TAB-MIA: A BENCHMARK DATASET FOR MEMBER-SHIP INFERENCE ATTACKS ON TABULAR DATA IN LLMS

Anonymous authorsPaper under double-blind review

000

001

002

004 005 006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033 034

035

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Large language models (LLMs) are increasingly trained on tabular data, which, unlike unstructured text, often contains personally identifiable information (PII) in a highly structured and explicit format. As a result, privacy risks arise, since sensitive records can be inadvertently retained by the model and exposed through data extraction or membership inference attacks (MIAs). While existing MIA methods primarily target textual content, their efficacy and threat implications may differ when applied to structured data, due to its limited content, diverse data types, unique value distributions, and column-level semantics. In this paper, we present Tab-MIA, a benchmark dataset for evaluating MIAs on tabular data in LLMs and demonstrate how it can be used. Tab-MIA comprises five data collections, each represented in six different encoding formats. Using our Tab-MIA benchmark, we conduct the first evaluation of state-of-the-art MIA methods on LLMs finetuned with tabular data across multiple encoding formats. In the evaluation, we analyze the memorization behavior of pretrained LLMs on structured data derived from Wikipedia tables. Our findings show that LLMs memorize tabular data in ways that vary across encoding formats, making them susceptible to extraction via MIAs. Even when fine-tuned for as few as three epochs, models exhibit high vulnerability, with AUROC scores approaching 90% in most cases. Tab-MIA enables systematic evaluation of these risks and provides a foundation for developing privacy-preserving methods for tabular data in LLMs.

1 Introduction

Large language models (LLMs) have emerged as core components of modern artificial intelligence (AI) systems due to their advanced language understanding and generation capabilities, supporting applications ranging from scientific discovery to natural, human-like interaction (Berti et al., 2025; Wei et al., 2022). These models are typically trained on vast and diverse datasets comprised of web content, academic publications, code repositories, and, increasingly, structured tabular data from organizational and public databases (Fang et al., 2024a; Paranjape et al., 2023).

Tabular data, such as financial spreadsheets and electronic health records, serve as the basis of data-driven workflows in healthcare, finance, public administration, and other sectors. Their structured format—rows as entities and columns as attributes—helps both humans and machine learning models learn patterns, relationships, and statistical properties efficiently. While LLMs have traditionally been developed and applied for unstructured textual data, recent research reflects the growing interest in adapting LLMs to effectively process such structured inputs by representing tables in text-like formats (Herzig et al., 2020; Yin et al., 2020; Narayan et al., 2022). This shift extends LLMs' capabilities to reasoning tasks involving both unstructured and structured data. However, incorporating tabular data in the training set of an LLM poses unique challenges and risks. Tabular data may contain personally identifiable information (PII), commercially sensitive material, or domain-specific details that are not intended for broad dissemination (Yeom et al., 2018a; Zeng et al., 2024). LLMs, including those trained on structured data, can memorize and leak sensitive records since they are vulnerable to *membership inference attacks* (MIAs), in which an adversary attempts to determine whether a particular record was included in the model's training set (Shokri et al., 2017a; Carlini et al., 2022a). These attacks typically rely on subtle differences in the model's behavior

when queried with examples it has seen during training compared to unseen examples (Cao et al., 2023; Hu et al., 2022).

MIAs on LLMs have been studied extensively in the context of textual data, where researchers typically analyze confidence scores at the sentence- or paragraph-level to detect training set membership (Song et al., 2025; Duan et al., 2024). These studies generally assume that the models were trained on free-form, unstructured text—such as natural language sentences and documents. Tabular data, which is often heterogeneous, may exhibit skewed value distributions and contain explicit column-level semantics, making both the design of MIAs and the development of effective defenses more challenging (Borisov et al., 2022a; Fang et al., 2024a).

Recent work has shown that generative models can effectively interpret, transform, and synthesize tabular data (Zha et al., 2023), and other studies have shown that the choice of table encoding format—such as JSON, HTML, Markdown, or Key-Value Pair—can impact model performance (Fang et al., 2024a). However, the studies primarily focused on improving task accuracy and generalization, with comparatively little research attention given to understanding memorization risks or the potential exploitation of tabular data through MIAs. Prior research has shown that LLM performance is highly sensitive to the input format: for instance, DFLoader and JSON have been found effective for fact-finding and transformation tasks (Singha et al., 2023), while HTML and XML outperform plain-text formats like CSV or X-separated values in table QA and field-value prediction (Sui et al., 2023; 2024a). This performance gap is often attributed to the prevalence of web-based markup (e.g., HTML) in the pretraining data of models like GPT-3.5 and GPT-4 (OpenAI, 2024b), making them more effective at processing tables serialized in familiar, structured input styles.

In this paper, we present Tab-MIA, a benchmark dataset specifically designed to evaluate MIAs against LLMs fine-tuned on tabular data. Tab-MIA includes five collections consisting of tables, each represented in six different textual encoding formats. To our knowledge, this is the first comprehensive evaluation of MIAs on LLMs trained with structured tabular data across multiple encoding formats. We systematically examine the sensitivity of LLMs to MIAs under various conditions, including after fine-tuning with a limited number of epochs on tabular datasets, and in the pretrained setting, where the pretrained model is assumed to be trained on a tabular subset of Wikipedia. In our experiments, various configurations of models, data encodings, and training epochs are examined.

One evaluation shows that LLMs can memorize tabular data to a degree sufficient for effective membership inference. Notably, even when fine-tuned for as few as three epochs, attack success rates can be high, with AUROC scores approaching 90%. We also observed partial transferability of attacks across encoding formats, indicating that adversaries may succeed without exact knowledge of the specific format used in training. These findings highlight the need for privacy-preserving training practices when training LLMs on structured data. Our work broadens the scope of MIA research, which has largely not focused on structured data, and highlights the need for privacy-preserving strategies designed to address the challenges posed by the unique characteristics of tabular formats.

The main contributions of our paper are (1) we present the first benchmark dataset to evaluate MIAs against LLMs trained on tabular data; (2) we conduct the first evaluation of state-of-the-art (SOTA) MIAs on LLMs fine-tuned with tabular data across multiple encoding formats; and (3) we analyze the memorization behavior of recent SOTA LLMs on structured data derived from Wikipedia tables.

2 RELATED WORK

LLMs have demonstrated promising capabilities in handling structured data across tasks such as tabular representation, question answering, and data generation. In this section, we review prior work focused on: (1) MIAs on LLMs, (2) encoding-strategy-based methods for using tabular data with LLMs, and (3) emerging risks when incorporating structured data into LLM training sets.

2.1 Membership Inference Attacks on LLMs

MIAs (Shokri et al., 2017b) aim to determine whether a given sample x is part of a training set D_{train} of a model f. An attacker receives a sample x and the trained model f, and applies an attack model f to classify f as a member f and f to ron-member otherwise. MIAs against LLMs have received increasing attention (Carlini et al., 2022b; Mattern et al., 2023; Zhang et al., 2024).

Recent studies categorized MIA methods into *reference-based* and *reference-free* approaches (Antebi et al., 2025). Reference-based attacks primarily rely on training shadow models to mimic the target model's behavior. A prominent example is LiRA (Carlini et al., 2022b), which estimates the likelihood ratio of a sample's loss under two model output distributions, one where the sample was included in training and one where it was not. While often effective, such methods are computationally expensive, as they require training multiple shadow models and calibrating their outputs.

Reference-free attacks rely on confidence metrics derived from a single model's output. The *LOSS attack (PPL)* (Yeom et al., 2018b) infers membership based on the model's loss value relative to a fixed threshold. The *Zlib attack* (Carlini et al., 2021) uses the ratio of log-likelihood to its *Zlib compression length*, while the *Neighbor attack* (Mattern et al., 2023) examines perplexity shifts by substituting words with similar tokens generated by an auxiliary model. More recently, *Min-K%* (Shi et al., 2024) and *Min-K%++* (Zhang et al., 2025) were shown to improve attack efficiency by averaging the lowest probability tokens, with Min-K%++ further applying normalization over log probabilities. In addition, the authors of *RECALL* (Xie et al., 2024), *DC-PDD*(Zhang et al., 2024), and *Tag&Tab* (Antebi et al., 2025) introduced more advanced strategies that improve MIA performance on LLMs compared to other methods.

2.2 LLMs and Tabular Data

Many enterprise and scientific datasets consist of tabular data, which is composed of rows and columns of structured attributes (Fang et al., 2024b). Traditional tree-based models such as XG-Boost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017) have long been dominant for tabular data tasks, particularly due to their effectiveness on small-to-medium sized datasets and strong inductive biases for numerical features (Gorishniy et al., 2021). However, recent research has explored the use of LLMs for tabular data applications, including classification, regression, data augmentation, data generation, and table-based QA (Sui et al., 2024a; Borisov et al., 2022b; Ding et al., 2023). LLMs use their strengths, such as in-context generalization and instruction following, to better understand serialized tables, handle numeric or categorical features, and produce flexible outputs, even in scenarios that conventional machine learning models struggle with. LLMs support table-based tasks such as *Table QA*, *fact verification*, and *Text2SQL* (Chen, 2023a; Ye et al., 2023). Earlier methods like TAPAS (Herzig et al., 2020) and TaBERT (Yin et al., 2020) used specialized encoders, while modern LLMs process table queries by serializing them as text or leveraging external code calls (Sui et al., 2024a; Liu et al., 2023).

A central challenge in applying LLMs to tabular data lies in how to represent structured tables in a text-based input format suitable for transformer architectures. Prior work proposed serializing tables using various strategies, including natural language templates, JSON, Markdown, HTML, and Key-Value Pair (Dinh et al., 2022; Slack & Singh, 2023; Jaitly et al., 2023). The choice of serialization affects not only model performance but also how well the structure and semantics of the table are preserved. For example, Hegselmann et al. (2023) proposed TabLLM, a method that systematically evaluates multiple table encoding formats. Their evaluation showed that simple natural language patterns, such as "The [column] is [value]," can yield strong performance across a range of tabular classification tasks, likely due to their alignment with the model's pretraining distributions.

Although LLMs can process moderately sized serialized tables, handling very large tables remains challenging due to the transformers' fixed-length context window. This restricts the amount of tabular data a model can process in a single input, making it difficult to handle large tables without partitioning or truncation (Sui et al., 2024a;b), which can disrupt the model's ability to capture long-range dependencies and global relationships across rows and columns. To address this, compression-based frameworks like SHEETENCODER (Dong et al., 2024) have been developed. SHEETENCODER reduces the size of table inputs by selecting structural anchors, applying inverted-index translation to remove redundancy, and aggregating similar numeric fields, thereby preserving important relational information while remaining within context window limits.

While prior research optimized table serialization for accuracy and scalability, it largely overlooked the privacy implications of different serialization strategies. Tab-MIA fills this gap by systematically evaluating how encoding choices affect memorization and membership inference risk.

2.3 PRIVACY RISKS WHEN TRAINING LLMS WITH STRUCTURED DATA

162

163 164

165

166

167

168

170

171

172

173

174

175

176

177

178

179

180

181

182

183

185

187

188 189

190

191

192

193

194

195

196 197

199

200

202

203

204

205

206

207

208

210

211212213

214

215

Integrating structured tabular data in LLMs offers substantial benefits for data-driven reasoning, enabling models to combine natural language understanding with structured data processing (Gorishniy et al., 2021; Fang et al., 2024b). However, it also introduces distinct privacy and security risks that differ from those encountered when training on unstructured text. A critical vulnerability stems from the fact that tabular datasets often contain sensitive information, such as personal identifiers, financial records, or medical details, that are highly susceptible to memorization (Carlini et al., 2022b; Lukas et al., 2023). Even seemingly benign fields, when combined, can form distinctive patterns that compromise individuals' privacy. Once such information is memorized by a model, it may be vulnerable to extraction via MIAs, exposing individual records or sensitive attributes (Carlini et al., 2021).

While MIAs have been widely studied in the context of unstructured text corpora, such as books, Wikipedia, and web documents (Xie et al., 2024; Antebi et al., 2025), there is a notable lack of benchmark datasets for structured tabular data. Existing MIA benchmark datasets like BookMIA, WikiMIA (Shi et al., 2024), and MIMIR (Duan et al., 2024) have helped characterize MIA risks in textual domains, but they do not consider the unique structural format that is present in tabular datasets. The MIDST benchmark (Membership Inference over Diffusion-models-based Synthetic Tabular Data) (Organizers, 2025) extends this landscape by evaluating MIAs on diffusion models trained to synthesize tabular data. However, MIDST focuses on privacy risks in synthetic data generation, where sensitive records may be reconstructed from the denoising trajectory. In contrast, our Tab-MIA benchmark addresses a different privacy risk: memorization of tabular records in LLMs fine-tuned on serialized tables, where leakage occurs through token-level probabilities tied to column semantics. This distinction highlights complementary attack surfaces. To address the LLM-specific risk, our Tab-MIA benchmark evaluates membership inference on tabular datasets across diverse encoding formats and LLM configurations.

3 Construction of the Tab-MIA Benchmark

Our goal in constructing the Tab-MIA benchmark is to facilitate the systematic evaluation of how MIAs can be applied to extract the tabular data used to fine-tune LLMs. Unlike text-based benchmarks, which focus on sentences or paragraphs, tabular benchmarks must handle heterogeneous types of columns, various encoding formats, and repeated patterns across structurally similar tables. By creating a controlled yet realistic set of tables from publicly available datasets, Tab-MIA enables systematic evaluation of how different table-encoding strategies affect vulnerability to MIAs. We use it to analyze how different formats affect memorization and attack performance.

```
(b) HTML
(a) JSON
                                     NameAge
  {"Name": "Alice", "Age": 30},
                                       Alice30
  "Name": "Bob",
                 "Age": 25},
  {"Name": "Carol", "Age": 28}
                                       Bob25
                                       Carol28
                                     (c) Markdown
                                     (d) Key-Value Pair
| Name
       | Age
                                     Name: Alice | Age: 30
 Alice | 30
                                     Name: Bob
                                                | Age: 25
 Bob
                                     Name: Carol | Age: 28
| Carol | 28
                                     (f) Line-Separated
(e) Key-is-Value
                                     Name, Age
Name is Alice. Age is 30.
                                     Alice, 30
Name is Bob. Age is 25.
Name is Carol. Age is 28.
                                     Bob, 25
                                     Carol,28
```

Figure 1: The same 3×2 table snippet serialized into the six encoding formats used in the Tab-MIA benchmark: (a) JSON, (b) HTML, (c) Markdown, (d) Key-Value Pair, (e) Key-is-Value, and (f) Line-Separated (CSV-like).

3.1 Datasets

The benchmark integrates real-world datasets widely used in language modeling and tabular machine learning, covering diverse structural characteristics and application domains. To enable systematic evaluation of MIA risks in LLMs fine-tuned using tabular data, Tab-MIA includes datasets representing both **short-context** and **long-context** tables.

Short-context tables are derived from QA benchmarks in which each instance originally pairs a question with a supporting table. In our setting, we discard the question text and retain only the *unique tables* to focus on tabular memorization effects. We include WikiTableQuestions (WTQ) (Pasupat & Liang, 2015), WikiSQL (Zhong et al., 2017), and TabFact (Chen et al., 2020). Long-context tables are derived from structured tabular benchmarks frequently used in fairness, regression, and privacy studies. We include the Adult (Census Income) dataset (Becker & Kohavi, 1996) and the California Housing dataset (Pace & Barry, 1997). Due to input length limitations inherent to LLMs, long tables are segmented into row-wise *chunks* sized to fit within the model's context window while preserving structural coherence. A full summary of the datasets used in Tab-MIA, including record counts before and after filtering, feature dimensionality, context type (short or long), and data sources, is provided in Table 1.

Table 1: Summary of datasets used in Tab-MIA.

Name	Short/Long	# Records	# After Filter	# Features	Based On
WTQ	Short	2,108	1,290	≥5	Wikipedia
WikiSQL	Short	24,241	17,900	≥5	Wikipedia
TabFact	Short	16,573	13,100	≥5	Wikipedia
Adult (Census Income)	Long	48,842	2,440	15	US Census
California Housing	Long	20,640	1,030	10	US Housing Survey

3.2 Data Preparation

To construct the Tab-MIA benchmark, we processed each of its constituent datasets using a standardized pipeline designed to ensure data quality, consistency, and experimental control. First, we perform a filtering and deduplication step to ensure that each table appears only once in the benchmark, preventing artificial inflation of the memorization signal due to repeated exposure. Next, we apply context-specific processing to match the model's input length constraints. For *short-context tables*, we filter out any table whose serialized representation in the Line-Separated format exceeds 10,000 characters, removing overly large tables that could dominate training dynamics or introduce truncation artifacts. To accommodate *long-context tables*, we split each table into chunks of 20 records each to fit within the model's input length constraints and maintain consistency across samples.

Each resulting table (or table chunk, in the case of long-context tables) is serialized into multiple textual formats to investigate how the encoding style influences memorization. We use six encoding strategies, each reflecting a different structural abstraction of the table (illustrated in Figure 1):

- JSON: Encodes each table as a JSON array of objects, where each object corresponds to a
 row and stores key:value pairs for column entries.
- HTML: Renders the table as a structured element using
 and tags,

 preserving the visual and semantic layout.
- Markdown: Represents the table using pipe-delimited rows, headers, and alignment markers in plain text.
- **Key-Value Pair**: Flattens each row into a series of "ColumnName: entry" pairs, joined by the | symbol for linearization.
- **Key-is-Value**: Transforms each cell into a natural language phrase of the form "ColumnName is entry," producing a list of short sentence-like descriptions per row.
- Line-Separated: Encodes the table as a plain-text sequence where each row is written on a separate line, with cells joined by a delimiter (e.g., comma or hash), simulating a CSV-like layout without structural tags.

All encoded variants are saved as JSONL files to support reproducible experiments. Encoding each table in multiple ways enables us to systematically examine whether certain formats result in greater memorization by the model, and whether some styles are inherently more resistant to MIAs.

4 EXPERIMENTAL SETUP

We evaluate the vulnerability of fine-tuned LLMs to MIA under various configurations of models, data encodings, and training epochs. We fine-tune four SOTA open-weight language models—LLaMA-3.1 8B, LLaMA-3.2 3B (Meta Team, 2024), Gemma-3 4B (Gemma Team, 2025), and Mistral 7B (Jiang et al., 2023)—which have diverse training objectives, tokenizer variants, and parameter scales. All models are trained using QLoRA (Dettmers et al., 2023), a parameter-efficient fine-tuning (PEFT) method leveraging 4-bit quantized weights. Unless otherwise specified, models are fine-tuned for three epochs; however, in our analysis of training length, we also explore the effect of varying the number of epochs between one and three. In each training run, half of the tables are used as member records while the remainder serve as non-members. Additional details on the hyperparameters are provided in Appendix A.1.

To assess the privacy risk, we consider three black-box MIAs: the LOSS attack (PPL) (Yeom et al., 2018b), which relies on negative log-likelihood scores; the Min-K% attack (Shi et al., 2024), which averages the lowest k% token probabilities to identify memorized content; and Min-K%++ attack (Zhang et al., 2025), which normalizes log probabilities before aggregation to examine robustness to length and calibration effects. For each attack, we report two standard metrics, AUROC and TPR@FPR=5% (Carlini et al., 2022b), measuring detection performance across decision thresholds and under strict privacy constraints, respectively.

5 RESULTS

In this section, we present our empirical findings using the Tab-MIA benchmark to evaluate MIAs on tabular data in LLMs. The results highlight consistent trends in vulnerability driven by fine-tuning duration, encoding format, and model architecture.

5.1 EFFECT OF THE NUMBER OF FINE-TUNING EPOCHS

Table 2: AUROC scores for the Min-K++20.0% MIA on each dataset, evaluated on tables encoded in the Line-Separated format, as a function of the number of fine-tuning epochs. Bold values highlight the best-performing dataset per row.

Model	# Epochs	Adult	California	WTQ	WikiSQL	TabFact
	1	55.10	59.00	61.60	64.50	64.90
LLaMA-3.1 8B	2	60.00	72.80	80.80	78.60	79.60
	3	71.10	87.80	93.60	88.90	89.90
	1	54.10	57.70	57.60	61.50	61.50
Llama-3.2 3B	2	58.00	66.80	74.80	73.60	73.40
	3	64.40	77.20	89.70	83.20	80.40
	1	54.60	57.80	69.70	67.50	68.50
Mistral 7B	2	58.90	70.30	88.40	80.00	81.20
	3	71.50	86.80	97.70	87.80	89.90
	1	53.90	54.30	59.30	62.60	63.30
Gemma-3 4B	2	58.90	62.50	77.00	76.60	77.90
	3	67.70	73.80	89.60	86.10	87.40

MIAs generally rely on the assumption that models are expected to exhibit greater memorization of training data as the number of fine-tuning epochs increases. This motivates examining how the number of fine-tuning epochs impacts privacy leakage for various models and attack methods. To this end, we fine-tuned each model for 1, 2, and 3 epochs on the tabular datasets included in our benchmark and evaluated the MIAs' success. For this experiment, the tables were serialized into the Line-Separated encoding format.

Table 3: MIA results on the *WikiSQL* dataset for all examined models fine-tuned for 1, 2, and 3 epochs. Tables are encoded in the Line-Separated format. Bold values highlight the best-performing method per row.

Model	# Epochs		PPL	Mi	n-K 20.0%	Min	-K++ 20.0%
		AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%
	1	55.90	7.40	56.40	7.60	61.50	7.90
Llama-3.2 3B	2	62.50	10.80	63.70	11.10	73.60	14.40
	3	69.40	15.90	71.20	16.10	83.20	25.30
	1	58.10	8.70	58.60	8.60	64.50	10.60
LLaMA-3.1 8B	2	67.20	15.20	68.40	15.30	78.60	22.80
	3	76.50	25.30	78.10	25.90	88.90	40.20
	1	60.10	9.60	61.30	9.90	67.50	14.10
Mistral 7B	2	68.40	15.40	70.50	16.60	80.00	26.20
	3	75.10	22.20	77.60	23.80	87.80	42.90
	1	56.20	7.40	56.60	7.60	62.60	8.70
Gemma-3 4B	2	64.00	11.30	64.90	11.70	76.60	18.60
	3	72.50	17.60	73.90	18.70	86.10	34.30

Table 2 presents the results for the *Min-K++ 20.0%* MIA for each of the datasets. We observe a consistent and substantial increase in vulnerability as the number of fine-tuning epochs grows. This trend holds across all models and datasets. The effect is especially pronounced in short-context datasets, particularly on the *WTQ* dataset, where AUROC scores reach as high as 97.7% with Mistral 7B after three epochs and exceed 89.6% across all models. In contrast, long-context datasets exhibit more moderate vulnerability. For example, on the *Adult* dataset, the highest AUROC is 71.5% with Mistral 7B, and on *California Housing*, the highest result is 87.8% with LLaMA-3.1 8B. Table 3, which compares the performance of the examined attacks on the *WikiSQL* dataset, illustrates the trends discussed above in greater detail. For all attacks, as fine-tuning progresses, vulnerability increases, with higher AUROC scores obtained as the number of epochs grew across models. Among them, *Min-K++ 20.0%* consistently performs the best, achieving an AUROC of 88.9 with LLaMA-3.1 8B and 87.8 with Mistral 7B. Additional results for the remaining datasets and attack methods are provided in Appendix A.2.

MIAs generally achieve higher AUROC scores against larger models such as LLaMA-3.1 8B and Mistral 7B, compared to smaller models like LLaMA-3.2 3B and Gemma-3 4B. For example, after fine-tuning for three epochs, with tables encoded using the Line-Separated format on the California Housing dataset, the *Min-K++20.0%* MIA achieves AUROC scores of 86.8% and 87.8% respectively with Mistral 7B and LLaMA-3.1 8B, compared to 77.2% and 73.8% with LLaMA-3.2 3B and Gemma-3 4B. Chen (2023b) found that larger models offer clear advantages in table reasoning tasks, highlighting the performance benefits of increased scale. However, our results reveal a corresponding privacy trade-off: larger models are also significantly more vulnerable to MIAs, with differences of nearly 10 to 14 percentage points in AUROC compared to smaller LLMs. While prior work attributes such susceptibility to the greater memorization capacity of LLMs (Carlini et al., 2023; 2021), our findings extend this observation to models fine-tuned on tabular data, where increased model size correlates with greater leakage under MIAs.

5.2 EFFECT OF ENCODING FORMAT

Table 4: Comparison of the AUROC scores achieved by different MIA methods across table encoding formats and models on the *California Housing* dataset. Bold values indicate the highest score per row (encoding), while underlined values indicate the highest score per column (model-method pair).

	Llama-3.2 3B				Mistral	7B		Gemma-3 4B		
Encoding Method	PPL	Min-K 20.0%	Min-K++ 20.0%	PPL	Min-K 20.0%	Min-K++ 20.0%	PPL	Min-K 20.0%	Min-K++ 20.0%	
Markdown	60.60	60.90	72.00	65.60	73.10	80.00	59.10	64.10	67.80	
JSON	59.60	59.60	53.00	61.40	61.40	54.50	58.40	58.40	55.00	
HTML	59.70	59.70	55.80	61.70	61.70	50.60	59.10	61.20	55.40	
Key-Value Pair	62.80	62.80	78.70	72.40	74.70	92.60	59.30	60.80	67.00	
Key-is-Value	60.20	60.20	55.10	63.70	65.00	74.90	59.20	60.60	66.70	
Line-Separated	61.60	<u>64.90</u>	77.20	69.70	84.90	86.80	62.30	<u>72.10</u>	<u>73.80</u>	

Table 5: Comparison of the AUROC scores achieved by different MIA methods across table encoding formats and models on the WTQ dataset. Bold values indicate the highest score per row (encoding), while underlined values indicate the highest score per column (model-method pair).

	Llama-3.2 3B				Mistral	7B		Gemma-3 4B		
Encoding Method	PPL	Min-K 20.0%	Min-K++ 20.0%	PPL	Min-K 20.0%	Min-K++ 20.0%	PPL	Min-K 20.0%	Min-K++ 20.0%	
Markdown	68.00	69.50	85.30	87.00	88.40	94.20	73.70	74.80	86.70	
JSON	67.10	67.50	79.80	79.40	79.60	82.70	70.70	71.00	79.20	
HTML	66.30	66.60	79.70	82.80	83.00	92.90	72.10	72.80	83.30	
Key-Value Pair	67.00	67.80	83.50	85.00	85.70	94.90	72.80	73.80	85.50	
Key-is-Value	67.00	67.90	83.70	83.60	84.20	89.70	72.30	73.20	85.00	
Line-Separated	70.40	72.40	89.70	87.30	90.40	<u>97.70</u>	74.70	<u>76.50</u>	89.60	

Textual encoding shapes the way tabular structures are presented to LLMs and can influence their tendency to memorize data. In this experiment, we fine-tuned the models and executed the MIAs on the datasets, using different encoding formats to assess their impact on the privacy risk. Tables 4 and 5 present the AUROC scores for MIAs on the *California Housing* (long-context) and WTQ (short-context) datasets, using the six examined encoding formats. On both datasets, the Line-Separated and Key-Value Pair formats exhibit the greatest vulnerability to membership inference. On the WTQ dataset, an AUROC of 97.7% with Mistral 7B was obtained using the Line-Separated format, and on the California Housing dataset, an AUROC of 92.6% was achieved using the Key-Value Pair format. These findings show that encoding format impacts the privacy risk. Flat, rowbased encodings like Line-Separated and Key-Value Pair produce long, continuous sequences of content tokens that align closely with tokenizer boundaries. This structure concentrates learning on individual cell values, increasing the likelihood of memorization—resulting in the highest AUROC scores across datasets and MIA methods. In contrast, formats such as HTML and JSON introduce structural redundancy via tags and punctuation. This disperses model attention across non-content tokens, leading to lower AUROC scores—typically 10 points lower—indicating reduced memorization. Intermediate formats like Key-is-Value and Markdown strike a balance between structural clarity and redundancy, yielding moderate vulnerability. These results align with theoretical analyses showing that memorization risk increases with the effective input context length (Carlini et al., 2022b; 2023). Additional results are available in Appendix A.3.

5.3 Cross-Format Generalization

In this experiment, we examine whether tabular data learned during fine-tuning with one table encoding format remains detectable by MIAs applied using a different format. This scenario mirrors real-world deployment settings, where the encoding format used during the model's training is unknown. To evaluate this, we fine-tuned the *Gemma-3 4B* model on the *TabFact* dataset using one of the six encoding formats and executed the *Min-K++ 20.0%* attack. The results, shown in Figure 2, reveal partial cross-format generalization: memorization signals often persist even when the evaluation format differs from the training format. Diagonal cells (where training and evaluation formats match) tend to yield the highest AUROC values, confirming that MIAs are most effective when structural representations align. For example, training and evaluating on the Markdown format yields an AUROC of 85.2%, whereas switching the attack format to Key-Value or Line-Separated reduces performance to 68.9% and 69.4%, respectively.

To gain additional insights, we compute the average AUROC values across the rows and columns of the heatmap. These averages reflect how effective each encoding format is when used to encode the data for MIA detection (rows) and for model fine-tuning (columns). The most vulnerable format for MIA detection is HTML (76.0), followed by Key-Value Pair (73.2) and JSON (71.2), suggesting that these formats offer greater advantages to attackers. On the training side, Line-Separated and Key-is-Value induce the most memorization, resulting in average AUROCs of 74.6 and 72.8, respectively. From a defender's perspective, selecting training formats like JSON or HTML—which yield lower average AUROCs of 69.4 and 70.1—may help reduce privacy risk.

5.4 PRETRAINED MODELS

In this experiment, we assess LLMs' vulnerability to MIAs in their pretrained state—prior to any fine-tuning. Our goal is to determine whether publicly available models have inadvertently mem-

Figure 2: Heatmap showing the AUROC achieved by the *Min-K++ 20.0%* MIA on the *WTQ* dataset using the *Gemma-3 4B* model. Each cell compares the encoding used during fine-tuning (columns) with the encoding used during MIA detection (rows).

Table 6: AUROC scores achieved by the Min-K++20.0% MIA on the WTQ dataset using pretrained models without fine-tuning. Synthetic data was generated to serve as non-member samples. The table compares performance across table encoding formats for each model. Bold values indicate the highest score per row (encoding), while underlined values indicate the highest score per column (model).

Encoding Method	Llama-3.1 8B	Llama-3.2 3B	Mistral 7B	Gemma-3 4B
Markdown	69.30	62.20	63.00	60.70
JSON	62.40	57.60	59.90	58.40
HTML	66.70	60.00	61.70	61.80
Key-Value Pair	<u>72.00</u>	<u>66.20</u>	66.90	<u>63.40</u>
Key-is-Value	71.60	65.90	64.10	61.90
Line-Separated	71.50	63.80	62.90	60.90

orized examples from the WTQ dataset, which forms part of our benchmark. Given WTQ's wide use and its reliance on Wikipedia tables, we assume that its contents may have been included in the pretraining corpora of many open-weight LLMs. To simulate an MIA setting, we treated the original WTQ tables as member samples and generated synthetic non-member tables using the *GPT-40 mini* (OpenAI, 2024a) model (see Appendix A.4 for details on the generation process). We then used the MIN-K++ 20.0% attack to test each pretrained model for evidence of memorization of the WTQ tables. Table 6 presents the AUROC scores for four models with the six encoding formats. The results show pretrained models without further fine-tuning exhibit moderate levels of data leakage. The highest AUROC of 72.0 is observed for LLaMA-3.1 8B with the Key-Value Pair format. Formats such as Key-Value Pair, Key-is-Value, and Line-Separated consistently result in greater vulnerability across models, with AUROC scores frequently exceeding 60%, indicating that the models likely memorized these tables during pretraining.

6 CONCLUSION

Tab-MIA is the first benchmark for evaluating MIAs on LLMs trained on tabular data. Through controlled experiments on four SOTA open-source LLMs and six encoding strategies, our experiments show that fine-tuning LLMs on tabular data might cause memorization and thus make them vulnerable to MIAs. Some attacks can achieve AUROC scores exceeding 95% with minimal fine-tuning, underscoring the risk of memorization and privacy leakage. In contrast, we find that using encodings that introduce syntactic noise (e.g., verbose or structured formats such as HTML or JSON) mitigates attack success. Our benchmark provides a foundation for the systematic evaluation of privacy risks in various scenarios with different models and table encoding formats.

REFERENCES

- Sagiv Antebi, Edan Habler, Asaf Shabtai, and Yuval Elovici. Tag&tab: Pretraining data detection in large language models using keyword-based membership inference attack. *arXiv* preprint *arXiv*:2501.08454, 2025.
- Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI: https://doi.org/10.24432/C5XW20.
- Leonardo Berti, Flavio Giorgi, and Gjergji Kasneci. Emergent abilities in large language models: A survey, 2025. URL https://arxiv.org/abs/2503.05788.
 - Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji Kasneci. Deep neural networks and tabular data: A survey. *IEEE transactions on neural networks and learning systems*, 2022a.
 - Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language models are realistic tabular data generators. *arXiv preprint arXiv:2210.06280*, 2022b.
 - Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S Yu, and Lichao Sun. A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt. *arXiv preprint arXiv:2303.04226*, 2023.
 - Nicholas Carlini, Florian Tramer, and et al. Wallace, Eric. Extracting training data from large language models. *USENIX Security Symposium*, 2021.
 - Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Membership inference attacks from first principles. In 2022 IEEE symposium on security and privacy (SP), pp. 1897–1914. IEEE, 2022a.
 - Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr. Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1897–1914, 2022b. doi: 10.1109/SP46214.2022.9833649.
 - Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan Zhang. Quantifying memorization across neural language models. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=TatRHT_1cK.
 - Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 785–794, 2016.
 - Wenhu Chen. Large language models are few(1)-shot table reasoners. Findings of the Association for Computational Linguistics: EACL, 2023a.
 - Wenhu Chen. Large language models are few(1)-shot table reasoners. In Andreas Vlachos and Isabelle Augenstein (eds.), *Findings of the Association for Computational Linguistics: EACL 2023*, pp. 1120–1130, Dubrovnik, Croatia, May 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-eacl.83. URL https://aclanthology.org/2023.findings-eacl.83/.
 - Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. In *International Conference on Learning Representations (ICLR)*, Addis Ababa, Ethiopia, April 2020.
- Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: efficient finetuning of quantized llms. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
 - Ning Ding, Yujia Qin, et al. Parameter-efficient fine-tuning of large-scale pre-trained language models. *Nature Machine Intelligence*, 2023.

Tuan Dinh, Yuchen Zeng, and Kangwook Lee. Language-interfaced fine-tuning for non-language machine learning tasks. *Advances in Neural Information Processing Systems*, 2022.

- Haoyu Dong, Jianbo Zhao, Yuzhang Tian, Junyu Xiong, Mengyu Zhou, Yun Lin, José Cambronero, Yeye He, Shi Han, and Dongmei Zhang. Encoding spreadsheets for large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 20728–20748, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main. 1154. URL https://aclanthology.org/2024.emnlp-main.1154/.
- Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer, Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership inference attacks work on large language models?, 2024. URL https://arxiv.org/abs/2402.07841.
- Xi Fang, Weijie Xu, Fiona Anting Tan, Ziqing Hu, Jiani Zhang, Yanjun Qi, Srinivasan H. Sengamedu, and Christos Faloutsos. Large language models (LLMs) on tabular data: Prediction, generation, and understanding a survey. *Transactions on Machine Learning Research*, 2024a. ISSN 2835-8856. URL https://openreview.net/forum?id=IZnrCGF9WI.
- Xi Fang, Weijie Xu, Fiona Anting Tan, Ziqing Hu, Jiani Zhang, Yanjun Qi, Srinivasan H. Sengamedu, and Christos Faloutsos. Large language models (LLMs) on tabular data: Prediction, generation, and understanding a survey. *Transactions on Machine Learning Research*, 2024b. ISSN 2835-8856. URL https://openreview.net/forum?id=IZnrCGF9WI.
- Gemma Team. Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.19786.
- Vadim Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models for tabular data. *Advances in Neural Information Processing Systems*, 2021.
- Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David Sontag. Tabllm: Few-shot classification of tabular data with large language models. *Proceedings of the International Conference on Artificial Intelligence and Statistics*, pp. 5549–5581, 2023.
- Jonathan Herzig, Pawel Nowak, Thomas Muller, Francesco Piccinno, and Julian Eisenschlos. TAPAS: Weakly supervised table parsing via pre-training. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.
- Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu, and Xuyun Zhang. Membership inference attacks on machine learning: A survey. *ACM Computing Surveys (CSUR)*, 54 (11s):1–37, 2022.
- Sukriti Jaitly, Tanay Shah, et al. Towards better serialization of tabular data for few-shot classification with large language models. *arXiv preprint arXiv:2309.00722*, 2023.
- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.
- Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In *Advances in Neural Information Processing Systems*, volume 30, 2017.
- Shangching Liu, Shengkun Wang, Tsungyao Chang, et al. Jarvix: A llm no-code platform for tabular data analysis and optimization. *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP) Industry Track*, 2023.
- Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santiago Zanella-Béguelin. Analyzing leakage of personally identifiable information in language models. In *2023 IEEE Symposium on Security and Privacy (SP)*, pp. 346–363. IEEE, 2023.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schoelkopf, Mrinmaya Sachan, and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neighbourhood comparison. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp. 11330–11343, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023. findings-acl.719. URL https://aclanthology.org/2023.findings-acl.719/.

- Meta Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.
- Shashi Narayan, Binh Tang, Yixin Nie, Xingxing Zhang, Yichong Xu, Yichao Lu, Aakanksha Chowdhery, William Cohen, Slav Petrov, and Sebastian Riedel. Normtab: Improving symbolic reasoning in LLMs through tabular data. In *Findings of the Association for Computational Linguistics: EMNLP 2022*, pp. 203–215, 2022. URL https://aclanthology.org/2022.findings-emnlp.203.
- OpenAI. Gpt-4o mini (gpt-4o-mini-2024-07-18). https://platform.openai.com, 2024a.
- OpenAI. Gpt-4 technical report, 2024b. URL https://arxiv.org/abs/2303.08774.
- MIDST Challenge Organizers. Membership inference over diffusion-models-based synthetic tabular data (midst) challenge, 2025. https://github.com/VectorInstitute/MIDST-Challenge.
- R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics & Probability Letters*, 33 (3):291–297, 1997.
- Bhargavi Paranjape, Chunting Zhou, Adam Roberts, Sebastian Gehrmann, Xuezhi Wang, Jason Wei, Vincent Zhao, William Fedus, Denny Zhou, Colin Raffel, and Mohit Bansal. Optimizing pretraining data mixtures with LLM-estimated utility. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2023. URL https://aclanthology.org/2023.emnlp-main.74.
- Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables, 2015. URL https://arxiv.org/abs/1508.00305.
- Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=zWqr3MQuNs.
- Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18. IEEE, 2017a.
- Reza Shokri, Matteo Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. In *IEEE Symposium on Security and Privacy (SP)*, 2017b.
- Ananya Singha, José Cambronero, Sumit Gulwani, Vu Le, and Chris Parnin. Tabular representation, noisy operators, and impacts on table structure understanding tasks in llms. *arXiv preprint arXiv:2310.10358*, 2023.
- Dylan Slack and Sameer Singh. TABLET: Learning from instructions for tabular data. *arXiv* preprint arXiv:2305.00029, 2023.
- Zichen Song, Sitan Huang, and Zhongfeng Kang. Em-mias: Enhancing membership inference attacks in large language models through ensemble modeling. In *ICASSP 2025 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2025. doi: 10.1109/ICASSP49660.2025.10888320.
- Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. Evaluating and enhancing structural understanding capabilities of large language models on tables via input designs. *arXiv* preprint arXiv:2305.13062, 2023.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. Table meets llm: Can large language models understand structured table data? a benchmark and empirical study. In *Proceedings of the 17th ACM International Conference on Web Search and Data Mining*, WSDM '24, pp. 645–654, New York, NY, USA, 2024a. Association for Computing Machinery. ISBN 9798400703713. doi: 10.1145/3616855.3635752. URL https://doi.org/10.1145/3616855.3635752.

- Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du, Shi Han, and Dongmei Zhang. TAP4LLM: Table provider on sampling, augmenting, and packing semi-structured data for large language model reasoning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 10306–10323, Miami, Florida, USA, November 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024. findings-emnlp.603. URL https://aclanthology.org/2024.findings-emnlp.603/.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35:24824–24837, 2022.
- Roy Xie, Junlin Wang, Ruomin Huang, Minxing Zhang, Rong Ge, Jian Pei, Neil Zhenqiang Gong, and Bhuwan Dhingra. ReCaLL: Membership inference via relative conditional log-likelihoods. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 8671–8689, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main. 493. URL https://aclanthology.org/2024.emnlp-main.493/.
- Yunhu Ye, Binyuan Hui, et al. DATER: Decomposing evidence and questions for table-based reasoning. *Proceedings of the 46th International ACM SIGIR Conference*, 2023.
- Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pp. 268–282, Los Alamitos, CA, USA, July 2018a. IEEE Computer Society. doi: 10.1109/CSF.2018.00027. URL https://doi.ieeecomputersociety.org/10.1109/CSF.2018.00027.
- Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning: Analyzing the connection to overfitting. *IEEE Computer Security Foundations Symposium*, 2018b.
- Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. TaBERT: Pretraining for joint understanding of textual and tabular data. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.
- Shenglai Zeng, Yaxin Li, Jie Ren, Yiding Liu, Han Xu, Pengfei He, Yue Xing, Shuaiqiang Wang, Jiliang Tang, and Dawei Yin. Exploring memorization in fine-tuned language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3917–3948, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.216. URL https://aclanthology.org/2024.acl-long.216/.
- Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi Huang, Saisai Yang, Jing Yuan, Changbao Su, Xiang Li, Aofeng Su, Tao Zhang, Chen Zhou, Kaizhe Shou, Miao Wang, Wufang Zhu, Guoshan Lu, Chao Ye, Yali Ye, Wentao Ye, Yiming Zhang, Xinglong Deng, Jie Xu, Haobo Wang, Gang Chen, and Junbo Zhao. Tablegpt: Towards unifying tables, nature language and commands into one gpt, 2023. URL https://arxiv.org/abs/2307.08674.
- Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Frank Yang, and Hai Li. Min-k%++: Improved baseline for pre-training data detection from large language models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=ZGkfoufDaU.
- Wei Zhang, Jiawei Li, and Li et al. Chen. Pretraining data detection for large language models: A calibrated probability approach. *arXiv* preprint arXiv:2402.01234, 2024.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from natural language using reinforcement learning, 2017. URL https://arxiv.org/abs/1709.00103.

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 TRAINING AND EVALUATION CONFIGURATIONS

This appendix contains the training configurations used in our experiments. All models are fine-tuned using QLoRA (Dettmers et al., 2023), a PEFT method that enables efficient training with 4-bit quantized weights. Fine-tuning is performed using a batch size of two on a single RTX 6000 GPU (48GB VRAM). We apply a learning rate of 3e-4, use the paged_adamw_8bit optimizer, and set warmup_steps to 20. We use a fixed random seed of 42 for all dataset splits and data loading to ensure reproducibility.

For each dataset, 50% of the tables are selected as member records for fine-tuning, with the remaining used as non-members for MIA evaluation. All experiments are implemented using HuggingFace Transformers and PEFT libraries, with evaluation scripts provided in the public code repository.

A.2 EFFECT OF FINE-TUNING EPOCHS ON MIA VULNERABILITY

This section presents comprehensive results on how the number of fine-tuning epochs affects vulnerability to MIAs across all model—dataset configurations in our benchmark. For this experiment, we report results using the Line-Separated encoding format, as it consistently exhibits high memorization rates across models and datasets, making it a strong representative for analyzing privacy risk. Tables 7–10 summarize AUROC and TPR@FPR=5% metrics across three representative MIA methods: LOSS (PPL), Min-K 20.0%, and Min-K++ 20.0%. Across all methods, we observe that longer fine-tuning leads to increased model memorization and thus greater vulnerability to MIAs.

Table 7: MIA results on the *Adult* dataset for all examined models fine-tuned for 1, 2, and 3 epochs. Tables are encoded in the Line-Separated format. Bold values highlight the best-performing method per row.

Model	# Epochs		PPL	Mi	n-K 20.0%	Min	-K++ 20.0%
		AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%
	1	53.30	5.20	53.30	4.90	54.10	5.30
Llama-3.2 3B	2	56.50	7.00	56.50	6.30	58.00	7.30
	3	62.40	9.60	62.60	9.80	64.40	10.20
	1	53.80	6.30	53.70	6.40	55.10	6.70
LLaMA-3.1 8B	2	58.10	7.50	58.10	8.40	60.00	8.00
	3	73.90	24.20	74.30	25.80	71.10	15.50
	1	54.00	5.20	54.10	4.40	54.60	5.20
Mistral 7B	2	57.10	6.80	57.60	6.10	58.90	6.80
	3	65.90	10.80	67.40	11.80	71.50	14.70
	1	53.20	6.20	53.10	5.70	53.90	5.00
Gemma-3 4B	2	56.70	7.30	57.20	6.10	58.90	7.50
	3	63.00	10.50	64.80	12.00	67.70	11.70

A.3 IMPACT OF TABLE ENCODING FORMATS ON MIA PERFORMANCE

This section provides detailed results on the effect of different table encoding formats on models' susceptibility to MIAs. Tables 11- 15 report the AUROC and TPR@FPR=5% values for six encoding schemes (HTML, JSON, Key-Value Pair, Key-is-Value, Line-Separated, and Markdown) for all model—dataset configurations.

A.4 SYNTHETIC TABLES GENERATION

In Section 5.4, we evaluate pretrained LLMs for evidence of memorization of public tabular datasets. To simulate a MIA setting in this scenario, we required *non-member* tables that resemble the struc-

Table 8: MIA results on the *California Housing* dataset for all examined models fine-tuned for 1, 2, and 3 epochs. Tables are encoded in the Line-Separated format. Bold values highlight the best-performing method per row.

Model	# Epochs	PPL		Mi	Min-K 20.0%		Min-K++ 20.0%	
		AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	
	1	53.90	8.30	55.20	7.40	57.70	7.40	
Llama-3.2 3B	2	57.00	12.00	59.00	9.90	66.80	15.50	
	3	61.60	14.90	64.90	14.00	77.20	26.60	
	1	54.10	9.30	55.30	8.50	59.00	10.70	
LLaMA-3.1 8B	2	58.70	13.40	61.10	11.20	72.80	22.70	
	3	66.30	19.60	70.40	19.60	87.80	52.50	
	1	55.00	9.50	57.30	10.10	57.80	12.40	
Mistral 7B	2	59.70	13.40	68.20	18.80	70.30	23.60	
	3	69.70	19.40	84.90	45.00	86.80	56.80	
	1	53.80	9.70	54.30	9.30	54.30	7.90	
Gemma-3 4B	2	56.90	10.70	61.40	14.10	62.50	12.60	
	3	62.30	13.20	72.10	20.70	73.80	23.30	

Table 9: MIA results on the WTQ dataset for all examined models fine-tuned for 1, 2, and 3 epochs. Tables are encoded in the Line-Separated format. Bold values highlight the best-performing method per row.

Model	# Epochs	PPL		Mi	n-K 20.0%	Min	Min-K++ 20.0%	
		AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	
	1	51.50	3.70	51.90	5.10	57.60	5.90	
Llama-3.2 3B	2	59.70	8.20	60.80	8.70	74.80	19.00	
	3	70.40	14.80	72.40	16.30	89.70	48.40	
	1	53.70	5.10	54.10	5.10	61.60	9.00	
LLaMA-3.1 8B	2	64.70	10.70	65.80	12.00	80.80	30.50	
	3	77.90	27.20	79.50	29.50	93.60	66.40	
	1	58.40	8.60	59.80	7.80	69.70	15.40	
Mistral 7B	2	74.30	20.80	76.80	21.20	88.40	55.20	
	3	87.30	47.00	90.40	51.30	97.70	88.20	
	1	52.50	4.20	53.00	3.70	59.30	7.50	
Gemma-3 4B	2	61.90	9.50	62.90	9.00	77.00	24.90	
	3	74.70	16.50	76.50	20.20	89.60	54.10	

ture of the WTQ dataset but do not duplicate any of its records. For this purpose, we generated synthetic tables using a controlled LLM-based synthesis procedure.

We implemented a Python pipeline that reads the original tabular data and queries the GPT-40-mini model to produce synthetic replacements for each table. The pipeline preserves the table's schema and formatting, but replaces cell values with realistic, non-identical alternatives. This ensures that synthetic records maintain semantic plausibility while preventing verbatim overlap with the original dataset.

Prompt Used for Synthesis. The following prompt was provided to the model for each table:

You are a data synthesizer. Your task is to generate a synthetic version of the given tabular dataset for use in membership inference attack evaluation on tabular data.

- Preserve the original table's structure, column names, and formatting.
- Change the values so that they are realistic but not identical to the original data.
- Output *only* the synthetic table|no explanations, no preamble, and no additional text.

```
Input:
The original table:
{table}
```

Table 10: MIA results on the *TabFact* dataset for all examined models fine-tuned for 1, 2, and 3 epochs. Tables are encoded in the Line-Separated format. Bold values highlight the best-performing method per row.

Model	# Epochs		PPL	Mi	n-K 20.0%	Min	-K++ 20.0%
		AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%
	1	55.10	6.60	55.50	6.50	61.50	8.80
Llama-3.2 3B	2	62.10	9.90	63.10	10.10	73.40	14.90
	3	67.80	13.80	69.40	14.00	80.40	31.10
	1	57.90	7.90	58.30	8.20	64.90	11.20
LLaMA-3.1 8B	2	67.80	15.10	68.90	15.20	79.60	24.20
	3	77.40	26.40	78.70	27.00	89.90	47.00
	1	60.00	9.60	60.70	10.00	68.50	14.70
Mistral 7B	2	69.20	16.00	70.60	16.70	81.20	29.40
	3	77.00	24.60	78.90	25.50	89.90	50.50
	1	55.40	7.00	55.40	7.00	63.30	10.80
Gemma-3 4B	2	63.80	11.40	64.40	11.70	77.90	20.10
	3	72.70	17.40	73.60	18.20	87.40	37.40

Table 11: MIA results on the *Adult* dataset for the examined models, with the various encoding formats. For each method, both AUROC and TPR@FPR=5% are reported. Bold values highlight the best-performing method per row.

Model	Encoding		PPL	Mi	n-K 20.0%	Min	-K++ 20.0%
		AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%
	HTML	62.40	9.30	62.40	9.20	54.90	6.50
	JSON	69.90	17.30	69.90	17.30	68.80	14.50
LLaMA-3.1 8B	Key-is-Value	70.50	18.30	70.40	17.80	70.50	15.40
LLaMA-5.1 ob	Key-Value Pair	72.60	21.90	72.60	22.00	71.30	16.50
	Line-Separated	73.90	24.20	74.30	25.80	71.10	15.50
	Markdown	75.70	27.60	75.70	28.20	73.20	19.70
	HTML	61.60	9.70	61.60	9.70	62.70	8.80
	JSON	61.40	9.30	61.40	9.30	63.70	9.40
Llama-3.2 3B	Key-is-Value	60.50	8.80	60.40	8.70	63.10	9.50
Liailia-3.2 3D	Key-Value Pair	60.20	8.10	60.20	8.40	63.00	9.40
	Line-Separated	62.40	9.60	62.60	9.80	64.40	10.20
	Markdown	62.80	9.80	62.80	9.80	65.10	10.90
	HTML	71.00	17.70	71.00	17.60	75.30	21.90
	JSON	56.90	5.80	56.90	5.90	50.90	3.80
Mistral 7B	Key-is-Value	67.40	12.50	67.40	12.60	73.30	19.40
Misuai / D	Key-Value Pair	66.90	10.90	67.00	11.00	72.40	15.50
	Line-Separated	65.90	10.80	67.40	11.80	71.50	14.70
	Markdown	71.60	14.40	71.90	14.70	78.20	27.30
	HTML	59.20	7.90	59.20	8.20	54.20	7.60
	JSON	55.70	6.80	55.70	6.70	50.80	8.00
Gemma-3 4B	Key-is-Value	57.40	6.50	57.40	6.60	59.80	6.80
Geiiiiia-3 4B	Key-Value Pair	57.60	7.00	57.60	7.10	59.80	6.80
	Line-Separated	63.00	10.50	64.80	12.00	67.70	11.70
	Markdown	58.20	7.10	58.40	7.00	61.30	8.00

Output:

The synthetic table:

This process was only applied in the pretrained-model evaluation, where synthetic non-members were paired with WTQ member tables. For all fine-tuned experiments described in Section 4, non-member samples were drawn directly from the benchmark datasets without synthesis.

A.5 DISCLOSURE OF LLM USAGE

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that LLMs were used solely to aid and polish the writing of this manuscript. Their role was limited to improving grammar, clarity, and readability. No part of the research design, data processing, exper-

Table 12: MIA results on the *California Housing* dataset for the examined models, with the various encoding formats. For each method, both AUROC and TPR@FPR=5% are reported. Bold values highlight the best-performing method per row.

Model	Encoding		PPL	Mi	n-K 20.0%	Min	-K++ 20.0%
		AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%
	HTML	69.40	21.30	69.40	21.10	88.90	56.80
	JSON	63.80	15.10	63.80	15.10	54.60	8.30
LLaMA-3.1 8B	Key-is-Value	64.30	14.30	64.30	14.10	56.00	9.50
LLawiA-3.1 8B	Key-Value Pair	68.30	18.40	68.20	18.40	88.20	51.20
	Line-Separated	66.30	19.60	70.40	19.60	87.80	52.50
	Markdown	64.60	15.50	64.90	15.90	80.00	34.50
	HTML	59.70	13.20	59.70	13.00	55.80	7.00
	JSON	59.60	12.20	59.60	12.40	53.00	4.50
Llama-3.2 3B	Key-is-Value	60.20	13.60	60.20	13.60	55.10	10.10
Liailia-3.2 3D	Key-Value Pair	62.80	16.10	62.80	15.90	78.70	26.20
	Line-Separated	61.60	14.90	64.90	14.00	77.20	26.60
	Markdown	60.60	13.20	60.90	13.00	72.00	22.10
	HTML	61.70	13.40	61.70	13.40	50.60	5.00
	JSON	61.40	14.10	61.40	14.00	54.50	6.80
Mistral 7B	Key-is-Value	63.70	15.50	65.00	14.70	74.90	28.70
Misuai / D	Key-Value Pair	72.40	24.20	74.70	24.20	92.60	68.00
	Line-Separated	69.70	19.40	84.90	45.00	86.80	56.80
	Markdown	65.60	17.60	73.10	23.10	80.00	39.10
	HTML	59.10	11.00	61.20	11.80	55.40	7.80
	JSON	58.40	11.40	58.40	11.40	55.00	7.60
Gemma-3 4B	Key-is-Value	59.20	10.30	60.60	11.00	66.70	15.70
Ocinina-5 4D	Key-Value Pair	59.30	11.20	60.80	11.20	67.00	15.30
	Line-Separated	62.30	13.20	72.10	20.70	73.80	23.30
	Markdown	59.10	11.20	64.10	13.20	67.80	15.30

Table 13: MIA results on the WTQ dataset for the examined models, with the various encoding formats. For each method, both AUROC and TPR@FPR=5% are reported. Bold values highlight the best-performing method per row.

Model	Encoding	PPL		Min-K 20.0%		Min-K++ 20.0%	
		AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%
LLaMA-3.1 8B	HTML	71.60	17.30	71.80	17.30	82.00	41.70
	JSON	72.90	19.10	73.20	19.30	81.70	44.60
	Key-is-Value	73.20	21.20	73.90	21.20	86.50	50.20
	Key-Value Pair	73.80	23.20	74.40	22.90	86.70	51.80
	Line-Separated	77.90	27.20	79.50	29.50	93.60	66.40
	Markdown	74.40	19.80	75.60	20.50	89.40	54.70
Llama-3.2 3B	HTML	66.30	10.40	66.60	10.60	79.70	28.60
	JSON	67.10	11.70	67.50	11.70	79.80	33.00
	Key-is-Value	67.00	12.80	67.90	13.10	83.70	38.30
	Key-Value Pair	67.00	12.10	67.80	12.80	83.50	40.40
	Line-Separated	70.40	14.80	72.40	16.30	89.70	48.40
	Markdown	68.00	12.60	69.50	13.50	85.30	31.90
Mistral 7B	HTML	82.80	29.70	83.00	30.00	92.90	70.00
	JSON	79.40	29.20	79.60	29.10	82.70	53.80
	Key-is-Value	83.60	34.70	84.20	35.60	89.70	68.10
	Key-Value Pair	85.00	37.60	85.70	38.60	94.90	79.20
	Line-Separated	87.30	47.00	90.40	51.30	97.70	88.20
	Markdown	87.00	36.70	88.40	36.90	94.20	84.00
Gemma-3 4B	HTML	72.10	12.90	72.80	12.90	83.30	42.30
	JSON	70.70	12.10	71.00	12.10	79.20	37.00
	Key-is-Value	72.30	14.50	73.20	14.60	85.00	46.50
	Key-Value Pair	72.80	15.60	73.80	15.70	85.50	49.30
	Line-Separated	74.70	16.50	76.50	20.20	89.60	54.10
	Markdown	73.70	16.30	74.80	16.80	86.70	49.10

imental implementation, analysis, or conclusions relied on LLM-generated content. All scientific contributions were conceived and executed entirely by the authors.

Table 14: MIA results on the *WikiSQL* dataset for the examined models, with the various encoding formats. For each method, both AUROC and TPR@FPR=5% are reported. Bold values highlight the best-performing method per row.

Model	Encoding	PPL		Min-K 20.0%		Min-K++ 20.0%	
		AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%
LLaMA-3.1 8B	HTML	74.50	18.90	74.50	18.90	81.90	30.40
	JSON	75.20	20.10	75.30	20.10	82.70	32.40
	Key-is-Value	75.50	20.90	75.80	21.10	86.10	37.60
	Key-Value Pair	75.60	21.20	75.80	21.40	86.00	36.30
	Line-Separated	76.50	25.30	78.10	25.90	88.90	40.20
	Markdown	75.60	20.20	76.10	20.70	86.20	33.70
Llama-3.2 3B	HTML	67.90	11.70	68.00	11.80	76.80	19.50
	JSON	69.10	13.10	69.20	13.10	78.50	22.40
	Key-is-Value	64.60	8.70	65.10	8.80	72.30	12.60
	Key-Value Pair	69.10	13.40	69.50	13.50	80.70	23.10
	Line-Separated	69.40	15.90	71.20	16.10	83.20	25.30
	Markdown	68.10	11.50	69.00	11.70	71.40	14.60
Mistral 7B	HTML	72.20	16.50	72.30	16.50	79.60	31.00
	JSON	72.90	16.80	73.10	16.70	80.30	30.70
	Key-is-Value	74.70	19.50	75.40	19.80	85.30	37.50
	Key-Value Pair	74.60	19.90	75.20	20.20	85.40	37.70
	Line-Separated	75.10	22.20	77.60	23.80	87.80	42.90
	Markdown	75.10	19.80	76.20	20.40	86.10	39.10
Gemma-3 4B	HTML	72.00	16.00	72.50	16.20	83.40	29.20
	JSON	71.20	14.40	71.30	14.40	80.00	26.90
	Key-is-Value	72.00	15.70	72.50	15.80	84.20	30.30
	Key-Value Pair	71.90	15.80	72.50	15.80	84.50	31.20
	Line-Separated	72.50	17.60	73.90	18.70	86.10	34.30
	Markdown	71.20	14.30	71.90	14.60	83.00	26.80

Table 15: MIA results on the *TabFact* dataset for the examined models, with the various encoding formats. For each method, both AUROC and TPR@FPR=5% are reported. Bold values highlight the best-performing method per row.

Model	Encoding	PPL		Min-K 20.0%		Min-K++ 20.0%	
		AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%	AUROC	TPR@FPR=5%
LLaMA-3.1 8B	HTML	76.10	19.50	76.10	19.50	83.70	34.50
	JSON	70.30	13.00	70.40	13.00	69.40	21.20
	Key-is-Value	77.60	21.70	77.90	21.90	88.30	41.10
	Key-Value Pair	78.10	22.10	78.30	22.40	88.40	42.10
	Line-Separated	77.40	26.40	78.70	27.00	89.90	47.00
	Markdown	78.00	22.20	78.70	22.80	88.70	40.50
Llama-3.2 3B	HTML	68.60	11.40	68.70	11.40	78.20	20.30
	JSON	69.50	11.90	69.60	12.00	80.20	23.30
	Key-is-Value	64.10	8.60	64.70	8.80	71.90	12.20
	Key-Value Pair	67.70	11.60	68.20	11.60	78.80	20.60
	Line-Separated	67.80	13.80	69.40	14.00	80.40	31.10
	Markdown	67.70	10.90	68.80	11.20	73.90	12.80
Mistral 7B	HTML	74.60	18.60	74.60	18.60	82.40	37.60
	JSON	75.70	19.60	75.80	19.60	83.90	39.10
	Key-is-Value	76.80	21.00	77.40	21.10	87.70	43.30
	Key-Value Pair	76.90	21.80	77.50	21.90	88.00	43.80
	Line-Separated	77.00	24.60	78.90	25.50	89.90	50.50
	Markdown	77.50	23.10	78.70	23.60	89.10	47.20
Gemma-3 4B	HTML	72.40	15.50	72.90	15.60	85.00	33.10
	JSON	72.00	14.20	72.20	14.20	82.00	30.90
	Key-is-Value	72.70	14.90	73.10	15.10	86.10	33.00
	Key-Value Pair	72.50	14.70	72.90	14.80	86.10	33.90
	Line-Separated	72.70	17.40	73.60	18.20	87.40	37.40
	Markdown	71.80	14.90	72.50	15.20	85.20	29.60