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ABSTRACT

Large language models (LLMs) are increasingly trained on tabular data, which,
unlike unstructured text, often contains personally identifiable information (PII) in
a highly structured and explicit format. As a result, privacy risks arise, since sensi-
tive records can be inadvertently retained by the model and exposed through data
extraction or membership inference attacks (MIAs). While existing MIA methods
primarily target textual content, their efficacy and threat implications may differ
when applied to structured data, due to its limited content, diverse data types,
unique value distributions, and column-level semantics. In this paper, we present
Tab-MIA, a benchmark dataset for evaluating MIAs on tabular data in LLMs and
demonstrate how it can be used. Tab-MIA comprises five data collections, each
represented in six different encoding formats. Using our Tab-MIA benchmark,
we conduct the first evaluation of state-of-the-art MIA methods on LLMs fine-
tuned with tabular data across multiple encoding formats. In the evaluation, we
analyze the memorization behavior of pretrained LLMs on structured data derived
from Wikipedia tables. Our findings show that LLMs memorize tabular data in
ways that vary across encoding formats, making them susceptible to extraction
via MIAs. Even when fine-tuned for as few as three epochs, models exhibit high
vulnerability, with AUROC scores approaching 90% in most cases. Tab-MIA en-
ables systematic evaluation of these risks and provides a foundation for developing
privacy-preserving methods for tabular data in LLMs.

1 INTRODUCTION

Large language models (LLMs) have emerged as core components of modern artificial intelligence
(AI) systems due to their advanced language understanding and generation capabilities, supporting
applications ranging from scientific discovery to natural, human-like interaction (Berti et al., 2025;
Wei et al., 2022). These models are typically trained on vast and diverse datasets comprised of web
content, academic publications, code repositories, and, increasingly, structured tabular data from
organizational and public databases (Fang et al., 2024a; Paranjape et al., 2023).

Tabular data, such as financial spreadsheets and electronic health records, serve as the basis of data-
driven workflows in healthcare, finance, public administration, and other sectors. Their structured
format—rows as entities and columns as attributes—helps both humans and machine learning mod-
els learn patterns, relationships, and statistical properties efficiently. While LLMs have traditionally
been developed and applied for unstructured textual data, recent research reflects the growing inter-
est in adapting LLMs to effectively process such structured inputs by representing tables in text-like
formats (Herzig et al., 2020; Yin et al., 2020; Narayan et al., 2022). This shift extends LLMs’
capabilities to reasoning tasks involving both unstructured and structured data. However, incorpo-
rating tabular data in the training set of an LLM poses unique challenges and risks. Tabular data
may contain personally identifiable information (PII), commercially sensitive material, or domain-
specific details that are not intended for broad dissemination (Yeom et al., 2018a; Zeng et al., 2024).
LLMs, including those trained on structured data, can memorize and leak sensitive records since
they are vulnerable to membership inference attacks (MIAs), in which an adversary attempts to de-
termine whether a particular record was included in the model’s training set (Shokri et al., 2017a;
Carlini et al., 2022a). These attacks typically rely on subtle differences in the model’s behavior

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

when queried with examples it has seen during training compared to unseen examples (Cao et al.,
2023; Hu et al., 2022).

MIAs on LLMs have been studied extensively in the context of textual data, where researchers
typically analyze confidence scores at the sentence- or paragraph-level to detect training set mem-
bership (Song et al., 2025; Duan et al., 2024). These studies generally assume that the models were
trained on free-form, unstructured text—such as natural language sentences and documents. Tabu-
lar data, which is often heterogeneous, may exhibit skewed value distributions and contain explicit
column-level semantics, making both the design of MIAs and the development of effective defenses
more challenging (Borisov et al., 2022a; Fang et al., 2024a).

Recent work has shown that generative models can effectively interpret, transform, and synthesize
tabular data (Zha et al., 2023), and other studies have shown that the choice of table encoding for-
mat—such as JSON, HTML, Markdown, or Key-Value Pair—can impact model performance (Fang
et al., 2024a). However, the studies primarily focused on improving task accuracy and generaliza-
tion, with comparatively little research attention given to understanding memorization risks or the
potential exploitation of tabular data through MIAs. Prior research has shown that LLM performance
is highly sensitive to the input format: for instance, DFLoader and JSON have been found effective
for fact-finding and transformation tasks (Singha et al., 2023), while HTML and XML outperform
plain-text formats like CSV or X-separated values in table QA and field-value prediction (Sui et al.,
2023; 2024a). This performance gap is often attributed to the prevalence of web-based markup (e.g.,
HTML) in the pretraining data of models like GPT-3.5 and GPT-4 (OpenAI, 2024b), making them
more effective at processing tables serialized in familiar, structured input styles.

In this paper, we present Tab-MIA, a benchmark dataset specifically designed to evaluate MIAs
against LLMs fine-tuned on tabular data. Tab-MIA includes five collections consisting of tables,
each represented in six different textual encoding formats. To our knowledge, this is the first com-
prehensive evaluation of MIAs on LLMs trained with structured tabular data across multiple encod-
ing formats. We systematically examine the sensitivity of LLMs to MIAs under various conditions,
including after fine-tuning with a limited number of epochs on tabular datasets, and in the pretrained
setting, where the pretrained model is assumed to be trained on a tabular subset of Wikipedia. In our
experiments, various configurations of models, data encodings, and training epochs are examined.

One evaluation shows that LLMs can memorize tabular data to a degree sufficient for effective mem-
bership inference. Notably, even when fine-tuned for as few as three epochs, attack success rates can
be high, with AUROC scores approaching 90%. We also observed partial transferability of attacks
across encoding formats, indicating that adversaries may succeed without exact knowledge of the
specific format used in training. These findings highlight the need for privacy-preserving training
practices when training LLMs on structured data. Our work broadens the scope of MIA research,
which has largely not focused on structured data, and highlights the need for privacy-preserving
strategies designed to address the challenges posed by the unique characteristics of tabular formats.

The main contributions of our paper are (1) we present the first benchmark dataset to evaluate MIAs
against LLMs trained on tabular data; (2) we conduct the first evaluation of state-of-the-art (SOTA)
MIAs on LLMs fine-tuned with tabular data across multiple encoding formats; and (3) we analyze
the memorization behavior of recent SOTA LLMs on structured data derived from Wikipedia tables.

2 RELATED WORK

LLMs have demonstrated promising capabilities in handling structured data across tasks such as
tabular representation, question answering, and data generation. In this section, we review prior
work focused on: (1) MIAs on LLMs, (2) encoding-strategy-based methods for using tabular data
with LLMs, and (3) emerging risks when incorporating structured data into LLM training sets.

2.1 MEMBERSHIP INFERENCE ATTACKS ON LLMS

MIAs (Shokri et al., 2017b) aim to determine whether a given sample x is part of a training set
Dtrain of a model f . An attacker receives a sample x and the trained model f , and applies an attack
model A to classify x as a member A

(
f(x)

)
= 1, or non-member otherwise. MIAs against LLMs

have received increasing attention (Carlini et al., 2022b; Mattern et al., 2023; Zhang et al., 2024).
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Recent studies categorized MIA methods into reference-based and reference-free approaches (An-
tebi et al., 2025). Reference-based attacks primarily rely on training shadow models to mimic the
target model’s behavior. A prominent example is LiRA (Carlini et al., 2022b), which estimates the
likelihood ratio of a sample’s loss under two model output distributions, one where the sample was
included in training and one where it was not. While often effective, such methods are computation-
ally expensive, as they require training multiple shadow models and calibrating their outputs.

Reference-free attacks rely on confidence metrics derived from a single model’s output. The LOSS
attack (PPL) (Yeom et al., 2018b) infers membership based on the model’s loss value relative to
a fixed threshold. The Zlib attack (Carlini et al., 2021) uses the ratio of log-likelihood to its Zlib
compression length, while the Neighbor attack (Mattern et al., 2023) examines perplexity shifts
by substituting words with similar tokens generated by an auxiliary model. More recently, Min-
K% (Shi et al., 2024) and Min-K%++ (Zhang et al., 2025) were shown to improve attack efficiency
by averaging the lowest probability tokens, with Min-K%++ further applying normalization over
log probabilities. In addition, the authors of RECALL (Xie et al., 2024), DC-PDD(Zhang et al.,
2024), and Tag&Tab (Antebi et al., 2025) introduced more advanced strategies that improve MIA
performance on LLMs compared to other methods.

2.2 LLMS AND TABULAR DATA

Many enterprise and scientific datasets consist of tabular data, which is composed of rows and
columns of structured attributes (Fang et al., 2024b). Traditional tree-based models such as XG-
Boost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017) have long been dominant for
tabular data tasks, particularly due to their effectiveness on small-to-medium sized datasets and
strong inductive biases for numerical features (Gorishniy et al., 2021). However, recent research
has explored the use of LLMs for tabular data applications, including classification, regression, data
augmentation, data generation, and table-based QA (Sui et al., 2024a; Borisov et al., 2022b; Ding
et al., 2023). LLMs use their strengths, such as in-context generalization and instruction following,
to better understand serialized tables, handle numeric or categorical features, and produce flexible
outputs, even in scenarios that conventional machine learning models struggle with. LLMs support
table-based tasks such as Table QA, fact verification, and Text2SQL (Chen, 2023a; Ye et al., 2023).
Earlier methods like TAPAS (Herzig et al., 2020) and TaBERT (Yin et al., 2020) used specialized en-
coders, while modern LLMs process table queries by serializing them as text or leveraging external
code calls (Sui et al., 2024a; Liu et al., 2023).

A central challenge in applying LLMs to tabular data lies in how to represent structured tables in a
text-based input format suitable for transformer architectures. Prior work proposed serializing tables
using various strategies, including natural language templates, JSON, Markdown, HTML, and Key-
Value Pair (Dinh et al., 2022; Slack & Singh, 2023; Jaitly et al., 2023). The choice of serialization
affects not only model performance but also how well the structure and semantics of the table are
preserved. For example, Hegselmann et al. (2023) proposed TabLLM, a method that systematically
evaluates multiple table encoding formats. Their evaluation showed that simple natural language
patterns, such as “The [column] is [value],” can yield strong performance across a range of tabular
classification tasks, likely due to their alignment with the model’s pretraining distributions.

Although LLMs can process moderately sized serialized tables, handling very large tables remains
challenging due to the transformers’ fixed-length context window. This restricts the amount of tabu-
lar data a model can process in a single input, making it difficult to handle large tables without parti-
tioning or truncation (Sui et al., 2024a;b), which can disrupt the model’s ability to capture long-range
dependencies and global relationships across rows and columns. To address this, compression-based
frameworks like SHEETENCODER (Dong et al., 2024) have been developed. SHEETENCODER
reduces the size of table inputs by selecting structural anchors, applying inverted-index translation to
remove redundancy, and aggregating similar numeric fields, thereby preserving important relational
information while remaining within context window limits.

While prior research optimized table serialization for accuracy and scalability, it largely overlooked
the privacy implications of different serialization strategies. Tab-MIA fills this gap by systematically
evaluating how encoding choices affect memorization and membership inference risk.
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2.3 PRIVACY RISKS WHEN TRAINING LLMS WITH STRUCTURED DATA

Integrating structured tabular data in LLMs offers substantial benefits for data-driven reasoning,
enabling models to combine natural language understanding with structured data processing (Gor-
ishniy et al., 2021; Fang et al., 2024b). However, it also introduces distinct privacy and security
risks that differ from those encountered when training on unstructured text. A critical vulnerability
stems from the fact that tabular datasets often contain sensitive information, such as personal identi-
fiers, financial records, or medical details, that are highly susceptible to memorization (Carlini et al.,
2022b; Lukas et al., 2023). Even seemingly benign fields, when combined, can form distinctive pat-
terns that compromise individuals’ privacy. Once such information is memorized by a model, it may
be vulnerable to extraction via MIAs, exposing individual records or sensitive attributes (Carlini
et al., 2021).

While MIAs have been widely studied in the context of unstructured text corpora, such as books,
Wikipedia, and web documents (Xie et al., 2024; Antebi et al., 2025), there is a notable lack of
benchmark datasets for structured tabular data. Existing MIA benchmark datasets like BookMIA,
WikiMIA (Shi et al., 2024), and MIMIR (Duan et al., 2024) have helped characterize MIA risks
in textual domains, but they do not consider the unique structural format that is present in tabular
datasets. The MIDST benchmark (Membership Inference over Diffusion-models-based Synthetic
Tabular Data) (Organizers, 2025) extends this landscape by evaluating MIAs on diffusion models
trained to synthesize tabular data. However, MIDST focuses on privacy risks in synthetic data
generation, where sensitive records may be reconstructed from the denoising trajectory. In contrast,
our Tab-MIA benchmark addresses a different privacy risk: memorization of tabular records in
LLMs fine-tuned on serialized tables, where leakage occurs through token-level probabilities tied to
column semantics. This distinction highlights complementary attack surfaces. To address the LLM-
specific risk, our Tab-MIA benchmark evaluates membership inference on tabular datasets across
diverse encoding formats and LLM configurations.

3 CONSTRUCTION OF THE TAB-MIA BENCHMARK

Our goal in constructing the Tab-MIA benchmark is to facilitate the systematic evaluation of how
MIAs can be applied to extract the tabular data used to fine-tune LLMs. Unlike text-based bench-
marks, which focus on sentences or paragraphs, tabular benchmarks must handle heterogeneous
types of columns, various encoding formats, and repeated patterns across structurally similar tables.
By creating a controlled yet realistic set of tables from publicly available datasets, Tab-MIA enables
systematic evaluation of how different table-encoding strategies affect vulnerability to MIAs. We
use it to analyze how different formats affect memorization and attack performance.

(a) JSON

[
{"Name": "Alice", "Age": 30},
{"Name": "Bob", "Age": 25},
{"Name": "Carol", "Age": 28}

]

(b) HTML

<table>
<tr><th>Name</th><th>Age</th></tr>
<tr><td>Alice</td><td>30</td></tr>
<tr><td>Bob</td><td>25</td></tr>
<tr><td>Carol</td><td>28</td></tr>

</table>
(c) Markdown

| Name | Age |
|-------|-----|
| Alice | 30 |
| Bob | 25 |
| Carol | 28 |

(d) Key-Value Pair

Name: Alice | Age: 30
Name: Bob | Age: 25
Name: Carol | Age: 28

(e) Key-is-Value

Name is Alice. Age is 30.
Name is Bob. Age is 25.
Name is Carol. Age is 28.

(f) Line-Separated

Name,Age
Alice,30
Bob,25
Carol,28

Figure 1: The same 3×2 table snippet serialized into the six encoding formats used in the Tab-MIA
benchmark: (a) JSON, (b) HTML, (c) Markdown, (d) Key-Value Pair, (e) Key-is-Value, and (f)
Line-Separated (CSV-like).
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3.1 DATASETS

The benchmark integrates real-world datasets widely used in language modeling and tabular ma-
chine learning, covering diverse structural characteristics and application domains. To enable sys-
tematic evaluation of MIA risks in LLMs fine-tuned using tabular data, Tab-MIA includes datasets
representing both short-context and long-context tables.

Short-context tables are derived from QA benchmarks in which each instance originally pairs a ques-
tion with a supporting table. In our setting, we discard the question text and retain only the unique
tables to focus on tabular memorization effects. We include WikiTableQuestions (WTQ) (Pasupat &
Liang, 2015), WikiSQL (Zhong et al., 2017), and TabFact (Chen et al., 2020). Long-context tables
are derived from structured tabular benchmarks frequently used in fairness, regression, and privacy
studies. We include the Adult (Census Income) dataset (Becker & Kohavi, 1996) and the California
Housing dataset (Pace & Barry, 1997). Due to input length limitations inherent to LLMs, long tables
are segmented into row-wise chunks sized to fit within the model’s context window while preserv-
ing structural coherence. A full summary of the datasets used in Tab-MIA, including record counts
before and after filtering, feature dimensionality, context type (short or long), and data sources, is
provided in Table 1.

Table 1: Summary of datasets used in Tab-MIA.
Name Short/Long # Records # After Filter # Features Based On
WTQ Short 2,108 1,290 ≥5 Wikipedia
WikiSQL Short 24,241 17,900 ≥5 Wikipedia
TabFact Short 16,573 13,100 ≥5 Wikipedia
Adult (Census Income) Long 48,842 2,440 15 US Census
California Housing Long 20,640 1,030 10 US Housing Survey

3.2 DATA PREPARATION

To construct the Tab-MIA benchmark, we processed each of its constituent datasets using a stan-
dardized pipeline designed to ensure data quality, consistency, and experimental control. First, we
perform a filtering and deduplication step to ensure that each table appears only once in the bench-
mark, preventing artificial inflation of the memorization signal due to repeated exposure. Next, we
apply context-specific processing to match the model’s input length constraints. For short-context
tables, we filter out any table whose serialized representation in the Line-Separated format exceeds
10,000 characters, removing overly large tables that could dominate training dynamics or intro-
duce truncation artifacts. To accommodate long-context tables, we split each table into chunks of
20 records each to fit within the model’s input length constraints and maintain consistency across
samples.

Each resulting table (or table chunk, in the case of long-context tables) is serialized into multiple
textual formats to investigate how the encoding style influences memorization. We use six encoding
strategies, each reflecting a different structural abstraction of the table (illustrated in Figure 1):

• JSON: Encodes each table as a JSON array of objects, where each object corresponds to a
row and stores key:value pairs for column entries.

• HTML: Renders the table as a structured <table> element using <tr> and <td> tags,
preserving the visual and semantic layout.

• Markdown: Represents the table using pipe-delimited rows, headers, and alignment mark-
ers in plain text.

• Key-Value Pair: Flattens each row into a series of “ColumnName: entry” pairs, joined by
the | symbol for linearization.

• Key-is-Value: Transforms each cell into a natural language phrase of the form
“ColumnName is entry,” producing a list of short sentence-like descriptions per row.

• Line-Separated: Encodes the table as a plain-text sequence where each row is written on a
separate line, with cells joined by a delimiter (e.g., comma or hash), simulating a CSV-like
layout without structural tags.
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All encoded variants are saved as JSONL files to support reproducible experiments. Encoding each
table in multiple ways enables us to systematically examine whether certain formats result in greater
memorization by the model, and whether some styles are inherently more resistant to MIAs.

4 EXPERIMENTAL SETUP

We evaluate the vulnerability of fine-tuned LLMs to MIA under various configurations of mod-
els, data encodings, and training epochs. We fine-tune four SOTA open-weight language mod-
els—LLaMA-3.1 8B, LLaMA-3.2 3B (Meta Team, 2024), Gemma-3 4B (Gemma Team,
2025), and Mistral 7B (Jiang et al., 2023)—which have diverse training objectives, tokenizer
variants, and parameter scales. All models are trained using QLoRA (Dettmers et al., 2023), a
parameter-efficient fine-tuning (PEFT) method leveraging 4-bit quantized weights. Unless other-
wise specified, models are fine-tuned for three epochs; however, in our analysis of training length,
we also explore the effect of varying the number of epochs between one and three. In each train-
ing run, half of the tables are used as member records while the remainder serve as non-members.
Additional details on the hyperparameters are provided in Appendix A.1.

To assess the privacy risk, we consider three black-box MIAs: the LOSS attack (PPL) (Yeom et al.,
2018b), which relies on negative log-likelihood scores; the Min-K% attack (Shi et al., 2024), which
averages the lowest k% token probabilities to identify memorized content; and Min-K%++ at-
tack (Zhang et al., 2025), which normalizes log probabilities before aggregation to examine robust-
ness to length and calibration effects. For each attack, we report two standard metrics, AUROC and
TPR@FPR=5% (Carlini et al., 2022b), measuring detection performance across decision thresholds
and under strict privacy constraints, respectively.

5 RESULTS

In this section, we present our empirical findings using the Tab-MIA benchmark to evaluate MIAs on
tabular data in LLMs. The results highlight consistent trends in vulnerability driven by fine-tuning
duration, encoding format, and model architecture.

5.1 EFFECT OF THE NUMBER OF FINE-TUNING EPOCHS

Table 2: AUROC scores for the Min-K++ 20.0% MIA on each dataset, evaluated on tables encoded
in the Line-Separated format, as a function of the number of fine-tuning epochs. Bold values high-
light the best-performing dataset per row.

Model # Epochs Adult California WTQ WikiSQL TabFact

LLaMA-3.1 8B
1 55.10 59.00 61.60 64.50 64.90
2 60.00 72.80 80.80 78.60 79.60
3 71.10 87.80 93.60 88.90 89.90

Llama-3.2 3B
1 54.10 57.70 57.60 61.50 61.50
2 58.00 66.80 74.80 73.60 73.40
3 64.40 77.20 89.70 83.20 80.40

Mistral 7B
1 54.60 57.80 69.70 67.50 68.50
2 58.90 70.30 88.40 80.00 81.20
3 71.50 86.80 97.70 87.80 89.90

Gemma-3 4B
1 53.90 54.30 59.30 62.60 63.30
2 58.90 62.50 77.00 76.60 77.90
3 67.70 73.80 89.60 86.10 87.40

MIAs generally rely on the assumption that models are expected to exhibit greater memorization
of training data as the number of fine-tuning epochs increases. This motivates examining how the
number of fine-tuning epochs impacts privacy leakage for various models and attack methods. To
this end, we fine-tuned each model for 1, 2, and 3 epochs on the tabular datasets included in our
benchmark and evaluated the MIAs’ success. For this experiment, the tables were serialized into the
Line-Separated encoding format.
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Table 3: MIA results on the WikiSQL dataset for all examined models fine-tuned for 1, 2, and 3
epochs. Tables are encoded in the Line-Separated format. Bold values highlight the best-performing
method per row.

Model # Epochs PPL Min-K 20.0% Min-K++ 20.0%
AUROC TPR@FPR=5% AUROC TPR@FPR=5% AUROC TPR@FPR=5%

Llama-3.2 3B
1 55.90 7.40 56.40 7.60 61.50 7.90
2 62.50 10.80 63.70 11.10 73.60 14.40
3 69.40 15.90 71.20 16.10 83.20 25.30

LLaMA-3.1 8B
1 58.10 8.70 58.60 8.60 64.50 10.60
2 67.20 15.20 68.40 15.30 78.60 22.80
3 76.50 25.30 78.10 25.90 88.90 40.20

Mistral 7B
1 60.10 9.60 61.30 9.90 67.50 14.10
2 68.40 15.40 70.50 16.60 80.00 26.20
3 75.10 22.20 77.60 23.80 87.80 42.90

Gemma-3 4B
1 56.20 7.40 56.60 7.60 62.60 8.70
2 64.00 11.30 64.90 11.70 76.60 18.60
3 72.50 17.60 73.90 18.70 86.10 34.30

Table 2 presents the results for the Min-K++ 20.0% MIA for each of the datasets. We observe
a consistent and substantial increase in vulnerability as the number of fine-tuning epochs grows.
This trend holds across all models and datasets. The effect is especially pronounced in short-context
datasets, particularly on the WTQ dataset, where AUROC scores reach as high as 97.7% with Mistral
7B after three epochs and exceed 89.6% across all models. In contrast, long-context datasets exhibit
more moderate vulnerability. For example, on the Adult dataset, the highest AUROC is 71.5% with
Mistral 7B, and on California Housing, the highest result is 87.8% with LLaMA-3.1 8B. Table 3,
which compares the performance of the examined attacks on the WikiSQL dataset, illustrates the
trends discussed above in greater detail. For all attacks, as fine-tuning progresses, vulnerability
increases, with higher AUROC scores obtained as the number of epochs grew across models. Among
them, Min-K++ 20.0% consistently performs the best, achieving an AUROC of 88.9 with LLaMA-
3.1 8B and 87.8 with Mistral 7B. Additional results for the remaining datasets and attack methods
are provided in Appendix A.2.

MIAs generally achieve higher AUROC scores against larger models such as LLaMA-3.1 8B and
Mistral 7B, compared to smaller models like LLaMA-3.2 3B and Gemma-3 4B. For ex-
ample, after fine-tuning for three epochs, with tables encoded using the Line-Separated format on
the California Housing dataset, the Min-K++ 20.0% MIA achieves AUROC scores of 86.8% and
87.8% respectively with Mistral 7B and LLaMA-3.1 8B, compared to 77.2% and 73.8% with
LLaMA-3.2 3B and Gemma-3 4B. Chen (2023b) found that larger models offer clear advan-
tages in table reasoning tasks, highlighting the performance benefits of increased scale. However,
our results reveal a corresponding privacy trade-off: larger models are also significantly more vul-
nerable to MIAs, with differences of nearly 10 to 14 percentage points in AUROC compared to
smaller LLMs. While prior work attributes such susceptibility to the greater memorization capacity
of LLMs (Carlini et al., 2023; 2021), our findings extend this observation to models fine-tuned on
tabular data, where increased model size correlates with greater leakage under MIAs.

5.2 EFFECT OF ENCODING FORMAT

Table 4: Comparison of the AUROC scores achieved by different MIA methods across table encod-
ing formats and models on the California Housing dataset. Bold values indicate the highest score
per row (encoding), while underlined values indicate the highest score per column (model-method
pair).

Llama-3.2 3B Mistral 7B Gemma-3 4B
Encoding Method PPL Min-K 20.0% Min-K++ 20.0% PPL Min-K 20.0% Min-K++ 20.0% PPL Min-K 20.0% Min-K++ 20.0%

Markdown 60.60 60.90 72.00 65.60 73.10 80.00 59.10 64.10 67.80
JSON 59.60 59.60 53.00 61.40 61.40 54.50 58.40 58.40 55.00
HTML 59.70 59.70 55.80 61.70 61.70 50.60 59.10 61.20 55.40
Key-Value Pair 62.80 62.80 78.70 72.40 74.70 92.60 59.30 60.80 67.00
Key-is-Value 60.20 60.20 55.10 63.70 65.00 74.90 59.20 60.60 66.70
Line-Separated 61.60 64.90 77.20 69.70 84.90 86.80 62.30 72.10 73.80
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Table 5: Comparison of the AUROC scores achieved by different MIA methods across table en-
coding formats and models on the WTQ dataset. Bold values indicate the highest score per row
(encoding), while underlined values indicate the highest score per column (model-method pair).

Llama-3.2 3B Mistral 7B Gemma-3 4B
Encoding Method PPL Min-K 20.0% Min-K++ 20.0% PPL Min-K 20.0% Min-K++ 20.0% PPL Min-K 20.0% Min-K++ 20.0%

Markdown 68.00 69.50 85.30 87.00 88.40 94.20 73.70 74.80 86.70
JSON 67.10 67.50 79.80 79.40 79.60 82.70 70.70 71.00 79.20
HTML 66.30 66.60 79.70 82.80 83.00 92.90 72.10 72.80 83.30
Key-Value Pair 67.00 67.80 83.50 85.00 85.70 94.90 72.80 73.80 85.50
Key-is-Value 67.00 67.90 83.70 83.60 84.20 89.70 72.30 73.20 85.00
Line-Separated 70.40 72.40 89.70 87.30 90.40 97.70 74.70 76.50 89.60

Textual encoding shapes the way tabular structures are presented to LLMs and can influence their
tendency to memorize data. In this experiment, we fine-tuned the models and executed the MIAs
on the datasets, using different encoding formats to assess their impact on the privacy risk. Ta-
bles 4 and 5 present the AUROC scores for MIAs on the California Housing (long-context) and
WTQ (short-context) datasets, using the six examined encoding formats. On both datasets, the Line-
Separated and Key-Value Pair formats exhibit the greatest vulnerability to membership inference.
On the WTQ dataset, an AUROC of 97.7% with Mistral 7B was obtained using the Line-Separated
format, and on the California Housing dataset, an AUROC of 92.6% was achieved using the Key-
Value Pair format. These findings show that encoding format impacts the privacy risk. Flat, row-
based encodings like Line-Separated and Key-Value Pair produce long, continuous sequences of
content tokens that align closely with tokenizer boundaries. This structure concentrates learning on
individual cell values, increasing the likelihood of memorization—resulting in the highest AUROC
scores across datasets and MIA methods. In contrast, formats such as HTML and JSON introduce
structural redundancy via tags and punctuation. This disperses model attention across non-content
tokens, leading to lower AUROC scores—typically 10 points lower—indicating reduced memo-
rization. Intermediate formats like Key-is-Value and Markdown strike a balance between structural
clarity and redundancy, yielding moderate vulnerability. These results align with theoretical analy-
ses showing that memorization risk increases with the effective input context length (Carlini et al.,
2022b; 2023). Additional results are available in Appendix A.3.

5.3 CROSS-FORMAT GENERALIZATION

In this experiment, we examine whether tabular data learned during fine-tuning with one table en-
coding format remains detectable by MIAs applied using a different format. This scenario mirrors
real-world deployment settings, where the encoding format used during the model’s training is un-
known. To evaluate this, we fine-tuned the Gemma-3 4B model on the TabFact dataset using one
of the six encoding formats and executed the Min-K++ 20.0% attack. The results, shown in Fig-
ure 2, reveal partial cross-format generalization: memorization signals often persist even when the
evaluation format differs from the training format. Diagonal cells (where training and evaluation
formats match) tend to yield the highest AUROC values, confirming that MIAs are most effective
when structural representations align. For example, training and evaluating on the Markdown format
yields an AUROC of 85.2%, whereas switching the attack format to Key-Value or Line-Separated
reduces performance to 68.9% and 69.4%, respectively.

To gain additional insights, we compute the average AUROC values across the rows and columns of
the heatmap. These averages reflect how effective each encoding format is when used to encode the
data for MIA detection (rows) and for model fine-tuning (columns). The most vulnerable format for
MIA detection is HTML (76.0), followed by Key-Value Pair (73.2) and JSON (71.2), suggesting that
these formats offer greater advantages to attackers. On the training side, Line-Separated and Key-is-
Value induce the most memorization, resulting in average AUROCs of 74.6 and 72.8, respectively.
From a defender’s perspective, selecting training formats like JSON or HTML—which yield lower
average AUROCs of 69.4 and 70.1—may help reduce privacy risk.

5.4 PRETRAINED MODELS

In this experiment, we assess LLMs’ vulnerability to MIAs in their pretrained state—prior to any
fine-tuning. Our goal is to determine whether publicly available models have inadvertently mem-
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Figure 2: Heatmap showing the AUROC achieved by the Min-K++ 20.0% MIA on the WTQ dataset
using the Gemma-3 4B model. Each cell compares the encoding used during fine-tuning (columns)
with the encoding used during MIA detection (rows).

Table 6: AUROC scores achieved by the Min-K++ 20.0% MIA on the WTQ dataset using pretrained
models without fine-tuning. Synthetic data was generated to serve as non-member samples. The
table compares performance across table encoding formats for each model. Bold values indicate
the highest score per row (encoding), while underlined values indicate the highest score per column
(model).

Encoding Method Llama-3.1 8B Llama-3.2 3B Mistral 7B Gemma-3 4B
Markdown 69.30 62.20 63.00 60.70
JSON 62.40 57.60 59.90 58.40
HTML 66.70 60.00 61.70 61.80
Key-Value Pair 72.00 66.20 66.90 63.40
Key-is-Value 71.60 65.90 64.10 61.90
Line-Separated 71.50 63.80 62.90 60.90

orized examples from the WTQ dataset, which forms part of our benchmark. Given WTQ’s wide
use and its reliance on Wikipedia tables, we assume that its contents may have been included in the
pretraining corpora of many open-weight LLMs. To simulate an MIA setting, we treated the origi-
nal WTQ tables as member samples and generated synthetic non-member tables using the GPT-4o
mini (OpenAI, 2024a) model (see Appendix A.4 for details on the generation process). We then
used the MIN-K++ 20.0% attack to test each pretrained model for evidence of memorization of the
WTQ tables. Table 6 presents the AUROC scores for four models with the six encoding formats.
The results show pretrained models without further fine-tuning exhibit moderate levels of data leak-
age. The highest AUROC of 72.0 is observed for LLaMA-3.1 8B with the Key-Value Pair format.
Formats such as Key-Value Pair, Key-is-Value, and Line-Separated consistently result in greater vul-
nerability across models, with AUROC scores frequently exceeding 60%, indicating that the models
likely memorized these tables during pretraining.

6 CONCLUSION

Tab-MIA is the first benchmark for evaluating MIAs on LLMs trained on tabular data. Through con-
trolled experiments on four SOTA open-source LLMs and six encoding strategies, our experiments
show that fine-tuning LLMs on tabular data might cause memorization and thus make them vulner-
able to MIAs. Some attacks can achieve AUROC scores exceeding 95% with minimal fine-tuning,
underscoring the risk of memorization and privacy leakage. In contrast, we find that using encodings
that introduce syntactic noise (e.g., verbose or structured formats such as HTML or JSON) mitigates
attack success. Our benchmark provides a foundation for the systematic evaluation of privacy risks
in various scenarios with different models and table encoding formats.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 TRAINING AND EVALUATION CONFIGURATIONS

This appendix contains the training configurations used in our experiments. All models are fine-
tuned using QLoRA (Dettmers et al., 2023), a PEFT method that enables efficient training with 4-bit
quantized weights. Fine-tuning is performed using a batch size of two on a single RTX 6000 GPU
(48GB VRAM). We apply a learning rate of 3e-4, use the paged adamw 8bit optimizer, and
set warmup steps to 20. We use a fixed random seed of 42 for all dataset splits and data loading
to ensure reproducibility.

For each dataset, 50% of the tables are selected as member records for fine-tuning, with the remain-
ing used as non-members for MIA evaluation. All experiments are implemented using HuggingFace
Transformers and PEFT libraries, with evaluation scripts provided in the public code repository.

A.2 EFFECT OF FINE-TUNING EPOCHS ON MIA VULNERABILITY

This section presents comprehensive results on how the number of fine-tuning epochs affects vul-
nerability to MIAs across all model–dataset configurations in our benchmark. For this experiment,
we report results using the Line-Separated encoding format, as it consistently exhibits high mem-
orization rates across models and datasets, making it a strong representative for analyzing privacy
risk. Tables 7–10 summarize AUROC and TPR@FPR=5% metrics across three representative MIA
methods: LOSS (PPL), Min-K 20.0%, and Min-K++ 20.0%. Across all methods, we observe that
longer fine-tuning leads to increased model memorization and thus greater vulnerability to MIAs.

Table 7: MIA results on the Adult dataset for all examined models fine-tuned for 1, 2, and 3 epochs.
Tables are encoded in the Line-Separated format. Bold values highlight the best-performing method
per row.

Model # Epochs PPL Min-K 20.0% Min-K++ 20.0%
AUROC TPR@FPR=5% AUROC TPR@FPR=5% AUROC TPR@FPR=5%

Llama-3.2 3B
1 53.30 5.20 53.30 4.90 54.10 5.30
2 56.50 7.00 56.50 6.30 58.00 7.30
3 62.40 9.60 62.60 9.80 64.40 10.20

LLaMA-3.1 8B
1 53.80 6.30 53.70 6.40 55.10 6.70
2 58.10 7.50 58.10 8.40 60.00 8.00
3 73.90 24.20 74.30 25.80 71.10 15.50

Mistral 7B
1 54.00 5.20 54.10 4.40 54.60 5.20
2 57.10 6.80 57.60 6.10 58.90 6.80
3 65.90 10.80 67.40 11.80 71.50 14.70

Gemma-3 4B
1 53.20 6.20 53.10 5.70 53.90 5.00
2 56.70 7.30 57.20 6.10 58.90 7.50
3 63.00 10.50 64.80 12.00 67.70 11.70

A.3 IMPACT OF TABLE ENCODING FORMATS ON MIA PERFORMANCE

This section provides detailed results on the effect of different table encoding formats on models’
susceptibility to MIAs. Tables 11- 15 report the AUROC and TPR@FPR=5% values for six encod-
ing schemes (HTML, JSON, Key-Value Pair, Key-is-Value, Line-Separated, and Markdown) for all
model–dataset configurations.

A.4 SYNTHETIC TABLES GENERATION

In Section 5.4, we evaluate pretrained LLMs for evidence of memorization of public tabular datasets.
To simulate a MIA setting in this scenario, we required non-member tables that resemble the struc-
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Table 8: MIA results on the California Housing dataset for all examined models fine-tuned for 1,
2, and 3 epochs. Tables are encoded in the Line-Separated format. Bold values highlight the best-
performing method per row.

Model # Epochs PPL Min-K 20.0% Min-K++ 20.0%
AUROC TPR@FPR=5% AUROC TPR@FPR=5% AUROC TPR@FPR=5%

Llama-3.2 3B
1 53.90 8.30 55.20 7.40 57.70 7.40
2 57.00 12.00 59.00 9.90 66.80 15.50
3 61.60 14.90 64.90 14.00 77.20 26.60

LLaMA-3.1 8B
1 54.10 9.30 55.30 8.50 59.00 10.70
2 58.70 13.40 61.10 11.20 72.80 22.70
3 66.30 19.60 70.40 19.60 87.80 52.50

Mistral 7B
1 55.00 9.50 57.30 10.10 57.80 12.40
2 59.70 13.40 68.20 18.80 70.30 23.60
3 69.70 19.40 84.90 45.00 86.80 56.80

Gemma-3 4B
1 53.80 9.70 54.30 9.30 54.30 7.90
2 56.90 10.70 61.40 14.10 62.50 12.60
3 62.30 13.20 72.10 20.70 73.80 23.30

Table 9: MIA results on the WTQ dataset for all examined models fine-tuned for 1, 2, and 3 epochs.
Tables are encoded in the Line-Separated format. Bold values highlight the best-performing method
per row.

Model # Epochs PPL Min-K 20.0% Min-K++ 20.0%
AUROC TPR@FPR=5% AUROC TPR@FPR=5% AUROC TPR@FPR=5%

Llama-3.2 3B
1 51.50 3.70 51.90 5.10 57.60 5.90
2 59.70 8.20 60.80 8.70 74.80 19.00
3 70.40 14.80 72.40 16.30 89.70 48.40

LLaMA-3.1 8B
1 53.70 5.10 54.10 5.10 61.60 9.00
2 64.70 10.70 65.80 12.00 80.80 30.50
3 77.90 27.20 79.50 29.50 93.60 66.40

Mistral 7B
1 58.40 8.60 59.80 7.80 69.70 15.40
2 74.30 20.80 76.80 21.20 88.40 55.20
3 87.30 47.00 90.40 51.30 97.70 88.20

Gemma-3 4B
1 52.50 4.20 53.00 3.70 59.30 7.50
2 61.90 9.50 62.90 9.00 77.00 24.90
3 74.70 16.50 76.50 20.20 89.60 54.10

ture of the WTQ dataset but do not duplicate any of its records. For this purpose, we generated
synthetic tables using a controlled LLM-based synthesis procedure.

We implemented a Python pipeline that reads the original tabular data and queries the
GPT-4o-mini model to produce synthetic replacements for each table. The pipeline preserves
the table’s schema and formatting, but replaces cell values with realistic, non-identical alternatives.
This ensures that synthetic records maintain semantic plausibility while preventing verbatim overlap
with the original dataset.

Prompt Used for Synthesis. The following prompt was provided to the model for each table:

You are a data synthesizer. Your task is to generate a synthetic version
of the given tabular dataset for use in membership inference attack
evaluation on tabular data.
- Preserve the original table’s structure, column names, and formatting.
- Change the values so that they are realistic but not identical to the original

data.
- Output *only* the synthetic table|no explanations, no preamble,

and no additional text.

Input:
The original table:
{table}
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Table 10: MIA results on the TabFact dataset for all examined models fine-tuned for 1, 2, and 3
epochs. Tables are encoded in the Line-Separated format. Bold values highlight the best-performing
method per row.

Model # Epochs PPL Min-K 20.0% Min-K++ 20.0%
AUROC TPR@FPR=5% AUROC TPR@FPR=5% AUROC TPR@FPR=5%

Llama-3.2 3B
1 55.10 6.60 55.50 6.50 61.50 8.80
2 62.10 9.90 63.10 10.10 73.40 14.90
3 67.80 13.80 69.40 14.00 80.40 31.10

LLaMA-3.1 8B
1 57.90 7.90 58.30 8.20 64.90 11.20
2 67.80 15.10 68.90 15.20 79.60 24.20
3 77.40 26.40 78.70 27.00 89.90 47.00

Mistral 7B
1 60.00 9.60 60.70 10.00 68.50 14.70
2 69.20 16.00 70.60 16.70 81.20 29.40
3 77.00 24.60 78.90 25.50 89.90 50.50

Gemma-3 4B
1 55.40 7.00 55.40 7.00 63.30 10.80
2 63.80 11.40 64.40 11.70 77.90 20.10
3 72.70 17.40 73.60 18.20 87.40 37.40

Table 11: MIA results on the Adult dataset for the examined models, with the various encoding
formats. For each method, both AUROC and TPR@FPR=5% are reported. Bold values highlight
the best-performing method per row.

Model Encoding PPL Min-K 20.0% Min-K++ 20.0%
AUROC TPR@FPR=5% AUROC TPR@FPR=5% AUROC TPR@FPR=5%

LLaMA-3.1 8B

HTML 62.40 9.30 62.40 9.20 54.90 6.50
JSON 69.90 17.30 69.90 17.30 68.80 14.50
Key-is-Value 70.50 18.30 70.40 17.80 70.50 15.40
Key-Value Pair 72.60 21.90 72.60 22.00 71.30 16.50
Line-Separated 73.90 24.20 74.30 25.80 71.10 15.50
Markdown 75.70 27.60 75.70 28.20 73.20 19.70

Llama-3.2 3B

HTML 61.60 9.70 61.60 9.70 62.70 8.80
JSON 61.40 9.30 61.40 9.30 63.70 9.40
Key-is-Value 60.50 8.80 60.40 8.70 63.10 9.50
Key-Value Pair 60.20 8.10 60.20 8.40 63.00 9.40
Line-Separated 62.40 9.60 62.60 9.80 64.40 10.20
Markdown 62.80 9.80 62.80 9.80 65.10 10.90

Mistral 7B

HTML 71.00 17.70 71.00 17.60 75.30 21.90
JSON 56.90 5.80 56.90 5.90 50.90 3.80
Key-is-Value 67.40 12.50 67.40 12.60 73.30 19.40
Key-Value Pair 66.90 10.90 67.00 11.00 72.40 15.50
Line-Separated 65.90 10.80 67.40 11.80 71.50 14.70
Markdown 71.60 14.40 71.90 14.70 78.20 27.30

Gemma-3 4B

HTML 59.20 7.90 59.20 8.20 54.20 7.60
JSON 55.70 6.80 55.70 6.70 50.80 8.00
Key-is-Value 57.40 6.50 57.40 6.60 59.80 6.80
Key-Value Pair 57.60 7.00 57.60 7.10 59.80 6.80
Line-Separated 63.00 10.50 64.80 12.00 67.70 11.70
Markdown 58.20 7.10 58.40 7.00 61.30 8.00

Output:
The synthetic table:

This process was only applied in the pretrained-model evaluation, where synthetic non-members
were paired with WTQ member tables. For all fine-tuned experiments described in Section 4, non-
member samples were drawn directly from the benchmark datasets without synthesis.

A.5 DISCLOSURE OF LLM USAGE

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that
LLMs were used solely to aid and polish the writing of this manuscript. Their role was limited to
improving grammar, clarity, and readability. No part of the research design, data processing, exper-
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Table 12: MIA results on the California Housing dataset for the examined models, with the various
encoding formats. For each method, both AUROC and TPR@FPR=5% are reported. Bold values
highlight the best-performing method per row.

Model Encoding PPL Min-K 20.0% Min-K++ 20.0%
AUROC TPR@FPR=5% AUROC TPR@FPR=5% AUROC TPR@FPR=5%

LLaMA-3.1 8B

HTML 69.40 21.30 69.40 21.10 88.90 56.80
JSON 63.80 15.10 63.80 15.10 54.60 8.30
Key-is-Value 64.30 14.30 64.30 14.10 56.00 9.50
Key-Value Pair 68.30 18.40 68.20 18.40 88.20 51.20
Line-Separated 66.30 19.60 70.40 19.60 87.80 52.50
Markdown 64.60 15.50 64.90 15.90 80.00 34.50

Llama-3.2 3B

HTML 59.70 13.20 59.70 13.00 55.80 7.00
JSON 59.60 12.20 59.60 12.40 53.00 4.50
Key-is-Value 60.20 13.60 60.20 13.60 55.10 10.10
Key-Value Pair 62.80 16.10 62.80 15.90 78.70 26.20
Line-Separated 61.60 14.90 64.90 14.00 77.20 26.60
Markdown 60.60 13.20 60.90 13.00 72.00 22.10

Mistral 7B

HTML 61.70 13.40 61.70 13.40 50.60 5.00
JSON 61.40 14.10 61.40 14.00 54.50 6.80
Key-is-Value 63.70 15.50 65.00 14.70 74.90 28.70
Key-Value Pair 72.40 24.20 74.70 24.20 92.60 68.00
Line-Separated 69.70 19.40 84.90 45.00 86.80 56.80
Markdown 65.60 17.60 73.10 23.10 80.00 39.10

Gemma-3 4B

HTML 59.10 11.00 61.20 11.80 55.40 7.80
JSON 58.40 11.40 58.40 11.40 55.00 7.60
Key-is-Value 59.20 10.30 60.60 11.00 66.70 15.70
Key-Value Pair 59.30 11.20 60.80 11.20 67.00 15.30
Line-Separated 62.30 13.20 72.10 20.70 73.80 23.30
Markdown 59.10 11.20 64.10 13.20 67.80 15.30

Table 13: MIA results on the WTQ dataset for the examined models, with the various encoding
formats. For each method, both AUROC and TPR@FPR=5% are reported. Bold values highlight
the best-performing method per row.

Model Encoding PPL Min-K 20.0% Min-K++ 20.0%
AUROC TPR@FPR=5% AUROC TPR@FPR=5% AUROC TPR@FPR=5%

LLaMA-3.1 8B

HTML 71.60 17.30 71.80 17.30 82.00 41.70
JSON 72.90 19.10 73.20 19.30 81.70 44.60
Key-is-Value 73.20 21.20 73.90 21.20 86.50 50.20
Key-Value Pair 73.80 23.20 74.40 22.90 86.70 51.80
Line-Separated 77.90 27.20 79.50 29.50 93.60 66.40
Markdown 74.40 19.80 75.60 20.50 89.40 54.70

Llama-3.2 3B

HTML 66.30 10.40 66.60 10.60 79.70 28.60
JSON 67.10 11.70 67.50 11.70 79.80 33.00
Key-is-Value 67.00 12.80 67.90 13.10 83.70 38.30
Key-Value Pair 67.00 12.10 67.80 12.80 83.50 40.40
Line-Separated 70.40 14.80 72.40 16.30 89.70 48.40
Markdown 68.00 12.60 69.50 13.50 85.30 31.90

Mistral 7B

HTML 82.80 29.70 83.00 30.00 92.90 70.00
JSON 79.40 29.20 79.60 29.10 82.70 53.80
Key-is-Value 83.60 34.70 84.20 35.60 89.70 68.10
Key-Value Pair 85.00 37.60 85.70 38.60 94.90 79.20
Line-Separated 87.30 47.00 90.40 51.30 97.70 88.20
Markdown 87.00 36.70 88.40 36.90 94.20 84.00

Gemma-3 4B

HTML 72.10 12.90 72.80 12.90 83.30 42.30
JSON 70.70 12.10 71.00 12.10 79.20 37.00
Key-is-Value 72.30 14.50 73.20 14.60 85.00 46.50
Key-Value Pair 72.80 15.60 73.80 15.70 85.50 49.30
Line-Separated 74.70 16.50 76.50 20.20 89.60 54.10
Markdown 73.70 16.30 74.80 16.80 86.70 49.10

imental implementation, analysis, or conclusions relied on LLM-generated content. All scientific
contributions were conceived and executed entirely by the authors.
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Table 14: MIA results on the WikiSQL dataset for the examined models, with the various encoding
formats. For each method, both AUROC and TPR@FPR=5% are reported. Bold values highlight
the best-performing method per row.

Model Encoding PPL Min-K 20.0% Min-K++ 20.0%
AUROC TPR@FPR=5% AUROC TPR@FPR=5% AUROC TPR@FPR=5%

LLaMA-3.1 8B

HTML 74.50 18.90 74.50 18.90 81.90 30.40
JSON 75.20 20.10 75.30 20.10 82.70 32.40
Key-is-Value 75.50 20.90 75.80 21.10 86.10 37.60
Key-Value Pair 75.60 21.20 75.80 21.40 86.00 36.30
Line-Separated 76.50 25.30 78.10 25.90 88.90 40.20
Markdown 75.60 20.20 76.10 20.70 86.20 33.70

Llama-3.2 3B

HTML 67.90 11.70 68.00 11.80 76.80 19.50
JSON 69.10 13.10 69.20 13.10 78.50 22.40
Key-is-Value 64.60 8.70 65.10 8.80 72.30 12.60
Key-Value Pair 69.10 13.40 69.50 13.50 80.70 23.10
Line-Separated 69.40 15.90 71.20 16.10 83.20 25.30
Markdown 68.10 11.50 69.00 11.70 71.40 14.60

Mistral 7B

HTML 72.20 16.50 72.30 16.50 79.60 31.00
JSON 72.90 16.80 73.10 16.70 80.30 30.70
Key-is-Value 74.70 19.50 75.40 19.80 85.30 37.50
Key-Value Pair 74.60 19.90 75.20 20.20 85.40 37.70
Line-Separated 75.10 22.20 77.60 23.80 87.80 42.90
Markdown 75.10 19.80 76.20 20.40 86.10 39.10

Gemma-3 4B

HTML 72.00 16.00 72.50 16.20 83.40 29.20
JSON 71.20 14.40 71.30 14.40 80.00 26.90
Key-is-Value 72.00 15.70 72.50 15.80 84.20 30.30
Key-Value Pair 71.90 15.80 72.50 15.80 84.50 31.20
Line-Separated 72.50 17.60 73.90 18.70 86.10 34.30
Markdown 71.20 14.30 71.90 14.60 83.00 26.80

Table 15: MIA results on the TabFact dataset for the examined models, with the various encoding
formats. For each method, both AUROC and TPR@FPR=5% are reported. Bold values highlight
the best-performing method per row.

Model Encoding PPL Min-K 20.0% Min-K++ 20.0%
AUROC TPR@FPR=5% AUROC TPR@FPR=5% AUROC TPR@FPR=5%

LLaMA-3.1 8B

HTML 76.10 19.50 76.10 19.50 83.70 34.50
JSON 70.30 13.00 70.40 13.00 69.40 21.20
Key-is-Value 77.60 21.70 77.90 21.90 88.30 41.10
Key-Value Pair 78.10 22.10 78.30 22.40 88.40 42.10
Line-Separated 77.40 26.40 78.70 27.00 89.90 47.00
Markdown 78.00 22.20 78.70 22.80 88.70 40.50

Llama-3.2 3B

HTML 68.60 11.40 68.70 11.40 78.20 20.30
JSON 69.50 11.90 69.60 12.00 80.20 23.30
Key-is-Value 64.10 8.60 64.70 8.80 71.90 12.20
Key-Value Pair 67.70 11.60 68.20 11.60 78.80 20.60
Line-Separated 67.80 13.80 69.40 14.00 80.40 31.10
Markdown 67.70 10.90 68.80 11.20 73.90 12.80

Mistral 7B

HTML 74.60 18.60 74.60 18.60 82.40 37.60
JSON 75.70 19.60 75.80 19.60 83.90 39.10
Key-is-Value 76.80 21.00 77.40 21.10 87.70 43.30
Key-Value Pair 76.90 21.80 77.50 21.90 88.00 43.80
Line-Separated 77.00 24.60 78.90 25.50 89.90 50.50
Markdown 77.50 23.10 78.70 23.60 89.10 47.20

Gemma-3 4B

HTML 72.40 15.50 72.90 15.60 85.00 33.10
JSON 72.00 14.20 72.20 14.20 82.00 30.90
Key-is-Value 72.70 14.90 73.10 15.10 86.10 33.00
Key-Value Pair 72.50 14.70 72.90 14.80 86.10 33.90
Line-Separated 72.70 17.40 73.60 18.20 87.40 37.40
Markdown 71.80 14.90 72.50 15.20 85.20 29.60
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