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Abstract

We study strategic classification in binary decision-making settings where agents
can modify their features in order to improve their classification outcomes. Impor-
tantly, our work considers the causal structure across different features, acknowl-
edging that effort in one feature may affect other features. The main goal of our
work is to understand when and how much agent effort is invested towards desirable
features, and how this is influenced by the deployed classifier, the causal structure
of the agent’s features, their ability to modify them, and the information available
to the agent about the classifier and the feature causal graph. We characterize
conditions under which agents with full information about the causal structure
and the principal’s classifier align with the principal’s goals of incentivizing effort
mostly in “desirable” features, and identify cases where designing such classifiers
(from the principal’s side) is still tractable despite general non-convexity. Under
incomplete information, we show that uncertainty leads agents to prioritize features
with high expected impact and low variance, which may often be misaligned with
the principal’s goals. Finally, using numerical experiments based on a cardiovascu-
lar disease risk study, we illustrate how to incentivize desirable modifications even
under uncertainty.

1 Introduction

The widespread adoption of automated decision-making systems has brought significant attention
to the issue of strategic classification—a machine learning setting where individuals modify their
features to secure favorable outcomes. This phenomenon is common in many domains: students
enroll in preparatory courses to enhance their chances at college admission; job seekers tailor
their resumes to align them with AI-based hiring algorithms, and individuals adjust their financial
behaviors to improve credit scores. Some of these modifications reflect genuine efforts to enhance
one’s qualifications or financial responsibility (e.g., acquiring new skills or consistently paying off
loans), while others effectively game the system, (e.g., artificially boosting credit scores by opening
new credit lines or strategically targeting specific keywords in algorithmic resume screening).

The distinction between desirable and undesirable modifications is not always clear-cut. While
gaming is typically regarded as problematic, even genuine improvements can vary in how desirable
they are. For example, in healthcare, encouraging patients to adopt preventive lifestyle changes (such
as improved diet and regular exercise) may be preferable to medical interventions like medication
or surgery for conditions such as obesity or hyperlipidemia. This highlights the nuanced nature of
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strategic classification: interventions that lead to real improvements may still not align with preferred
or desirable forms of improvement, where desirability is decided by the learner.

Further, a key challenge in strategic classification is that features are often interdependent. That
is, modifications to one feature can have cascading effects on others. For example, increasing the
number of credit cards an individual holds will also lower their credit utilization percentage, indirectly
influencing their credit-worthiness. Similarly, reducing alcohol consumption or improving dietary
habits can mitigate multiple health risks, such as obesity, hyperlipidemia, and cardiovascular diseases.
These dependencies are best captured using a causal graph, a framework that has been explored in a
limited amount of prior work [5, 26, 32, 40] in the specific context of strategic classification.

Our work builds upon this causal perspective on strategic classification, investigating how agents
respond to decision-making systems and, in particular, when their strategic behavior aligns with
desirable modifications. We adopt a framework in which a principal (e.g., a decision-maker or
machine learning classifier) deploys a model, and agents (or individuals) strategically adjust their
features to maximize their probability of receiving a favorable classification outcome.

Our contributions. Our paper makes the following contributions.

Model. In Section 2, we introduce our model to study incentivizing desirable efforts in the context
of causal strategic classification. We distinguish from previous work in two ways: i) we introduce
incomplete information to the study of causality in strategic classification capturing settings where
agents do not know the classifier, causal graph, or both; and ii) we introduce a notion of β-desirability
quantifying the extent to which agents invest effort in features deemed desirable by the principal.

Complete Information. In Section 3, we focus on agents with full knowledge of the classifier and the
causal structure, and we characterize their optimal effort profiles under various effort cost structures.
We establish theoretical conditions guaranteeing investment in desirable effort profiles by rational
agents. We also demonstrate that finding classifiers that induce desirable behavior is, in general, a
non-convex problem. However, we show that when the principal chooses only one desirable feature
to incentivize—a special case that is particularly important in practice—, the problem of finding
good classifiers becomes convex. We also provide a simple “convexification” heuristic for when the
number of desirable features is more than one, ensuring that chosen classifiers do not incentivize
more than a certain amount of undesirable feature effort.

Incomplete Information. We extend our analysis to settings where agents lack information about
either the classifier or the causal graph (or both) in Section 4; incomplete information is modeled
as agents having Gaussian priors about the classifier and the causal graph. We show that in face of
uncertainty over both the classifier and the causal graph, investing effort optimally is a non-convex
problem for the agent. However, the problem becomes tractable under partial uncertainty, and we
provide semi-closed-form characterizations of optimal effort profiles in some special settings.

Case study. Finally, in Section 5, we complement our theoretical insights in the incomplete infor-
mation setting with numerical experiments, basing our experimental setup on a medical study from
previous work that predicts risk of cardiovascular disease (CVDs) in adults. In the process, we
provide insights into how to incentivize changes in desirable features under uncertainty.

Related work. Strategic classification has received significant attention over the past decade (see
e.g., [1, 2, 5, 8, 9, 11, 14, 17, 20, 21, 26, 30, 32, 33, 37, 40, 41, 44]). Among this active area of
research, perhaps closest to our work is the work of [26]. Like us, they focus on general causal graphs;
however, we highlight several major differences. First, we focus on classification settings, while [26]
focus on regression and scoring settings. Second, we highlight differences in our agent model, where
our agents invest effort to pass the classifier with reasonably high probability, while agents in [26]
always exert effort to improve their score. Third, we note that our cost model is strictly more general:
where [26] focuses on linear costs, our work considers general ℓp-costs1. Finally, unlike [26], our
study incorporates incomplete information, where agents may not fully understand either the causal
graph or the deployed classifier.

Our work is also closely related to the literature on “Algorithmic Recourse” [24, 25, 42, 43] which
explores how to provide individuals, who receive adverse decisions from machine learning models,

1Our results show that this choice of cost is important, noting a sharp distinction in agent behavior between
the cases of ℓ1-cost and ℓp costs for p > 1.
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with feedback (in the form of counterfactual explanations or recommendations) for more favorable
future outcomes. From a mathematical standpoint, strategic classification and algorithmic recourse
can be seen as flip sides of the same picture: recourse has the learner tell the agent what actions to take
to improve their outcomes2, while strategic classification sees agents as acting by themselves decide
their own actions based on the classifier. A key difference is that much of the recourse literature
aims to find a low-cost path between an agent’s current features and features that lead to positive
classification, often without asking whether this path is “desirable” nor whether it involves gaming the
classifier or investing in true improvements. [28] show, in fact, that standard counterfactual recourse
algorithms often lead to undesirable outcomes, while our work explicitly aims to steer away from
those. For a detailed survey on recourse, please refer to [23].

For a full discussion of related work, please refer to Appendix A.

2 Model

We consider a binary classification problem, where there is an interaction between a principal and
an agent. Roughly, the principal (aka learner), deploys an ML model or classifier, which assigns a
binary decision in {0, 1} to each agent, based on her features. Finally, agents respond to the deployed
classifier, potentially changing their features to obtain better outcomes, at a cost.

Let F be the set of features. Each agent k is defined by a feature vector xk ∈ Rd where |F| = d. The
set of features F is partitioned into D (the set of desirable features) and U (the set of undesirable
features). Informally, desirable features are those that the principal wants to incentivize the agent
to change directly; e.g., in the health application of the Introduction, “alcohol consumption” would
be a desirable feature that the principal (e.g., the agent’s primary care physician) would like to see
lowered. Undesirable features, on the other hand, can be considered as features that we would
like to disincentivize agents from modifying directly: e.g., directly intervening to lower an agent’s
cholesterol level via medication such as statins may be less desirable than promoting lifestyle changes
(lower alcohol consumption, improved diet, etc.) that will also lower their cholesterol.

Causal feature interactions. We adopt a causal perspective where different features can impact each
other—i.e., a change in a feature i (e.g., alcohol consumption or diet) that has a causal relationship
with feature j (e.g., cholesterol) will also induce a change in feature j. The chain of causality between
the different features can be captured using a weighted directed graph G = (F ,A, w), called the
causal graph. A represents the set of directed edges on G, where an edge from features i to j indicates
that i is causal for j. Finally, w : A → R captures the weights of the edges. We make no assumption
on the structure of G, other than the fact that it is a directed acyclic graph. 3

We represent all necessary information about the graph using an adjacency matrix A ∈ Rd×d, where
Aij = w(aij) if aij ∈ A and 0 otherwise. If there is an edge aij ∈ G, then feature i ∈ F causally
affects feature j ∈ F directly. The weight of edge aij , given by w(aij) indicates that if feature i
improves by a unit amount, then the value of the downstream feature j will improve by w(aij)

4.

Contribution matrix. We define the contribution matrix C ∈ Rd×d for causal graph G as:

Cii = 1 ∀ i ∈ [d], and Cij =
∑

p∈Pij
ω(p) ∀ i, j ∈ [d], i ̸= j,

where Pij is the set of all directed paths from node i to node j on G and ω(p) is the weight of path
p ∈ Pij with ω(p) =

∏
a∈A,a⊂p w(a).

In causal graphs, feature i may affect another feature j not just directly (in which case there would
be an edge of non-zero weight from i to j), but also indirectly through other features; if there is a
directed path from feature i to feature j through intermediary features i1, . . . , ik, where i → i1 →
i2 → . . . → ik → j5, then this can be encoded by the contribution matrix (Figure 1). Given the

2Agents may or may not follow the learner’s recommendations, depending on how well their incentives are
aligned with said recommendations.

3This is standard in the causal strategic classification [26, 32].
4Throughout the paper, we assume that causal relationships are linear. This is another common assumption

in the literature [26, 40].
5x → y indicates that x is directly causal for y.
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adjacency matrix A, we can also show that the contribution matrix C can be computed efficiently
(see Appendix E).

2.1 Principal - Agent Interaction

The principal deploys a linear classifier h0 ∈ Rd. Under this classifier, an agent with feature vector
x ∈ Rd is assigned a score of s(x) = h⊤

0 x. The classification decision y for said agent is given by
y(x) = 1 [s(x) ≥ τ ] for a pre-determined threshold τ ∈ R.

Agent Information Structure. We assume that the agent has Gaussian priors Πh := N (µh,Σh)
(where µh ∈ R|F|,Σh ∈ R|F|×|F|) over the deployed classifier h0 and ΠC := N (µw,Σw) (where
µw ∈ R|A|,Σw ∈ R|A|×|A|) over the edge weights of the causal graph G6. The agent knows the
topology of the causal graph. We explore two kinds of information structures:

1. The Complete Information setting (Section 3), where the agent fully knows the classifier h0, i.e,
µh = h0 and Σh = 0 and the weights of all edges of G, i.e., µw = w and Σw = 0.

2. The Incomplete Information setting (Section 4), where i) there is uncertainty over the principal’s
classifier h0, i.e., µh may differ from h0 (bias) and Σh ̸= 0 (variance), and/or ii) there is
uncertainty over the edge weights of the causal graph G, i.e., µw may differ from w (bias) and
Σw ̸= 0 (variance).

If y(x) = 0, the agent also knows the amount α > 0 by which she fell short of passing the classifier;
e.g., in a loan approval setting, an agent may know their current credit score and be told the threshold
credit score that the bank uses to decide who gets approved for a loan.

Agent Best Response. The agent wishes to obtain a positive classification outcome, i.e. y(x) = 1;
she attempts to modify her feature vector x by investing some exogenous effort e ∈ R|F|, which we
call the agent’s exogenous effort profile. Importantly, exerting exogeneous effort on a subset of the
features can also lead to other features (particularly those on which no effort was exerted) to change
endogenously, due to causality. We call this phenomenon induced or endogenous feature change.

Exerting effort comes at a cost, modeled through a cost function Cost : Rd → R≥0, where Cost(e)
is the cost incurred for effort e. We mainly focus on (weighted) ℓp-norm cost functions for all p ≥ 1:

Cost(e) =

∑
f∈F

cf |ef |p
1/p

, where cf > 0 ∀f ∈ F , (1)

where cf represents a cost multiplier associated with investing unit exogenous effort into feature f .

Let x′(e) be the agent’s modified feature vector after investing effort e, and let ∆x(e) = x′(e)−x be
the net change in features due to e. Given the contribution matrix C and exogenous effort e, ∆x(e)
is given by ∆x(e) = C⊤e. Hence, the agent’s objective is to choose their optimal effort profile e⋆

that ensures that y(x′(e⋆)) = 1 with probability at least 1− δ, while incurring the minimum possible
cost. We call the effort profile e⋆(Πh,ΠC) the agent’s best response to priors (Πh,ΠC). Formally:

e⋆(Πh,ΠC) = argmin
e

Cost(e) s.t. Ph∼Πh,C∼ΠC

[
h⊤C⊤e ≥ α

]
≥ 1− δ. (2)

Note that the constraint ensures that an agent passes the classifier with probability at least 1− δ, with
respect to their prior on the causal graph and the classifier. In particular, if they exert effort profile
e, their features change by C⊤e, so their score changes by h⊤C⊤e, and they have to improve their
score by at least α to pass the classifier.

2.2 Incentivizing Effort towards Desirable Features

We are interested in the properties of the effort profile that the agent exerts as a result of best-
responding to the principal’s classifier, and in particular understanding the amount of effort they
exert towards desirable features in set D and undesirable features U . The goal is to incentivize effort

6Gaussian priors are frequently used to model incomplete information [13, 27].
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Figure 1: Example of a causal graph G with |F| = 3. f1 directly affects f2 and f3 and f2 directly affects f3.
f1 also indirectly affects f3 through the path 1 → 2 → 3.

towards desirable features and away from undesirable features, i.e. to understand when is it in the
agent’s best interest to invest more effort into desirable versus undesirable features?

We define β-desirability that measures the ratio of investment in features in D vs U :

Definition 1 (β-desirable effort profiles). Given 0 < β ≤ 1, an exogenous effort profile e is said
to be β-“desirable” if and only if: ∥eD∥2 ≥ β∥e∥2, i.e., the magnitude of effort towards desirable
features is at least a β-fraction of the total effort.

From the principal’s point of view, incentivizing β-desirable effort profiles is not straightforward
since agents are strategic, and may prefer undesirable features if they are low-cost to manipulate.

3 The Complete Information Setting

In the complete information setting, the agent knows precisely the true classifier h0 deployed by the
principal—equivalently, her prior Πh satisfies h̄ = h0 (the mean belief matches the true classifier)
and the covariance is given by Σh = 0 (there is no uncertainty). She also fully knows the causal
graph G—i.e., w̄ = w and Σw = 0. Therefore, in the complete information case, the deterministic
tuple (h0,C) is enough to fully characterize agent beliefs.

When the agent has no uncertainty about either the classifier or the causal graph, the agent’s optimiza-
tion problem (2) can be written as:

e⋆(h0,C) = argmin
e≥0

Cost(e) s.t. (Ch0)
⊤e ≥ α. (3)

I.e., the agent must find the minimum-cost effort profile that passes the (known) classifier h0. Note
that it suffices to only focus on non-negative efforts for all features (this is without loss of generality
as we prove in Proposition 1). Program (3) is a convex optimization problem because the objective
is convex for our cost functions and all constraints are linear. As such, this program can be solved
efficiently. All proofs for this section can be found in Appendix C.

Characterization of Optimal Effort Profiles. We now present the first main result (Theorem 1)
where we characterize the structural properties of the optimal effort profile e⋆ for the cost function
class outlined in Eq. (1) for α > 0 (the case where α ≤ 0 is trivial, as we show in Proposition 2).
Importantly, we highlight how the structure of the effort profile changes fundamentally when the cost
function transitions from the p = 1 to the p > 1 regime.

Theorem 1. The optimal effort profile e⋆ of an agent with weighted ℓp-norm costs (p ≥ 1) has the
following structure:

(a) when p = 1, there always exists an optimal effort profile in which the agent needs to modify
exactly one feature to pass the classifier h0. The optimal feature to modify f∗ is the one which
offers the best ratio of contribution to cost, i.e., f∗ ∈ argmaxf∈F

(Ch0)f
cf

, with the magnitude of
effort invested into feature f∗ given by:

e⋆f∗ = α
(Ch0)f∗ .

5



(b) Further, when p > 1, the optimal effort profile invests effort along all non-trivial features (with
(Ch0)f > 0), with the magnitude of effort invested into feature f satisfying:

e⋆f ∝
(

(Ch0)f
cf

)1/(p−1)

.

Conditions for β-desirability. In this segment, we derive necessary and sufficient conditions under
which rational strategic agents have natural incentives to invest only in β-desirable effort profiles
(profiles where a significant amount of effort is exerted on desirable features).
Theorem 2. For any β ∈ (0, 1] and a ℓp-norm cost function (where p ≥ 1), the agent’s best response
is always a β-desirable effort profile if and only if:

(a) maxf∈U
(Ch0)f

cf
< maxf∈D

(Ch0)f
cf

when p = 1; and

(b)
[∑

f∈D

(
(Ch0)f

cf

)2/(p−1)
]1/2

≥ β√
1−β2

[∑
f∈U

(
(Ch0)f

cf

)2/(p−1)
]1/2

when p > 1,

with D and U representing the set of desirable and undesirable features respectively.

The above result finds that, provided the principal designs a classifier h such that the overall im-
portance of desirable features is large enough, desirable behavior can always be incentivized. It
also underlines the dependence on the causal graph, which is captured through C. The causal graph
characteristics determine the extent to which desirable behavior can be incentivized in any particular
setting. This helps us to generate key insights about the design space of desirable classifiers (i.e.,
classifiers which can induce β-desirable effort profiles).

Desirable Classifiers and Where to Find Them. So far, we have provided conditions using which
given any classifier h0, we can check whether it incentivizes desirable effort profiles from strategic
agents. However, this does not answer the question of how difficult it is to find a desirable classifier.
Our following result answers this question.
Theorem 3. For any p ≥ 1, there always exists an instance of the problem (C, h0) and β > 0 such
that the space of β-desirable classifiers H is a non-convex set. However, when |D| = 1, H can be
shown to be convex for any β > 0 and any ℓp-norm cost function with p ∈ [1, 3].

The first part of the theorem tells us that searching for desirable classifiers that also optimize for accu-
racy is expected to be difficult. This is because optimizing over non-convex sets is generally known
to be computationally hard. For a more detailed formal discussion on hardness, see Appendix C.5.

However, the second part of the theorem argues that under the special case where there is only one
desirable feature, the space of desirable classifiers is convex, at least for a limited subclass of ℓp-norm
cost functions. Not only does this circumvent the technical difficulty encountered in the general case,
it also has other practical benefits. Note that this special case is actually aligned with what we expect
in real life: indeed, a principal may define for themselves which feature they want to incentivize, and
focus on one feature where they would really like to see improvements, especially if this is a feature
that has historically not been properly leveraged. Not only that, but by targeting a single feature, the
principal lowers the agents’ cognitive load for best-responding, which is always desirable in practice.
Note that we do provide a convexification heuristic for cases where |D| > 1 that tries to induce
desirable effort by minimizing the importance of undesirable features (See Appendix C.4 for details).

4 Incomplete Information Setting

Recall that for the incomplete information setting, the agent’s optimization problem is:

e⋆(Πh,ΠC) = argmin
e

Cost(e) s.t. (4)

Ph∼Πh,C∼ΠC

[
(Ch)⊤e ≥ α

]
≥ 1− δ, δ ∈ (0, 1).

Models of Information. Recall that there can be two sources of uncertainty: i) the principal’s
classifier; and, ii) the edge weights of the causal graph G (the graph topology is assumed to be common
knowledge). In particular, this leads to the following three incomplete information models:

6



(1) Uncertainty only exists in the principal’s classifier, the causal graph is fully known;
(2) Uncertainty only exists in the edge weights of the causal graph, the classifier is fully known;
(3) Uncertainty exists over both the classifier and the causal graph.

We refer to models 1 and 2 as models of partially incomplete information while model 3 will be
referred to as a model of total incomplete information. The proofs for this section are in Appendix D.

Optimal Effort Computation. We note that, unlike the complete information setting, the agent’s
optimization problem is significantly more involved. Therefore, our first objective here is to answer
the following question: Under what degree of incomplete information can agents still compute their
best response efficiently ? This is crucial because if agents cannot best respond reliably, the question
of designing classifiers that incentivize desirable agent behavior is irrelevant.

Theorem 4. For δ ≤ 1/2, the agent’s optimization problem (4) is:

(a) always convex, when uncertainty only exists in the classifier (model 1);
(b) convex, when uncertainty only exists in the causal graph and the causal graph has a bipartite

structure (i.e., special cases of model 2)
(c) non-convex, for all other cases of model 2 with general causal graph structures and all cases of

model 3 with total uncertainty.

In scenarios (a) and (b) above, we have convexity because the overall uncertainty Ch turns out to be
multi-variate Gaussian, i.e., Ch ∼ N (µCh,ΣCh), in which case, the agent’s optimization problem
reduces to the following convex program:

e⋆(Πh,ΠC) = argmin Cost(e) s.t. α− µ⊤
Che− pδ ·

√
e⊤ΣChe ≤ 0, (5)

where pδ = Φ−1(δ) and Φ−1(·) is the inverse of the standard normal CDF.

The above result highlights that under limited uncertainty, the agent can still efficiently solve for
an effort profile that helps her to pass the classifier with high probability. Importantly, note that the
above result is quite general: any setting where the agent’s prior on the feature importance vector
Ch is Gaussian is captured by our framework. In particular, we allow for largely different models of
incomplete information from the ones we have defined so far: for example, the principal may choose
to reveal some information about the importance of features to agents, or agents may form priors
about the feature importance vector directly through interactions with peers7.

We also want to highlight that unlike the complete information case where the agent’s optimization
problem is always feasible (i.e., the agent can always pass the classifier by choosing effort correctly),
under uncertainty, a positive outcome is not guaranteed. We provide a complete characterization of
the feasibility of Problem (5) in the Appendix (Proposition 6). The intuition is that there is a trade-off
between the degree of uncertainty for the agent and the maximum coverage probability (1− δ) that
can be achieved under that uncertainty.

Characterization of Optimal Effort Profiles. We have already identified settings with partial
uncertainty where the agent’s optimization problem is convex and tractable. While it is much harder
to compute best responses in closed form because of the involved nature of the optimization problem,
we still provide insights about structural properties of the optimal effort profile. We identify key
differences with the complete information setting, for example, under partial uncertainty, the optimal
effort profile for agents with weighted ℓ1 costs may always involve investment in more than one
feature (Proposition 7). In the following result, we focus specifically on the ℓ2-cost case where we
can actually characterize the best response in semi-closed form:

Theorem 5. For ℓ2-norm cost functions, the effort profile e⋆ which is the optimal solution to
Problem (5), is of the following form:

e⋆ = λ∗ (k1I + k2ΣCh)
−1

µCh,

7One could argue that agents forming priors directly on the feature importance vector is more reasonable
in practice because it foregoes the need for agents to reason about how the causal graph and classifier interact,
thereby reducing the cognitive load required to arrive at an optimal decision.
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where k1, k2, λ
∗ > 0. Further, if ΣCh is a diagonal matrix with entry (ΣCh)f corresponding to

feature f , then

e⋆f =
λ∗(µCh)f

k1 + k2 · (ΣCh)f
∀ f ∈ F .

The special case of ΣCh being diagonal offers good intuition into how agents with ℓ2 costs would
exert effort under partial uncertainty. It shows that the agent is expected to invest more effort into
features with higher expected contribution (µCh)f . Further, the denominator highlights that agents
may shy from features they have a lot of uncertainty about, thereby leading to lower effort into them.

We also note that diagonal ΣCh arises in very natural settings. One such setting is scenario (b) in
Theorem 4 when the uncertainty is only on the causal graph G and the causal graph is bipartite, i.e.,
features are either causal (they affect other features, but cannot be affected themselves) or proxy
(they are affected by causal features, but cannot affect any other feature). In this case, causal features
only have outgoing edges, while proxy features only have incoming edges. We prove this formally
in Proposition 8 in Appendix D. Bipartite causal graphs are standard assumptions in much of the
strategic classification literature [1, 26].

β-desirability under ℓ2-costs with Incomplete Information. We conclude this section with a
discussion on how to induce β-desirable effort profiles under incomplete information. As we see
so far, it may be difficult to characterize the agent’s optimal effort in closed form under incomplete
information, except for some limited cases. We focus on providing broad insights here, and build on
this discussion through numerical experiments in Section 5.

The Interpretable Case of Diagonal Covariance ΣCh: In this special setting, we can identify con-
ditions that guarantee investment in β-desirable effort profiles by rational agents. We present the
following two results:
Corollary 1. Suppose that ΣCh is a diagonal matrix. In that setting, if all features have the same
overall level of uncertainty and the mean feature importance vector µCh satisfies:

∥ (µCh)D ∥2 ≥ β√
1− β2

∥ (µCh)U ∥2,

then the best response of a rational agent with ℓ2-norm cost is to invest in a β-desirable effort profile.

Corollary 2. e⋆f =
λ∗(µCh)f

k1+k2·(ΣCh)f
is decreasing in (ΣCh)f , therefore lower levels of uncertainty in

desirable features favors effort profiles with a higher degree of desirability β.

The first corollary follows directly from Theorem 5 and should be intuitive—when agents face the
same degree of uncertainty about all features, they choose which features to invest effort in based on
the mean importance of the features. Therefore, it makes sense that higher the total net importance
(measured by the ℓ2-norm) of the set of desirable features, higher the incentive for agents to invest in
desirable effort profiles. On the other hand, when different features have different levels of uncertainty,
less uncertainty on desirable features is good for β-desirability. This is because having a higher
degree of uncertainty (higher variance (ΣCh)f ) about the importance of a feature actively discourages
agents from investing effort into said feature.

Non-diagonal Covariance ΣCh: We explore the non-diagonal ΣCh case in Section 5, with experiments
on real data that consider more general cases of ΣCh not being diagonal, specifically covering Model
1, when the classifier is not fully known to an agent. Our experiments suggest that many of the same
insights about β-desirability hold (even without the assumption that ΣCh is diagonal).

5 Numerical Experiments

Our experimental study focuses on a setting where the learner is trying to reduce a population’s
risk of cardiovascular disease. To do so, we identify relevant features and build a causal graph
based on the recent medical study of [19]. Their study aims to identify the causal links between
features such as smoking, diet, or obesity, and whether a patient may develop a cardiovascular
disease (CVD). We exclude immutable features such as age and ethnicity, focusing instead on eight
modifiable features: alcohol consumption, diet, physical activity, smoking, diabetes mellitus (DM),
hyperlipidemia (HPL), hypertension (HPT), and obesity. Among these, we designated as desirable
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the features corresponding to lifestyle interventions—namely, alcohol, diet, physical activity, and
smoking—over those corresponding to medical conditions or interventions (DM, HPL, HPT, and
obesity). The full experimental setup is detailed in Appendix B.1.

Deployed classifiers: We consider four8 mean beliefs µh on the vector h, that we denote as:

• DM: There is a weight of 1 on the “DM” feature, and 0 on all others.
• HPL: There is a weight of 1 on the “HPL” feature, and 0 on all others.
• HPT: There is a weight of 1 on the “HPT” feature, and 0 on all others.
• Obesity: There is a weight of 1 on the “Obesity” feature, and 0 on all others.

For each of the four classifiers described above, we document the mean contribution of each feature,
given by µCh = Cµh and the ℓ2 norm of the mean contribution over the set of desirable and
undesirable features, given by ℓ2(D) and ℓ2(U) respectively. All values are recorded in Table 1.

Classifier Alcohol Diet Activity Smoking DM HPL HPT Obesity ℓ2(D) ℓ2(U)
DM 0.1 0.84 0.82 0.52 1 0 0 0 1.28 1
HPL 0.14 0.84 0.82 0.34 0 1 0 0 1.23 1
HPT 0.62 0.84 0.82 0.86 0 0 1 0 1.58 1

Obesity 0.64 0.86 0.82 0 0 0 0 1 1.35 1
Table 1: Mean contribution vector µCh for the 4 classifiers: DM, HPL, HPT, Obesity

We now make some key observations:

Desirable features can be incentivized even if they are never observed. Figures 2 and 3 demon-
strate that agents choose to invest significant effort into desirable features even if in our four classifiers
of choice, no weight has been put on any of the features in set D (see Appendix B.4 for details).

Effect of total contribution on desirable vs undesirable features: All four classifiers incentivize
greater effort on the set of desirable features D compared to the set of undesirable features U
(see Table 1). In Figure 2, we observe that all classifiers achieve β > 0.5 under low to moderate
uncertainty, which aligns with the prediction of Corollary 2. Furthermore, we find that hypertension
(HPT) outperforms Obesity, which outperforms diabetes mellitus (DM), which then outperforms
hyperlipidemia (HPL), in terms of effectiveness at incentivizing effort on desirable features. This
ranking is consistent with the ordering of ℓ2(D) values across the classifiers and reinforces the
theoretical insights provided by the special diagonal covariance case outlined in Theorem 5.

Effect of uncertainty level σ. In Figure 2, we plot how β varies as a function of the uncertainty
parameter σ for different classifiers. Higher σ indicates a higher degree of uncertainty about the
classifier. As σ increases, all four classifiers degrade in terms of desirability (β). This is intuitive: at
higher levels of uncertainty, the contribution of desirable features sees higher variance, as they affect
not only themselves but also other features. Undesirable features then become safer to modify.

(a) δ = 0.1 (b) δ = 0.3 (c) δ = 0.5

Figure 2: Plot of how β varies with σ at different levels of δ and for different classifiers.

Effect of the failure probability δ. At a fixed level of uncertainty σ, as the failure probability δ
increases, β improves across all four classifiers (Figure 3). This is expected—higher δ means that the

8We note that all other beliefs that only use undesirable, observable features are a linear combination of the
four beliefs above, so our insights extend to general classifiers.
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agent is less stringent on the coverage probability requirement and hence has a much larger space of
feasible effort profiles to choose from—including desirable ones with a high net contribution.

Trade-offs between σ and δ. The failure probability δ is closely related to the level of uncertainty σ.
At a fixed level of uncertainty σ, there is a limit on how low a failure probability δ can be achieved
(Figure 3). Similarly, in order to achieve a given failure rate δ, there is a maximum amount of
uncertainty σ that can be tolerated (Figure 2); beyond that the problem becomes infeasible. This
tracks our theoretical findings in Proposition 6. At δ = 0.5, uncertainty becomes irrelevant since the
agent only needs a 50% chance of passing the classifier and can rely solely on the mean belief µh.

(a) (α = 1, σ = 3) (b) (α = 1, σ = 1) (c) (α = 1, σ = 0.1)

Figure 3: Plots of how β varies with δ for different parameter combinations.

Effect of α. α represents the amount by which the agent is shy of a positive classification outcome.
In this case, β has no dependence on α (see Figure 5 in Appendix B.3). This is an artifact of the
ℓ2-norm cost function — the agent’s optimal effort profile is proportional to α in each feature and
therefore β remains unaffected. However, note that α does affect the cost incurred by the agent, the
farther she is from the classification boundary (higher α), the higher is the cost incurred.

6 Discussion

In this paper, we adopt a causal perspective to the problem of strategic classification. The principal
deploys a linear classifier which classifies agents “positive" or “negative" based on a set of features
embedded on a causal graph. Since agents are strategic, they are expected to invest effort “cleverly"
to modify their features in the hopes of a positive classification outcome while incurring the minimum
possible cost. Therefore, understanding how agents respond when they have different levels of access
to information about the deployed classifier and the causal graph, is significant to the principal from
the perspective of classifier design. We try to answer this central question from the principal’s point
of view: how to design a classifier which incentivizes agents to invest in desirable effort profiles?

There are many relevant avenues for future work. Our model of uncertainty involves agents with
Gaussian priors over the classifier or the edge weights of the causal graph or both, under the
assumption that the graph topology is fully known. In reality, there may be other forms of uncertainty—
for example, given a large number of features, it may be unreasonable to assume that agents have
complete knowledge about all causal relationships between features. It may be interesting to explore
other, more interpretable information structures—e.g., instead of independent priors on the classifier
and the causal graph, agents may have access to a partial ordering on features by relative importance.
Such models may be closer to how humans perceive and respond to uncertainty in reality. Finally,
different populations with different levels of uncertainty in their priors may have markedly different
abilities to respond to the classifier. The fairness implications of such information asymmetries are
an important direction for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction are representative of the
results discussed in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses limitations and scope for future work in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Yes, all theoretical results have clearly specified assumptions and are thor-
oughly backed by proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper contains all information necessary to reproduce results including
a detailed Experimental Setup in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, all code will be included as supplementary material before the deadline.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details pertaining to Experimental Setup have been included in the attached
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This does not apply to this particular paper because of the nature of experi-
mental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: This does not apply to this particular paper because the experiments are
extremely simple, do not require special computing resources and were run on a personal
computer.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conducted conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses the broader social impact of this work in the introduction
to motivate the rest of the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This does not apply to this submission.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use any such assets and this question does not apply.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This question does not apply to this submission since no new assets were
introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This question is not applicable for this submission since no human subjects
were used during the conduct of this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This question does not apply to this submission.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not use LLMs in any capacity to generate any of the insights
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Supplementary Material for paper
“Incentivizing Desirable Effort Profiles in Strategic Classification:

The Role of Causality and Uncertainty”

A Related Work

Strategic classification. Strategic classification has been widely studied in recent years. This
belongs to a broad class of problems in economics called principal-agent problems where agents act
strategically in their self-interests which are often misaligned with the principal’s interests [16, 29,
38, 39]. Early works in strategic classification focused on scenarios where agents manipulate their
observable features to “game” a published classifier, thereby increasing their chances of a favorable
label without genuinely improving underlying attributes [1, 8, 9, 11, 17, 30, 41, 44]. [5, 6, 18, 26, 40]
move away from this assumption and consider settings where agents can not only game the classifier,
but also invest in real improvements. In many cases, actual improvement involves investing effort
which is not directly observable by the principal — this again has similarities to the notion of
moral hazard in insurance markets [3, 35] and other general settings [4]. Fairness in strategic
classification [14, 21, 33]) has also been an important avenue of work, but is less related to this work.

Causality. A useful tool to model manipulations as opposed to effective improvement is causal-
ity [22, 36]. In strategic classification, a few recent studies have incorporated causal modeling to
account for interdependencies among features [2, 5, 20, 26, 32, 40]. [32] highlights that in strategic
classification, learning a classifier that incentivizes gaming as opposed to improvement is as hard
as learning the underlying causal graph between features. [40] and [5] both focus on special cases
of linear causal graphs, unlike our work that considers general cases of linear graphs. [2] explore
strategic classification using a different structural framework known as “manipulation graphs,” where
each agent has a fixed set of costly effort profiles that they may choose from, also defining a special
case of causal graphs. [20] distinguish among causal, non-causal, and unobserved features, but focus
on a different objective: predictive accuracy.

Perhaps closest to us is the work of [26]. Like us, they focus on general causal graphs; however,
we highlight several major differences. First, we focus on classification settings, while [26] focus
on regression and scoring settings. Second, we highlight differences in our agent model, where
our agents invest effort to pass the classifier with reasonably high probability, while agents in [26]
always exert effort to improve their score. Third, we note that our cost model is strictly more general:
where [26] focuses on linear costs, our work considers general ℓp-costs9. Finally, unlike [26], our
study incorporates incomplete information, where agents may not fully understand either the causal
graph or the deployed classifier.

Incomplete Information. A closely related line of work investigates strategic classification under
varying models of information available to agents. In many real-world settings, agents may have
incomplete information about the classifier—either because it is too complex, or because the learner’s
model is proprietary, or the causal relationships governing feature interactions [6, 10, 15]. Or, agents
might misperceive the classifier due to behavioral biases [12]. However, to the best of our knowledge,
we are the first work in the space of strategic classification to incorporate both causal modeling and
incomplete information in strategic classification.

Algorithmic recourse. Our work is also closely related to the extensive literature on algorithmic
recourse [24, 25, 28, 42, 43]. From a mathematical standpoint, strategic classification and algorithmic
recourse can be seen as flip sides of each other: in recourse, the learner tells the agent what actions
to take (but the agents may decide to take a different action unless properly incentivized) while
in strategic classification, the agents decide on their own actions based on the classifier. We note,
however, several differences between recourse and strategic classification: a) From a practical point
of view, recourse requires providing a recommended action to each agent who obtains a negative

9Our results show that this choice of cost is important, noting a sharp distinction in agent behavior between
the cases of ℓ1-cost and ℓp costs for p > 1.
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decision, and is still less common in practice than releasing a single, often not fully transparent,
model. Strategic classification, especially with incomplete information, allows us to capture such
practical scenarios. b) The addition of the β-desirability constraint is novel. As we see in many
places throughout the paper, this constraint makes the problem significantly more difficult, leading
to non-convexities. We expect these issues to also arise when adding desirability to the algorithmic
recourse literature, since the optimization problems solved by both fields are similar, and we think
that the inclusion of desirability in the recourse literature is an exciting direction for future work. c)
To the above point, much of the recourse literature aims to find a low-cost path between an agent’s
current features and features that lead to positive classification. Importantly, much of the literature
does not think specifically about whether that path involves gaming or modifying undesirable features.
[28] in fact show that standard counterfactual recourse algorithms often lead to undesirable outcomes
such as gaming the system. This is an important limitation: as agents game the classifier, the classifier
loses in accuracy and robustness, and must be modified to compensate for this accuracy loss, reducing
the effectiveness of the recourse. This includes causal algorithmic recourse, such as [24], where the
causality is typically used to ensure accuracy of the recourse by taking into account how different
features affect each other, whereas previous work that effectively assumed independence of features
and could mis-estimate how proposed recourse would translate into feature changes. In much of
this literature, however, causality is not introduced to prevent gaming vs improvement or understand
desirability.

B Additional Details for Experimental Section 5

B.1 Experimental setup

Identifying Relevant Features We identify a subset of 8 features used in [19] that we focus on
in our experimental study. In particular, we did not include features that cannot be changed such as
age or ethnicity, and only include the features that can be modified by an individual. The 8 features
we identified are: alcohol consumption, diet, physical activity, smoking, diabetes mellitus (DM),
hyperlypidia (HPL), hypertension (HPT), and obesity. We normalized features to be between [0, 1]10.

Among these features, and as noted in our introduction, a principal (i.e., a doctor) would like to in-
centivize people to focus on preventative, lifestyle interventions over medical treatment interventions.
Hence, we separate them to desirable and undesirable to modify as follows:

• Desirable: Alcohol, Diet, Activity, Smoking. Note that desirable means here that these
features are desirable to modify, not that, for example, alcohol consumption is desirable.

• Undesirable: DM, HPL, HPT, Obesity. Note that these features are not “undesirable” per se,
but rather less desirable than lifestyle interventions.

Building the Causal Graph: The study of [19] asked the experts to report the likelihood of
causation on a Likert scale from 1 to 7, which is then transformed into “fuzzy score” via the Fuzzy
Delphi Method [31]. We denote this score s. A fuzzy score of 0.5 and above indicates that experts at
least moderately agree with a relationship being causal, with an increasing score s indicating stronger
agreement. A fuzzy score of 0.5 or below indicates that the experts at best disagree with the feature
being causal, with the strength of the disagreement increasing as the score goes down.

We follow the expert agreement of [19] to build our causal links. Specifically, we identify a link as
causal if and only if s > 0.5. Further, since a score of 0.5 denotes that experts are at the boundary of
agreeing vs disagreeing on causality, we renormalize our scores to be between 0 and 1: to do so, we
apply a linear transformation that maps s = 0.5 to a causal weight of 0, and s = 1 to a causal weight
of 1. We obtain the following graph (Figure 4):

Generating Prior Beliefs We note that our desirable features are generally harder to observe than our
undesirable features. First, DM, HPL, HPT, and Obesity are easy-to-quantify features that are also
verifiable by a doctor (e.g., though blood work). On the other hand, lifestyle habits are not only hard
to observe, but also often mis-reported to clinicians (i.e., under-reporting alcohol consumption, or

10For simplicity and wlog, we assume that 0 is the least “healthy” value of the feature, and 1 is the “healthiest”
value of the feature. For example, for smoking, 1 maps to not smoking; for activity, 1 maps to high amount of
weekly physical activity.
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Figure 4: Causal graph of features which affect the output of interest “Risk of Cardio-vascular disease
(CVD)". There are 8 features, all of which are causal. The features at the bottom form the set of
desirable features D and those on the top form the set of undesirable features U . The causal links are
indicated on the graph. This causal graph has a special structure: it is bipartite. The edge weights are
recorded in Table 2 in Appendix B.

lying about smoking to avoid insurance upcharges). Hence, we generate all our priors of h to have
both a mean and variance of 0 for all desirable features (i.e., it is fully known that desirable features
are not observed by a clinician, and so not used in the clinician’s classifier for high risk of CVD), as
they are effectively unobservable. We consider four mean beliefs µh on the vector h, that we denote
as follows:

• DM: There is a weight of 1 on the “DM” feature, and 0 on all others.

• HPL: There is a weight of 1 on the “HPL” feature, and 0 on all others.

• HPT: There is a weight of 1 on the “HPT” feature, and 0 on all others.

• Obesity: There is a weight of 1 on the “Obesity” feature, and 0 on all others.

We note that all other beliefs that only use undesirable, observable features are a linear combination
of the four beliefs above, so our insights extend to general classifiers. Also, we demonstrate later that
while the classifier does not put any weight on unobserved/desirable features, agents may still exert
effort on them because they affect the observed/undesirable features used in the classifier.

The variance of each of the desirable features is taken to be 0 (there is complete information that no
weight is put on these features in the principal’s classifier). Further, we assume that all undesirable
features have the same variance, which is parametrized by σ > 0 — thus σ is a measure of the level
of incomplete information. Finally, the covariance matrix of the classifier (Σh) is taken to be diagonal
for simplicity of exposition and interpretation, i.e., individuals’ beliefs do not encode correlations
between features in the deployed classifier.

B.2 Supplementary Tables

Features Alcohol Diet Activity Smoking DM HPL HPT Obesity
Alcohol 0 0 0 0 0.10 0.14 0.62 0.64

Diet 0 0 0 0 0.84 0.84 0.84 0.86
Activity 0 0 0 0 0.82 0.82 0.82 0.82
Smoking 0 0 0 0 0.52 0.34 0.86 0

DM 0 0 0 0 0 0 0 0
HPL 0 0 0 0 0 0 0 0
HPT 0 0 0 0 0 0 0 0

Obesity 0 0 0 0 0 0 0 0
Table 2: Adjacency matrix A which captures the edge weights of the causal graph in Figure 4
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B.3 Effect of α on β.

As explained earlier, β is independent of α. We demonstrate this below by plotting β’s as a function
of δ for two different values of α: α = 1 and α = 10.

(a) (α = 1, σ = 3) (b) (α = 1, σ = 1) (c) (α = 1, σ = 0.1)

(d) (α = 10, σ = 3) (e) (α = 10, σ = 1) (f) (α = 10, σ = 0.1)

Figure 5: Plots of how β is invariant with α at all levels of uncertainty.

B.4 Further discussion on results

Desirable features can be incentivized even if they are never observed. In our four classifiers of
choice, observe that no weight has been put on any of the features in set D because they represent
features which cannot be directly observed. However, Figures 2 and 3 demonstrate that agents
still choose to invest significant effort into desirable features. This is a direct result of the causal
relationship between features. Observe that in the causal graph, the desirable features influence
multiple undesirable features simultaneously. This means that an agent obtains a larger improvement
in the undesirable features (which actually affect the agent’s classification), not by modifying them
directly, but by investing effort into desirable features.

C Results & Proofs for the Complete Information Setting

Proposition 1. For the cost functions defined in (1), without loss of generality, we can assume that:
(Ch0)f ≥ 0 and that (e)f ≥ 0 ∀f ∈ F .

Proof. Let e⋆ be the optimal effort profile for the agent, i.e., the profile that corresponds to the
solution of (3). First, note that for any feature f ∈ F , (Ch0)f = 0 implies e⋆f = 0. Indeed, if feature
f has no contribution towards the classification decision, then no effort should be expended on f in
the optimal effort profile.

Now, we can focus on features for which (Ch0)f ̸= 0. When (Ch0)f < 0, we will show that e⋆f ≤ 0.
Suppose that e⋆f > 0. In this case, we can construct a new effort profile e′ as follows: e′f = 0 and
e′g = e⋆g for all g ∈ F , g ̸= f . It is easy to see that e′ is still feasible but Cost(e′) < Cost(e⋆) which
contradicts the fact that e⋆ is the optimal solution. Therefore, e⋆f ≤ 0. Similarly, we can show that
when (Ch0)f > 0, e⋆f ≥ 0.

The above discussion implies that whenever (Ch0)f ̸= 0, then (Ch0)fe
⋆
f ≥ 0 - therefore, without

loss of generality, it suffices to assume (Ch0)f > 0 and only search over the space e ≥ 0 (because
the optimal solution e⋆ ≥ 0). This concludes the proof.

Proposition 2. When α ≤ 0, then e⋆ = 0 which means that the agent does not need to invest any
effort to change her features.
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Proof. Note that the objective value is greater than or equal to zero since cf > 0 for all f ∈ F and
e ≥ 0. But, since α ≤ 0, e = 0 is feasible to the above problem and it also achieves an objective
value of 0. Therefore, e = 0 must be optimal.

C.1 Proof of Theorem 1

We complete the proof in two parts: first, we prove the p = 1 case in Lemma 1 followed by the p > 1
case in Lemma 2.
Lemma 1. When α > 0, there exists an optimal effort profile for the agent in which she needs to
modify exactly one feature to pass the classifier h0. The optimal feature to modify f∗ is the one
which offers the best ratio of contribution to cost, i.e.,

f⋆ ∈ argmax
f∈F

(Ch0)f
cf

,

and the optimal amount of effort to be invested into that feature is given by:

ef⋆ =
α

(Ch0)f⋆

.

Proof. For p = 1, we have the following optimization problem for the agent:

min
e≥0

c⊤e s.t. (Ch0)
⊤e ≥ α. (6)

The optimization problem in (6) (which we will call the primal problem P ) is a linear program whose
feasible region is given by the following polyhedron Q =

{
e ∈ Rn+k : (Ch0)

⊤e ≥ α, e ≥ 0
}

. Our
first goal is to argue that the optimal solution is a corner point of Q which requires us to prove the
following: i) firstly, Q has at least one corner point, and ii) the optimal solution is bounded which
would imply that it must be at a corner point of Q. Note that the polyhedron Q has no line (because it
is a subset of the positive orthant) and therefore, it must have at least one corner point11. We can now
write the dual problem (D) as follows:

max
π

απ s.t. (D)

π · (Ch0) ≤ c (e)

π ≥ 0.

We know that the dual problem (D) is feasible (π = 0 is feasible to D) which implies that the optimal
solution to (P ) cannot be unbounded. Hence, we conclude that there must exist a corner point optimal
solution to problem (P ). Now, note that all corner points of Q are obtained by the intersection of
the hyperplane (Ch0)

⊤e ≥ α with the positive axes. So any corner point of Q must be of the form
where exactly one entry corresponding to some feature f is positive (i.e., takes value α

(Ch0)f
) and all

other entries are zero. This implies that there exists an optimal effort profile where the agent needs to
modify exactly one feature, proving the first part of the lemma.

For proving the second part, we will use the complementary slackness conditions on the dual
constraints. We already know that there exists an optimal primal solution where there is some feature
f⋆ with ef⋆ = α

(Ch0)f⋆
and ef ′ = 0 for all f ′ ̸= f⋆. Let π⋆ be the optimal dual solution. Using

complementary slackness, we know that π⋆ · (Ch0)f⋆ = cf⋆ which implies that:

π⋆ =
cf⋆

(Ch0)f⋆

.

Since π⋆ must also be feasible to (D), we must have:

π⋆ ≤ cf ′

(Ch0)f ′
∀ f ′ ̸= f⋆, (Ch0)f ′ ̸= 0,

which implies that:

f⋆ ∈ argmax
f∈F

(Ch0)f
cf

.

This concludes the proof of the lemma.
11For more details on the polyhedral theory related to linear optimization, please see [7].
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Lemma 2. When the cost function is the weighted ℓp-norm of the effort for p > 1, the optimal effort
profile for the agent e⋆ satisfies:

e⋆f ∝
(

(Ch0)f
cf

)1/(p−1)

∀ f ∈ F .

Proof. We solve the constrained optimization problem using Lagrange multipliers. Define the
Lagrangian as follows:

L(e, π) =
(∑

f∈F cf (ef )
p
)1/p

+ π
(
−(Ch0)

⊤e+ α
)
,

where π is the Lagrange multiplier associated with the constraint as defined earlier. This gives us the
following set of KKT conditions:

∇eL(e, π) = 0,

π · (−(Ch0)
⊤e+ α) = 0,

π ≥ 0,

α− (Ch0)
⊤e ≤ 0, e ≥ 0.

Since our optimization problem is convex, it suffices to find a pair (e⋆, π⋆) that satisfies the KKT
conditions and we can automatically conclude that e⋆ is optimal to the primal problem.

First, we show that the constraint (Ch0)
⊤e ≥ α must be active at the optimal solution. We prove this

by contradiction. Suppose, if possible that −(Ch0)
⊤e⋆ + α < 0. However, this means that we can

obtain the optimal solution e⋆ by solving the primal problem as if it were unconstrained. In that case,
it must be that e⋆ = 0, but observe that e = 0 is not even feasible (and hence cannot be optimal). This
implies that the constraint must hold at equality. Therefore, we can solve for e⋆ and π∗ by solving
the following system:

−(Ch0)
⊤e+ α = 0,

∇eL(e, π) = 0.

Now,

(∇eL(e, π))f =
∂L
∂ef

=
cf (ef )

p−1( ∑
f∈F

cf (ef )p

)1/p
p−1 − π · (Ch0)f .

We have already argued that e⋆ ̸= 0. Therefore, π⋆ > 0. This implies that for all features f ∈ F ,
whenever (Ch0)f > 0, we must have:

e⋆f ∝
(
(Ch0)f

cf

)1/(p−1)

,

and when (Ch0)f = 0, the condition holds trivially. This concludes the proof of the lemma.

C.2 Proof of Theorem 2

This proof will again be completed in two parts: first for p = 1 (Lemma 3) and subsequently for
p > 1 (Lemma 4).
Lemma 3. For any β ∈ (0, 1], the agent’s best response is always a β-desirable effort profile if and
only if there exists a desirable feature f⋆ (f⋆ ∈ D) such that:

max
f∈U

(Ch0)f
cf

<
(Ch0)f⋆

cf⋆

.

Proof. We have already shown previously that there exists an optimal effort profile for the agent in
which she needs to invest effort into a single feature f⋆ where

f⋆ ∈ argmax
f∈F

(Ch0)f
cf

,
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and the optimal amount of effort that needs to be invested into that feature is given by α
(Ch0)f

. We
define:

I∗ := {f⋆ ∈ F : f⋆ ∈ argmax
f∈F

(Ch0)f
cf

}.

Note that I∗ ̸= ∅ since c > 0, (Ch0) > 0 and we have a finite number of features. Pick f⋆ ∈
argmaxf∈D

(Ch0)f
cf

(f⋆ exists and is in D). Now, the agent’s best response is a desirable effort profile
if and only if:

I∗ ∩ U = ∅ ⇐⇒ ∀ f ∈ U , f /∈ I∗

⇐⇒ ∀ f ∈ U , (Ch0)f
cf

< max
f∈F

(Ch0)f
cf

⇐⇒ max
f∈U

(Ch0)f
cf

< max
f∈F

(Ch0)f
cf

⇐⇒ max
f∈U

(Ch0)f
cf

< max
f∈D

(Ch0)f
cf

⇐⇒ max
f∈U

(Ch0)f
cf

<
(Ch0)f⋆

cf⋆

.

This concludes the proof of the lemma.

Lemma 4. For a ℓp-norm cost function with p > 1, the agent’s best response is always a β-desirable
effort profile if and only if:∑

f∈D

(
(Ch0)f

cf

)2/(p−1)
1/2

≥ β√
1− β2

∑
f∈U

(
(Ch0)f

cf

)2/(p−1)
1/2

Proof. We have already shown that when the agent’s cost function is a ℓp-norm with p > 1, her
optimal effort profile e⋆ satisfies:

e⋆f ∝
(
(Ch0)f

cf

)1/(p−1)

∀ f ∈ F .

Now by the definition of β-desirability, e⋆ is β-desirable if and only if:

∥e⋆D∥2 ≥ β∥e⋆∥2 ⇐⇒ ∥e⋆D∥22 ≥ β2

1− β2
∥e⋆U∥22

⇐⇒
∑
f∈D

e⋆f
2 ≥ β2

1− β2

∑
f∈U

e⋆f
2

⇐⇒
∑
f∈D

(
(Ch0)f

cf

)2/(p−1)

≥ β2

1− β2

∑
f∈U

(
(Ch0)f

cf

)2/(p−1)

⇐⇒

∑
f∈D

(
(Ch0)f

cf

)2/(p−1)
1/2

≥ β√
1− β2

∑
f∈U

(
(Ch0)f

cf

)2/(p−1)
1/2

.

This concludes the proof of the lemma.

C.3 Proof of Theorem 3

We will complete the proof in two parts. First, we will show that in the general case, the space of
desirable classifiers H can be non-convex (Prop 3), followed by the proof of convexity in the special
case of |D| = 1 (Prop 4).
Proposition 3. For any p ≥ 1, there always exists an instance of the problem (C, h0) and β > 0
such that the space of β-desirable classifiers H is a non-convex set.
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Proof. The set of β-desirable classifiers H is given as follows:

H :=
{
h0 ∈ R|F| : e⋆(h0,C) is β-desirable,Ch0 ≥ 0

}
.

We define the set Z := {(Ch0) : h0 ∈ H}. Suppose that C is full row-rank. This implies that H is
convex if and only if Z is convex12. Therefore, in order to complete the proof, it suffices to show
that the transformed set Z is non-convex in the worst case. We now provide instances of problems
where Z is non-convex and the agents incur ℓp-norm cost functions with p = 1 and p > 1. Recall
from Theorem 2 that the set Z is given as follows:

Z =

{
z ∈ R|F|

≥0 : max
f∈U

zf
cf

< max
f∈D

zf
cf

}
(p = 1)

Z =

z ∈ R|F|
≥0 :

∑
f∈D

(
zf
cf

)2/(p−1)
1/2

≥ β√
1− β2

∑
f∈U

(
zf
cf

)2/(p−1)
1/2

 (p > 1)

Weighted ℓ1-norm cost function: Consider a setting where there are 4 features with D = {1, 2}
and U = {3, 4}. Suppose that the cost vector equals c = 1. In this case,

Z =
{
z ∈ R4

≥0 : max(z3, z4) < max(z1, z2)
}
.

Now, choose z′ := (4, 7, 3, 6) and z′′ := (7, 4, 3, 6). Both are clearly points in Z . However, for
α = 0.5, αz′ + (1− α)z′′ := (5.5, 5.5, 3, 6) /∈ Z . Therefore, Z is not a convex set.

Weighted ℓp-norm cost function: Consider a setting where there are 3 features with D = {1, 2}
and U = {3}. Let p = 2, c = 1 and β = 1√

2
. Then Z is given by:

Z =

{
z ∈ R3

≥0 :
√
z21 + z22 ≥ z3

}
(0, 1, 1) and (1, 0, 1) are points in Z , but the point halfway between them, given by (0.5, 0.5, 1) is
clearly not in Z . Therefore, Z is not a convex set. This concludes the proof.

Proposition 4. Suppose that there is only a single desirable feature, i.e., that |D| = 1. Then for any
β > 0, the space of β-desirable classifiers H is convex for any ℓp-norm cost function with p ∈ [1, 3].

Proof. We will verify convexity separately for the cases with ℓ1-norm and ℓp-norm (1 < p ≤ 3) cost
functions.

The ℓ1-norm case: When the cost function is a weighted ℓ1-norm, the set of desirable classifiers is
given by

H :=

{
h0 ∈ R|F| : Ch0 ≥ 0,max

f∈U

(Ch0)f
cf

< max
f∈D

(Ch0)f
cf

}
.

Now, suppose |D| = 1 and there is some feature fd ∈ D. Then, we can rewrite H as follows:

H :=

{
h0 ∈ R|F| : Ch0 ≥ 0, max

f∈F\{fd}

(Ch0)f
cf

− (Ch0)fd
cfd

< 0

}
.

In order to show that H is a convex set, it suffices to show that the function g(h0) =

maxf∈F\{fd}
(Ch0)f

cf
− (Ch0)fd

cfd
is a convex function. Function g(·) corresponds to the sum of

a maximum of linear functions (which is convex) and a linear function; hence, function g(·) is convex.

The ℓp-norm case with p > 1: For ℓp-norm cost functions with p > 1, set H is given by:

H ≜

h0 ∈ R|F| : Ch0 ≥ 0,

∑
f∈D

(
(Ch0)f

cf

)2/(p−1)
1/2

≥ β√
1− β2

∑
f∈U

(
(Ch0)f

cf

)2/(p−1)
1/2


12This is a standard result in linear algebra; the proof provided in Appendix E for completeness
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Using the fact that |D| = 1, we can rewrite H as follows:

H :=

h0 ∈ R|F| : Ch0 ≥ 0, (Ch0)fd ≥ K

∑
f∈U

(
(Ch0)f

cf

)2/(p−1)
(p−1)/2


where K = cfd

(
β√
1−β2

)(p−1)

> 0. Now in order to complete the proof, we need to show that the

function r(h0) is convex, where r(h0) is given by:

r(h0) = K

∑
f∈U

(
(Ch0)f

cf

)2/(p−1)
(p−1)/2

− (Ch0)fd .

When 1 < p ≤ 3, we can rewrite r(h0) as follows:

r(h0) = K∥Bh0∥2/(p−1) − (Ch0)fd ,

where B ∈ R(|F|−1)×(|F|−1). Note that K∥Bh0∥2/(p−1) is a convex function in h0 since this is a
q-norm for q = 2

p−1 ≥ 1. This makes r(h0) a convex function in h0 (sum of a convex function and a
linear function is convex) and concludes the proof.

C.4 Heuristic for Inducing Desirable Effort when |D| > 1

When |D| > 1, we know that in general, the set H of β-desirable classifiers is not convex, and
difficult to optimize over. However, we propose a convexification heuristic (parameterized by γ)
where the principal just tries to design a classifier such that “the total contribution of undesirable
features is no more than γ”:
Proposition 5. Let Hw(U)≤γ = {h0 : ∥(Ch0)U∥2/(p−1) ≤ γ}. Then for any γ > 0, Hw(U)≤γ is
convex for any ℓp-norm cost function with p ∈ [1, 3].

The proof is nearly identical to that of Proposition 4 and is omitted to avoid repetition. This result
helps the principal guarantee that they can bound the effort exerted on undesirable features, even if
they are not able to guarantee a certain target level of β-desirable effort.

C.5 Hardness Results

In this segment, we try to formally characterize hardness of: a) finding any β-desirable classifier, and
b) finding the best such classifier, i.e., one which is simultaneously β-desirable and also maximizes
classification accuracy. We operate in the limited setting of ℓ2-norm cost functions. We show that
while subproblem a) can be solved in polynomial time, subproblem b) is likely to be NP-hard.

a) It is possible to find a β-desirable classifier for ℓ2-norm cost functions in polynomial time.

Consider the matrices CD and CU , where CD zeroes out all rows not corresponding to features in
D, and CU zeroes out all rows not corresponding to features in U , from the contribution matrix C.
Theorem 2 shows that the problem of finding desirable classifiers reduces to (when c = 1, p = 2)
finding an h such that (

∥CDh∥
∥CUh∥

)2

≥ β2

1− β2
,

or equivalently
h⊤(C⊤

DCD)h

h⊤C⊤
U CUh

≥ β2

1− β2
.

To find a feasible solution, it suffices to find a value of h that maximizes the LHS. Because both C⊤
DCD

and C⊤
U CU are positive-semidefinite, maximizing the LHS is a known problem with polynomial-time

algorithms; we are maximizing a generalized Rayleigh quotient, and the optimal h is the eigenvector
for the maximum eigenvalue of a well-specified function of matrices A and B.
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b) Finding the best such classifier is at least as hard as certifying feasibility of the set of
constraints A⊤h ≥ b and h⊤Qh ≥ 0 where Q is diagonal and has both positive and negative
eigenvalues.

We will focus on the version of the problem where, given observations {(xi, yi)}Ni=1 where xi is a
d-dimensional vector and yi is a real-valued label, we aim to find the classifier h that is β-desirable
and minimizes the worst-case error across all data samples, i.e., it minimizes

f(h) = ∥X⊤h− Y ∥∞,

where X is the data matrix and Y the label vector. We make the assumption that C = Id is diagonal,
i.e., we want to show that our hardness result holds even in the simplest causal graph setting where
features do not affect each other. We first prove an intermediate result. Let Hβ be the space of all
β-desirable classifiers.
Lemma 5. Solving the optimization problem: minh∈Hβ

f(h) = ∥X⊤h− Y ∥∞ is at least as hard
as checking the feasibility, given any δ > 0, of a problem of the following problem:

Y − δ · 1 ≤ X⊤h,

h⊤Q′h ≥ 0,

where Q′ is a diagonal matrix with two distinct eigenvalues λ > 0 and λ′ < 0.

Proof. For the given optimization problem, the problem is at least as hard as deciding for any given
δ > 0, whether the optimal solution is ≤ δ or > δ. We can rewrite this as the following feasibility
problem:

Given δ, does there exist a classifier h such that the following conditions hold:

∥X⊤h− Y ∥∞ ≤ δ, and

∥hD∥ ≥ β√
1− β2

∥hU∥.

Note that

∥X⊤h− Y ∥∞ ≤ δ ⇐⇒ max
i∈[N ]

∣∣x⊤
i h− yi

∣∣ ≤ δ

⇐⇒
∣∣x⊤

i h− yi
∣∣ ≤ δ ∀ i ∈ [N ]

⇐⇒ −δ ≤ x⊤
i h− yi ≤ δ ∀ i ∈ [N ]

⇐⇒ −δ · 1 ≤ X⊤h− Y ≤ δ · 1.
Now, define ID = diag([1|D|,0|U|]) and IU = diag([0|D|,1|U|]). Then, for the other constraint we
have:

∥hD∥ ≥ β√
1− β2

∥hU∥ ⇐⇒ ∥IDh∥ ≥ β√
1− β2

∥IUh∥

⇐⇒ h⊤IDh ≥ β2

1− β2
h⊤IUh (note: I⊤DID = ID, I⊤U IU = IU )

⇐⇒ h⊤Q′h ≥ 0,

where Q′ be the diagonal matrix with entries 1 for features in D, and −β2

1−β2 for features in U . Putting
it all together, we have the following equivalent feasibility problem:

−δ · 1 ≤ X⊤h− Y ≤ δ · 1, and

h⊤Q′h ≥ 0,

This is at least as hard as solving the feasibility problem on the superset

−δ · 1 ≤ X⊤h− Y, and

h⊤Q′h ≥ 0,

(since feasibility on the subset implies feasibility on the superset). This concludes the proof.
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According to a classical optimization result, the class of feasibility problems of the form: A⊤h ≥ b
and h⊤Qh ≥ δ where Q is diagonal but neither positive or negative semi-definite, is NP-hard (see
hardness results of this form surveyed in [34]). We do note a small gap here however: while changing
X , Y and λ allows us to generate the entire set of constraints of the form Ax ≥ b, Q′ cannot be
used to generate the set of all diagonal matrices Q because Q′ only has two distinct eigenvalues. We
technically do not map to the entire NP-hard class of problems of the form x⊤Qx ≥ δ & A⊤x ≥ b,
but we this provides evidence that the problem is likely NP-hard.

Finally, we note that the general consensus in the optimization community is that high-dimensional
non-convex optimization problems are considered intractable, and there are no practical/general-
purpose methods to solve them.

D Results & Proofs for the Incomplete Information Setting

D.1 Proof of Theorem 4

We will complete the proof as follows: first, we will argue that for scenarios (a) and (b), Ch is
Gaussian. Then, we will show in Lemma 6 that for Ch Gaussian, Problem (4) is indeed a convex
program and can be reduced to Problem (5). Finally, we will show in Lemma 7 that for all other
scenarios, the problem is non-convex.

In scenario (a), when the causal graph G is fully known and there is uncertainty only over the classifier,
it is clear that each entry of Ch is a linear combination of Gaussian random variables and therefore,
Ch is Gaussian. In scenario (b), since the causal graph is bi-partite with all arcs oriented in the same
direction, any feature i may affect any other feature j either directly or not at all. Therefore, entry
Cij is either 0 or w(aij) which is a Gaussian random variable. Since the classifier is fully known,
Ch is again multi-variate Gaussian.
Lemma 6. Under any partially incomplete information model where Ch is multi-variate Gaussian
and for cost functions given by Eq. (1), the agent’s optimization problem to find the optimal effort
profile e⋆, given by (4), is a convex program for any δ ≤ 1

2 .

Proof. Since the cost functions defined in Eq. (1) are convex, in order to complete the proof, it
suffices to show that the feasible space of the optimization problem in (4), is convex when Ch is
multi-variate Gaussian. Suppose, Ch ∼ N (µCh,ΣCh) for some µCh ∈ R|F| and ΣCh ∈ R|F|×|F|.
This implies,

(Ch)⊤e ∼ N
(
µ⊤
Che, e

⊤ΣChe
)
.

This allows us to rewrite the LHS of the probability constraint as follows:

P
[
(Ch)⊤e ≥ α

]
= P

[
(Ch)⊤e− µ⊤

Che√
e⊤ΣChe

≥ α− µ⊤
Che√

e⊤ΣChe

]

= P

[
Z ≥ α− µ⊤

Che√
e⊤ΣChe

]
(where Z ∼ N (0, 1))

= Φc

(
α− µ⊤

Che√
e⊤ΣChe

)
.

Therefore,

P
[
(Ch)⊤e ≥ α

]
≥ 1− δ ⇐⇒ Φc

(
α− µ⊤

Che√
e⊤ΣChe

)
≥ 1− δ

⇐⇒ Φ

(
α− µ⊤

Che√
e⊤ΣChe

)
≤ δ

⇐⇒ α− µ⊤
Che√

e⊤ΣChe
≤ pδ (where pδ = Φ−1(δ))

⇐⇒ α− µ⊤
Che− pδ ·

√
e⊤ΣChe ≤ 0.
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When δ = 1
2 , pδ = 0 and the above constraint reduces to a polyhedral constraint, making the

problem trivially convex. On the other hand, note that when δ < 1
2 , pδ < 0. Now, since ΣCh is a

covariance matrix, it is always symmetric and positive semidefinite and therefore, Σ1/2
Ch exists (it is

also symmetric and positive semidefinite!). In that case, we can express
√
e⊤ΣChe as follows:√

e⊤ΣChe =

√
e⊤Σ

1/2
Ch Σ

1/2
Ch e =

√
(Σ

1/2
Ch e)⊤(Σ

1/2
Ch e) =

√
||Σ1/2

Ch e||22 = ||Σ1/2
Ch e||2.

Now, ||Σ1/2e||2 is a convex function in e (because all norms are convex functions). Similarly,
−pδ · ||Σ1/2

Ch e||2 is also a convex function because −pδ > 0. The term α − µ⊤
Che is affine in e and

therefore, convex by default. Putting everything together, we conclude that α−µ⊤
Che−pδ ·

√
e⊤ΣChe

is a convex function in e which makes the constraint:

α− µ⊤
Che− pδ ·

√
e⊤ΣChe ≤ 0

a convex constraint. This concludes the proof of the lemma.

Lemma 7. Under incomplete information model (3) and general cases of model (2) where the causal
graph is not bipartite, the agent’s optimization problem, given by (4), is a non-convex program.

Proof. In order to complete this proof, it suffices to provide counter-examples where the program in
(4) is non-convex.

Model 3. Consider the simplest possible setting where there can be uncertainty in both the classifier
and the causal graph. Suppose, there is only one feature, i.e., |F| = 1. Let ω ∼ N (0, 1) be the
random variable that captures the uncertainty in the contribution of the feature (encodes uncertainty
in the causal graph) and h ∼ N (0, 1) be the random variable that captures the uncertainty in the
classifier weight on the feature. Note that ω ⊥ h. We will show that the feasible space given by:

P [(ωh)e ≥ α] ≥ 1− δ

is non-convex, which is equivalent to showing that the function f(e) given by:

f(e) = P [(ωh)e ≥ α]

is not concave. Below in Figure 6, we plot f(e) as a function of one-dimensional effort e. Since there
is no closed-form expression for the distribution of the product of two independent standard normal
random variables, we obtain empirical estimates for the probability at each e using Monte-Carlo
simulations. Clearly, f(e) is not concave.

Figure 6: Plot of f(e) with α = 1

General Cases of Model 2 with Non-bipartite Graphs. Consider any non-bipartite causal graph.
There must exist a pair of features i and j such that i affects j indirectly. In that case, the entry Cij of
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the contribution matrix must contain at least one term which is a product of multiple independent
Gaussian random variables. Therefore, even when the classifier is fully known, by a similar argument
as Model 3, the optimization problem is again non-convex.

This concludes the proof of the lemma.

D.2 Characterization of Feasibility of Problem 5

Proposition 6. Suppose that ΣCh is positive definite. Then the optimization problem (5) is feasible if
and only if δ > Φ−1

(
−∥Σ−1/2

Ch µCh∥2
)

, where Φ−1(·) indicates the inverse of the standard normal
CDF.

Proof. Recall that the feasible space of the agent’s optimization problem in the partially incomplete
information case is given by:

α− µ⊤
Che− pδ · ∥Σ1/2

Ch e∥2 ≤ 0.

This feasible space is empty at a given δ if we have:

α− µ⊤
Che− pδ · ∥Σ1/2

Ch e∥2 > 0 ∀ e ⇐⇒ min
e

g(e) = α− µ⊤
Che− pδ · ∥Σ1/2

Ch e∥2 > 0.

Now consider the convex unconstrained optimization problem: mine g(e). Then,

∇g(e) = −µCh − pδ ·
ΣChe

∥Σ1/2
Ch e∥2

.

Now there are 2 cases: ∇g(e) = 0 has a solution ê: Clearly, ê ̸= 0 because the gradient is not defined
at e = 0. In that case, ê satisfies:

−pδ ·
ΣChê

∥Σ1/2
Ch ê∥2

= µCh.

Now, ê must be a global minimizer of g because g(·) is a convex function. We will show that
g(ê) = α:

g(ê) = α− µ⊤
Chê− pδ · ∥Σ1/2

Ch ê∥2

= α+ pδ ·
ê⊤ΣChê

∥Σ1/2
Ch ê∥2

− pδ · ∥Σ1/2
Ch ê∥2 (using the condition from ∇g(ê) = 0)

= α+ pδ · ∥Σ1/2
Ch ê∥2 − pδ · ∥Σ1/2

Ch ê∥2
= α.

Since α > 0, the problem is always infeasible for this particular value of pδ. Since ΣCh is positive
definite, Σ−1/2

Ch exists, therefore we have:

pδ = −∥Σ−1/2
Ch µCh∥2 ⇐⇒ δ = Φ−1

(
−∥Σ−1/2

Ch µCh∥2
)
.

∇g(e) = 0 has no solution: This means that either the unique optimal solution is at the point where
the gradient does not exist, i.e, e = 0, or the solution is unbounded. The first subcase clearly leads
to infeasibility as g(0) = α > 0 while the second sub-case leads to a non-empty feasible region for
Problem (5). We will now try to derive conditions on δ which lead to each subcase.

Suppose that the unique optimal solution is e = 0. This means that for any direction d, g(0+d) > g(0)
or equivalently,

α− µ⊤
Chd− pδ · ∥Σ1/2

Ch d∥2 > α ∀ d ⇐⇒ −pδ · ∥Σ1/2
Ch d∥2 > µ⊤

Chd ∀ d.

Note that µ⊤
Chd = µ⊤

ChΣ
−1/2
Ch Σ

1/2
Ch d = (Σ

−1/2
Ch µCh)

⊤(Σ
1/2
Ch d) ≤ ∥Σ−1/2

Ch µCh∥2 ·∥Σ1/2
Ch d∥2 where the

last inequality follows from the Cauchy-Schwartz inequality. In fact, for d∗ = Σ−1
ChµCh (which exists
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since ΣCh is positive definite and hence, invertible), we have equality. But since −pδ · ∥Σ1/2
Ch d∥2 >

µ⊤
Chd for all directions d, it must hold for d∗ as well, which implies:

∥Σ−1/2
Ch µCh∥2 · ∥Σ1/2

Ch d∗∥2 < −pδ · ∥Σ1/2
Ch d∗∥2,

which means that −pδ > ∥Σ−1/2
Ch µCh∥2 or equivalently, δ < Φ−1

(
−∥Σ−1/2

Ch µCh∥2
)

.

Similarly, if the solution is unbounded, there must exist a direction d′ at 0 such that:

α− µ⊤
Chd

′ − pδ · ∥Σ1/2
Ch d′∥2 < α,

or equivalently, −pδ · ∥Σ1/2
Ch d′∥2 < µ⊤

Chd
′. Using a similar argument as above, we can show that this

can happen only when:
δ > Φ−1

(
−∥Σ−1/2

Ch µCh∥2
)
.

This concludes the proof of the proposition.

D.3 Structure of Optimal Effort Profiles under Weighted ℓ1-norm Costs

Proposition 7. Under any partially incomplete information setting which leads to the convex
optimization problem (5) for the agent, the optimal effort profile e⋆ with weighted ℓ1-norm costs
requires investment of effort into more than one feature in the worst case.

Proof. In order to complete the proof, it suffices to construct an instance of the problem where the
optimal effort profile is not a corner point. Consider a setting where |F| = 2, α > 0 and δ < 1

2 .

Suppose, the features are identical in all respects, i.e., (µCh)1 = (µCh)2 = µ̄ > 0, ΣCh =

[
σ2 0
0 σ2

]
and c1 = c2 = c. Additionally, suppose that µ̄ > −pδσ. We first make the following observations:

• If e⋆ is not a corner point, it must be symmetric, i.e., e⋆1 = e⋆2.

• Since µ̄ > 0 and δ < 1
2 , it must be that e⋆ ≥ 0 (otherwise, we have infeasibility).

Now, there are only two possible corner point solutions: either of the form (e, 0) or (0, e). In order
for either of them to be optimal, the constraint must be active at that point. Solving, we obtain:

e =
α

µ̄+ pδσ
; and Cost =

cα

µ̄+ pδσ
.

However, we will now construct a non-corner point solution (e′, e′) where the constraint is active and
which produces a strictly better objective value. Solving, we obtain:

e′ = α

2
(
µ̄+

pδ√
2
·σ

) ; and Cost = cα(
µ̄+

pδ√
2
·σ

) ,
which is strictly smaller than the earlier cost (since pδ < 0). This concludes the proof.

D.4 Proof of Theorem 5

We will use the KKT conditions to obtain the agent’s optimal effort profile e⋆. The Lagrangian L(·, ·)
for the above problem is given by:

L(e, λ) = ||e||2 + λ
(
α− µ⊤

Che− pδ · ||Σ1/2
Ch e||2

)
,

where λ is the Lagrange multiplier. We can now write the KKT conditions as follows:

e

||e||2
+ λ ·

(
−pδ ·

ΣChe

||Σ1/2
Ch e||2

− µCh

)
= 0,

pδ · ||Σ1/2
Ch e||2 + µT

Che = α,

λ > 0.
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Since we have a convex program, it is sufficient to find a pair (e⋆, λ∗) satisfying the KKT conditions
and we can immediately conclude that e⋆ is an optimal solution to our original problem. Using the
first equality above, we infer that the optimal effort e⋆ must be of the following form:

e⋆ = λ∗ (k1I + k2ΣCh)
−1

µ,

where k1 = 1
||e⋆||2 > 0 and k2 = −λ∗pδ

||Σ1/2
Ch e⋆||2

> 0 (so, the inverse exists). In order to obtain the exact

expression for e⋆, we need to use the other equality condition and solve simultaneously for k1, k2
and λ∗.

The last part of the theorem follows directly by noting that ΣCh is a diagonal matrix. In that case,
(k1I + k2ΣCh)

−1 is also a diagonal matrix where the diagonal entry corresponding to feature f is
given by 1/(k1 + k2(ΣCh)f ). The final expression follows from simple algebra. This concludes the
proof of the theorem.

D.5 Scenario where ΣCh is a diagonal matrix

Proposition 8. Suppose G is a bipartite graph with all edges oriented in the same direction; further,
suppose the agent only has uncertainty over the weights of the graph (model 2), i.e. Σh = 0. Then,
ΣCh is a diagonal matrix.

Proof. Since G is a bipartite graph, the set of nodes (in this case, same as set of features) |F| can be
partitioned into two sets Fout and Fin such that Fin ∪ Fout = F , Fin ∩ Fout = ∅ and all arcs in A
are directed from Fout towards Fin.

Recall that ΣCh is the covariance matrix of Ch where C ∼ ΠC and h ∼ Πh. However, when there is
uncertainty only over the edge weights of G, it is clear that ΣCh = Cov(Ch0). Therefore, in order to
show that ΣCh is a diagonal matrix, it suffices to show that:

∀ f1, f2 ∈ F , f1 ̸= f2, (Ch0)f1 ⊥ (Ch0)f2 ,

i.e., (Ch0)f1 and (Ch0)f2 are independent random variables. Firstly, observe that for any feature
f ∈ Fin, we must have:

(Ch0)f = 0.

This is because feature f has no outgoing edges (since f ∈ Fin) and therefore, Cf,. = 0⊤ which
implies (Ch0)f = Cf,.h0 = 0. This automatically implies that the covariance of (Ch0)f with any
other random variable is also zero. Therefore, we only need to prove that Cov ((Ch0)f1 , (Ch0)f2) =
0 when f1, f2 both are in Fout. Note that:

(Ch0)f1 =
∑
f∈F

Cf1,fh0,f and (Ch0)f2 =
∑
f∈F

Cf2,fh0,f .

Therefore,

Cov ((Ch0)f1 , (Ch0)f2) = Cov

∑
f∈F

Cf1,fh0,f ,
∑
f∈F

Cf2,fh0,f


=
∑
f∈F

∑
f ′∈F

(h0,f · h0,f ′) · Cov(Cf1,f ,Cf2,f ′)

We now argue case by case:

• f, f ′ ∈ Fout: In this case, Cov(Cf1,f ,Cf2,f ′) = 0 because there can be no edges from
either f1 or f2 to f or f ′ since all of them are nodes in Fout.

• f ∈ Fout, f
′ ∈ Fin: In this case, Cf1,f = 0 by the same argument as above. Therefore, the

covariance must be 0.

• f ′ ∈ Fout, f ∈ Fin: In this case, Cf2,f ′ = 0 which makes the covariance 0.

• f ∈ Fin, f
′ ∈ Fin: Finally, if both f and f ′ are in Fin, there can be edges from f1 and f2

towards f and f ′. But those edges are disjoint and therefore, independent which makes the
covariance term 0.

This concludes the proof.
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E Supplementary Proofs

E.1 Computation of the Contribution Matrix C

Proposition 9. Given adjacency matrix A, the contribution matrix of causal graph G is given by

C =

|F|∑
k=0

Ak,

and therefore can be computed in polynomial time in |F|.

Proof. The key step to complete the proof is to show that Ak
ij captures the influence exerted by

feature i on feature j through a directed path on the graph that is exactly k hops long. We will prove
by induction.

Base case (k = 0): When k = 0, there exists no directed path from feature i to feature j unless i = j.
Therefore, all off-diagonal entries are 0. The only entries appear on the diagonal because feature i
affects itself with a unit positive multiplier. This gives us the identity matrix in |F| dimensions which
is exactly given by A0.

General case: Suppose that the induction hypothesis holds for some k > 1. We will now show that
it also holds for k + 1. Note that:

Ak+1
ij =

|F|∑
n=1

Ak
in ·Anj .

Since the induction hypothesis is true, Ak
in captures the influence exerted by feature i on feature n

through a directed path exactly k hops long. Anj represents the direct influence exerted by feature n
on feature j (in exactly 1 hop). Therefore, the product measures the influence of feature i on feature j
exerted on a directed path k + 1 hops long. The sum over all features in F captures all such directed
paths from i to j. Thus, our induction hypothesis is also true for k + 1.

Finally, to compute C, we need to sum the influences of directed paths of all lengths starting at node i
and ending in node j. Since G is a directed acyclic graph with |F| nodes, the length of the maximum
directed path from i to j is at most |F| − 1 hops long or conservatively |F| hops long (note that if
there are no directed paths of length k from i to j, Ak

ij = 0. So, it does not hurt to be conservative).
This leads to the final expression of C:

C =

|F|∑
k=0

Ak.

To conclude the proof, we need to argue about the time complexity of computing C, given matrix
A. Multiplying 2 matrices of size |F| × |F| takes O(|F|3) time and we need to execute O(|F|)
such matrix multiplication steps to compute the different powers of A. Therefore, the overall time
complexity is polynomial in |F|.

E.2 Proof of Supporting Result in Proposition 3

We made the following observation in our proof of Proposition 3:
Observation. Let X ∈ Rn and M ∈ Rn×n. Define set Y as follows:

Y := {y : ∃ x ∈ X s.t. y = Mx}
When M is full row-rank, set X is convex if and only if set Y is convex.

We provide a formal proof here. We need to show both directions.

( =⇒ ) Suppose, set X is convex. We need to show that set Y is convex. Let y1, y2 ∈ Y such that
y1 ̸= y2. Pick any λ ∈ [0, 1]. Then there must exist x1, x2 ∈ X such that y1 = Mx1 and y2 = Mx2.
Clearly x1 ̸= x2. Since X is a convex set, λx1 + (1− λ)x2 ∈ X . This implies,

λy1 + (1− λ)y2 = λMx1 + (1− λ)Mx2

= M (λx1 + (1− λ)x2) ∈ Y.
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( ⇐= ) For the other direction, we assume that set Y is convex and we need to show that set X
is convex. Pick any two elements x1, x2 ∈ X,x1 ̸= x2 and any λ ∈ [0, 1]. Let y1 = Mx1 and
y2 = Mx2. Clearly, y1, y2 ∈ Y (by definition). Note that y1 ̸= y2 (otherwise, we would have
Mx1 = Mx2 which implies that x1 − x2 ∈ Nullspace(M). But Nullspace(M) = ∅ as M is full
row-rank). Additionally, λy1 + (1− λ)y2 ∈ Y since Y is a convex set. This implies,

λx1 + (1− λ)x2 = λM−1y1 + (1− λ)M−1y2 (M−1 exists because rank(M) = n)

= M−1 (λy1 + (1− λ)y2) ∈ X.

The last part follows from noting that λy1 + (1 − λ)y2 ∈ Y and since M is full row-rank, the
pre-image of λy1 + (1− λ)y2 must be unique. This concludes both directions of the proof.
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