,1)\).
- Complex Patterns or Irregular Oscillations: Likely due to the nonlinear terms \(-x \cdot \sin(x)\) and \(-0.257 \cdot x^5\).
- Regular Periodic Patterns: Likely due to the periodic forcing term \(1.261 \cdot \sin(2.074 \cdot t)\).
Likely terms : Linear restoring force (\(-kx\))，Nonlinear damping/driving (\(-x \cdot \sin(x)\))， Periodic forcing (\(\sin(\omega t)\))，
Stochastic noise</think>

<answer>			-	2.498	*	x		-	x	*	np.sin(x)	+	1.261*	np.sin(2.074	*	t)		-	0.2574	*	x**5	+	0.326	*	random.normal(0,1)	

<Question> Can you analyze the two 
trajectory plots and motion data points to 
derive the governing equation explaining the 
system's dynamics?

Groundtruth -	2.467	*	x	+	1.314	*	np.sin(2.142*	t)	+	-	0.260	*	x**5	+	0.327	*	random.normal(0,1)	

Figure 12: Case 2 Reasoning: A system with linear restoring forces.
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Figure 13: Case 2 Acceleration Signal Evaluation.

Figure 14: Case 2 System-Level Trajectory Comparison.
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VIPER-R1

<answer>

<Question> Can you analyze the two 
trajectory plots and motion data points to 
derive the governing equation explaining the 
system's dynamics?

Groundtruth -	6.175*	x	+	-	0.916	*	v	+	1.597*	np.sin(2.085	*	t)	+	-	0.592*	x	*	v

"-	6.199	*	x	+	-	0.914*	v	+	1.594	*	np.sin(2.064	*	t)	+	-	0.586*	v	*	x

<think> To analyze the given dynamical system, we need to consider both the x(t) plot and the v(x) phase-space plot.  I	would	
hypothesize	the	presence	of:
\n-	A	linear	damping	term	due	to	any	observed	decay	in	amplitude	over	time.\n-	A	sinusoidal	driving	force	if	there	is	evidence	of	periodic	or	
quasi-periodic	behavior.\n-	Nonlinear	terms	if	there	are	irregularities	or	deviations	from	simple	harmonic	motion.
Likely	terms	:
- Linear	damping	term	(e.g.,	-v)\n-	Sinusoidal	driving	force	(e.g.,	sin(ωt))\n-	Nonlinear	damping	or	interaction	term	(e.g.,	-vx)
Key	visual	features:
- Oscillatory	Behavior	in	x(t):	Likely	due	to	the	combination	of	the	linear	restoring	force	and	the	sinusoidal	driving	force.	The	presence	of	a	

regular	oscillation	pattern	suggests	these	terms	are	significant.
- Amplitude	Modulation	or	Irregularity:	Likely	due	to	the	nonlinear	damping	term	(-vx),	which	can	introduce	complexity	and	irregularity	in	

the	oscillations.
- Phase-Space	Trajectory	Shape:	The	shape	of	the	trajectory	in	the	v(x)	plot	can	indicate	the	presence	of	nonlinear	interactions.	If	the	

trajectory	shows	loops	or	spirals,	it	suggests	the	influence	of	nonlinear	damping.
In	summary,	the	observed	dynamics	in	the	trajectory	plots	can	be	attributed	to	the	interplay	between	linear	and	nonlinear	terms,	with	the	
sinusoidal	driving	force	adding	periodicity	and	the	nonlinear	damping	introducing	complexity. </think>

Figure 15: Case 3 Reasoning: A system with sinusoidal driving forces.
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Figure 16: Case 3 Acceleration Signal Evaluation.

Figure 17: Case 3 System-Level Trajectory Comparison.
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VIPER-R1

<answer>

<Question> Can you analyze the two 
trajectory plots and motion data points to 
derive the governing equation explaining the 
system's dynamics?

Groundtruth -	9.371	*	x	-	x	*	np.cos(x)	+	2.574	*	np.sin(1.644	*	t)		-	1.281*	v**3

-	9.420	*	x	+	2.573*	np.sin(1.565	*	t)	+	-	1.255*	v**3

To analyze the rela,onship between the observed trajectory behavior and the terms in the governing equa,on, we need to
consider both the dynamic features shown in the x(t) plot and the geometric structure in the v(x) phase space.
Here are my assump,ons:
- A linear restoring force due to the oscillatory nature.\n- Nonlinear damping/driving due to any observed asymmetries or 

complex paGerns in the phase space.
- An external periodic forcing due to any regular periodicity in the x(t) plot.
Key visual features:
- Oscillatory Behavior in x(t): Likely due to the linear restoring force \\(-9.420 \\cdot x\\).
- Complex Pa=erns in v(x) Phase Space: Likely due to the nonlinear damping/driving term \\(-1.255 \\cdot v^3\\).
- Regular Periodicity in x(t): Likely due to the external forcing term \\(2.573 \\cdot \\sin(1.565 \\cdot t)\\).
Likely terms (if only seeing the trajectory): \n- Linear restoring force (\\(-kx\\))\n- Nonlinear damping/driving (\\(-v^3\\))\n- 
External periodic forcing (\\(\\sin(\\omega t)\\))\n

Figure 18: Case 4 Reasoning: A system with external periodic forcing.

E The Use of Large Language Models

In accordance with ICLR 2026 guidelines, we disclose the use of large language models during the
preparation of this paper. We utilized an LLM-based assistant (ChatGPT) exclusively for minor
language refinement, including improving grammar, enhancing clarity, and polishing sentence
structure in the writing process.

The core research contributions, including the conception of ideas, methodology design, experimental
implementation, analysis, and final conclusions, were entirely conducted and authored by the listed
human authors. The LLM did not contribute to any part of the scientific content or ideation, nor did it
generate original text beyond language-level edits. We take full responsibility for the integrity and
accuracy of all contents presented in this paper.

30



Figure 19: Case 4 Acceleration Signal Evaluation.

Figure 20: Case 4 System-Level Trajectory Comparison.
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