KAMBAAD: ENHANCING STATE SPACE MODELS WITH
KOLMOGOROV—ARNOLD FOR TIME SERIES ANOMALY
DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series anomaly detection is critical in numerous practical applications, yet
existing deep learning methods often fall short of real-world demands. These
models fail to swiftly filter out physically implausible anomalies, insufficiently
address distributional shifts, and lack a comprehensive approach that integrates
both global and local perspectives for anomaly detection. Moreover, most suc-
cessful models rely on channel-dependent methods that tend to treat all features
at the same timestamp as a single token and then focus on finding relationships
between these tokens. This approach overlooks the unique periodicities, trends,
and lagged relationships between different features, leading to suboptimal per-
formance. To address these limitations, we propose KambaAD, a model com-
prised of an Encoder and Reconstructor. The Encoder integrates the strengths of
the Kolmogorov-Arnold Network (KAN), attention mechanism, and the Selec-
tive Structured State Space Model (MAMBA). Specifically, KAN is employed to
swiftly enforce data consistency, enabling rapid detection of anomalies that violate
physical laws. Attention mechanism ensures balanced processing of global infor-
mation while enhancing the representation of key data characteristics. We lever-
age MAMBA’s capability as a sequence model to capture anomalies caused by
local variations. Additionally, its internal selection mechanism allows the model
to effectively handle distribution shifts, ensuring robustness and adaptability in
the presence of changing data distributions. Additionally, the framework incorpo-
rates a time-series-specific Reconstructor, which reduces computational complex-
ity through patch-based operations that exploit local consistency in time series
data. It also employs channel-independent linear reconstruction to prevent in-
terference between different features. Through extensive experiments on multiple
multivariate datasets, KambaAD consistently outperforms state-of-the-art models,
demonstrating its superior performance in anomaly detection.

1 INTRODUCTION

Time series anomaly detection aims to accurately identify points or subsequences that deviate from
regular patterns within continuous time series data. In the context of digital operations management,
this technology is essential for tracking key performance indicators (KPIs) such as CPU utilization,
memory usage, and network bandwidth, which generate large volumes of time series data (Zhu
et al.,|2019). By detecting anomalies such as performance bottlenecks or system failures, operations
teams can swiftly mitigate issues, ensuring system resilience, scalability, and high availability while
reducing downtime and failure rates (Lindemann et al., |2021). Beyond digital infrastructure, time
series anomaly detection is also applied in fields such as economics, meteorology, and finance. For
instance, it helps detect abnormal market fluctuations, predict extreme weather events, and identify
fraudulent financial transactions (Ahmed et al.| 2016} Lee et al., [2018}; [Hilal et al.| 2022). Tradi-
tional anomaly detection methods rely on handcrafted features and statistical assumptions, offering
simplicity and interpretability but struggling with scalability and adaptability in diverse or high-
dimensional datasets (Teng), 2010; Munir et al.,|2019).

In recent decades, deep learning (DL) methods have been widely adopted for time series anomaly
detection, excelling at capturing temporal dependencies and nonlinear relationships without manual

feature engineering (Choi et al.,2021)). However, DL methods face several challenges: Firstly, they
often overlook the overall consistency of the data, making them prone to missing subtle or physically
implausible anomalies. If these anomalies are not identified promptly, the model may confuse nor-
mal and abnormal patterns, especially when anomalies densely occur within a specific window, as it
tries to minimize the overall error for that window. Second, DL methods struggle with distributional
shifts over time, where patterns of normality and anomaly evolve. Anomalies during training may
become normal later, while new anomalies emerge from previously normal patterns, complicating
model robustness in dynamic, non-stationary data (Zeng, |2020; Wen & Keyes| |2019). Third, DL
methods often fail to integrate both global and local perspectives—essential for detecting long-term
deviations and short-term fluctuations, respectively (Xia et al.| 2023}, |Albu et al., [2020). Finally,
most successful models adopt channel-dependent strategies that treat features at the same times-
tamp as a single token, disregarding distinct periodicities, trends, and lagged relationships. This
limits their ability to capture complex interactions in multivariate time series, leading to suboptimal
reconstruction (Liu et al., 2022).

To address the multifaceted challenges in time series anomaly detection, we propose KambaAD, a
robust framework composed of an Encoder and a Reconstructor. The Encoder employs a two-stage
feature extraction process: Coarse-Grained Anomaly Filtering and Fine-Grained Pattern Recogni-
tion. In the Coarse-Grained Anomaly Filtering stage, KAN replaces traditional weight parameters
with learnable univariate functions, establishing more stable functional relationships between inputs
and outputs. This not only reduces the number of parameters but also leverages data consistency,
enabling faster preliminary anomaly screening. By processing features from all time steps within
the entire time window, KAN effectively captures latent cross-temporal correlations, avoiding issues
such as lag effects, periodicity, and feature misalignment that arise from analyzing individual data
points. Once KAN has addressed the more apparent anomalies, the process transitions seamlessly
to the Fine-Grained Pattern Recognition stage, where the focus shifts to detecting more nuanced
and infrequent anomalies. In this stage, we integrate attention mechanism and MAMBA within the
representation space. Attention mechanism excels at capturing global dependencies across distant
time steps, making it particularly useful for detecting long-range correlations in complex time series
(Matar et al.l [2023). Meanwhile, MAMBA focuses on detecting local, context-specific anomalies.
As a sequential model, MAMBA iteratively updates its hidden states while leveraging positional
information to capture temporal dependencies. Its dynamic adjustment mechanism adapts the state
transition matrix to input changes, addressing distribution shifts. MAMBA'’s gating mechanism fur-
ther modulates the influence of inputs on hidden states and outputs, reducing the impact of anoma-
lous points on the reconstruction process. Additionally, MAMBA employs 1D convolutional opera-
tions to efficiently capture local dependencies between adjacent time steps, enhancing its ability to
detect short-term anomalies and trend shifts. In the Reconstructor, we employ three complementary
techniques: patch-based data division, channel-independent (CI) processing, and linear reconstruc-
tion. First, patch-based division allows the model to leverage local similarities, focusing on critical
temporal features rather than processing the entire sequence at once, thereby reducing resource con-
sumption (Berral et al.l 2021; |Scherer et al., 2021} Sabater et al., 2022). Second, the CI strategy
ensures that each channel is processed independently during reconstruction, allowing the model to
refine individual features without losing the global context, as inter-channel relationships have al-
ready been captured in the Encoder. Finally, linear reconstruction further controls the number of
parameters, ensuring the model remains scalable and robust when handling high-dimensional data.

In summary, the integration of KAN, attention mechanism, and MAMBA in KambaAD enables ef-
fective coarse-grained anomaly filtering and fine-grained pattern recognition across temporal scales.
Extensive experiments on multiple datasets show a 5% improvement in F1 score, confirming its
effectiveness in time series anomaly detection.

2 PROBLEM DEFINITION

Consider a multivariate time series with k& variables over ¢ time steps. Each observation at time £ is
represented by the vector x; = (41, T12, - - - , Ttk), Where x4, denotes the value of the k-th variable
at time ¢. The goal of anomaly detection is to determine whether x; is normal or anomalous, based on
a sliding window of the past n observations, including the current time step ¢. This sliding window,
denoted by X, contains the vectors from time ¢ — n + 1 to ¢. The anomaly detection function f

- = S ——

splitting into patches
Stage One Stage Two
[RMSNorm | ATTENTION \d
_________ . 9!...
Dropout :
| |
[]
Reshape
=
Channel
R ccanorm | st
Convid i
Reshape i
(. tnear] neer |
\ oo o J
}X Linear
[l
N
Concate & i‘
\'\'L\M/\/‘N\/\I\N\N\ MM AAAM VAT Transpose |
VNN NAMAMAMAMAAN :
. J
Raw Data Rec Data

Anomaly Score

Figure 1: Architecture of KambaAD. Raw Data represents the input segmented into windows, while
Rec Data refers to the reconstructed output after model processing.

maps this sliding window X, to a binary label y;:

1 anomaly
0 normal.

w= 1% = { 1)

3 METHODOLOGY

3.1 OVERVIEW

As shown in Figure[T] the model processes windowed data as input and outputs an anomaly score.
The architecture consists of two parts: feature extraction and reconstruction. In the feature extraction
phase, a hybrid encoder combining KAN, attention mechanisms, and MAMBA is used. In the
reconstruction phase, the data is divided into patches and fed into channel-independent linear models
for reconstruction. The reconstruction error is computed as the mean squared error (MSE) between
the input and the reconstructed output.

3.2 ENCODER

This section elucidates the mathematical underpinnings of the KambaAD encoder component. Let
the input data be denoted as X € R"**, where n represents the number of data points and k signifies
the number of features. Our primary objective is to extract information-rich features capable of
reconstructing the original data with high fidelity.

3.2.1 STAGE ONE: COARSE-GRAINED ANOMALY FILTERING

In this study, we introduce the use of the KAN for preliminary anomaly detection in time series
data. To tackle challenges such as varying periodicities, trends, and lag effects across features, we
consider the entire window of features as input, allowing the model to capture relationships across
different time steps. The input data is represented as a matrix X € R™*F, where each data point
X; = {z1,29,...,2;} (fori = 1,2,...,n). The operations in this phase are denoted by Fian,
where X is first reshaped into a vector, processed, and then reshaped back into an n X d matrix. For

details on the KAN architecture, please refer to Appendix C. After processing through Fxan, we
apply post-processing steps such as dropout (Srivastava et al., | 2014)), linear residual combination,
and Root Mean Square Normalization (RMSNorm) (Zhang & Sennrich,[2019)). This post-processing
is formalized as follows:

X1 =XW, + bou 2
where X; € R"*9 represents the linearly transformed residuals, adjusted to the universal dimension
d. This transformation prepares the residuals for combination with the main output of KAN. Here,
W, € R¥*? and b, € R™*? denote the weight matrix and bias vector, respectively. The final
output of the model, Xgan € R™*4 which captures anomalies in the data, is expressed as:

Xkan = RMSNorm(Dropout(Fxan (X)) + X1). 3)
3.2.2 STAGE TWO: FINE-GRAINED PATTERN RECOGNITION

In this phase, we refine anomaly detection by first applying a self-attention mechanism to provide a
global perspective, enhancing time series features and highlighting anomalies. Next, the MAMBA
model performs recursive updates to capture subtle temporal variations. This two-step process bal-
ances long-range dependency capture with local anomaly detection. By combining the global pattern
recognition of self-attention with MAMBA's efficient modeling of local dynamics, our framework
effectively detects both prominent and subtle anomalies. We first apply a multi-head attention mech-
anism to the time series data, transforming the input, calculating attention scores, and aggregating
the results. For each attention head, the output is computed using the query (Q), key (K), and value
(V) matrices as follows:

KT
head; = softmax (Q\}?) Vi, S
k

where the queries, keys, and values are obtained as:
Q; = XKANWZQa K; = XganW, V,; = Xgan W/, (5

with WZQ , WK and W/ being learnable weight matrices, and d, representing the dimensionality
of the key vectors. The outputs from all attention heads are concatenated and linearly transformed
to form the final output O. This output is combined with the original input Xy through a residual
connection, followed by dropout and layer normalization:

Xawn = RMSNorm(Dropout(O) + Xgan), (6)

where X i € R™¥4 represents the output from attention layer. Subsequently, the data is processed
through the MAMBA module, which is specifically designed to detect anomalies by identifying
subtle local variations in the input sequence. The input data, denoted as Xy, undergoes a series
of transformations, including linear projection, 1D convolution, and the SiLU (Swish) activation
function. This process produces the intermediate representation Xo € R"™*9, which serves as the
input to the structured state-space model (SSM) module. Mathematically, this transformation can be
expressed as:

Xo = SiLU (ConvlD (Xauxn W3, h)), @)
where Wy is the learnable linear transformation matrix, h is the 1D convolutional kernel, and
SiLU(z) = z - o(z) (with o(z) being the sigmoid function) is the activation function. The re-
sulting matrix X encapsulates the processed data, ready for further temporal modeling. To capture
temporal dependencies, we introduce vector notations x;, y;, and h;, where ¢ indexes the position in
the sequence. x; € R%*! represents the transpose of the ¢-th row vector of Xz, while h; € R%*! and
y: € R4 denote the hidden state and output at time step ¢, respectively. The temporal dynamics
are captured through a recursive update of the hidden state, which is formulated as:

h; = Aihy 1 + byxy, ®)

where A; € R%*? and b, € R?*! are matrices derived from linear transformations of the input x;.
These matrices govern how the hidden state h; evolves over time, incorporating both the previous
hidden state h,_; and the current input x;. The output at each time step ¢, denoted y;, is computed
as:

y¢ = cthy, 9
where ¢, € R?¥! is another transformation matrix applied to the hidden state h,. By stacking the
output vectors y; across the time dimension, a matrix representing the final output of the encoder,
denoted as X, is constructed. This matrix serves as the final encoded representation of the input
sequence, encapsulating both local and temporal features for anomaly detection.

3.3 RECONSTRUCTOR

In the reconstruction phase, we receive Xy from the encoder and then perform two operations:
the first is patch partition, and the second is channel-independent linear reconstruction. These steps
culminate in the generation of X. The specific rationale behind this approach and the detailed
transformation process can be found in Appendix D.

3.4 DETECTION

The reconstructed X is used differently in training and testing phases. During training, the ob-
jective is to minimize the reconstruction error, specifically the MSE between the input X and its

reconstruction X. The loss function L is defined as:
n k

S 1 1 ~ \3
L(X,X) =~ ;(k ;(xm 7i5)%), (10)
where n is the number of windows, k is the number of features, and x;; and @-j are the true and
reconstructed values, respectively. Minimizing this loss improves reconstruction fidelity and model
performance. In testing, the anomaly score for the last point within a window is computed using the
MSE for that point:

k
1 ~
Anomaly Score = z ngl(J;nj — Zpj)?, (11)

where x,,; and Z,,; are the true and reconstructed values for the n-th (last) point in the window.

4 EXPERIMENTS

4.1 BENCHMARK DATASETS

We meticulously planned a series of comprehensive experimental comparisons across a diverse
range of datasets, including SMAP, MSL, SMD, PSM, NIPS. In our analysis of the NIPS dataset,
we focused on specific subsets: NIPS_TS_CCard, NIPS_TS_Swan, NIPS_TS_Syn_Mulvar, and
NIPS_TS_GECCO. For simplicity, we will refer to these subsets as CCard, Swan, Mulvar, and
GECCO, respectively, in the following sections of this article. The statistical indicators of the dataset
can be found in Appendix E.

4.2 BASELINES AND EVALUATION CRITERIA

We conducted a comprehensive evaluation of our model against 15 state-of-the-art baselines : Om-
niAnomaly (Su et all [2019), InterFusion (Li et al.l |2021), THOC (Shen et al.| [2020), Imdiffusion
(Chen et al.} |2023b)), DiffAD (Xiao et al.,|2023), ModernTCN (Luo & Wang, 2024), GDN (Deng &
Hooi, [2021)), TransAD (Tuli et al., 2022), MTAD-GAT (Zhao et al.| 2020), Crossformer (Zhang &
Yan| 2023)), PatchTST (Nie et al.| 2022)), AnomalyTrans (Xu et al.| 2021)), DCdetector (Yang et al.,
2023), itransformer(Liu et al., [2023)) and TimeMixer++(Wang et al., 2024). We ensured fair com-
parison using metrics like precision, accuracy, and F1 on datasets such as SMD, MSL, SMAP, and
PSM, and extended the evaluation with Affiliation metric (Huet et al. [2022) and VUS (Paparrizos
et al.| 2022) for newer datasets. Detailed metric descriptions are in Appendix F.

4.3 MAIN RESULTS
4.3.1 PERFORMANCE

Experimental setup and environment are detailed in Appendix G. We first compare our model with
classical and popular approaches across four standard benchmarks: SMD, MSL, SMAP, and PSM,
focusing on precision, recall, and F1 score. The results are systematically presented in Table[l| Our
model achieves the highest F1 scores on SMD, MSL, SMAP, and PSM datasets, consistently rank-
ing among the top in precision and recall, demonstrating robustness in anomaly detection. We also
compared it with AnomalyTransformer and DCdetector on NIPS datasets, as shown in Table 2] In

Appendix L, we provide detailed sources of the results from the baseline model. KambaAD demon-
strates superior performance in F1-score, particularly on the complex NIPS datasets, and exhibits
clear advantages across multiple metrics. In the GECCO dataset, the KambaAD outperforms the
other two models in accuracy and Aff-P but lags behind in Aff-R. This suggests KambaAD is con-
servative in anomaly detection, as it struggles to distinguish certain anomalies from normal patterns,
resulting in similar anomaly scores for both. On the SWAN dataset, the other models show similar
weaknesses, indicating that in datasets with a high diversity of anomaly patterns, all models exhibit
weaknesses in detecting certain types of anomalies.

Table 1: Overall performance comparison of KambaAD and baseline models across four real-world
multivariate datasets: SMD, MSL, SMAP, and PSM. Models are ranked from lowest to highest
performance. Precision (P), Recall (R), and F1-score (F1) are reported in percentages (%). The best
performance in each metric is highlighted in bold, and the second-best is underlined.

Dataset SMD MSL SMAP PSM

Metric P R | F1 P R F1 P R | F1 P R | F1
OmniAnomaly ||83.68|86.82|85.22/ 89.02 | 86.37 |87.67|/92.49(81.99|86.92(/88.39|74.46|80.83
InterFusion ||87.02(85.43(86.22|| 81.28 | 92.70 |86.62(/89.77|88.52|89.14/83.61|83.45|83.52
THOC 79.76190.95(84.99| 88.45 | 90.97 |89.69(/92.06(89.34|90.68 ||88.14]90.99|89.54
ImDiffusion {|95.20/95.09(94.88/89..30| 96.38 |87.79||87.71(96.18|91.75|/98.11(97.53|97.81
DiffAD 90.01(95.67(92.75(|92.97 | 95.44 |194.19/96.52|97.38|96.95||97.00{98.92|97.95
ModernTCN |/87.86|83.85|85.811| 83.94 | 85.93 |84.92((93.17|57.69|71.26|/98.09|96.38|97.23
GDN 71.70(99.74|83.42(193.08 | 98.92 |195.91{|74.80|98.91|85.18/87.50|83.85(85.64
TranAD 92.62199.74196.05/ 90.38 | 99.99 |94.94(80.43]99.99|89.15|/95.06(89.51{92.20
MTAD-GAT |[88.36/83.30|84.63|| 87.54 | 94.40 {90.84[89.06(91.23|90.13||87.63|87.25|87.44
Crossformer {|83.06|76.61|79.70| 84.68 | 83.71 |84.19|(92.04|55.37(69.14/97.16(89.73|93.30
PatchTST ||87.42|81.65|84.44|/84.07 | 86.23 |85.14|/92.43|57.51|70.91|98.87|93.99|97.23
iTransformer ||78.45|65.10|71.15|[86.15 | 62.65 |72.54||90.67|52.96|66.87 ||95.65|94.69|95.17
TimesMixer++||88.59|84.50|86.50(89.73 | 82.23 |85.82((93.47(60.02(73.10(/98.33(96.90|97.60
AnomalyTrans ||88.47(92.28(90.33|/91.92| 96.03 [93.93]/93.59|99.41(96.41{/96.94|97.81|97.37
DCdetector |[83.59(91.10(87.18/93.69 | 99.69 [96.60((95.63|98.92|97.02((97.14|98.74|97.94
KambaAD ||97.10|97.45|97.27| 98.84 |100.00{99.41|98.4699.93|99.19(199.15|97.0098.06

4.3.2 KAN FOR WINDOW INFORMATION CAPTURE

We compared window-based and single-point features in KAN across eight datasets (Table). Re-
sults consistently show window-based input outperforming, with higher precision, recall, and F1
scores. This approach enhances KAN’s capacity to capture temporal dependencies and inter-feature
relationships, improving multivariate time series predictions.

4.3.3 ABLATION EXPERIMENT

Our ablation study compares accuracy, precision, and F1 score across eight datasets. We first com-
pare KambaAD with its individual components (Encoder and Reconstructor). Table f] shows Kam-
baAD consistently outperforms both, emphasizing the importance of their integration. The com-
parison results when increasing the number of encoder and reconstructor parameters to match the
total number of parameters under the full KambaAD can be found in the appendix J. We then an-
alyze specific components: KAN for initial anomaly detection, Attention for global features, and
MAMBA for local patterns. From Table El, we can conclude that in the Mulva dataset, KambaAD’s
performance is inferior to using only the Encoder, while in the GECCO dataset, KambaAD’s perfor-
mance is lower than using only the Reconstructor. This suggests that certain specific characteristics

Table 2: Multi-metric performance comparison of KambaAD, DCdetector, and AnomalyTrans-
former on the NIPS dataset. Aff-P and Aff-R denote the precision and recall for the affiliation
metric. R_A_R (Range_ AUC_ROC) and R_A_P (Range_AUC_PR) represent scores based on label
transformation under the ROC and PR curves, respectively. V_ROC and V_RR correspond to the
volumes under the ROC and PR curve surfaces. All results are reported in percentages (%). The
best performance in each metric is highlighted in bold, and the second-best is underlined.

Dataset Method Acc | P R | F1 |Aff-P/Aff-R|[R A R/R AP V_ROC|V_PR

AnomalyTrans||99.84|13.33| 0.90 | 1.68 |64.84| 4.77 | 52.53 | 11.56 | 52.47 |11.87
Ccard | DCdetector [|98.73|0.06 | 0.45 | 0.11 |50.56|71.63 | 52.91 | 10.40 | 52.68 | 9.99
KambaAD |(99.77|34.29|53.60|41.83|73.54|67.04 | 52.98 | 26.04 | 53.42 |26.12

AnomalyTrans||84.57|90.71|47.43|62.29|58.45| 9.49 | 86.42 | 93.26 | 84.81 [92.00
SWAN | DCdetector ||85.94(95.48(59.55|73.35/50.48| 5.63 | 88.06 | 94.71 | 86.25 [93.50
KambaAD |89.79|86.75/81.12|83.84|84.41|57.17 | 89.67 | 94.82 | 88.66 |93.99

AnomalyTrans||79.60|66.29|14.45(23.73|54.07|10.43 | 99.98 | 99.99 | 95.97 [96.62
Mulvar | DCdetector ||75.92|41.61(23.88|30.34|52.55|21.40(100.00 [100.00| 95.96 |95.99
KambaAD |87.33|73.60/65.90|69.54|78.25|48.47 | 99.98 | 99.99 | 96.86 |97.50

AnomalyTrans||98.03|25.65]|28.48|26.99|49.23 | 81.20 | 56.35 | 22.53 | 55.45 |21.71
GECCO| DCdetector [|98.56|38.25|59.73|46.63|50.05|88.55| 62.95 | 34.17 | 62.41 |33.67
KambaAD |/99.31/99.61|35.21|52.02(99.95|13.46| 51.73 | 52.70 | 51.88 |52.86

Table 3: Performance comparison between KAN (point) and the proposed KambaAD model (KAN
window) across eight real-world multivariate datasets. Precision (P), Recall (R), and F1-score (F1)
are reported in percentages (%). The best results are highlighted in bold.

Dataset KAN(point) KAN(window)
P R F1 P R F1

SMD 94.52 95.84 95.84 97.10 97.45 97.27
MSL 95.60 100.00 97.75 98.84 100.00 99.41
SMAP 96.44 99.93 98.16 98.46 99.93 99.19
PSM 97.48 95.16 96.31 99.15 97.00 98.06
CCARD 29.53 47.75 36.49 34.29 53.60 41.83
SWAN 97.84 65.27 78.30 86.75 81.12 83.84
MULVAR 77.06 65.79 70.98 73.60 65.90 69.54
GECCO 99.61 35.21 52.02 99.61 35.21 52.02

or anomaly patterns in the datasets become difficult to detect when processed through both the En-
coder and Reconstructor. This may be due to overfitting caused by the larger number of parameters
in the complete network structure. Overall, the complete model exhibits superior comprehensive
performance across all datasets compared to models with removed components, indicating that the
complete model possesses stronger generalization capabilities and stability.

4.3.4 ORDER OF COMPONENTS

The positioning of components within KambaAD is crucial, as it determines the order in which
various anomalies ar e detected. Therefore, we have conducted analysis and experiments on this
aspect, and more detailed information can be found in Appendix H.

Table 4: Performance comparison between the Encoder-only, Reconstruction-only, and KambaAD
across eight real-world multivariate datasets. Precision (P), Recall (R), and Fl-score (F1) are re-
ported in percentages (%). The best results are highlighted in bold, and the second-best results are
underlined.

Encoder Reconstructor KambaAD

P R F1 P R F1 P R F1
SMAP 95.89 | 99.78 | 97.80 || 93.26 | 99.87 | 96.45 | 98.46 | 99.93 | 99.19
MSL 85.45 | 99.55 | 91.96 || 93.12 | 100.00 | 96.44 | 98.84 | 100.00 | 99.41
SMD 9593 | 95.90 | 9591 || 95.99 | 96.61 | 96.30 || 97.10 | 9745 | 97.27
PSM 97.33 | 94.01 | 95.64 || 98.06 | 94.22 | 96.14 || 99.15 | 97.00 | 98.06
Ccard 30.14 | 48.20 | 37.09 | 58.46 17.12 | 2648 | 34.29 | 53.60 | 41.83
SWAN 82.96 | 79.49 | 81.19 | 92.17 | 63.79 | 7540 | 86.75 | 81.12 | 83.84
Mulvar 70.76 | 73.81 | 72.25 || 78.14 | 65.03 | 68.55 || 73.60 | 65.90 69.54
GECCO || 99.61 | 35.21 | 52.02 || 51.52 | 67.53 | 58.45 || 99.61 | 3521 | 52.02

Dataset

Table 5: Performance comparison between KambaAD and five ablation study models across eight
real-world multivariate datasets. Only the comparison results of the F1 score are presented. The best
results are highlighted in bold, and the second-best results are underlined.

KAN
KA KA ATT
Dataset || KAN | ATT | Mamba N N MAMBA KambaAD
ATT | MAMBA MAMBA
MAMBA
SMAP || 97.55 | 98.13 | 97.80 | 98.25 97.83 97.99 97.88 99.19
MSL 97.32 1 96.89 | 96.74 | 96.90 98.27 96.68 94.14 99.41
SMD 96.25 | 95.05 | 95.56 | 94.27 95.10 96.04 89.92 97.27
PSM 97.29 1 97.05 | 97.22 | 96.78 96.58 90.78 78.88 98.06
Ccard 38.52 | 37.06 | 38.22 | 36.33 38.72 35.48 39.05 41.83
SWAN || 76.20 | 75.53 | 78.10 | 78.72 78.97 78.70 78.30 83.84
Mulvar || 78.31 | 75.73 | 83.37 | 70.86 63.05 64.39 56.75 69.54
GECCO || 51.97 | 50.05 | 52.34 | 51.71 52.02 52.02 52.02 52.02
glo O e — s
% 95 -) M :>.<:"t
§ 20
: 85
w80
20 40 60 80 100 120 32 64 128 256 512 1024 2 4 8 16 32 64
(a) window_size (b) d_model (c) n_heads

=
o
S

== == =SSl B = —— — -Qi,\‘“f\ﬁ.

85

80
1 2 4 8 16 32 32 64 96 128 160 192 1 2 3 4 5 6
(d) patch_len (e) d_state (f) e_layers

F1 Score(%)

SMAP —— MSL PSM —— SMD

Figure 2: Parameter sensitivity studies of main hyper-parameters in KambaAD.

4.3.5 CHANNEL-INDEPENDENT (CI) OR CHANNEL-DEPENDENT (CD)

In this section, we compare the performance of CI and CD methods during reconstruction to support
our previous analysis. As shown in Table[6] across all eight datasets, the CI approach consistently
outperforms CD, demonstrating superior reconstruction performance. The necessity of employing
the CI reconstruction strategy lies in the observation that, during anomalies, some features are af-
fected while others remain unaffected. To ensure that the reconstructed data is as normal as possible,
different reconstruction strategies should be applied to these features. As shown in Figure[3] the be-
havior of feature 23 provides a clear example. In the encoder, we use the CD strategy, which causes
feature 23 to be influenced by drastically changing features, such as features 12 and 16, after step
2. This contradicts the goal of reconstructing normal data. However, the final CI reconstruction
successfully restores the data to a normal pattern.

Table 6: Performance comparison between channel-independent (CI) and channel-dependent (CD)
reconstruction methods across eight real-world multivariate datasets. Precision (P), Recall (R), and
F1-score (F1) are reported in percentages (%). The best results are highlighted in bold.

Dataset CD CI(KambaAD)
P R F1 P R F1

SMAP 94.13 99.93 96.94 98.46 99.93 99.19
MSL 91.39 100.00 95.50 98.84 100.00 99.41
SMD 86.36 90.86 88.55 97.10 97.45 97.27
PSM 92.17 89.79 90.97 99.15 97.00 98.06
Ccard 29.97 46.85 36.56 34.29 53.60 41.83
SWAN 88.57 71.32 79.02 86.75 81.12 83.84
Mulvar 44.90 54.74 49.34 73.60 65.90 69.54
GECCO 99.61 35.21 52.02 99.61 35.21 52.02

4.3.6 PARAMETER SENSITIVITY

We conducted a sensitivity analysis on KambaAD, examining key parameters (window_size,
patch_size, d_state, n_head, d_model, e_layers) and their impact on F1 scores across four datasets. As
shown in Figure [2] KambaAD exhibits stability on the SMAP and MSL datasets, where parameter
variations have a limited effect on performance. However, on the PSM and MSL datasets, the model
is more sensitive to specific parameters. Notably, on the PSM dataset, setting n_heads and e_layers to
2 and 1 respectively leads to a significant performance drop, indicating that these parameter settings
constrain the model’s capabilities. For the SMD dataset, a window_size of 60 results in a noticeable
decline in performance, suggesting that a larger context window is beneficial. Overall, KambaAD’s
performance remains stable, but further increasing hyperparameters such as d_model, n_heads, and
e_layers does not enhance performance, likely due to overfitting.

4.3.7 VISUALIZATION

In the PSM dataset, we have approximately illustrated the data shapes after passing through the
components KAN, Attention+MAMBA, and Reconstructor. It is important to note that this does not
represent the data transformations within the complete KambaAD, as the data is projected into the
model dimensions in KambaAD, making direct comparisons challenging. We incrementally built
the model up to its full configuration and output the reconstructed data at each of these three struc-
tural stages, labeled as step 1, 2, and 3, to approximate the effects of each component. This analysis
displays the anomaly scores and classifications (anomaly or normal) of each data point at each step.
To enhance clarity, the PA strategy was omitted in this section. The chosen segment includes a
point anomaly at the 10th step and a contextual anomaly around the 20th point. We visualized key
features: feature 23, unrelated to anomalies; feature 4, related to anomalies near the 20th point; and
features 12 and 16, related to both anomaly types. The results in Figure [3] show that the recon-
structed data increasingly aligns with normalcy, detecting more anomalies. KAN’s reconstruction
shifts the original data to highlight obvious mutations, resulting in large errors for mutation points

Stepl Step2 Step3

0.480

0.460

Feature4
o
B
kS
o

0.420

0.400

0.300

Featurel2
o
N
w
o

o
N
o
S
-

0.150

0.500 1 I

Featurel6
o o
> »

w ~
o w

0425 T\

0.400
0.040 1

o
o
w
o

Feature23
o
o
N
o
~

o010} \J/V

40.00 : N |

Anomaly Score
N w
I o
o o
o o
~

000 _ AN AAA VA

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Raw Data —— Reconstruction - TP —— Anomaly Score
Anomaly - FN - FP Threshold

Figure 3: The presented figure illustrates the reconstruction of features 4, 12, 16, and 23 in a data
sample from PSM following the extraction of three crucial components in KambaAD, along with the
identification of anomalous points based on their reconstructed values using an optimal threshold.

due to significant value differences, but it misses other anomalies. The Attention+MAMBA module
incorporates contextual relationships, producing more coherent data and detecting more anomalies
near the 20th point. However, it may cause excessive associations, such as unintended fluctuations in
feature 23 and deviations in normal data reconstruction. Finally, the Reconstructor normalizes fea-
tures 4, 16, and 23, while feature 12 still reflects anomaly effects but sufficiently indicates anomalies
through its divergence from the original data.

5 CONCLUSION

This paper introduced KambaAD, a novel encoder-reconstructor framework for time series anomaly
detection. By integrating KAN for initial screening and a combined attention-MAMBA approach
for refined detection, KambaAD effectively captures both global and local anomalies. Experimental
results demonstrate that KambaAD achieves state-of-the-art performance, surpassing existing meth-
ods. Ablation studies further validate the contribution of each component to KambaAD’s overall
effectiveness. Future work will explore extending KambaAD to multivariate time series.

10

REFERENCES

Mohiuddin Ahmed, Abdun Naser Mahmood, and Md Rafiqul Islam. A survey of anomaly detection
techniques in financial domain. Future Generation Computer Systems, 55:278-288, 2016.

Lucian Liviu Albu, Radu Lupu, et al. Anomaly detection in stock market indices with neural net-
works. Journal of Financial Studies, 9(5):10-23, 2020.

Josep Lluis Berral, David Buchaca, Claudia Herron, Chen Wang, and Alaa Youssef. Theta-scan:
leveraging behavior-driven forecasting for vertical auto-scaling in container cloud. In 2021 IEEE
14th International Conference on Cloud Computing (CLOUD), pp. 404-409. IEEE, 2021.

George EP Box and David A Pierce. Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. Journal of the American statistical Association,
65(332):1509-1526, 1970.

Junqgi Chen, Xu Tan, Sylwan Rahardja, Jiawei Yang, and Susanto Rahardja. Joint selective
state space model and detrending for robust time series anomaly detection. arXiv preprint
arXiv:2405.19823, 2024.

Ningjiang Chen, Huan Tu, Xiaoyan Duan, Liangqing Hu, and Chengxiang Guo. Semisupervised
anomaly detection of multivariate time series based on a variational autoencoder. Applied Intelli-
gence, 53(5):6074-6098, 2023a.

Yuhang Chen, Chaoyun Zhang, Minghua Ma, Yudong Liu, Ruomeng Ding, Bowen Li, Shilin He,
Saravan Rajmohan, Qingwei Lin, and Dongmei Zhang. Imdiffusion: Imputed diffusion models
for multivariate time series anomaly detection. arXiv preprint arXiv:2307.00754, 2023b.

Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. Deep learning for anomaly detection in
time-series data: Review, analysis, and guidelines. IEEE access, 9:120043-120065, 2021.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4027—
4035, 2021.

Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, and Kalyan Veera-
machaneni. Tadgan: Time series anomaly detection using generative adversarial networks. In
2020 ieee international conference on big data (big data), pp. 33—43. IEEE, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Yongping He, Tijin Yan, Yufeng Zhan, Zihang Feng, and Yuanqing Xia. Sgfm: Conditional flow
matching for time series anomaly detection with state space models. [EEE Internet of Things
Journal, 2024.

Waleed Hilal, S Andrew Gadsden, and John Yawney. Financial fraud: a review of anomaly detection
techniques and recent advances. Expert systems With applications, 193:116429, 2022.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554-2558, 1982.

Alexis Huet, Jose Manuel Navarro, and Dario Rossi. Local evaluation of time series anomaly detec-
tion algorithms. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 635-645, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

11

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Min-Ki Lee, Seung-Hyun Moon, Yourim Yoon, Yong-Hyuk Kim, and Byung-Ro Moon. Detecting
anomalies in meteorological data using support vector regression. Advances in Meteorology, 2018
(1):5439256, 2018.

Zhihan Li, Youjian Zhao, Jiagi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. Multivariate time se-
ries anomaly detection and interpretation using hierarchical inter-metric and temporal embedding.
In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp.
3220-3230, 2021.

Benjamin Lindemann, Benjamin Maschler, Nada Sahlab, and Michael Weyrich. A survey on
anomaly detection for technical systems using Istm networks. Computers in Industry, 131:
103498, 2021.

Yi Liu, Yanni Han, and Wei An. Attvae: a novel anomaly detection framework for multivariate time
series. In International Conference on Science of Cyber Security, pp. 407-420. Springer, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024.

Mustafa Matar, Tian Xia, Kimberly Huguenard, Dryver Huston, and Safwan Wshah. Multi-head
attention based bi-Istm for anomaly detection in multivariate time-series of wsn. In 2023 IEEE
5th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 1-5.
IEEE, 2023.

Mohsin Munir, Muhammad Ali Chattha, Andreas Dengel, and Sheraz Ahmed. A comparative anal-
ysis of traditional and deep learning-based anomaly detection methods for streaming data. In
2019 18th IEEE international conference on machine learning and applications (ICMLA), pp.
561-566. IEEE, 2019.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S Tsay, Aaron Elmore, and Michael J
Franklin. Volume under the surface: a new accuracy evaluation measure for time-series anomaly
detection. Proceedings of the VLDB Endowment, 15(11):2774-2787, 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533-536, 1986.

Alberto Sabater, Luis Montesano, and Ana C Murillo. Event transformer. a sparse-aware solution
for efficient event data processing. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2677-2686, 2022.

Moritz Scherer, Michele Magno, Jonas Erb, Philipp Mayer, Manuel Eggimann, and Luca Benini.
Tinyradarnn: Combining spatial and temporal convolutional neural networks for embedded ges-
ture recognition with short range radars. IEEE Internet of Things Journal, 8(13):10336-10346,
2021.

Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierar-
chical one-class network. Advances in Neural Information Processing Systems, 33:13016—-13026,
2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

12

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2828-2837,
2019.

Mingyan Teng. Anomaly detection on time series. In 2010 IEEE International Conference on
Progress in Informatics and Computing, volume 1, pp. 603—-608. IEEE, 2010.

Markus Thill, Wolfgang Konen, Hao Wang, and Thomas Béck. Temporal convolutional autoencoder
for unsupervised anomaly detection in time series. Applied Soft Computing, 112:107751, 2021.

Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. Tranad: Deep transformer networks for
anomaly detection in multivariate time series data. arXiv preprint arXiv:2201.07284, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
analysis. arXiv preprint arXiv:2410.16032, 2024.

Yuanyuan Wei, Julian Jang-Jaccard, Wen Xu, Fariza Sabrina, Seyit Camtepe, and Mikael Boulic.
Lstm-autoencoder-based anomaly detection for indoor air quality time-series data. IEEE Sensors
Journal, 23(4):3787-3800, 2023.

Tailai Wen and Roy Keyes. Time series anomaly detection using convolutional neural networks and
transfer learning. arXiv preprint arXiv:1905.13628, 2019.

Julia Wolleb, Florentin Bieder, Robin Sandkiihler, and Philippe C Cattin. Diffusion models for med-
ical anomaly detection. In International Conference on Medical image computing and computer-

assisted intervention, pp. 35—45. Springer, 2022.

Feng Xia, Xin Chen, Shuo Yu, Mingliang Hou, Mujie Liu, and Linlin You. Coupled attention
networks for multivariate time series anomaly detection. IEEE Transactions on Emerging Topics
in Computing, 12(1):240-253, 2023.

Chunjing Xiao, Zehua Gou, Wenxin Tai, Kunpeng Zhang, and Fan Zhou. Imputation-based time-
series anomaly detection with conditional weight-incremental diffusion models. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2742-2751,
2023.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642, 2021.

Asrul H Yaacob, Ian KT Tan, Su Fong Chien, and Hon Khi Tan. Arima based network anomaly
detection. In 2010 Second International Conference on Communication Software and Networks,
pp- 205-209. IEEE, 2010.

Yiyuan Yang, Chaoli Zhang, Tian Zhou, Qingsong Wen, and Liang Sun. Dcdetector: Dual at-
tention contrastive representation learning for time series anomaly detection. arXiv preprint
arXiv:2306.10347, 2023.

Jinpo Zeng. Deep learning based anomaly detection in time-series data. 2020.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. arXiv preprint
arXiv:1910.07467, 2019.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency

for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

13

Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai Tong, Bixiong Xu,
Jing Bai, Jie Tong, and Qi Zhang. Multivariate time-series anomaly detection via graph attention
network. In 2020 IEEE International Conference on Data Mining (ICDM), pp. 841-850. IEEE,
2020.

Zheng Zhu, Rongbin Gu, ChenLing Pan, Youwei Li, Bei Zhu, and Jing Li. Cpu and network
traffic anomaly detection method for cloud data center. In Proceedings of the 1st International
Conference on Advanced Information Science and System, pp. 1-7, 2019.

14

A ALGORITHM

Algorithm 1 KambaAD Model: Encoder and Reconstructor

Require: Raw windowed data x € RBXWXF “where B is the batch size, W is the window size,
and F' is the feature dimension.
Ensure: Reconstructed data & econstructed
1: Initialize: Multiple Encoders and a Reconstructor

2: Encoder:
3: for each encoder layer do
4 ZkaN < (KAN+Dropout)(Zinput) > Preliminary anomaly detection
5: Zproj ¢ Linear(zkan) > Projection of ' — D
6: Tnom1 — LayerNorm(Zprw;) > Normalization
7 Zan ¢ (MHA+Dropout)(Znomi) > Multi-head Attention for Global anomaly detection
8: Tresl < Tattn + Tnorml > Residual connection
9: Tnorm2 < LayerNorm(Tresi) > Normalization
10: Zmampa < (Mamba+Dropout)(Znomz) > Local anomaly detection using Mamba
11: Tres2 < TMAMBA + Tnorm2 > Residual connection
12: Tnorm3 < LayerNorm(Tres) > Normalization
13: Zene ¢ Linear(Tnom3) > Projection of D — F'
14: end for
15: Reconstructor:
16: Tperm — Permut ation(®2b (Zenc) > Preparation for patch unfolding
17: if pad = ’end’ then
18: Tpad < ReplicationPadld(Zpem) > padding if necessary
19: else
20: Tpad < Tperm > No padding
21: end if
22: Tpyen + Unfoldldimension="1,P.9) (5) > Patch division
23 Zparch_proj <~ Linear(Tpatch) > Increase dimension to D
24: Treconstructed < CLLinear(acpmhfpmj) > Channel-independent reconstruction
25! Treconstructed < Permutation (%1 (Zreconstructed) > Final output permutation

return econstructed

B RELATED WORK: CLASSICAL, MODELS FOR ANOMALY DETECTION

Statistical methods, particularly effective for low-dimensional data, include moving averages, ex-
ponential smoothing, and the Autoregressive Integrated Moving Average (ARIMA) model (Box &
Piercel [1970). Moving averages smooth out short-term fluctuations in data to identify trends, while
exponential smoothing gives more weight to recent observations. The ARIMA model combines
autoregression, differencing, and moving averages to capture temporal dependencies in time series
data. These models calculate residuals, where larger residuals may indicate anomalies (Yaacob et al.,
2010). If the anomaly score, derived from these residuals, exceeds a specified threshold, the data is
classified as anomalous.

Machine learning-based methods encompass a range of approaches, from classical algorithms to
advanced deep learning techniques. Classical algorithms include:

* One-Class Support Vector Machines (One-Class SVM): This method identifies a bound-
ary around normal data points, classifying points outside the boundary as anomalies.

* k-Nearest Neighbor (k-NN): It classifies data points based on their proximity to other
points, with outliers being far from their neighbors.

* Random Forests: An ensemble method that constructs multiple decision trees, with out-
liers being those that frequently end up in the less common branches.

* k-means clustering: This method groups data into clusters, where points far from any
cluster center are considered anomalies.

15

* Gaussian Mixture Models: These models assume that data is generated from a mixture
of several Gaussian distributions, with anomalies being points that don’t fit well into any
distribution.

* Isolation Forest: It isolates anomalies by recursively partitioning the data, with anomalies
being the first to be isolated.

* Local Outlier Factor (LOF): This method identifies anomalies by comparing the local
density of each point to that of its neighbors.

Advanced deep learning techniques include:

* Recurrent Neural Networks (RNN): Designed for sequential data, RNNs capture tempo-
ral dependencies in time series (Hopfield, [1982).

* Long Short-Term Memory (LSTM): A special type of RNN, LSTMs are particularly
effective at learning long-term dependencies in sequences (Hochreiter & Schmidhuber,
1997).

* Autoencoders (AE): These neural networks learn to encode data into a lower-dimensional
space and then reconstruct it; anomalies are identified by high reconstruction errors
(Rumelhart et al., |1986).

* Variational Autoencoders (VAE): A probabilistic variant of autoencoders that models
data distributions and identifies anomalies through reconstruction errors or latent space
deviations (Kingma & Welling, 2013)).

* Generative Adversarial Networks (GAN): These consist of two networks (a generator
and a discriminator) that learn to generate data; anomalies are identified by the discrimina-
tor’s failure to classify generated data correctly (Goodfellow et al., 2014).

* Transformers: Known for their attention mechanisms, Transformers are effective at pro-
cessing sequential data, especially in contexts where relationships between different parts
of the sequence matter (Vaswani et al.| 2017).

* Graph Neural Networks (GNN): These networks are tailored for data with graph struc-
tures, identifying anomalies based on the relationships between nodes in the graph (Kipf &
Welling, |2016)).

* Diffusion models: A newer approach that uses probabilistic methods to model complex
data distributions and identify anomalies based on how well data fits these distributions.

* Mamba: Mamba is an innovative state space model that has recently gained attention in
the field of machine learning and natural language processing. Developed as an alternative
to traditional transformer architectures, Mamba leverages the power of state space models
to process sequential data efficiently(Gu & Daol [2023).

In anomaly detection, these methods generate a score for each data point, which is then compared
to a threshold to determine whether the point is normal or anomalous.

Advanced deep learning methods are increasingly employed for anomaly detection due to their
ability to capture complex patterns in high-dimensional data. Techniques such as Recurrent Neural
Networks (RNN) (Choi et al.,[2021)), Long Short-Term Memory (LSTM) (Wei et al., 2023)), Autoen-
coders (AE) (Thill et al., [2021)), Variational Autoencoders (VAE) (Chen et al., [2023a), Generative
Adpversarial Networks (GAN) (Geiger et al., 2020), Transformers (Xu et al., 2021, Graph Neural
Networks (GNN) (Deng & Hooi, 2021), Diffusion models (Wolleb et al., [2022) and Mamba (Chen
et al.,[2024} |He et al., |2024)) are prominent examples. These methods generate a score for each data
point, which is then compared to a threshold to assess whether the point is anomalous or within the
normal range.

C KAN ARCHITECTURE AND ITS IMPLEMENTATION

KAN, with its efficient parameterization and ability to approximate complex functions, effectively
identifies anomalies that violate physical laws. The theoretical basis of KAN is the Kolmogorov-
Arnold Representation Theorem, which states that any multivariate continuous function can be ex-
pressed as a composition of univariate functions and summation operations. Each univariate function

16

is modeled as a B-spline curve with learnable coefficients. In this section, we describe the custom
implementation of the Kernel Activation Network (KAN). Unlike the original KAN, our model sim-
plifies the input transformations, ensuring efficient information flow through the network. The steps
are as follows:

C.1 INPUT RESHAPING
Let the input tensor be X € REXTXF \where:

e B is the batch size,
* T is the sequence length (time steps),

e F'is the feature dimension.

We first reshape X into a two-dimensional matrix:
X" = Reshape(X, [B x T, F]). (12)

This results in X’ € R(BXT)*F flattening the batch and time dimensions for further computation.

C.2 KAN TRANSFORMATION

In a K-layer KAN (Kernel Activation Network), the transformation through the network is con-
structed as a series of operations applied across multiple layers. This can be represented mathemat-
ically as:

KAN(Z) = (¢K—10¢)K—20"'0‘1)1O¢)0) Z. (13)

Here, Z € R™" is the input vector to the network, and ®; represents the operation performed by the
i-th layer. Each layer in the network receives an input of size n;, and outputs a vector of size noy.

Every KAN layer ®; comprises a set of learnable activation functions denoted by ¢, ,, where

each function ¢, , maps input dimension p to output dimension ¢, with p = 1,2,...,nj, and
g = 1,2,... ,noy. The entire transformation performed by each layer k can thus be described
as:

Ziy1 = P17y, (14)

where Z;, € R™* is the input to the k-th layer, and Z; represents the output. The transformation
matrix @y includes the learnable activation functions in the following form:

Or1.1() Sra2() o PR, ()

Dr,2,1() br22() o Pr2m, ()
by = . . .

. . . . (15)
¢k,nk4;1,1(') ¢k,nk;1>2(') s ¢k;nk+.1;nk ()

Each element ¢y, 4 ,, is a learnable activation function that governs the relationship between input
feature p and output feature q.

C.3 NESTED TRANSFORMATION IN KAN
The entire KAN network can be viewed as a recursive application of these layer transformations,

where each subsequent layer takes the output of the previous layer as input. Mathematically, this is
expressed as:

ZK:<I>K_1O<I)K_20'~O<I)OZ. (16)

At every layer, the transformation matrix ®; modifies the input vector Z;, to generate the output
vector Z 1, where each activation function is applied to the corresponding elements of the input.

17

C.4 RESTORING THE ORIGINAL SHAPE

The transformed output K is reshaped back to its original three-dimensional form:
K’ = Reshape(K, [B, T, D)). (17

This operation restores the batch and sequence dimensions, which results in K’ € RBXTXD and D
is the dimension of the new feature space.

C.5 RESIDUAL ADDITION AND DROPOUT

At this stage, we form a residual connection by combining the transformed output K’ with a linear
transformation of the original input. This process is formalized as:

Y = Dropout(K’) + WX. (18)

In the above formula, Dropout(K’) applies dropout regularization to the transformed output, en-
hancing the model’s robustness and preventing overfitting. The term WX represents a linear trans-
formation of the original input X € REXT*F with W € R¥*P being a learnable weight matrix
that projects the input into the new feature space of dimension D. This residual connection facil-
itates the flow of information from earlier layers, mitigating the vanishing gradient problem and
enabling the network to learn both transformed and original features effectively.

C.6 LAYER NORMALIZATION

Finally, the result Y is normalized using layer normalization:
Z = LayerNorm(Y). (19)

This ensures that each feature in 'Y has a consistent scale, stabilizing training and improving con-
vergence.

D LINEAR RECONSTRUCTION

The primary objective of implementing patch segmentation lies in harnessing the inherent local sim-
ilarities within time series data to efficiently extract coherent features from adjacent data points. By
partitioning the data into smaller, manageable patches, we not only simplify the analysis process
but also significantly reduce the computational complexity of subsequent reconstruction tasks. This
approach essentially treats each patch as a self-contained entity, fostering a more streamlined pro-
cessing pipeline where each patch’s data is considered and manipulated as a unified whole. As a
result, the overall reconstruction effort becomes more efficient and manageable, as the complexity
of operations is distributed across smaller, more manageable segments. The reason we choose to
perform patch partition after feature extraction is that anomalies often appear continuously. If the
number of anomalous points within a patch exceeds that of normal points, it becomes difficult to
reconstruct them into normal data. However, our goal is to make the reconstructed data as normal as
possible, so that we can better distinguish points through errors.

Given an input data matrix Xe,. processed by the encoder, where X.,,. has dimensions n x k, with
n representing the length of the data sequence and k representing the feature dimension of each
data point. Subsequently, this data matrix undergoes a process called patching, resulting in a new

matrix Xpacn With dimensions (paw#en] x patch_len x k, where patch_len is the predefined number

of elements in each patch and [-] denotes the ceiling function.

During this transformation, the data sequence is uniformly divided into segments of length patch_len.
If the length n of the original data sequence X, is not divisible by patch_len, the last patch will
have a length less than patch_len. In such cases, a zero-padding strategy is employed to ensure that
all patches have a uniform length of patch_len, maintaining the regularity of the matrix Xpqcn for
subsequent processing or analysis.

At last, we conduct linear reconstruction in an independent channel manner. In multivariate time
series, each feature exhibits distinct trends, periodicity, seasonality, and other characteristics, and
when anomalies occur, it does not necessarily mean that all features exhibit anomalies. Therefore,

18

to avoid mutual constraints and interference among features, we choose an independent channel ap-

proach. Given the data matrix Xp,cn With dimensions { x patch_len x k, where k represents

_n
patch_len

the number of features, and { 1 is defined as patch_num, the number of patches.Our objective

_n__
patch_len
is to undertake a channel-independent linear reconstruction process, detailed as follows:

First, we execute a Channel-wise linear projection where, for each feature dimension ¢ €
{1,2,...,k}, aunique linear transformation W, € Rd-modelxpatch-len j5 applied to project the patches
Xpatch(-,-,i) Of the i-th feature from patch_len dimensions to d_model dimensions. This projection is
mathematically expressed as:

Y; = Xpatch(-,-,i)) WzTa (20)

where Y; € Rpach-numxdmodel renregents the projected matrix with dimensions patch_num x
d_model.

Subsequently, we perform a reshape operation by transforming each Y; into a column vector y; €
IR (patch-num-d.model) < 1 ¢, facilitate further processing.

Next, we undertake a final dimensionality reduction step where, for each y;, a linear transformation
V; € R (pachnum-d-model) j¢ applied to reduce the dimensionality from (patch_num - d_model) to n,
yielding X; € R"*1:

X; = Viyi. 2D

Finally, we execute a concatenation process to form the reconstructed matrix X € R"** by con-

catenating all X; (for7 = 1,2, ..., k) along the feature dimension. Each column of X represents the
reconstructed values for a corresponding feature.

This process completes the transformation from the original patch representation to the reconstructed
time-series data, while preserving the independence of features.

E DATASET STATISTICS

The statistics of all datasets are illustrated in the Table [7]

Table 7: Dataset Statistics.

Benchmark Dimension || #Training | #Test (Labeled) | AR (%)
MSL(Mars Science Laboratory dataset) 55 58,317 73,729 10.5
NIPS_TS_Ccard 28 142, 403 142, 404 0.2
NIPS_TS_Swan 38 60, 000 60, 000 32.6
NIPS_TS_Syn_Mulvar 5 80, 000 80, 000 22
NIPS_TS_GECCO 9 69, 260 69, 261 1.1
PSM(Pooled Server Metrics) 25 132, 481 87, 841 27.8
SMAP(Soil Moisture Active Passive dataset) 25 138, 004 435, 826 12.8
SMD(Server Machine Dataset) 38 708, 405 708, 420 4.2

F METRICS

F.1 AFFILIATION METRIC: A METRIC FOR COMPREHENSIVE EVENT LOCALIZATION
ASSESSMENT

The Affiliation metric, introduced by Huet et al., represents a sophisticated metric that integrates

both precision and recall to evaluate the accuracy of event localization in a manner that is robust
to potential interferences. This metric innovatively utilizes the Hausdorff distance to measure the

19

disparity between the true and predicted events, thereby providing a comprehensive assessment of
the spatial alignment between the two. Furthermore, it incorporates individual probabilities within
the designated Affiliation region for normalization purposes, enhancing the metric’s sensitivity to
varying degrees of confidence in the predictions.

A notable strength of the Affiliation metric lies in its creative application of the Hausdorff distance,
which is known for its effectiveness in quantifying the maximum mismatch between two sets of
points. This characteristic enables the metric to capture fine-grained discrepancies in event localiza-
tion, offering a nuanced perspective on the performance of the system. Additionally, the integration
of probabilities within the Affiliation region ensures that the score reflects not only the spatial accu-
racy but also the level of certainty associated with each prediction.

However, it is crucial to acknowledge the limitations of the Affiliation metric as well. Firstly, the size
of the Affiliation region exerts a significant influence on the resulting score, potentially leading to
an overestimation of performance when minimal gains in precision are achieved. This highlights the
need for careful calibration of the region’s dimensions to ensure an unbiased evaluation. Secondly,
the metric exhibits a limitation in discriminating between false predictions within the Affiliation
region, potentially masking errors that would otherwise be revealed. Lastly, the Affiliation metric
exhibits a bias towards false positives over false negatives, which may skew the overall assessment
of the system’s performance, particularly in scenarios where a high degree of accuracy is paramount.

To mitigate these limitations, future research could explore the refinement of the Affiliation region’s
definition, as well as the development of additional metrics that complement the Affiliation metric
in capturing different aspects of event localization performance. By addressing these challenges,
the Affiliation metric can be further strengthened as a valuable tool for assessing and comparing the
accuracy of event localization systems in scientific research.

F.2 THE VOLUME UNDER THE SURFACE (VUS) METRIC: ENHANCING ANOMALY
DETECTION EVALUATION THROUGH DISTANCE-BASED INSIGHTS

The Volume Under the Surface (VUS) metric, introduced by Paparrizos et al., represents a ground-
breaking extension of AUC-based evaluation methodologies, specifically tailored to accommodate
distance-based anomalies. Its fundamental novelty stems from the innovative label transformation
technique employed, coupled with the meticulous computation of the volumetric aspect beneath the
ROC curves constructed across a spectrum of buffer lengths. This intricate approach transcends
traditional binary labeling, transforming it into a continuum of values that inherently biases towards
an overestimation of false positives compared to false negatives, thereby providing a more nuanced
and informative view of anomaly detection performance.

By seamlessly integrating this sophisticated label transformation mechanism with a meticulous vol-
umetric assessment beneath the ROC surface, the VUS metric presents a comprehensive and multi-
faceted evaluation framework for anomaly detection systems. This framework is particularly adept
at capturing nuances in performance that are often overlooked by conventional metrics, particularly
in scenarios where the proximity to the decision boundary is of paramount importance. By enabling
a deeper understanding of how anomaly detection algorithms behave across varying levels of confi-
dence and proximity to the threshold, the VUS metric empowers researchers and practitioners alike
to assess and benchmark the performance of diverse anomaly detection techniques with unprece-
dented precision and rigor.

Furthermore, the VUS metric underscores the importance of considering not just the absolute classi-
fication accuracy but also the confidence associated with each prediction, as well as the distribution
of predictions across the ROC space. This holistic approach enables a more complete and accurate
portrayal of anomaly detection performance, ultimately facilitating the development and refinement
of more effective and reliable anomaly detection systems. In summary, the VUS metric stands as a
valuable and indispensable tool in the ongoing pursuit of enhancing anomaly detection capabilities
within the scientific community.

20

G EXPERIMENTAL SETUP AND ENVIRONMENT

Our experiments were conducted on 4 A800 GPUs. In the course of our experiments, the model
parameters exhibited variability in their configuration across diverse datasets. The same parameters
will be applied to different data sets for presentation in Table (8|, while different parameters will be
set for various data sets displayed in Table[9]

Table 8: The common hyperparameter settings used for training the model across all datasets.

hyper-parameter Value hyper-parameter Value
window _size 100 expand 2
batch_size 8 fc_dropout 0.05
dropout 0.3 d_conv 4
padding_patch end epochs 2
individual 1 d_state 64

Table 9: The dataset-specific hyperparameter settings used for training the model on different
datasets.

Dataset hyper-parameter .

patch_len n_heads d_model stride e_layers
MSL 16 32 S0) 5
SMD 8 4 512 4 1
PSM 8 4 64 4 5
Ccard 2 4 256 4 5
SWAN 2 8 512 4 5
Mulvar 1 32 128 4 5
GECCO 32 2 64 4 5

H ORDER OF COMPONENTS

In the KambaAD encoder, the sequence of the two components in the two-stage anomaly detection
process is a crucial aspect of our design. This configuration is intentional: we aim for the KAN
to capture evident physical anomalies, while the combination of attention and MAMBA is tasked
with analyzing more subtle, less apparent anomalies. Specifically, the KAN is designed to detect
anomalies that significantly deviate from expected physical properties, whereas attention+tMAMBA
component is engineered to identify more nuanced irregularities that might elude conventional de-
tection methods. This hierarchical approach allows for a comprehensive anomaly detection process,
addressing both obvious physical inconsistencies and intricate patterns that require more sophisti-
cated analysis. Rigorous experiments compared KambaAD’s encoder with configurations swapping
these components. The results are shown in the Table[I0]. Results show reversing the order reduced
stability and accuracy, confirming KambaAD’s design.

Our comprehensive experimental analysis provides strong evidence for the rationality and efficacy of
the sequential order in KambaAD’s two-stage anomaly detection process. The results consistently
show that this carefully designed sequence significantly enhances the overall performance of the
model across various datasets and anomaly types.

21

Table 10: Performance comparison of three models with different component orders: KAN-
MAMBA-attention, Attention-MAMBA-KAN, and KambaAD (KAN-attention-MAMBA) across
eight real-world multivariate datasets. Precision (P), Recall (R), and F1-score (F1) are reported in
percentages (%). The best results are highlighted in bold, and the second-best results are underlined.

KAN-MAMBA -attention || attention-MAMBA-KAN KambaAD
P R F1 P R F1 P R F1
SMAP | 95.33 | 99.92 97.57 94.97 | 99.67 97.26 98.46 | 99.93 | 99.19
MSL 93.30 | 99.55 96.32 90.55 | 100.00 | 95.04 98.84 | 100.00 | 99.41
SMD 89.28 | 93.85 91.51 92.37 | 95.86 94.08 97.10 | 9745 | 97.27
PSM 69.21 | 94.20 79.79 98.59 | 98.10 98.34 99.15 | 97.00 | 98.06
Ccard || 31.27 | 45.50 37.06 59.68 | 16.67 26.06 34.29 | 53.60 | 41.83
SWAN || 96.52 | 65.11 77.76 89.25 | 72.21 79.83 86.75 | 81.12 | 83.84
Mulvar | 53.92 | 58.17 55.97 80.59 | 74.54 77.44 73.60 | 65.90 | 69.54
GECCO || 99.61 | 35.21 52.02 99.23 | 35.21 51.97 99.61 | 35.21 | 52.02

Dataset

I COMPARISON OF VISUAL RESULTS

This section visually compares the anomaly scores produced by KambaAD, DCdetector, and Anom-
alyTransformer on a segment of the NIPS_TS_Syn_Mulvar dataset with five distinct features. As
shown in Figure[d] the comparison highlights each model’s ability to detect anomalies in this com-
plex time series. KambaAD demonstrates greater sensitivity, identifying subtle anomalies that
DCdetector and AnomalyTransformer miss, particularly in regions where deviations are less ap-
parent. This underscores KambaAD’s effectiveness in capturing a wider range of anomaly patterns.

g 8 ‘
o 0.8 0 0.8 \
s s
B 0.4 §oa

0.0 0.0 h

1.2 1.2
b 3
® 0.8 o 0.8
s s
© 0.4 E 0.4

0.0 0.0

" ;
o 12 £ 04 threshold
0 o
o 0.8 = 03
>

- ® 0.2
3 0-4 £
w I - 601 =

0.0 é
5 04 ? threshold a 04 Al threshold
To3 <03
2 3 .
202 €02 mas V A R & 2 oR ™
S Gl

0.1 ¥ 0.1

0 20 40 60 80 100 0 20 40 60 80 100

Figure 4: Comparison of anomaly scores from KambaAD, DCdetector, and AnomalyTransformer
on the same data segment. The upper panel shows time series features with anomalies in red, while
the lower panel presents the models’ anomaly scores, also highlighting detected anomalies in red.

22

J ABLATION STUDY

This section presents the comparative results of ablation experiments conducted by increasing the
number of Encoder and Reconstructor parameters to match those under the full KambaAD. We con-
trol that the number of parameters is almost equal across the data sets, and the results are shown
in the Table The observation reveals that even when the number of model parameters is in-
creased to match KambaAD, employing only the Encoder or Reconstructor still yields inferior re-
sults compared to KambaAD. The performance remains largely unchanged from before increasing
the parameter count, which aligns with our findings in the parameter sensitivity study.

Table 11: Performance comparison between the Encoder-only, Reconstruction-only, and KambaAD
models across eight real-world multivariate datasets, with the model sizes kept approximately equiv-
alent. Precision (P), Recall (R), and F1-score (F1) are reported in percentages (%). The best results
are highlighted in bold, and the second-best results are underlined.

Encoder Reconstructor KambaAD

Dataset || total_params
P R F1 P R F1 P R F1
MSL 79729761 || 89.64 | 100.00 | 94.54 || 91.74 | 100.00 | 95.69 || 98.84 | 100.00 | 99.41
SMAP 23291491 || 96.64 | 99.70 | 98.14 |/ 94.59 | 99.70 [97.08 || 98.46 | 99.93 | 99.19
SMD 55610435 || 84.01 | 88.80 | 86.33 || 87.68 | 94.62 (91.02 || 97.10 | 97.45 | 97.27
PSM 4872942 || 98.73 | 96.98 [97.85(97.93 | 98.22 | 98.07 || 99.15 | 97.00 | 98.06
Ccard 20944784 || 30.14 | 48.20 [37.09 || 49.35| 17.12 | 25.42 || 34.29 | 53.60 | 41.83
SWAN 55153477 || 89.29 | 70.97 | 79.08 || 91.86 | 63.79 | 75.30 || 86.75 | 81.12 | 83.84
Mulvar 2723502 | 62.30 | 66.24 | 64.07 || 67.75 | 61.36 | 64.39 | 73.60 | 65.90 | 69.54
GECCO 1647684 || 82.37 | 35.21 [49.33195.90 | 35.21 | 51.50 || 99.61 | 35.21 | 52.02

K COMPUTATIONAL RESOURCE EFFICIENCY COMPARISON

This section presents an evaluation of the computational efficiency of our proposed model, Kam-
baAD, in comparison to two state-of-the-art baselines: AnomalyTransformer and DCdetector. Our
assessment encompasses several key metrics: Training Time (seconds), GPU Expend (MB), Mem-
ory Expend (MB), Model Size (MB), and Parameter Count (millions). The evaluation was conducted
using four benchmark datasets: MSL, SMAP, SMD, and PSM.

For KambaAD, we employed optimal parameter settings for each dataset to maximize performance.
In contrast, AnomalyTransformer and DCdetector were evaluated using their default parameter con-
figurations. It is noteworthy that the model size of KambaAD exhibits significant variation across
different datasets due to the adaptive parameter selection. Conversely, DCdetector demonstrates
minimal fluctuation in model size across datasets, while AnomalyTransformer shows moderate vari-
ation. Table[T2]presents a comprehensive comparison of the efficiency metrics for all three models
across the four datasets. The experimental results demonstrate that the training time of KambaAD is
comparable to that of AnomalyTransformer, yet significantly shorter than that of DCdetector. This
indicates that the training time of KambaAD does not pose a limitation to its practical applicability.
Regarding memory consumption, KambaAD consistently exhibits the lowest memory usage across
all four datasets. In terms of GPU utilization, KambaAD demonstrates varying behavior depend-
ing on the dataset and hyperparameter settings. For the MSL, SMAP, and SMD datasets, when
the hyperparameters are set to larger values, the GPU usage of KambaAD falls between that of
AnomalyTransformer and DCdetector. However, for the PSM dataset, where the hyperparameters
are configured with smaller values, KambaAD achieves the lowest GPU utilization among the three
models. The metrics of GPU utilization, model size, and the number of parameters are inherently
dependent on the hyperparameter configurations. Referring to the hyperparameter settings detailed
in Appendix G, we observe that on the PSM dataset, where the hyperparameters are set to smaller
values, the model size and parameter count of KambaAD are smaller than those of AnomalyTrans-
former and DCdetector under their default hyperparameter settings. In contrast, for the other three
datasets, where the hyperparameters are configured with larger values, the model size and parameter

23

count of KambaAD can exceed those of the other two models. Nevertheless, its GPU utilization re-
mains between that of AnomalyTransformer and DCdetector. Overall, the computational efficiency
of KambaAD, as measured by training time, memory consumption, GPU utilization, model size,
and parameter count, falls within an acceptable range.

Table 12: Comprehensive Computational Efficiency Analysis of KambaAD, AnomalyTransformer,
and DCdetector: A Comparative Study across MSL, SMAP, SMD, and PSM Datasets. Metrics
include Training Time (seconds), GPU Expend (MB), Memory Expend (MB), Model Size (MB),
and Parameter Count (millions).

Dataset | Model Name | Train_Time | GPU_Expend | Mem_Expend | Mode_Size | Parameter
DCdetector 4992.19 1464.77 1807.66 117.84 | 26971447

MSL | AnomalyTrans 491.81 139.82 1704.99 28.34 | 4863055
KambaAD 850.48 997.07 1383.47 218.39 | 79729761
DCdetector 6786.42 2011.68 1844.92 117.72 | 26940697

SMAP | AnomalyTrans 743.45 228.29 1741.71 28.10| 4801585
KambaAD 738.11 343.80 1182.07 134.47 | 23291491
DCdetector 50497.50 3731.22 4571.61 117.77 | 26954022

SMD | AnomalyTrans 5700.84 278.42 4483.34 28.20 | 4828222
KambaAD 8383.43 703.47 1882.97 170.83 | 55610435
DCdetector 3664.14 4372.50 1495.27 117.72 | 26940697

PSM | AnomalyTrans 505.70 391.76 1429.14 28.10| 4807732
KambaAD 801.09 95.54 1196.90 21.51| 4872942

L THE SOURCES OF THE RESULTS FROM THE BASELINE MODEL

The experimental results for various baseline models were sourced from multiple publications
to ensure a comprehensive and fair comparison. Results for ImDiffusion, DiffAD, DCdetector
and TimeMixer++ were obtained directly from their respective original publications. For Omni-
Anomaly, InterFusion, THOC, and AnomalyTransformer, we extracted the results from the DCde-
tector paper. For itransformer, we extracted the results from TimeMixer++ paper. In the case
of GDN and TranAD, we utilized a combination of sources. The results for SMD, MSL, and
SMAP datasets were sourced from the TranAD paper, while the PSM dataset results were ob-
tained from the ImDiffusion paper. Similarly, for MTAD-GAT, the MSL and SMAP results were
taken from the original MTAD-GAT paper, whereas the SMD and PSM results were sourced from
the ImDiffusion paper. For Crossformer, PatchTST, and ModernTCN, all results were extracted
from the ModernTCN paper, providing a consistent basis for comparison among these models. Re-
garding AnomalyTransformer and DCdetector, we adopted a dual approach. The results for the
NIPS_TS_Swan and NIPS_TS_GECCO datasets were sourced from the DCdetector paper. However,
for the NIPS_TS_CCard and NIPS_TS_Syn_Mulvar datasets, we conducted our own experimental
evaluations to ensure completeness and verify the models’ performance under our specific experi-
mental conditions.

24

	Introduction
	Problem Definition
	Methodology
	Overview
	ENCODER
	STAGE ONE: Coarse-Grained Anomaly Filtering
	STAGE TWO: Fine-Grained Pattern Recognition

	Reconstructor
	 Detection

	Experiments
	Benchmark Datasets
	Baselines and Evaluation Criteria
	Main Results
	Performance
	KAN for Window Information Capture
	Ablation Experiment
	Order of Components
	 channel-independent (CI) or channel-dependent (CD)
	Parameter Sensitivity
	Visualization

	Conclusion
	ALGORITHM
	Related Work: Classical, Models for Anomaly Detection
	KAN architecture and its implementation
	Input Reshaping
	KAN Transformation
	Nested Transformation in KAN
	Restoring the Original Shape
	Residual Addition and Dropout
	Layer Normalization

	Linear Reconstruction
	Dataset Statistics
	Metrics
	Affiliation metric: A Metric for Comprehensive Event Localization Assessment
	The Volume Under the Surface (VUS) Metric: Enhancing Anomaly Detection Evaluation through Distance-Based Insights

	Experimental Setup and Environment
	Order of Components
	Comparison of visual results
	ABLATION STUDY
	Computational Resource Efficiency Comparison
	The sources of the results from the baseline model

