
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning

Anonymous Authors1

Abstract

Recently, long-thought reasoning LLMs, such
as OpenAI’s O1, adopt extended reasoning pro-
cesses similar to how humans ponder over com-
plex problems. This reasoning paradigm signifi-
cantly enhances the model’s problem-solving abil-
ities and achieves promising results. However,
long-thought reasoning process leads to a sub-
stantial increase in inference time. A pressing
challenge is reducing the inference overhead of
long-thought LLMs while ensuring accuracy. In
this paper, we identify that long-thought reason-
ing models struggle to effectively allocate token
budgets based on problem difficulty and reasoning
redundancies. To address this, we propose Length-
Harmonizing Fine-Tuning (O1-Pruner), aiming at
minimizing reasoning overhead while maintain-
ing accuracy. This effective fine-tuning method
first estimates the LLM’s baseline performance
through pre-sampling and then uses RL-style fine-
tuning to encourage the model to generate shorter
reasoning processes under accuracy constraints.
This allows the model to achieve efficient rea-
soning with lower redundancy while maintaining
accuracy. Experiments on various mathematical
reasoning benchmarks show that O1-Pruner not
only significantly reduces inference overhead but
also achieves higher accuracy, providing a novel
and promising solution to this challenge.

1. Introduction
Reasoning represents a fundamental capability of large
language models (LLMs), serving as a cornerstone in the
advancement of artificial intelligence research (Huang &
Chang, 2023). Recently OpenAI’s O1(OpenAI, 2024)
have introduced long-thought reasoning models that mimic
human-like problem-solving processes. In addition to O1,
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researchers have also developed models that inference with
a similar long-thought reasoning pattern, such as Deepseek-
R1 (DeepSeek, 2024), QwQ (Qwen, 2024) and Marco-
o1(Zhao et al., 2024). These models leverage a long chain-
of-thought framework, enabling them to tackle complex
problems by iteratively identifying and correcting errors,
simplifying intricate steps, and exploring alternative strate-
gies when initial approaches prove inadequate. Furthermore,
Mulberry (Yao et al., 2024) has demonstrated that O1-Like
reasoning can also play a significant role in multimodal
reasoning. This reasoning paradigm significantly enhances
the problem-solving capabilities of large language models
(LLMs) by allowing them to approach complex tasks in a
more systematic and human-like manner, demonstrating an
ability to handle problems that would otherwise be challeng-
ing or intractable for conventional LLMs.

While long-thought reasoning enhances reasoning capabil-
ities and improves accuracy, it is accompanied by longer
output sequences, which result in increased computational
overhead. A critical challenge lies in developing mecha-
nisms that enable LLMs to dynamically adjust the length
and complexity of their reasoning processes in accordance
with the difficulty of the problems they encounter.

In this paper, we first revisit the long-thought reasoning
processes. we observe that the reasoning processes in long-
thought reasoning LLMs often exhibit significant redun-
dancies, which leads to inefficient use of computational
resources. This inefficiency not only increases inference
costs but also highlights a fundamental limitation in the
models’ ability to adapt their reasoning depth to suit the
demands of diverse tasks. Building on this analysis, we
formulate an optimization objective aimed at minimizing
reasoning overhead while maintaining accuracy as a con-
straint. Our approach introduces a Length-Harmonizing
Reward, which explicitly rewards shorter solutions while
penalizing accuracy degradation. By embedding this reward
into a RL-based framework, we enable the model to op-
timize for efficiency without compromising performance.
Moreover, our method incorporates an off-policy training
strategy inspired by Proximal Policy Optimization (PPO),
which aimed at reducing training complexity while main-
taining robustness.

Our experiments are conducted using open-source long-
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thought reasoning LLMs, and we compare our approach
against several competing methods like SFT and DPO
(Rafailov et al., 2024). Through extensive experiments,
we demonstrate the efficiency of our proposed methods. Ad-
ditionally, we perform further studies on the influence of
hyperparameters and dataset difficulty on our approach, in
order to gain deeper insights into the characteristics and
behavior of this novel framework.

In conclusion, our contributions can be outlined as follows:

• We design a simple experiment and identify a critical
issue in the reasoning process of long-thought mod-
els, referred to as length disharmony, which leads to
redundant inference overhead.

• We formulate an optimization problem aimed at im-
proving model inference efficiency while maintain-
ing accuracy, and based on this, we propose Length-
Harmonizing Fine-Tuning (O1-Pruner) approach.

• Through extensive experiments, we demonstrate the
effectiveness of O1-Pruner and conduct in-depth anal-
yses, to provide insights and inspiration for future re-
search in this area.

2. Related Work
Inference-time Scaling. Inference-time scaling refers to
the ability of large language models (LLMs) to improve
their outputs by utilizing additional computation during in-
ference time. Recent studies (Snell et al., 2024; Wu et al.,
2024) have explored how scaling inference-time computa-
tion can enhance the performance of LLMs on challenging
prompts. This approach draws parallels to human reason-
ing, where additional cognitive effort is often allocated to
complex problems. In addition to increasing the number of
candidate solutions or searching different steps, OpenAI’s
O1 inference (OpenAI, 2024) demonstrates that extending
the length of the solution generated during reasoning can
also significantly enhance the model’s performance.

LLM Alignment. LLM alignment (Shen et al., 2023; Wang
et al., 2024) constitutes a technical process aimed at guar-
anteeing that the responses generated by large language
models are not only precise and logically consistent but also
secure, morally sound, and aligned with the expectations of
both developers and users. Ensuring that these expansive
language models are in harmony with human preference is
crucial for leveraging their immense capabilities in a manner
that is both reliable and conscientious. Common method-
ologies employed in LLM alignment include Supervised
Fine-Tuning (Zhou et al., 2023), Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al., 2022), and
Direct Preference Optimization (DPO), among others. The
discourse on long thought reasoning optimization presented

in this paper can be regarded as an extended setting of LLM
alignment, where human preferences are inclined towards
shorter outputs (faster inference) and enhanced reasoning
accuracy.

CoT Compression. Chain-of-Thought (CoT) (Wei et al.,
2023) and its variations (ToT, (Yao et al., 2023), GoT (Besta
et al., 2024)) are powerful techniques for improving the
reasoning capabilities of LLMs. Although CoT is highly
effective, it introduces additional computational overhead.
Consequently, several studies have attempted to address
this issue. For example, (Han et al., 2024a) introduced
a token-budget-aware reasoning framework for large lan-
guage models (LLMs), which dynamically allocates token
budgets according to the complexity of different problems
and leverages these budgets to guide the reasoning process.
C3oT (Kang et al., 2024) employs GPT-4 as a compressor
to retain critical information during the reasoning process,
thereby reducing reasoning redundancy. Furthermore, sev-
eral approaches try to utilize continuous representations to
mitigate the computational overhead associated with Chain-
of-Thought (CoT). For example, CCoT (Cheng & Durme,
2024) reduces reasoning overhead by generating contentful
and continuous contemplation tokens of variable sequence
lengths. COCONUT (Hao et al., 2024) train LLMs to reason
with fewer thinking tokens during inference in a continu-
ous latent space. However, unlike traditional approaches
that focus on compressing normal Chain-of-Thought (CoT),
our method centers on long thought reasoning and reduces
redundancy in such reasoning by optimizing the reasoning
paths instead of compressing each reasoning step.

Some concurrent works, such as (Chen et al., 2024), have
identified the issue of overthinking in O1 reasoning and em-
ploys SimPO(Meng et al., 2024) for optimization, which is
based on the view of preference learning. And (Team et al.,
2025) propose long2short RL, using long-CoT techniques
to improve short-CoT models. However, in this paper we
analyze the long-thought model from a different perspective
of length distribution. Moreover, we establish an optimiza-
tion problem and propose a RL-based method to optimize
the model, which provides a different and novel perspective
for subsequent research.

3. Revisiting the “Length Disharmony” in
Long Thought Reasoning

We employ the term “Length Disharmony” to characterize
the phenomenon of inefficiency in the reasoning process
of long-thought reasoning, when the model generates re-
sponses of varying lengths, among which the shorter re-
sponses possess sufficiently high accuracy, thereby render-
ing the longer responses a superfluous expenditure of com-
putational resources. Besides, due to the quadratic complex-
ity of the Transformer architecture, this will significantly
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Figure 1. Accuracy-Length Relationship at Instance level. The relationship between length and accuracy varies significantly across
problems, with peak accuracy occurring at short, medium, or long intervals. Notably, high accuracy often persists in shorter intervals.

leads to an increase in inference time.

In this section, we have devised a simple experiment to
substantiate the disharmony inherent in long thought reason-
ing. We randomly selected 64 problems from the MATH
(Hendrycks et al., 2021) test set (For QwQ-32B, we filtered
out hard samples first). For each problem, we generated
512 solutions using both the Marco-o1 and the QwQ-32B
models through Top-P sampling (Holtzman et al., 2020).
For each problem, we categorize all candidate solutions into
4 intervals based on their lengths and subsequently compute
the accuracy rate for each interval.

Accuracy-Length Relationship at Instance Level. From
the data we collected, we can ascertain the relationship
between accuracy and length at the instance level, which
is shown in Figure 1. It is evident that there exists a
markedly inconsistent relationship between length and ac-
curacy across different problems. The highest accuracy
may manifest within the shortest, intermediate, or longest
length intervals. Specifically, we observe that relatively high
accuracy is preserved even within shorter-length intervals.

Accuracy-Length Relationship at Distribution Level.
Furthermore, by calculating the average accuracy across
all problems within different intervals, we have derived the
relationship between accuracy and length at the distribu-
tion level, which is shown in Table 1. At the distribution
level, our analysis reveals a consistent trend where shorter
response lengths are associated with higher average accu-
racy rates. This observation can be explained by the premise
that a shorter response length typically signifies the model’s
ability to identify the optimal solution path more efficiently,
consequently requiring fewer iterative processes of reflec-

tion and backtracking.

Therefore, we can conclude that long-thought models ex-
hibit a phenomenon of length disharmony during reasoning,
which leads to redundant computational overhead in the in-
ference phase. This reasoning redundancy can be mitigated,
as high accuracy is still maintained even at shorter lengths.
From this perspective, we propose Length-Harmonizing
Fine-Tuning (O1-Pruner) to optimize long-thought reason-
ing, enabling it to maintain high accuracy while reducing
inference redundancy.

Table 1. Accuracy-Length Relationship at Distribution Level. A
larger interval number indicates a longer solution length. The
average accuracy is higher when the solution length is short.

Model Interval 1 Interval 2 Interval 3 Interval 4

Marco 81.1 80.2 78.8 75.3
QwQ 44.9 49.9 45.9 45.3

4. Methodology
In this section, we elaborate on our proposed Length-
Harmonizing Fine-Tuning (O1-Pruner) in detail and provide
a simple and intuitive mathematical analysis elucidating how
our method works for optimize long thought of reasoning.

4.1. Problem Setup

We consider a LLM parameterized by θ and denoted as
πθ. In the context of math problem solving, the LLM ac-
cepts a sequence x = [x1, . . . , xn], commonly termed as
the problem, and then generate a corresponding solution
y = [y1, . . . , ym]. Hence, the solution y is construed as a
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max 𝐸𝑥∼𝐷,𝑦∼πθ 𝑦 𝑥

𝐸
𝑦′∼π𝑟𝑒𝑓 𝑦
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O1-Pruner

Figure 2. Length-Harmonizing Fine-Tuning. During the training phase, for each problem, we sample multiple times from the reference
model. Subsequently, we sample from the model to be optimized and compute the reward based on the reference samples, followed by a
RL-style fine-tuning. During the inference phase, the model optimized through O1-Pruner demonstrates a significant improvement in
inference speed, along with a noticeable enhancement in accuracy.

sample drawn from the conditional probability distribution
πθ(·|x). The conditional probability distribution πθ(y|x)
can be decomposed as follows:

πθ(y|x) =
m∏
j=1

πθ(yj |x,y<j). (1)

Firstly, we review the process of supervised fine-tuning
(SFT). SFT is the primary method to adapt a pre-trained
LLM for downstream tasks with a relatively smaller super-
vised dataset of labeled examples compared to the data of
pre-training stage. In this paper, we focus on the task of
mathematic problem solving where the problem-solution
pairs denoted as (x,y), are drawn from a specified SFT
dataset D. Thus the training objective of SFT under this
setting can be formulated as:

max
πθ

E(x,y)∼D

[
log πθ(y | x)

]
. (2)

4.2. Length-Harmonizing Fine-Tuning (O1-Pruner)

To start with, let’s assume that πθ is a LLM that can solve
math problems with long thought with redundancy and
disharmony. we hypothesize that the reasoning paths rep-
resented by output thought of language model πθ contain
redundancies and lack proper coordination. To address

this, we propose an optimization objective that ensures no
degradation in accuracy while tackling the issue from two
perspectives. First, at the overall level, we aim to shorten
the reasoning paths. Second, we encourage the model to
output shorter answers for simpler problems, while for more
complex problems, we guide the model to learn the correct
reasoning paths, which, according to the inference scaling
law, typically involve longer reasoning sequences. Given a
problem x, we define L(y) as the length (counted by token)
of the solution y. Considering a reference model πref , we
reduce the solution length of the policy model relative to
that of the reference model, which can be formulated as:

maxEx∼D

[
Ey∼πθ(y|x),y′∼πref (y|x)

L(y′)

L(y)
− 1

]
. (3)

We subtract a constant 1 from the optimization objective to
ensure that the initial expected value of the optimization is
zero. We then define an accuracy function A(x, y, answer),
which takes the problem, solution, and the real answer as
inputs, and returns 0 or 1 to indicate whether the solution
is incorrect or correct. For the sake of simplicity in the
notation, we omit the real answer, denoting the function
as A(x, y). We aim to ensure that the model’s accuracy
does not decrease, or even improves, during the process
of optimizing for length. Thus, we derive the following
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constraint condition:

Ex∼D,y∼πθ(y|x)A(x, y) ≥ Ex∼D,y′∼πref (y′|x)A(x, y′).

(4)

Therefore, we can establish our optimization objective as:

maxEx∼D

[
Ey∼πθ(y|x),y′∼πref (y|x)

L(y′)

L(y)
− 1

]
(5)

s.t. Ex∼D,y∼πθ(y|x)A(x, y) ≥ Ex∼D,y′∼πref (y′|x)A(x, y′).

To solve this constrained optimization problem, we incor-
porate constraint into the objective function as a penalty
term. Specifically, the constraint on accuracy is added to the
objective with a penalty weight λ ≥ 0:

maxEx∼D,y∼πθ(y|x),y′∼πref (y|x)
L(y′)

L(y)
− 1

+λ(A(x, y)−A(x, y′)). (6)

By reorganizing the terms related with reference model
πref , we have:

maxEx∼D,y∼πθ(y|x)
Ey′∼πref (y′|x)L(y

′)

L(y)
− 1+

λ(A(x, y)− Ey′∼πref (y′|x)A(x, y′)). (7)

In practice, we approximate the expectation terms related
with πref by sampling. For each x, we sample for K times
from πref (·|x) and calculate the mean value:

L̄ref (x) =
1

K

K∑
i=1

L(y′i), y′i ∼ πref (· | x); (8)

Āref (x) =
1

K

K∑
i=1

A(x, y′i), y′i ∼ πref (· | x); (9)

This approach is widely employed in Policy Gradient with
Baseline. Furthermore, a recently proposed method GRPO
(Shao et al., 2024) adopts a similar technique to reduce
training overhead. Based on this technique, our objective
can be approximated as:

maxEx∼D,y∼πθ(y|x)
L̄ref (x)

L(y)
− 1

+λ(A(x, y)− Āref (x)). (10)

Since both L(y) and A(x, y) are not differentiable, we solv-
ing this optimization with policy gradient approach, which
is shown to have strong performance despite its simplicity.
Furthermore, it is worth noting that during the optimization
process, frequent sampling from the current distribution πθ

is required during training, which significantly increases
the complexity of the training procedure. Considering that
off-policy training can bring remarkable effectiveness with

pre-collected data, we adopt an off-policy training approach
by directly sampling from the πref instead of πθ. Besides,
since our reward is derived by assessing the merit of a
sample within the distribution relative to the expected out-
come, our reward can be regarded as an approximate advan-
tage function. Consequently, we employ a PPO-style loss
(Schulman et al., 2017) to optimize the objective function,
which helps for our off-policy training strategy. Defining
the Length-Harmonizing Reward RLH(x, y) =

L̄ref (x)
L(y) − 1

+ λ(A(x, y) − Āref (x)), the loss function of off-policy-
version Length-Harmonizing Fine-Tuning is:

LLH(θ;x, y) = −Ex∼D,y∼πref (y|x)
[
min(r(θ)RLH(x, y),

clip(r(θ), 1− ϵ, 1 + ϵ)RLH(x, y))
]
, (11)

where r(θ) = πθ(y|x)
πref (y|x) . clip() is the clipping function.

This allows us to prepare the required data at the beginning
of training, thereby greatly simplifying the training work-
flow. Our experiments show that this off-policy approach
still enables our method to achieve outstanding performance,
significantly surpassing other baselines.

4.3. Understanding the Loss Function

To intuitively understand how our loss function works,
we begin by analyzing the RLH term. Evidently, RLH

comprises two distinct components, namely the length re-
ward term L̄(x,πref )

L(y) − 1 and the accuracy reward term
λ(A(x, y)−Ā(x, πref )). Obviously, the length reward term
will reward shorter outputs. When the sequence length are
consistent with expected output length of reference model,
the length reward is 0; however, when the output is longer,
the length reward becomes negative. The accuracy reward
term is essential for balancing length and accuracy. For a
problem x with a relatively high accuracy expectation, solv-
ing it correctly does not yield a significant accuracy reward.
As a result, the model tends to explore shorter solutions. For
more challenging problems, solving them correctly yields
a higher accuracy reward, indicating that we do not want
the model to prioritize shortening the output. Instead, we
aim for the model to focus on generating a correct solution.
On this basis, if the correct solution is relatively short, the
model will receive an additional length reward.

To the end, we summarize the training procedure of our
proposed O1-Pruner in Algorithm 1.

5. Experiments
5.1. Experiment Setup

We fine-tune two strong models—Marco-o1-7B with full-
parameter tuning and QwQ-32B-Preview using Freeze Fine-
Tune due to resource constraints. Training used 5k problem-
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Table 2. Main Experiment Results. We present the performance of two selected models optimized through different methods across three
mathematical reasoning datasets. It can be observed that the models trained with O1-Pruner achieve the best trade off between accuracy
and length in comparison with other approaches.

Model
MATH GSM8K AIME25 AVERAGE

Acc Length AES Acc Length AES Acc Length AES Acc Length AES

Marco-o1-7B
(full fine-tune)
Baseline 73.8 1156 0 89.2 530 0 7.3 1954 0 56.8 1213 0
Fast-solving Prompt 71.0 1113 -0.15 81.7 447 -0.26 5.3 1970 -1.38 52.7 1177 -0.60
SFT 73.6 1076 0.06 89.9 497 0.09 6.7 1652 -0.26 56.7 1075 -0.04
DPO 71.8 761 0.21 88.6 410 0.19 3.0 1054 -2.48 54.5 742 -0.69
O1-Pruner 77.5 657 0.58 91.4 343 0.43 8.0 890 0.83 59.0 630 0.61

QwQ-32B-Preview
(freeze fine-tune last 48 layers)
Baseline 90.6 2191 0 95.1 777 0 28.0 6696 0 71.2 3221 0
Fast-solving Prompt 90.2 1763 0.17 95.8 561 0.30 30.0 6586 0.23 72.0 2970 0.23
SFT 90.4 2031 0.06 95.7 717 0.10 30.7 6170 0.37 72.3 2973 0.18
DPO 91.7 1999 0.12 95.3 704 0.10 32.0 6918 0.40 73.0 3228 0.21
O1-Pruner 91.0 1385 0.38 96.5 534 0.36 31.3 3825 0.78 72.9 1915 0.51

Algorithm 1 O1-Pruner

1: Input: LLM πθ, Dataset D = {(xi, ai)}i∈[N ]

2: Initialize: πref = πθ

3: for i = 1 to N do
4: sampling K solutions yi1, ...,yiK from πref (·|xi)

5: calculating L̄ref (x
i) = 1

K

∑K
k=1 L(y

i
k)

6: calculating Āref (x
i) = 1

K

∑K
k=1 A(xi, yik)

7: randomly select m (m ≤ K) solutions from yi1, ...,yiK
8: Update θ = argmin

θ

∑m
j=1 L

LH(θ;xi, yij)

9: end for
10: Output: Updated LLM πθ

answer pairs from MATH, generating 16 and 12 solutions
per problem respectively. Evaluation spans MATH, GSM8k,
and AIME25. Additional results on DeepSeek-R1-Distill-
Qwen-7B are in the appendix.

5.2. Baselines.

To validate the superiority of our method for long thought
reasoning optimization tasks, we have selected the three
representatively comparative methods. (i) Fast-Solving
Prompt: The Fast-Solving Prompt is a prompting technique
wherein we instruct the model within the prompt to solve
the given problem as swiftly as possible, aiming to achieve
the desired reduction in reasoning length. (ii) SFT: For the
SFT method, we curated the training dataset by selecting the
two shortest correct solutions for each problem, ensuring
that the model is exposed to examples that embody both
accuracy and conciseness. These solutions were then used
to train the model following the standard SFT pipeline. (iii)

DPO: For the implementation of DPO, we meticulously
selected two of the shortest correct solutions to serve as the
chosen samples, which exemplify efficiency and precision in
problem-solving. Conversely, to represent the reject sample,
we opted for the longest solution available.

Evaluation Metric. We employ the following average accu-
racy, average length and Accuracy-Efficiency Score (AES)
as key metrics to assess whether the model achieves a desir-
able balance between reasoning accuracy and length:

• Accuracy Accuracy reflects whether the model cor-
rectly solves the problem. It is measured as the pro-
portion of problems for which the model’s generated
solution is correct. A higher accuracy indicates better
problem-solving capability.

• Length Length denotes the number of tokens in the
generated solution. It serves as a proxy for the compu-
tational cost of generating solutions, where a shorter
length implies greater efficiency.

• AES We define a novel metric called Accuracy-
Efficiency Score (AES), to evaluate the trade off be-
tween improving accuracy and reducing computa-
tional cost. It is calculated by weighting and sum-
ming the model’s solution length and accuracy. Defin-
ing ∆Length =

Lengthbaseline−Lengthmodel
Lengthbaseline

and ∆Acc =
Accmodel−Accbaseline

Accbaseline
, the AES is calculated by:

AES =

{
α ·∆Length + β · |∆Acc| , if ∆Acc ≥ 0

α ·∆Length − γ · |∆Acc| , if ∆Acc < 0

where α > 0, β > 0, and γ > 0. AES evaluates the
trade-off between improving accuracy and reducing

6
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computational cost. And we emphasize the penaliza-
tion of accuracy degradation by setting γ > β. We set
the default values as α = 1, β = 3, γ = 5.

5.3. Experimental Results

Table 2 demonstrates the performance of various meth-
ods across different evaluation metrics. The proposed O1-
Pruner consistently achieves superior performance in bal-
ancing reasoning accuracy and efficiency compared to base-
line and competing methods. Notably, it exhibits the best
trade-off between accuracy and reasoning length across all
datasets, as further supported by its significantly higher
Accuracy-Efficiency Score (AES) values. Across both mod-
els, Marco-o1-7B and QwQ-32B-Preview, O1-Pruner out-
performs other methods in average length of generated so-
lutions, with a noticeable improvement on accuracy. For
instance, in the Marco-o1-7B experiments, O1-Pruner
achieves an average accuracy of 76.8%, accompanied by a
40.5% reduction in solution length compared to the base-
line. Similarly, for QwQ-32B-Preview, O1-Pruner yields
an average accuracy of 89.3%, with a 34.7% reduction in
solution length. These improvements highlight the robust-
ness of O1-Pruner in enhancing computational efficiency
without sacrificing accuracy.

The Fast-Solving Prompt method, while achieving a moder-
ate reduction in solution length, compromises accuracy in
most cases. This trade-off is evident from its lower AES val-
ues compared to O1-Pruner, indicating that the reduction in
reasoning length often comes at the cost of problem-solving
performance. On the other hand, SFT provides a better bal-
ance than the Fast-Solving Prompt, but its improvements
in reasoning length remain marginal, with limited gains
in AES. The DPO method achieves a reasonable balance
between accuracy and length, but it falls short of the per-
formance achieved by O1-Pruner. Besides, the average
accuracy decreases notably on Marco-o1-7B.

5.4. Inference Time-Cost Analysis

In this subsection, we take the MATH test set as an example
to explore the time overhead during the model inference
phase. We utilize one A800 GPU and the vLLM (Kwon
et al., 2023) library for inference, recording the average
inference time. For the Marco-o1 model, we employ one
A800 GPU, while for the QwQ-32B-Preview model, we use
four A800 GPUs. As illustrated in Figure 3, the inference
time results reveal notable differences across methods and
models: For the Marco-o1-7B model, the baseline approach
demonstrates an inference time of approximately 2 minutes,
while the Fast-Solving Prompt and SFT methods achieve
slightly shorter times. Both the DPO and O1-Pruner meth-
ods exhibit significantly reduced inference times, with O1-
Pruner achieving the shortest duration, slightly exceeding

Table 3. Ablation experiments on λ. Overall, the model’s accuracy
and solution length increase with the penalty coefficient λ. A
larger λ implies that the model places greater emphasis on vari-
ations in accuracy, thereby partially weakening the optimization
for sequence length. λ = 2 achieves an optimal balance between
accuracy and efficiency.

λ Acc Length AES

Marco-o1-7B
0 74.2 620 0.48
1 74.8 620 0.50
2 77.5 657 0.58
5 75.3 805 0.36

1 minute. For the larger model QwQ-32B-Preview, the
overall inference time is considerably higher. The Baseline
approach records the longest inference time, approaching 6
minutes, while the DPO and SFT methods achieve slightly
shorter durations. Notably, the Fast-Solving Prompt reduces
the inference time to around 5 minutes, likely due to the
strong instruction-following capabilities of large models.
Once again, O1-Pruner demonstrates the shortest duration,
achieving an inference time of approximately 4 minutes.

In summary, O1-Pruner represents a significant advance-
ment in optimizing long-thought reasoning for math
problem-solving tasks for both smaller and larger language
models, achieving the best balance between accuracy and
efficiency while minimizing computational overhead.

5.5. Ablation Study

Ablation on Hyper-parameter Sensitivity. In this part,
we evaluate the hyperparameter sensitively of constraint
coefficient λ. We select several different values of λ (λ =
0, 1, 2, 5) and evaluate the model accordingly. For the sake
of brevity, we only report the metrics on MATH. It can
be observed that, overall, the model’s accuracy increases
as the penalty coefficient lambda rises, while the required
inference length also grows. In our experiments, shown
in Figure 3, for Marco-o1-7b, setting λ = 2 achieves a
favorable trade-off between accuracy and efficiency.

Ablation on Difficulty Levels. We investigate the perfor-
mance and characteristics of O1-Pruner across datasets of
varying difficulty levels. Due to limited computational re-
sources, we exclusively selected Marco-o1 for experimenta-
tion. Utilizing the data constructed from the MATH dataset
as mentioned in prior experiments (comprising 5k problems
* 16 solutions), we partition the dataset into three subsets
of differing difficulty based on the model’s average accu-
racy. In Figure 4, We observe that models trained on more
challenging datasets tend to generate longer solutions, as
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Figure 3. Comparison of inference time-cost on MATH among different models and methods. O1-Pruner achieves the shortest inference
times (slightly over 1 minute for Marco-o1-7B and 4 minutes for QwQ-32B-Preview), demonstrating its effectiveness in accelerating
long-thought model inference for both small and large long thought models.

Figure 4. Performance on MATH Test-set When Trained on Prob-
lems of Different Difficulty Levels. Models trained on more chal-
lenging datasets tend to generate longer solutions, while learning
to solve harder problems enhances model accuracy. In contrast, for
less challenging datasets, shorter solutions are produced without a
corresponding accuracy improvement.

these datasets typically contain problems requiring more
complex solutions. At the same time, by learning the cor-
rect solutions of harder problems, the models improve their
problem-solving capabilities and ultimately achieve higher
accuracy. In contrast, for the least challenging datasets, al-
though the generated solution lengths are reduced, there is
no improvement in accuracy. These experimental results
suggest that while our approach demonstrates significant ef-
fectiveness in optimizing long-thought reasoning, it remains
highly influenced by the nature of the training data.

6. Conclusion
In this paper, we conducted simple experiments to validate
the phenomenon of length disharmony in long-thought mod-
els during reasoning, which leads to redundant computa-
tional overhead in the inference phase. To address this issue,
we formulated it as an optimization problem and proposed
Length Harmonizing Fine-Tuning (O1-Pruner) as a solution
to optimize the model. Extensive experiments demonstrate
that O1-Pruner significantly reduces the length of the solu-
tions generated by the model while achieves a modest im-
provement in accuracy, thereby substantially enabling more
efficient reasoning. Additionally, we performed an in-depth
analysis, including experiments on key hyperparameters
and datasets of varying difficulty, to better understand the
characteristics of O1-Pruner.

7. Impact Statement
This paper presents work aimed at addressing a critical
challenge in the domain of long-thought reasoning Large
Language Models (LLMs): balancing inference efficiency
with accuracy. By proposing Length-Harmonizing Fine-
Tuning (O1-Pruner), we offer a novel approach to optimize
reasoning processes by reducing redundancies and aligning
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token budgets with problem difficulty. Our work highlights
the transformative potential of O1-Pruner in enhancing the
reasoning efficiency of LLMs without sacrificing perfor-
mance. Experimental results on mathematical reasoning
benchmarks demonstrate that O1-Pruner significantly re-
duces inference overhead while improving accuracy, paving
the way for more practical and scalable LLM applications
across diverse domains. This advancement underscores
the importance of innovative fine-tuning methods in over-
coming fundamental limitations of long-thought reasoning
paradigms, contributing to the broader evolution of LLM
capabilities in both academic and practical contexts.

References
Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Pod-

stawski, M., Gianinazzi, L., Gajda, J., Lehmann, T.,
Niewiadomski, H., Nyczyk, P., and Hoefler, T. Graph
of thoughts: Solving elaborate problems with large lan-
guage models. Proceedings of the AAAI Conference
on Artificial Intelligence, 38(16):17682–17690, March
2024. ISSN 2159-5399. doi: 10.1609/aaai.v38i16.
29720. URL http://dx.doi.org/10.1609/
aaai.v38i16.29720.

Chen, X., Xu, J., Liang, T., He, Z., Pang, J., Yu, D., Song,
L., Liu, Q., Zhou, M., Zhang, Z., Wang, R., Tu, Z., Mi,
H., and Yu, D. Do not think that much for 2+3=? on
the overthinking of o1-like llms, 2024. URL https:
//arxiv.org/abs/2412.21187.

Cheng, J. and Durme, B. V. Compressed chain of thought:
Efficient reasoning through dense representations, 2024.
URL https://arxiv.org/abs/2412.13171.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

DeepSeek. Deepseek-r1-lite-preview: Unleashing su-
percharged reasoning power. https://api-docs.
deepseek.com/news/news1120, 2024. Accessed:
2024-12-29.

Han, T., Wang, Z., Fang, C., Zhao, S., Ma, S., and Chen, Z.
Token-budget-aware llm reasoning, 2024a. URL https:
//arxiv.org/abs/2412.18547.

Han, Z., Gao, C., Liu, J., Zhang, J., and Zhang, S. Q.
Parameter-efficient fine-tuning for large models: A com-
prehensive survey, 2024b. URL https://arxiv.
org/abs/2403.14608.

Hao, S., Sukhbaatar, S., Su, D., Li, X., Hu, Z., Weston, J.,
and Tian, Y. Training large language models to reason

in a continuous latent space, 2024. URL https://
arxiv.org/abs/2412.06769.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.
The curious case of neural text degeneration, 2020. URL
https://arxiv.org/abs/1904.09751.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models, 2021. URL https://arxiv.
org/abs/2106.09685.

Huang, J. and Chang, K. C.-C. Towards reasoning in large
language models: A survey. In Rogers, A., Boyd-Graber,
J., and Okazaki, N. (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, pp. 1049–1065,
Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.
67. URL https://aclanthology.org/2023.
findings-acl.67/.

Kang, Y., Sun, X., Chen, L., and Zou, W. C3ot: Generat-
ing shorter chain-of-thought without compromising ef-
fectiveness, 2024. URL https://arxiv.org/abs/
2412.11664.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Ef-
ficient memory management for large language model
serving with pagedattention, 2023. URL https://
arxiv.org/abs/2309.06180.

Meng, Y., Xia, M., and Chen, D. Simpo: Simple preference
optimization with a reference-free reward, 2024. URL
https://arxiv.org/abs/2405.14734.

OpenAI. Learning to reason with
llms. https://openai.com/index/
learning-to-reason-with-llms/, 2024.
[Accessed 19-09-2024].

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P., Leike,
J., and Lowe, R. Training language models to follow
instructions with human feedback, 2022. URL https:
//arxiv.org/abs/2203.02155.

Qwen. Qwq: Reflect deeply on the boundaries of the
unknown, November 2024. URL https://qwenlm.
github.io/blog/qwq-32b-preview/.

9

http://dx.doi.org/10.1609/aaai.v38i16.29720
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://api-docs.deepseek.com/news/news1120
https://api-docs.deepseek.com/news/news1120
https://arxiv.org/abs/2412.18547
https://arxiv.org/abs/2412.18547
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://aclanthology.org/2023.findings-acl.67/
https://aclanthology.org/2023.findings-acl.67/
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2405.14734
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal policy optimization algo-
rithms, 2017. URL https://arxiv.org/abs/
1707.06347.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X.,
Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and Guo,
D. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL
https://arxiv.org/abs/2402.03300.

Shen, T., Jin, R., Huang, Y., Liu, C., Dong, W., Guo, Z.,
Wu, X., Liu, Y., and Xiong, D. Large language model
alignment: A survey, 2023. URL https://arxiv.
org/abs/2309.15025.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters, 2024. URL https://arxiv.
org/abs/2408.03314.

Team, K., Du, A., Gao, B., and et al. Kimi k1.5: Scaling
reinforcement learning with llms, 2025. URL https:
//arxiv.org/abs/2501.12599.

Wang, Z., Bi, B., Pentyala, S. K., Ramnath, K., Chaudhuri,
S., Mehrotra, S., Zixu, Zhu, Mao, X.-B., Asur, S., Na,
and Cheng. A comprehensive survey of llm alignment
techniques: Rlhf, rlaif, ppo, dpo and more, 2024. URL
https://arxiv.org/abs/2407.16216.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter,
B., Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models, 2023. URL https://arxiv.org/abs/
2201.11903.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. Infer-
ence scaling laws: An empirical analysis of compute-
optimal inference for problem-solving with language
models, 2024. URL https://arxiv.org/abs/
2408.00724.

Yao, H., Huang, J., Wu, W., Zhang, J., Wang, Y., Liu, S.,
Wang, Y., Song, Y., Feng, H., Shen, L., et al. Mulberry:
Empowering mllm with o1-like reasoning and reflection
via collective monte carlo tree search. arXiv preprint
arXiv:2412.18319, 2024.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. Tree of thoughts: Deliberate
problem solving with large language models, 2023. URL
https://arxiv.org/abs/2305.10601.

Zhao, Y., Yin, H., Zeng, B., Wang, H., Shi, T., Lyu, C.,
Wang, L., Luo, W., and Zhang, K. Marco-o1: Towards
open reasoning models for open-ended solutions, 2024.
URL https://arxiv.org/abs/2411.14405.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., Zhang, S., Ghosh, G., Lewis, M.,
Zettlemoyer, L., and Levy, O. Lima: Less is more for
alignment, 2023. URL https://arxiv.org/abs/
2305.11206.

A. Results on DeepSeek-R1-Distill-Qwen-7B
To demonstrate the generalizability of our method, we con-
ducted experiments using DeepSeek-R1-7B on three differ-
ent datasets, shown in Table 4. O1-Pruner achieve the best
trade off between accuracy and length.

B. Experiment Setup Details
Long-thought Models. The long thought models we cho-
sen for our experiment are Marco-o1-7B DeepSeek-R1-7B
and QwQ-32B-Preview, which have demonstrated excel-
lent performance on a wide range of math problem-solving
tasks. For Marco-o1-7B and DeepSeek-R1-7B, we utilize
full-parameter fine-tuning; however, for the larger-scale
QwQ-32B-Preview, our computational resources are not
able to support full-parameter training. As a result, we
adopt Parameter-Efficient Fine-Tuning (Han et al., 2024b).
After evaluating both LoRA (Hu et al., 2021) and Freeze
Fine-Tune, we observed that Freeze Fine-Tune yields much
better performance. Therefore, we selected this fine-tuning
approach for our experiments.

After the release of DeepSeek’s distilled models, we have
also included experiments with DeepSeek-R1-Distill-Qwen-
7B in the appendix.

Dataset. The dataset used for training is MATH. It com-
prises approximately 10k math problem of high school level
accompanied with both ground truth solution and ground
truth answer. Since the ground truth solution is not need
for our experiment, we only use the problem-answer pairs.
For training, we selected 5,000 problems from the MATH
Trainset. For Marco-o1-7B, we generated 16 solutions for
each problem; for DeepSeek-R1-7B and QwQ-32B-Preview,
we generated 12 solutions for each problem. The dataset
utilized for testing encompasses the test sets of MATH,
GSM8k (Cobbe et al., 2021), and AIME25 (?), compris-
ing a diverse range of mathematical problems with varying
levels of difficulty.
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Table 4. Main Experiment Results in DeepSeek-R1-7B. It can be observed that the models trained with O1-Pruner achieve the best trade
off between accuracy and length in comparison with other approaches.

Model
MATH GSM8K AIME25 AVERAGE

Acc Length AES Acc Length AES Acc Length AES Acc Length AES

DeepSeek-R1-7B
(full fine-tune)
Baseline 90.2 3534 0 88.9 1014 0 38.3 11005 0 72.5 5184 0
SFT 89.4 3071 0.09 90.3 856 0.20 33.3 10996 -0.65 71.0 4974 -0.12
DPO 91.0 2812 0.23 91.0 927 0.16 36.7 9987 -0.12 72.9 4575 0.09
O1-Pruner 91.2 2007 0.47 87.9 443 0.51 38.3 8582 0.22 72.5 3677 0.40

Table 5. Hyperparameters for the Marco-o1-7B, QwQ-32B-Preview and DeepSeek-R1-7B models.
Hyperparameter Marco-o1-7B QwQ-32B-Preview DeepSeek-R1-7B
clip range 0.2 0.2 0.2
λ 2 5 5
cutoff len 3072 4096 4096
batch size 32 32 32
learning rate 2.0e-7 1.0e-6 1.5e-6
num train epochs 1.0 1.0 1.0
lr scheduler type cosine cosine cosine
warmup ratio 0.1 0.1 0.1

C. Training Details
From each set of solutions, we randomly selected 2 solutions
for training. After computing the rewards, we normalized
the reward values. Marco-o1 is trained with 4 * A800-
80G GPUs, DeepSeek-R1-7B is trained with 8 * A800-80G
GPUs and QwQ-32B is trained with 8 * A800-80G GPUs.
The other hyperparameters used in the training process are
presented in the Table 5.

D. Case Study
We also present a case study of generated samples, for which
we have chosen two problems each from the two models
utilized in the training. These samples encompass outputs
from both the base model and the model refined by the
O1-Pruner optimization.
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Base: Alright, I need to convert the fraction
57

160
 to a terminating 

decimal. Let‘s break this down step by step to ensure accuracy.\n 
First, I recall that a fraction can be converted to a decimal by 
performing the division of the numerator by the denominator. So, 

I'll divide 57 by 160.\n Let's set up the division:
57

160
= 57 ÷ 160. 

Now, I'll perform the division: 
1. **Divide 57 by 160:** 
- 160 doesn't go into 57 at all, so I'll add a decimal point and a 

zero, making it 570.
- 160 goes into 570 three times because 160 ×  3 =  480
[OMITTED]…
This method also results in 0.35625, which matches my previous 
calculation.\n Therefore, after thorough verification, the decimal 

representation of
57

160
 is confidently 0.35625.

Answer: 0.35625                                                                 
Length: 968                                                       

Problem: Convert 
57

160
 to a terminating decimal.                        

Real answer: 0.35625

Pruned: Alright, I need to convert the fraction
57

160
 to a terminating 

decimal. Let‘s break this down step by step to ensure accuracy.\n 
First, I recall that a fraction can be converted to a decimal by 
performing the division of the numerator by the denominator. So, 
I'll divide 57 by 160.\n Starting with the division:
1. **Divide 57 by 160:** 
- 160 doesn't go into 57, so I'll add a decimal point and a zero, 

making it 570.
- 160 goes into 570 three times because 160 ×  3 =  480
[OMITTED]…
Yes, it does, confirming that the conversion is correct.\n Therefore, 

the terminating decimal representation of
57

160
 is 0.35625.

Answer: 0.35625                                                                 
Length: 575                                                       

Figure 5. case 1 (Marco-o1-7B)

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning

Base: To solve the equation arccos𝑥 + arccos2𝑥 + arccos3𝑥 = π, we 
need to find the value of 𝑥 that satisfies this equation. Let's proceed 
step-by-step.
**Step 1: Understanding the Equation**
The equation involves three inverse cosine functions: 
arccos𝑥, arccos2𝑥, arccos3𝑥. The sum of these angles equals π, 
which is a significant value in trigonometry, often associated with 
angles in a triangle.
**Step 2: Domain Considerations**
First, let's consider the domains of the inverse cosine functions:
- arccos𝑥 is defined for 𝑥 ∈ −1,1
[OMITTED]…
It seems that no such polynomial exists within the constraints provided. 
Therefore, the smallest possible value of 𝑎 + 𝑏 + 𝑐 + 𝑑  is not 
achievable under the given conditions.
Answer: 0                                                                 
Length: 4096                                                       

Problem: if arccos𝑥 +arccos2𝑥 + arccos3𝑥 = π, then 𝑥 satisfies a 
cubic polynomial of the form 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, where 𝑎, 𝑏, 𝑐 
and 𝑑 are integers, and 𝑎 ≠ 0. Find the smallest possible value of 𝑎 +
𝑏 + 𝑐 + 𝑑 . 

Real answer: 27

Pruned: To solve the equation arccos𝑥 +arccos2𝑥 + arccos3𝑥 = π, 
we need to find the value of 𝑥 that satisfies this equation. Let's 
proceed step-by-step.
**Step 1: Understanding the Equation**
The equation involves three inverse cosine functions: 
arccos𝑥, arccos2𝑥, arccos3𝑥. The sum of these angles equals π, which 
is 180 degrees. This suggests that the angles are related in a way that 
their sum completes a straight line.
**Step 2: Domain Considerations**
First, let's consider the domain of the arccosine
[OMITTED]…
**Conclusion**
The smallest possible value of 𝑎 + 𝑏 + 𝑐 + 𝑑  is 27.
Answer: 27                                                                 
Length: 1667                                                       

Figure 6. case 2 (Marco-o1-7B)
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O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning

Base: So I have this problem here: convert 57/160 to a terminating 
decimal. I know that fractions can be converted to decimals, and some 
decimals terminate while others repeat. I need to find out what 57/160 
is as a decimal and make sure it terminates.
First, I should recall how to convert a fraction to a decimal. The basic 
way is to perform division: divide the numerator by the denominator. 
So, I need to divide 57 by 160.
Before I dive into the division, I wonder if there's a simpler way or if I 
can simplify the fraction first. Let's see
[OMITTED]…
But since I've got consistent results from both division and converting 
to a denominator of 1000, I'm confident that 0.35625 is the correct 
terminating decimal for 57/160.
**Final Answer**
0.35625
Answer: 0.35625                                                                 
Length: 1714                                                       

Problem: Convert 
57

160
 to a terminating decimal.                        

Real answer: 0.35625

Pruned: Okay, so I have this problem: I need to convert 57/160 into a 
terminating decimal. I'm pretty familiar with fractions and decimals, 
but I just want to make sure I do this right.
First off, I know that a terminating decimal is one that ends after a 
certain number of digits rather than repeating forever. So, for example, 
0.5 is a terminating decimal, whereas 0.333... is a repeating decimal.
Now, to convert a fraction to a decimal, the straightforward way is to 
divide the numerator by the denominator
[OMITTED]…
Therefore, the terminating decimal for 57/160 is 0.35625.
I think that's the final answer.
**Final Answer**
0.35625
Answer: 0.35625                                                                 
Length: 1102                                                       

Figure 7. case 3 (QwQ-32B-Preview)
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O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning

Base: I've got this problem to solve: if arccos𝑥 + arccos2𝑥 + 
arccos3𝑥 = π, then 𝑥 that satisfies a cubic polynomial of the form a 
𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, where 𝑎, 𝑏, 𝑐 and 𝑑 are integers, and 𝑎 is 
not zero. I need to find the smallest possible value of the sum of the 
absolute values of 𝑎, 𝑏, 𝑐 and 𝑑.
Okay, first things first, I need to recall what arccos means. Arccos is 
the inverse function of cosine, and it returns an angle whose cosine is 
a given number. The range of arccos is from 0 to π radians
[OMITTED]…
But time is limited, and I need to make a decision.
Therefore, I conclude that the smallest possible value of 𝑎 + 𝑏 +
𝑐 + 𝑑  is 27.

**Final Answer**
27
Answer: 27                                                                 
Length: 5778                                                       

Problem: if arccos𝑥 +arccos2𝑥 + arccos3𝑥 = π, then 𝑥 satisfies a 
cubic polynomial of the form 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, where 𝑎, 𝑏, 𝑐 
and 𝑑 are integers, and 𝑎 ≠ 0. Find the smallest possible value of 𝑎 +
𝑏 + 𝑐 + 𝑑 .

Real answer: 27

Pruned: I've got this problem to solve: if arccos𝑥 + arccos2𝑥 + 
arccos3𝑥 = π, then 𝑥 that satisfies a cubic polynomial of the form a 
𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, where 𝑎, 𝑏, 𝑐 and 𝑑 are integers, and 𝑎 is not 
zero. I need to find the smallest possible value of the sum of the 
absolute values of 𝑎, 𝑏, 𝑐 and 𝑑.
Okay, first things first, I need to recall what arccos means
[OMITTED]…
Alternatively, maybe I can consider the equation I had earlier: 12𝑥3 +
14𝑥2 − 1 =  0, and see if I can factor out an 𝑥 or something, but it 
doesn't seem factorable.
Therefore, I conclude that the smallest possible value of 𝑎 + 𝑏 +
𝑐 + 𝑑  is 27.

**Final Answer**
27
Answer: 27                                                                 
Length: 3439                                                       

Figure 8. case 4 (QwQ-32B-Preview)
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