

ATOM-ANCHORED LLMS SPEAK CHEMISTRY: A RETROSYNTHESIS DEMONSTRATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Applications of machine learning in chemistry are often limited by the scarcity
012 and expense of labeled data, restricting traditional supervised methods. In this
013 work, we introduce a framework for molecular reasoning using general-purpose
014 Large Language Models (LLMs) that operates without requiring labeled training
015 data. Our method anchors chain-of-thought reasoning to the molecular structure
016 by using unique atomic identifiers. First, the LLM performs a zero-shot task to
017 identify relevant fragments and their associated chemical labels or transformation
018 classes. In an optional second step, this position-aware information is used in a
019 few-shot task with provided class examples to predict the chemical transformation.
020 We apply our framework to single-step retrosynthesis, a task where LLMs have
021 previously underperformed. Across academic benchmarks and expert-validated
022 drug discovery molecules, our work enables LLMs to achieve high success rates
023 in identifying chemically plausible reaction sites ($\geq 90\%$), named reaction classes
024 ($\geq 40\%$), and final reactants ($\geq 74\%$). Ultimately, our work establishes a general
025 blueprint for applying LLMs to challenges where molecular reasoning and
026 molecular transformations are key, positioning atom-anchored LLMs as a powerful
027 solution for data-scarce chemistry domains.

1 INTRODUCTION

031 General-purpose large language models (LLMs) have advanced rapidly in recent years, finding in-
032 creasing application in the domain of chemistry. A prominent example of this trend is the use
033 of LLMs like GPT-4 Achiam et al. (2023) as high-level reasoning agents that leverage special-
034 ized chemistry tools to automate complex tasks Boiko et al. (2023); M. Bran et al. (2024). In this
035 paradigm, the LLM orchestrates tool calls that encapsulate chemical logic and subsequently reasons
036 over the tool outputs.

037 Beyond the use of general-purpose models, prevailing approaches either train specialized chem-
038 istry LLMs or adapt general-purpose LLMs to the chemical domain, where molecular data is rep-
039 resented in the Simplified Molecular Input Line Entry System (SMILES) format Weininger (1988);
040 Weininger et al. (1989), a chemical notation for representing chemical graph structures as computer-
041 readable strings. Examples of specialized chemistry LLMs include models that are solely pre-trained
042 on SMILES data and then either fine-tuned for a specific downstream task (e.g., Ross et al. (2022);
043 Irwin et al. (2022)) or used to extract molecular embeddings for downstream tasks (e.g., Ross et al.
044 (2022); Sadeghi et al. (2024); Masood et al. (2025)). Alternatively, general-purpose LLMs are
045 adapted to the chemical domain through methods such as supervised fine-tuning (SFT) Kim et al.
046 (2024); Cavanagh et al. (2024), preference optimization (PO) Cavanagh et al. (2024), or the direct
047 extraction of task-specific embeddings from general-purpose LLMs Sadeghi et al. (2024). Finally,
048 recent work adapts Chain-of-Thought (CoT) Wei et al. (2023) chemistry reasoning models follow-
049 ing the Deepseek-R1 Guo et al. (2025) paradigm, e.g., Ether0 Narayanan et al. (2025) fine-tunes
050 Mistral-Small-24B-Instruct Mis using SFT on Deepseek-R1 reasoning traces and PO on chemistry
051 tasks.

052 However, a central challenge in chemical machine learning is the scarcity and high cost of labeled
053 data. This presents a significant limitation, as the aforementioned approaches all rely on labeled data
for model training. Nevertheless, recent studies have shown that general-purpose LLMs are capable
of reasoning over chemical structures, yet this capability is often exercised indirectly. For instance,

general-purpose LLMs have been used to enrich SMILES with text descriptions to fine-tune smaller models Qian et al. (2023), address diverse chemistry tasks via zero-shot and few-shot prompting with varying success Guo et al. (2023), and solve chemical mathematical calculations by generating and refining code-based solutions Ouyang et al. (2024). A final category of applications addresses synthesis planning, the task of identifying viable synthetic routes by deconstructing a target molecule into smaller precursors using reactions until a set of commercially available starting materials is found Segler et al. (2018); Corey & Cheng (1989). In this context, LLMs can reason about chemical structures to guide and evaluate the synthesis planning process itself based on a desired provided route outcome prompt, without directly manipulating the structures Bran et al. (2025). As LLMs tend to struggle with generating high-quality reaction predictions directly, they can be paired with an evolutionary algorithm to reason over and evolve a population of full synthesis routes Wang et al. (2025). To ensure chemical validity, this process uses a database of known reactions and molecule routes, which are queried via a nearest-neighbor search in an embedding space to identify structurally similar precedents for chemical grounding.

In this work, we build on these insights to introduce a framework that enables general-purpose LLMs to successfully reason directly over molecular structures. Our method works by anchoring the reasoning process to a molecule’s atom-maps, which are unique identifiers for each atom in a molecular SMILES. This approach mirrors a chemist’s workflow, **operates without labeled training data or task-specific model training**, and consists of two stages. First, in a zero-shot task, the model performs a chemical analysis on the chemical structure to identify the atom-maps of relevant fragments for the task and assigns structural labels for these fragments solely based on chemical reasoning. Second, in an optional few-shot task, it transforms the chemical structure based on these identified fragments, guided by examples from a specific chemical transformation class (e.g., a particular reaction or other defined chemical transformation).

We apply this framework to single-step retrosynthesis, where the goal is to identify, given a product molecule, a set of plausible reactant molecules (precursors) that can form the product in a single reaction step Torren-Peraire et al. (2024). Formally, the goal is to learn a function $f(P) \rightarrow [R_1, R_2, \dots, R_n]$ that maps a product molecule P to a ranked list of plausible reactant sets, $[R_1, R_2, \dots, R_n]$, where each R_i is a set of one or more reactant molecules, $\{r_1, r_2, \dots\}$, proposed to synthesize P . In this task, prior research shows that general-purpose LLMs are not competitive with specialized models as they underperform their specialized counterparts by more than 40 percentage points in top-1 accuracy Guo et al. (2023) or solve only one out of five test examples correctly Li et al. (2025). Our approach marks a shift from conventional supervised methods, which either (1) directly map products to reactants using Transformers Irwin et al. (2022); Tetko et al. (2020), Graph Neural Networks Chen & Jung (2021); Zhong et al. (2023), Markov Bridges Igashov et al. (2024), or fine-tuned LLMs Yang et al. (2024); Nguyen-Van et al. (2024), or (2) use a two-step, disconnection-aware paradigm where a model first learns to identify a bond disconnection site and second applies a transformation afterward. Our approach evolves the second paradigm. Whereas these supervised methods apply a learned mapping by selecting a site either automatically Thakkar et al. (2023); Kreutter & Reymond (2023) or with human guidance Thakkar et al. (2023); Westerlund et al. (2025), our work introduces explicit chemical reasoning as the core mechanism for both steps, leading to the following key contributions:

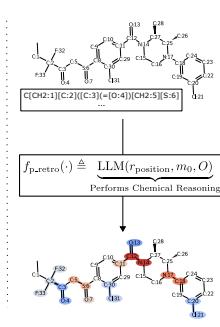
1. We introduce a novel reasoning framework that enables LLMs to zero-shot analyze and few-shot transform molecular structures without task-specific training by anchoring their reasoning process directly to the molecule’s SMILES atom maps, thereby eliminating the need for labeled training data or task-specific model training.
2. We demonstrate the framework’s effectiveness in single-step retrosynthesis on both academic benchmarks and expert-validated real drug discovery molecules, where it successfully identifies strategic disconnections, executes the corresponding transformation to predict reactant structures, and provides a chemically-grounded, explainable rationale for its predictions.
3. We establish a general blueprint for applying LLMs to challenges requiring molecular reasoning and molecular transformations, positioning atom-anchored LLMs as a powerful, data-efficient alternative to supervised learning in low-data chemistry regimes.

108
109
2 METHODS110
Zero-Shot Position Model111
Position Model:
112 $f_{\text{position}}(m_{\text{Atom-mapped}}) = \{(S_i, A_i)\}$

113 Molecule SMILES Atom Indices Chemical Attributes

114 ↓ Specialized to

115 Retrosynthesis Position Model:


116 $f_{\text{p-retro}}(m_0, O) = \{D\}$

117 Product SMILES Ontology Disconnection Set

118 where each candidate $d_i \in D$ has the structure:
119 $d_i = \{S_i, \beta_i, \gamma_i, \omega_i\}$

120 Atom Indices Reaction Name Importance Chemical Rationale

121

122
Few-Shot Transition Model (Optional)

123 Transition Model:

124 $f_{\text{transition}}(m_0, S_i, a_j, L) = m_1$

125 Changed Atom-mapped Molecule SMILES

126 ↓ Specialized to

127 Retrosynthesis Transition Model:

128 $f_{\text{r-retro}}(m_0, S_i, \beta_i, L_{\text{retro}}) = \{R_k\}$

129 Product SMILES Disconnection Atom Indices Reaction Name Examples

130 $= \{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 131 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 132 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 133 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 134 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 135 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 136 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 137 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 138 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 139 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 140 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 141 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 142 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 143 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 144 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 145 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 146 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 147 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 148 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 149 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 150 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 151 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 152 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 153 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 154 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 155 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 156 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 157 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 158 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 159 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 160 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 161 = $\{(R_k, \gamma_k, \omega_k)\}_{k=1}^N$ 122
123 Figure 1: Adaptation of our general framework to the task of retrosynthesis. First, the Zero-Shot
124 Position Model ($f_{\text{position_retro}}$ or $f_{\text{p_retro}}$, guided by r_{position}) analyzes an atom-mapped product m_0
125 together with the reaction ontology O to identify and rank disconnection candidates ($S_i, \beta_i, \gamma_i, \omega_i$).
126 Second, the (optional) Few-Shot Transition Model ($f_{\text{transition_retro}}$ or $f_{\text{p_retro}}$, guided by $r_{\text{transition}}$ and
127 a library L_{retro} of β_i reaction examples) applies the selected reaction β_i at the site S_i to generate
128 plausible reactant molecules (R_k) with validity assessment (γ_k) and chemical rationale (ω_k).
129
130131
2.1 FRAMEWORK132 Conventional drug discovery models learn a direct mapping $f : \mathcal{X} \rightarrow \mathcal{Y}$, treating molecular repre-
133 sentations $x \in \mathcal{X}$ as abstract data points to predict properties $y \in \mathcal{Y}$. This paradigm disregards the
134 underlying chemical knowledge that could govern the relationship r between a molecule’s structure
135 and its properties. In contrast, our approach circumvents this data-driven mapping by leveraging the
136 emergent reasoning capabilities of a pre-trained LLM. Guided by a natural language prompt, the
137 LLM performs a detailed chemical analysis with its reasoning explicitly anchored to the molecule’s
138 SMILES atom maps, ensuring a precise linkage to specific structural locations. This structurally-
139 grounded analysis enables the direct inference of chemical properties, eliminating the need for task-
140 specific fine-tuning. Our approach operates in two stages:

1. **Zero-Shot Structural Analysis and Property Prediction (Position Model):** Guided by a natural language prompt r_{position} that encodes domain knowledge about the task, the LLM analyzes an atom-mapped molecule SMILES m to identify relevant substructures. Based on this prompt-guided reasoning, which is explicitly linked to atom map indices, the position model $f_{\text{position}}(m)$ predicts a set of properties $P = \{p_1, \dots, p_n\}$. Each prediction p_i is a tuple $p_i = (S_i, A_i)$, where $S_i \subseteq V(m)$ is a set of atom indices from the molecule m (the structural label), and $A_i = (a_1, a_2, \dots, a_k)$ is an ordered tuple of inferred chemical attributes relevant to the task (e.g., “toxic,” “reaction”). Each individual attribute a_i in this tuple can be a passive descriptor or an actionable transformation.
2. **Prompt-Guided Molecular Transformation (Transition Model):** In an optional second phase, predictions $p_i = (S_i, A_i)$ containing an actionable transformation in their attribute tuple A_i are executed. For each general chemical task, a transformation function $f_{\text{transition}}$ is defined by a second natural language prompt $r_{\text{transition}}$. This transition function executes an actionable attribute $a_j \in A_i$ by applying $f_{\text{transition}}$ to an initial molecule m_0 at the location S_i to yield a new molecule m_1 , such that $m_1 = f_{\text{transition}}(m_0, S_i, a_j, L)$. Here, L is a context library providing examples or any relevant information for the established chemical operations identified by the actionable attribute a_i from the tuple A_i . This is feasible because many chemical transformations are discrete, well-established operations, allowing in-context learning to ensure chemical validity.

159
2.2 A POSITION MODEL FOR RETROSYNTHESIS160 The Position Model emulates a human chemist’s analytical workflow to identify and rank potential
161 disconnection sites in a product molecule. Formally, given an atom-mapped product molecule m , the

162 Position Model is a function $f_{position_retro}(m)$ that predicts a set of potential retrosynthetic discon-
 163 nection candidates, $D = \{d_1, d_2, \dots, d_N\}$. Each candidate $d_i = (S_i, \beta_i, \iota_i, \rho_i)$, which instantiates
 164 the general property prediction $p_i = (S_i, A_i)$ for retrosynthesis, is generated by the function:
 165

$$166 D = \{(S_i, \beta_i, \iota_i, \rho_i)\}_{i=1}^N = f_{position_retro}(m_0, O)$$

167 This function maps a set of inputs:
 168

- 169 • m_0 : The atom-mapped target product molecule canonicalized SMILES.
- 170 • O : A reaction ontology containing reaction names corresponding to a library of executable
 171 transformations L , providing a bridge to the optional transformation phase.

173 to a set of N distinct tuples:
 174

- 175 • $S_i \subseteq V(m)$ is the structural label: a set of atom indices defining the disconnection point.
- 176 • β_i is the predicted reaction name: a chemical attribute identifying a suitable transformation
 177 (e.g., "Suzuki Coupling"). To make this actionable, we ground predictions using the reaction
 178 ontology (O), but do not strictly constrain them, allowing the suggestion of reactions
 179 outside of O (which are flagged).
- 180 • $\iota_i \in \mathbb{R}$ is the retrosynthesis importance: a score ranking the strategic value of the discon-
 181 nection, which can be used to prioritize the most promising reactions (e.g., major ring-forming
 182 reactions, core scaffold construction).
- 183 • ρ_i is the chemical rationale: a text-based justification tied to primary strategic goals of
 184 retrosynthesis (e.g., structural simplification, reaction robustness, and stereochemical con-
 185 trol).

186 The entire reasoning process of $f_{position_retro}$ is defined by a natural language prompt $r_{position}$
 187 (see Prompt 1). Crucially, $r_{position}$ does not contain explicit transformation rules (e.g., SMARTS
 188 patterns) or any other reaction-specific rules. Instead, it instructs the LLM to emulate a chemist's
 189 analytical workflow. Reframing the retrosynthesis task necessitates a shift in evaluation, moving
 190 beyond classical top-n performance based on product-reactant replication. Our evaluation instead
 191 measures the model's ability to correctly identify the ground-truth disconnection site and reaction
 192 type, for which the following metrics are defined:
 193

- 194 1. Partial Match Accuracy: An indicator metric that is true if any predicted disconnection
 195 $S_i \in D$ has a non-empty intersection with the ground truth S_{gt} .
- 196 2. Best Match Jaccard: The highest Jaccard similarity between any predicted structural label
 197 $S_i \in D$ and the ground truth set S_{gt} .
- 198 3. Exact Match Accuracy: A stricter metric that is true if the best-matching predicted discon-
 199 nection site (by Jaccard score) is identical to the ground truth S_{gt} .
- 200 4. Conditional Reaction Accuracy: Conditional on a partial match and the highest Jaccard
 201 similarity in D , this metric evaluates the reaction name(s) β_i from the disconnection can-
 202 didate(s) d_i . The metric is 1 if any of these β_i match the ground truth reaction name, β_{gt} .

204 2.3 A TRANSITION MODEL FOR RETROSYNTHESIS

205 To complete the retrosynthesis workflow, we define the Transition Model as $f_{transition_retro}$. This model
 206 uses a disconnection candidate d_i and a target product m_0 to generate a set of plausible reactants R .
 207 To simulate a chemist's literature lookup for a reaction, the reaction name $\beta_i \in O$ is used to sample
 208 up to five reaction examples from a training dataset to create the task-specific, in-context library
 209 L_{retro} . The one-to-many Transition Model is then defined as:
 210

$$211 \{(R_k, \gamma_k, \omega_k)\}_{k=1}^N = f_{transition_retro}(m_0, S_i, \beta_i, L_{retro})$$

212 This function maps a single set of inputs:
 213

- 214 • m_0 : The atom-mapped target product molecule canonicalized SMILES.
- 215 • S_i : The set of disconnection point atom indices.

- β_i : The reaction name, serving as the actionable attribute a_j .
- L_{retro} : The context library, containing examples of the reaction β_i .

219 to a set of N distinct tuples:

- R_k : The k -th predicted set of reactant molecules $\{r_1, r_2, \dots, r_n\}$.
- γ_k : The specific chemical validity assessment (stability, chemoselectivity, stereochemical consistency) for the transformation leading to R_k .
- ω_k : The specific chemical rationale that justifies the validity of the k -th outcome.

220
221
222
223
224
225
226
227 The transition function $f_{\text{transition_retro}}$ is defined by prompt $r_{\text{transition}}$ (see Prompt 2), which
228 emulates a chemist’s reasoning and avoids explicit reaction rules. Beyond reactant prediction, the model
229 can also generalize transformations by abstracting a reaction template R_t , which is flagged accord-
230 ingly. This template can handle complex cases, such as multiple atoms being viable for reaction
231 side or added reagents, thereby preventing exhaustive iteration. We evaluate performance by com-
232 paring the predicted reactant sets, $R_{\text{pred}} = \{R_1, \dots, R_N\}$, against the ground-truth reactants, R_{gt} .
233 As multiple reactant sets can be chemically valid, our goal is to assess the model’s ability to recover
234 the known, ground-truth transformation without ranking. The following metrics are calculated per-
235 prediction and averaged across the dataset.

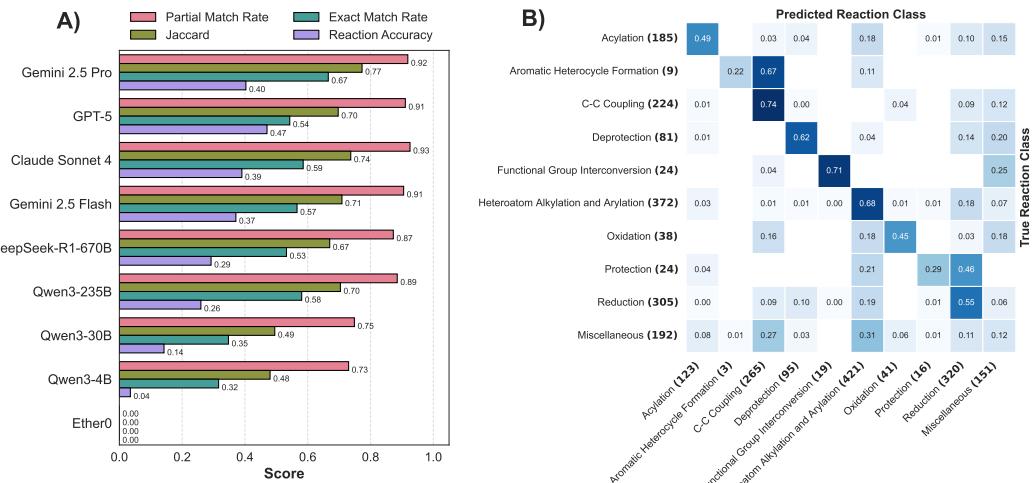
236
237
238
239
240
241
242
243
244
245
246

1. Template Accuracy: measures if any predicted reactant template set $R_t \in R_{\text{pred}}$ correctly
identifies the core structure of the ground-truth reactants R_{gt} . A prediction is considered
a match if for every ground-truth reactant $r_{gt} \in R_{\text{gt}}$ there is a corresponding predicted
reactant template $r_t \in R_t$ sharing at least 75% of its atoms and having a direct substructure
match.
2. Reactant Accuracy: measures if any predicted reactant set R_k is an exact, non-template
match for the ground-truth set R_{gt} .
3. Combined Accuracy: measures if a prediction meets either the Template or Reactant Ac-
curacy criterion.

247 2.4 EXPERIMENTAL SETUP

248
249 We evaluate the Position ($f_{\text{position_retro}}$) and Transition ($f_{\text{transition_retro}}$) models across a diverse
250 set of LLMs to assess the scaling of reasoning capabilities. Our selection includes various open-
251 source models (Qwen3-2507 4B, 30B, 235B Yang et al. (2025), DeepSeek-R1-0528 Guo et al.
252 (2025)), several closed-source models (Gemini 2.5 Flash/Pro Comanici et al. (2025), Claude Sonnet
253 4 Anthropic (2025), GPT5 OpenAI (2025)), and a chemistry-specialized model, Ether0 Narayanan
254 et al. (2025). For efficiency, the largest open-source models were quantized for inference on an 8x
255 H100 DGX node and used default inference parameters (see Table 2).

256 We use two public reaction datasets: USPTO50k Lowe (2012); Schneider et al. (2016) and PaRoutes
257 Genheden & Bjerrum (2022). For USPTO50k ($n \approx 5 \times 10^4$), we use an adjusted version that
258 corrects a known atom-mapping bias Somnath et al. (2021). For PaRoutes ($n \approx 1 \times 10^6$), we
259 use the provided data splits Torren-Peraire et al. (2024). For all datasets, we preprocess the data
260 to generate structural labels (S_i), reaction names (β_i) and reaction ontology (O). The labels (S_i)
261 define the reaction center by annotating atoms of bonds that are broken, formed, or changed in type
262 from the product’s perspective. We prioritize changes in connectivity (bonds breaking or forming)
263 over bond type changes, where the atom structure itself remains unchanged, unless no connectivity
264 change occurs. The reaction names (β_i) and their reaction classes are extracted using the open-
265 source rxn-insight package Dobbelaere et al. (2024), allowing the release of our labeled data. The
266 ontology (O) is constructed from unique reaction names (β_i) in the respective training data. To
267 mitigate the skewed distribution of reaction names in the USPTO50k test set ($n = 5 \times 10^3$) and
268 prevent redundant evaluation, we create a subsampled version, USPTO50k-LLM (see Figure 5).
269 This 541-point evaluation set contains up to five examples per unique reaction name, preserving
the original proportion of unclassified reactions. Unless specified otherwise, we use this set with a
reaction ontology ($n = 136$) derived from the USPTO50k training data.


270

3 RESULTS

271

3.1 POSITION MODEL

274 Our analysis of structural chemical reasoning shows performance scales with model size, with large
 275 closed-source models such as the top-performing Gemini 2.5 Pro required for the best results (see
 276 Figure 2). We evaluated models on four tasks of increasing difficulty: partial position match, maxi-
 277 mizing Jaccard overlap, exact position match, and correct reaction prediction given a partial match.
 278 A consistent pattern emerged, where performance increased with the size of the model. For in-
 279 stance, partial match scores jumped from 73% for 4B models to 87% for 235B+ models. This trend
 280 held across all tasks, with the performance gap becoming most stark on the reaction prediction task,
 281 where smaller models scored just 4%. In contrast, only the largest proprietary models achieved a
 282 moderate success rate of 40-47%, showing a trade-off between higher accuracy and lower prediction
 283 efficiency (i.e., more predictions per success; see Table 4). While performance depends on model
 284 size, disconnection prediction success is effectively decoupled from molecular size (see Figure 7).

302 Figure 2: A) Position model performance on USPTO-LLM. The plot compares various foundation models
 303 on the task of reaction position prediction, measured by four evaluation metrics: achieving a partial positi-
 304 onal match, maximizing the Jaccard metric, identifying the exact position, and predicting the correct reaction (con-
 305 ditional on a partial match). B) Confusion matrix of predicted versus ground-truth reaction classes for the
 306 Gemini 2.5 Pro model on USPTO-LLM. The analysis is conditional, including only predictions where the
 307 model successfully identified at least a partial positional match. For this visualization, reactions outside the
 308 defined reaction ontology were excluded. The matrix was generated using the original class-to-name mappings
 309 from the ground-truth data, with any unassigned reactions grouped into the ‘Miscellaneous’ category.

310 Three models warrant a specific discussion. First, the Ether0 model, a Mistral-24B variant fine-tuned
 311 for chemistry, fails to produce any valid predictions, generating neither valid outputs nor chemically
 312 valid positions, unlike other models that fail only occasionally (see Table 4). This total failure sug-
 313 gests that its specialized training, which utilizes chemistry reasoning traces and GRPO on chemical
 314 tasks, hindered generalizability to our problem. Second, an ablation of Qwen-235B-Instruct reveals
 315 a trade-off with its thinking counterpart. Despite a comparable partial match score, the instruct
 316 model showed poor prediction efficiency, generating far more candidate positions, and was only
 317 half as effective at identifying the correct reaction (see Table 4), highlighting the importance of
 318 CoT reasoning. Interestingly, this pattern does not appear for Gemini 2.5 Flash, where its thinking
 319 and non-thinking versions perform comparably with high reaction accuracy and low prediction
 320 efficiency.

321 Our problem involves a one-to-many relationship in which a chemical position can have multiple
 322 valid reactions. To evaluate one of the best performing models, Gemini 2.5 Pro, we mapped its pre-
 323 dictions to broader reaction classes using the reaction class mapping from rxn-insight on the ground
 324 truth data (see Figure 2). The model often suggests alternative reactions from the correct class rather

than predicting a reaction from a different class. However, some exceptions represented chemically plausible alternative strategies: for 'Aromatic Heterocycle Formation', the model often predicted 'C-C couplings', and for 'Protection' reactions, it suggested 'Reductions'. The 'Heteroatom Alkylation and Arylation' class was a notable outlier, being proposed for most other categories except 'FGI' and 'C-C couplings'. This predictive pattern of staying within-class and these specific exceptions also holds at the individual reaction-name level (see Figure 6).

3.2 TRANSITION MODEL

We evaluated various LLMs on their ability to predict ground-truth transformations using the reaction's position, name, and up to five examples (see Figure 3). Model performance scales logarithmically with size before plateauing at the scale of Deepseek-R1. Gemini 2.5 Pro is the top performer, excelling both at direct reactant prediction ("Reactant"; see example Figure 13) and in combination with a reaction template ("Combined"). This template generation ("Template"; see example Figure 14), which is a proxy for chemical understanding, is strongest in proprietary models, such as GPT-5 and Gemini 2.5 Pro (44% accuracy). In contrast, Deepseek-R1 performs worse than its smaller open-source peers in template prediction, while Ether0 fails again at this task.

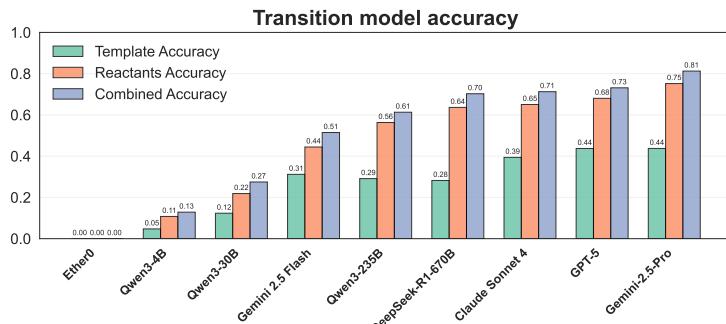
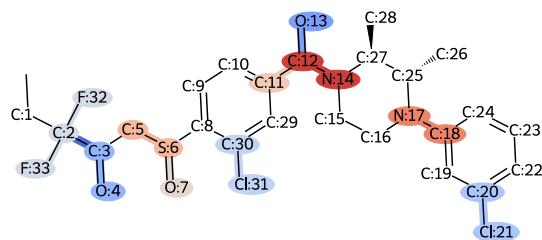



Figure 3: Transition Model Performance on USPTO-LLM. The plot evaluates various LLMs on their ability to predict chemical transformations. Accuracy is measured using three metrics: direct reactant prediction ('Reactants'), valid template generation ('Template'), and a combined approach where either is considered a success ('Combined').

In a first ablation study, our results reveal the critical importance of a defined reaction name to act as a *chemical anchor* (see Figure 8). Performance dropped by approx. 50% for unknown reactions in a zero-shot setting (no examples provided) compared to known ones in a few-shot setting (up to five examples). The decline was particularly severe for the prediction of direct reactants, with accuracy falling from approximately 75% to 30%. In a second ablation study on Gemini 2.5 Pro, we further isolate the contributions of prompt detail versus few-shot examples on overall ("combined") performance (see Figure 9). Although the model achieved (52%) baseline accuracy from a minimal prompt, and the detailed prompts offered some improvement through the reaction template (59%), the inclusion of examples was the dominant factor (69%); a simple prompt with examples was much more effective than a detailed prompt without them. The best performance required both (81%). Finally, CoT reasoning improves reactant and combined accuracy, but it underperforms non-reasoning models on reaction template prediction, at the cost of lower prediction efficiency (see Qwen3-235B in Table 5).

With performance again independent of molecular size (see Figure 10), analyzing LLM failure modes reveals two distinct error types. First, reaction class-specific performance variations among the top-performing models indicate that no single model is universally superior, suggesting solutions such as multi-model ensembles or best-of-n sampling (see Figure 11). Second, all models consistently fail on a small set of reaction classes with few data points (e.g., Wohl-Ziegler bromination). This systemic failure likely stems from data deficiencies, such as incorrect labeling and poor examples that make the task ill-posed, rather than fundamental mechanistic reasoning challenges for current LLM architectures.

378 4 APPLICATION
379
380
381382 **Priority 1: C:12 N:14**
383
384
385
386
387
388
389
390**Reaction:** Carboxylic acid to amide conversion**Importance: 4 - Ontology:** True

Rationale: Identified via Inter-Fragment Analysis, this is a very high-impact, convergent disconnection linking the chiral piperazine amine and the aryl carboxylic acid core, drastically simplifying the molecule (Goals a, c). The forward reaction (amide coupling) is robust and high-yielding (Goal b). No major chemoselectivity issues are expected with modern coupling reagents.

391 Figure 4: Zero-shot position model prediction for compound LEI-515 Jiang et al. (2023) using the
392 PaRoutes reaction ontology highlighting reaction priority 1. See Table 6 for all priorities (1-14).

393 While LLMs demonstrated strong performance on USPTO50k, such academic tests risk data con-
394 tamination for models pre-trained on vast data corpora. To conduct a more rigorous, real-world
395 validation, we evaluated our approach on five molecules that were previously synthesized and pub-
396 lished in high-impact journals (see Figure 12), for which we were able to discuss the experimental
397 procedures with the respective lab chemists. Although this small sample size prevents broad statisti-
398 cal generalization, the case study provides a crucial assessment of the model’s practical capabilities
399 and limitations. For this evaluation, we used one of our top-performing LLMs (Gemini 2.5 Pro)
400 with the PaRoutes reaction ontology (n=335) and annotated atom-maps by sequentially counting
401 the atoms in a canonicalized SMILES. Our position model first proposed potential disconnection
402 points, which the respective lab chemist of the molecule then curated for chemical relevance and to
403 avoid redundancy for the transition model evaluation (an example for LEI-515 is provided in Table
404 6). This process yielded 63 distinct position predictions for assessment and 19 selected positions
405 with a total of 98 transitions. Afterwards, the chemist assessed these predictions against predefined
406 questions, and we calculated accuracy as the percentage of correct model responses (see Table 1).

407 Table 1: Questions for chemists with regard to the Position model (P) and Transition Model (T). n
408 indicates here the overall number of data points and accuracy (Acc.), as well as the percentage of
409 correct predictions. Actionable refers here to non-template and not to chemically invalid predicted
410 reactant sets from the model. We provide a full overview in the appendix (see Table 8 & 9)

412 Question	n	Acc.
414 P1: Disconnection position chemically plausible?	63	90.5
415 P2: Reaction correct for the proposed disconnection position?	63	85.7
416 P3: Chemical reasoning correct for the position and reaction?	63	73.0
417 P4: Given all the information, could this reaction realistically work in the lab?	63	77.8
418 P5: Specific reaction successfully performed in the lab for the molecule?	63	25.4
419 P6: Strategically important disconnection predictions missing for the molecule?	5	80.0
<hr/>		
421 T1: Given a predicted reaction template, does it capture the underlying reaction?	16	81.3
422 T2: Given a predicted reaction template, is the chemical reasoning correct?	16	87.5
423 T3: Among the reactant predictions, is there at least one chemically correct set?	19	89.5
424 T4: Given the correct set of reactants, is the chemical reasoning also correct?	19	89.5
425 T5: Given the reaction was used in the lab, are the predicted reactants the same?	15	73.3
426 T6: Given that the reactants are flagged ‘chemically invalid’, is the reasoning correct?	7	100
427 T7: What % of all the actionable suggested reactants are chemically correct?	98	74.5

428
429 The case study results were highly encouraging. The model’s suggested disconnection points
430 (90.5%) and associated reaction names (85.7%) were overwhelmingly judged as chemically plau-
431 sible, with the latter often providing non-obvious alternatives to our expert chemists. While the
accuracy for chemical reasoning was lower (73.0%), a majority of all suggestions (77.8%) were

432 deemed applicable in a laboratory setting. Notably, the model rediscovered 25.4% of the exper-
433 imentally validated disconnections. This figure is lower because the model often proposes multiple
434 valid reactions for a single position, where only one would be used in practice. However, the system
435 has limitations. For four of the five molecules evaluated, the model missed disconnections antici-
436 pated by our chemists. It might, for example, propose a feasible reaction (e.g., Buchwald-Hartwig
437 coupling) where an expert would prefer an alternative (e.g., an S_NAr reaction). Our analysis in-
438 dicates that errors typically originate from the LLM’s misinterpretation of the molecular structure
439 (e.g., the misidentified Cl position in Table 6, position 10). This initial error then propagates through
440 the prediction, ultimately leading to an incorrect suggestion for the position, reaction, or reasoning.
441 Conversely, a key strength of the position model is its ability to provide a comprehensive set of plau-
442 sible disconnections for an entire synthetic route, not just a single retrosynthetic step. Our chemists
443 considered these predictions valid if the proposed disconnection could occur at any stage of the
444 synthesis route. Importantly, the position model demonstrates the capacity to suggest advanced
445 chemical concepts, such as stereoselective reactions (see Table 7, positions 5 and 6).

446 The transition model also demonstrated strong performance. It achieved 81.3% accuracy for predict-
447 ing reaction templates and 87.5% for the associated reasoning, although chemists noted it worked
448 mainly for standard reactions and is less reliable for complex ones (see Figure 14). In 89.5% of cases,
449 the model generated at least one chemically valid reactant set with sound reasoning (see Figure 13),
450 a reasoning quality judged comparable to that of a master’s or PhD-level chemist. Furthermore, it
451 successfully identified 73.3% of reactants previously conducted in the lab. A key strength was its
452 perfect (100%) accuracy in identifying non-viable reactions (see Figure 15), correctly explaining
453 why a proposed reaction would fail (e.g., identifying that a specific atom cannot exist at a given
454 position). This highlights its role as a filter, as it sometimes corrected position model suggestions
455 by proposing more intuitive reactions or filtering out disconnections that were invalid without pre-
456 requisite synthesis steps. The model achieved a 74.5% overall accuracy in predicting reactants after
457 excluding predictions that were reaction template-based or flagged as chemically invalid. Failures
458 typically occurred in one of two ways: the model either failed to return any valid reactant set (ac-
459 counting for 15/29 failures in our evaluation), or it failed due to incorrect SMILES parsing (see
460 Figure 16), even when the underlying chemical reasoning was correct.

461 5 CONCLUSION

462 We introduce a molecular reasoning framework that leverages the chemical knowledge in general-
463 purpose LLMs to address data scarcity in computational chemistry without requiring labeled training
464 data or task-specific model training. Our framework grounds chain-of-thought reasoning to the
465 molecular structure by using atom maps in molecular SMILES as chemical anchors. It operates in
466 two stages: a zero-shot position model identifies relevant molecular fragments and their associated
467 chemical labels or transformations, and an optional position-aware few-shot transition model exe-
468 cutes chemical transformations based on selected class examples. Applied to single-step retrosyn-
469 thesis without task-specific training, our method effectively identifies chemically valid and strate-
470 gically sound disconnection positions, their corresponding reaction classes, and reactant structures
471 for both academic and expert-validated real-world drug molecules, while providing a chemically
472 grounded, explainable rationale for each prediction. Here, atom-anchors allow LLMs to analyze the
473 molecular structure in depth, identify functional groups, and transfer chemical reaction knowledge
474 from the pre-trained LLM to the molecular structure without task-specific fine-tuning (see Section 4
475 for a representative Deepseek-R1 reasoning trace for LEI-515, annotated by expert chemists).

476 Beyond scaling to larger molecule sizes in the USPTO benchmark and demonstrating robust per-
477 formance on real-world drug molecules, our approach showed further generalization capabilities.
478 Notably, in additional exploratory evaluations of complex and larger drug-like modalities such as
479 molecular glues, our position model identifies strategic disconnections consistent with the originally
480 reported synthesis (see Figure 17 for TRAP-1 Zhu et al. (2024)), and for macrocycles, it correctly
481 predicts strategic ring-closing reactions (see Figure 18 for MCL-1 compound 25 Tarr et al. (2025)).
482 Furthermore, we observe that the atom-anchored reasoning traces and chemical rationale are not
483 strictly limited to retrosynthesis as the LLMs reason over adjacent tasks like forward synthesis (see
484 Section 4 for the Deepseek-R1 reasoning trace of LEI-515) and reagent prediction (e.g., Gemini 2.5
485 Pro flags the MCL-1 disconnection 3 as unfavorable because of “hazardous reagents”, see Table 11).

For multi-step synthesis planning, the position model analyzes *all* strategic disconnections in the molecule holistically (see Table 6 for LEI-515, Table 10 for TRAP-1, and Table 11 for MCL-1). This output effectively provides a strategic synthesis plan for all possible disconnections in a molecule. Although we do not ask LLMs to provide an ordering for creating a synthesis route, they exhibit inherent multi-step logic. For example, Deepseek-R1 explicitly reasons over multiple reaction steps (see Section 4). These holistic multi-step predictions have two important consequences: First, the generated positions constrain the search space for a synthesis planning algorithm (e.g., Hassen et al. (2025)), streamlining the identification of an optimal reaction sequence Westerlund et al. (2025); Kreutter & Reymond (2023). Second, these predictions highlight vectors for molecular modification, proving invaluable for guiding and accelerating medicinal chemistry campaigns by providing a strategic blueprint for replacing molecular cores or side-chains, while using a user-defined reaction ontology for robotic or parallel chemistry (e.g., Dombrowski et al. (2022)).

From a practical standpoint, it is important to contrast the costs and real-world value our approach provides in comparison to contemporary approaches. While methods like the single-step retrosynthesis model in AiZynthFinder Saigiridharan et al. (2024) run locally with negligible cost, our approach requires one LLM call per position model to identify all possible disconnections for a molecule, and then one call per transition model evaluation for each disconnection. With Gemini 2.5 Pro, these individual calls cost on average \$0.07 each (see Table 3). However, traditional single-step models output a list of disconnection reactions without an underlying chemical reasoning process. These are essentially “raw reaction ideas” that require significant human time to validate and offer no control over either the selected reaction or its position. Thus, the free local inference is offset by the high labor cost of an expert-level chemist needed to filter and rationalize these predictions. In comparison, our LLM framework performs selected reactions at a specified molecular position while providing expert-level chemical rationale, a process that is parallelizable at scale beyond singular structures and requires minimal human intervention.

By treating the outputs of our position model as the result of a zero-shot data labeling process, our framework demonstrates that LLMs can generate realistic synthetic datasets in data-scarce chemistry domains. This is achieved by mapping high-level chemical concepts, such as reactions, directly from the intrinsic chemistry knowledge of an LLM to molecular structures, which could enable future LLM-based applications, such as the generation of novel, synthetically feasible candidates in de novo drug design. Ultimately, our methodology provides a general blueprint for applying LLMs to challenges where molecular reasoning and molecular transformations are key, establishing atom-anchored LLMs as a powerful and data-efficient addition to the modern drug discovery toolbox.

LARGE LANGUAGE MODELS

520 Large Language Models (LLMs) were used throughout the creation of this manuscript to improve
521 spelling mistakes, grammar, and the overall reading flow. All LLM suggestions were profusely
522 checked for correctness and refined by the authors of this work. The LLM was not used for any
523 research-related tasks.

REPRODUCIBILITY STATEMENT

526 The code for *AAL-Chem* can be found on an anonymized repository at <https://github.com/AAL-Chem/AAL-Chem>. The datasets and raw LLM response files can be found in the DATA/ directory.
527 Figures and tables used in this manuscript can be reproduced via Jupyter notebooks included in the
528 NOTEBOOKS/ directory.
529

REFERENCES

533 Mistralai/Mistral-Small-24B-Instruct-2501 · Hugging Face. <https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501>

535 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
536 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
537 report. *arXiv preprint arXiv:2303.08774*, 2023.

538
539 Anthropic. Claude 4 System Card. <https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf>,
2025

540 Marc P. Baggelaar, Pascal J. P. Chameau, Vasudev Kantae, Jessica Hummel, Ku-Lung Hsu, Freek
 541 Janssen, Tom Van Der Wel, Marjolein Soethoudt, Hui Deng, Hans Den Dulk, Marco Allarà, Bog-
 542 dan I. Florea, Vincenzo Di Marzo, Wytse J. Wadman, Chris G. Kruse, Herman S. Overkleef,
 543 Thomas Hankemeier, Taco R. Werkman, Benjamin F. Cravatt, and Mario Van Der Stelt. Highly
 544 Selective, Reversible Inhibitor Identified by Comparative Chemoproteomics Modulates Diacyl-
 545 glycerol Lipase Activity in Neurons. *Journal of the American Chemical Society*, 137(27):8851-
 546 8857, July 2015. ISSN 0002-7863, 1520-5126. doi: 10.1021/jacs.5b04883.

547 Daniil A. Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
 548 with large language models. *Nature*, 624(7992):570-578, December 2023. ISSN 0028-0836,
 549 1476-4687. doi: 10.1038/s41586-023-06792-0.

550 Andres M. Bran, Theo A. Neukomm, Daniel P. Armstrong, Zlatko Jončev, and Philippe Schwaller.
 551 Chemical reasoning in LLMs unlocks strategy-aware synthesis planning and reaction mechanism
 552 elucidation, July 2025.

553 Joseph M. Cavanagh, Kunyang Sun, Andrew Gritsevskiy, Dorian Bagni, Thomas D. Bannister, and
 554 Teresa Head-Gordon. SmileyLlama: Modifying Large Language Models for Directed Chemical
 555 Space Exploration, September 2024.

556 Shuan Chen and Yousung Jung. Deep Retrosynthetic Reaction Prediction using Local Reactivity
 557 and Global Attention. *JACS Au*, 1(10):1612-1620, 2021. doi: 10.1021/jacsau.1c00246.

558 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 559 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 560 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 561 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

562 E. J. Corey and Xue-Min Cheng. *The Logic of Chemical Synthesis*. John Wiley & Sons, Ltd, New
 563 York, 1989. ISBN 978-0-471-50979-0.

564 Hui Deng, Sander Kooijman, Adrianus M. C. H. Van Den Nieuwendijk, Daisuke Ogasawara, Tom
 565 Van Der Wel, Floris Van Dalen, Marc P. Baggelaar, Freek J. Janssen, Richard J. B. H. N. Van
 566 Berg, Hans Den Dulk, Benjamin F. Cravatt, Herman S. Overkleef, Patrick C. N. Rensen,
 567 and Mario Van Der Stelt. Triazole Ureas Act as Diacylglycerol Lipase Inhibitors and Prevent
 568 Fasting-Induced Refeeding. *Journal of Medicinal Chemistry*, 60(1):428-440, January 2017. ISSN
 569 0022-2623, 1520-4804. doi: 10.1021/acs.jmedchem.6b01482.

570 Maarten R. Dobbelaere, István Lengyel, Christian V. Stevens, and Kevin M. Van Geem. Rxn-
 571 INSIGHT: Fast chemical reaction analysis using bond-electron matrices. *Journal of Cheminfor-
 572 matics*, 16(1):37, March 2024. ISSN 1758-2946. doi: 10.1186/s13321-024-00834-z.

573 Amanda W. Dombrowski, Ana L. Aguirre, Anurupa Shrestha, Kathy A. Sarris, and Ying Wang.
 574 The Chosen Few: Parallel Library Reaction Methodologies for Drug Discovery. *The Journal
 575 of Organic Chemistry*, 87(4):1880-1897, February 2022. ISSN 0022-3263, 1520-6904. doi:
 576 10.1021/acs.joc.1c01427.

577 Samuel Genheden and Esben Bjerrum. PaRoutes: Towards a framework for benchmarking retrosyn-
 578 thesis route predictions. *Digital Discovery*, 1(4):527-539, 2022. doi: 10.1039/D2DD00015F.

579 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 580 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 581 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

582 Taicheng Guo, Kehan Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh V Chawla, Olaf
 583 Wiest, and Xiangliang Zhang. What can Large Language Models do in chemistry? A comprehen-
 584 sive benchmark on eight tasks. In *Proceedings of the 37th International Conference on Neural
 585 Information Processing Systems*, New Orleans, LA, USA, 2023. Curran Associates Inc.

586 Alan Kai Hassen, Helen Lai, Samuel Genheden, Mike Preuss, and Djork-Arné Clevert. Synthesis
 587 Planning in Reaction Space: A Study on Success, Robustness and Diversity, June 2025.

588 Ilia Igashov, Arne Schneuing, Marwin Segler, Michael Bronstein, and Bruno Correia. Retrobridge:
 589 Modeling retrosynthesis with markov bridges. 2024.

594 Ross Irwin, Spyridon Dimitriadis, Jiazen He, and Esben Jannik Bjerrum. Chemformer: A pre-
 595 trained transformer for computational chemistry. *Machine Learning: Science and Technology*, 3
 596 (1):015022, March 2022. ISSN 2632-2153. doi: 10.1088/2632-2153/ac3ffb.
 597

598 Ming Jiang, Mirjam C. W. Huizenga, Jonah L. Wirt, Janos Paloczi, Avand Amedi, Richard J. B.
 599 H. N. Van Den Berg, Joerg Benz, Ludovic Collin, Hui Deng, Xinyu Di, Wouter F. Driever, Bog-
 600 dan I. Florea, Uwe Grether, Antonius P. A. Janssen, Thomas Hankemeier, Laura H. Heitman,
 601 Tsang-Wai Lam, Florian Mohr, Anto Pavlovic, Iris Ruf, Helma Van Den Hurk, Anna F. Stevens,
 602 Daan Van Der Vliet, Tom Van Der Wel, Matthias B. Wittwer, Constant A. A. Van Boeckel, Pal
 603 Pacher, Andrea G. Hohmann, and Mario Van Der Stelt. A monoacylglycerol lipase inhibitor
 604 showing therapeutic efficacy in mice without central side effects or dependence. *Nature Commu-*
 605 *nications*, 14(1):8039, December 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-43606-3.
 606

606 Seongmin Kim, Yousung Jung, and Joshua Schrier. Large Language Models for Inorganic Synthesis
 607 Predictions, June 2024.

608 David Kreutter and Jean-Louis Reymond. Multistep retrosynthesis combining a disconnection aware
 609 triple transformer loop with a route penalty score guided tree search. *Chemical Science*, 14(36):
 610 9959–9969, 2023. ISSN 2041-6520, 2041-6539. doi: 10.1039/D3SC01604H.
 611

612 Hao Li, He Cao, Bin Feng, Yanjun Shao, Xiangru Tang, Zhiyuan Yan, Li Yuan, Yonghong Tian, and
 613 Yu Li. Beyond Chemical QA: Evaluating LLM’s Chemical Reasoning with Modular Chemical
 614 Operations, June 2025.

615 Xiaoting Li, Hao Chang, Jara Bouma, Laura V. De Paus, Partha Mukhopadhyay, Janos Paloczi,
 616 Mohammed Mustafa, Cas Van Der Horst, Sanjay Sunil Kumar, Lijie Wu, Yanan Yu, Richard J.
 617 B. H. N. Van Den Berg, Antonius P. A. Janssen, Aron Lichtman, Zhi-Jie Liu, Pal Pacher, Mario
 618 Van Der Stelt, Laura H. Heitman, and Tian Hua. Structural basis of selective cannabinoid CB2
 619 receptor activation. *Nature Communications*, 14(1):1447, March 2023. ISSN 2041-1723. doi:
 620 10.1038/s41467-023-37112-9.
 621

622 Daniel Mark Lowe. *Extraction of Chemical Structures and Reactions from the Literature*. Thesis,
 623 University of Cambridge, 2012.

624 Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D. White, and Philippe
 625 Schwaller. Augmenting large language models with chemistry tools. *Nature Machine Intelli-*
 626 *gence*, 6(5):525–535, May 2024. ISSN 2522-5839. doi: 10.1038/s42256-024-00832-8.
 627

628 Muhammad Arslan Masood, Samuel Kaski, and Tianyu Cui. Molecular property prediction using
 629 pretrained-BERT and Bayesian active learning: A data-efficient approach to drug design. *Journal*
 630 *of Cheminformatics*, 17(1):58, April 2025. ISSN 1758-2946. doi: 10.1186/s13321-025-00986-6.
 631

632 Elliot D. Mock, Mohammed Mustafa, Ozge Gunduz-Cinar, Resat Cinar, Gavin N. Petrie, Vasudev
 633 Kantae, Xinyu Di, Daisuke Ogasawara, Zoltan V. Varga, Janos Paloczi, Cristina Milano, Giulia
 634 Donvito, Annelot C. M. Van Esbroeck, Anouk M. F. Van Der Gracht, Ioli Kotsogianni, Joshua K.
 635 Park, Andrea Martella, Tom Van Der Wel, Marjolein Soethoudt, Ming Jiang, Tiemen J. Wen-
 636 del, Antonius P. A. Janssen, Alexander T. Bakker, Colleen M. Donovan, Laura I. Castillo, Bog-
 637 dan I. Florea, Jesse Wat, Helma Van Den Hurk, Matthias Wittwer, Uwe Grether, Andrew Holmes,
 638 Constant A. A. Van Boeckel, Thomas Hankemeier, Benjamin F. Cravatt, Matthew W. Buczyn-
 639 ski, Matthew N. Hill, Pal Pacher, Aron H. Lichtman, and Mario Van Der Stelt. Discovery of a
 640 NAPE-PLD inhibitor that modulates emotional behavior in mice. *Nature Chemical Biology*, 16
 (6):667–675, June 2020. ISSN 1552-4450, 1552-4469. doi: 10.1038/s41589-020-0528-7.
 641

642 Siddharth M. Narayanan, James D. Braza, Ryan-Rhys Griffiths, Albert Bou, Geemi Wellawatte,
 643 Mayk Caldas Ramos, Ludovico Mitchener, Samuel G. Rodriques, and Andrew D. White. Training
 644 a Scientific Reasoning Model for Chemistry, June 2025.

645 Phuong Nguyen-Van, Long Nguyen Thanh, Ha Hoang Manh, Ha Anh Pham Thi, Thanh Le Nguyen,
 646 and Viet Anh Nguyen. Adapting Language Models for Retrosynthesis Prediction, July 2024.
 647

OpenAI. GPT-5 System Card. <https://cdn.openai.com/gpt-5-system-card.pdf>, 2025.

648 Siru Ouyang, Zhuosheng Zhang, Bing Yan, Xuan Liu, Yejin Choi, Jiawei Han, and Lianhui Qin.
 649 Structured Chemistry Reasoning with Large Language Models, February 2024.
 650

651 Chen Qian, Huayi Tang, Zhirui Yang, Hong Liang, and Yong Liu. Can Large Language Models
 652 Empower Molecular Property Prediction?, July 2023.

653 Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkil Padhi, Youssef Mroueh, and Payel Das.
 654 Large-Scale Chemical Language Representations Capture Molecular Structure and Properties,
 655 December 2022.

656 Shaghayegh Sadeghi, Alan Bui, Ali Forooghi, Jianguo Lu, and Alioune Ngom. Can large language
 657 models understand molecules? *BMC Bioinformatics*, 25(1):225, June 2024. ISSN 1471-2105.
 658 doi: 10.1186/s12859-024-05847-x.

659 Lakshidaa Saigiridharan, Alan Kai Hassen, Helen Lai, Paula Torren-Peraire, Ola Engkvist, and
 660 Samuel Genheden. AiZynthFinder 4.0: Developments based on learnings from 3 years of in-
 661 dustrial application. *Journal of Cheminformatics*, 16(1):57, 2024. ISSN 1758-2946. doi:
 662 10.1186/s13321-024-00860-x.

663 Nadine Schneider, Nikolaus Stiefl, and Gregory A. Landrum. What's What: The (Nearly) Definitive
 664 Guide to Reaction Role Assignment. *Journal of Chemical Information and Modeling*, 56(12):
 665 2336–2346, 2016. doi: 10.1021/acs.jcim.6b00564.

666 Marwin H.S. Segler, Mike Preuss, and Mark P. Waller. Planning chemical syntheses with deep
 667 neural networks and symbolic AI. *Nature*, 555(7698):604–610, 2018. ISSN 1476-4687. doi:
 668 10.1038/nature25978.

669 Vignesh Ram Somnath, Charlotte Bunne, Connor Coley, Andreas Krause, and Regina Barzilay.
 670 Learning Graph Models for Retrosynthesis Prediction. In *Advances in Neural Information Pro-
 671 cessing Systems*, volume 34, pp. 9405–9415. Curran Associates, Inc., 2021.

672 James C. Tarr, Kyuok Jeon, Nagarathanam Veerasamy, Martin Aichinger, James M. Salovich, Bin
 673 Zhao, John L. Sensintaffar, Heribert Arnhof, Tobias Wunberg, Danielle Sgubin, Allison Arnold,
 674 Rakesh H. Vekariya, Plamen P. Christov, Kwangho Kim, Julian Emanuel Fuchs, Pol Karier, Bodo
 675 Betzemeier, Mayme Van Meeren, Nagaraju Miriyala, Edward T. Olejniczak, Harald Engelhardt,
 676 Taekyu Lee, Darryl McConnell, and Stephen W. Fesik. Discovery of macrocyclic myeloid cell
 677 leukemia 1 (mcl-1) inhibitors that demonstrate potent cellular efficacy and in vivo activity in
 678 a mouse solid tumor xenograft model. *Journal of Medicinal Chemistry*, 68(17):18553–18578,
 679 2025. doi: 10.1021/acs.jmedchem.5c01376. URL <https://doi.org/10.1021/acs.jmedchem.5c01376>. PMID: 40864607.

680 Igor V Tetko, Pavel Karpov, Ruud Van Deursen, and Guillaume Godin. State-of-the-art augmented
 681 NLP transformer models for direct and single-step retrosynthesis. *Nature Communications*, 11
 682 (1):5575, 2020. doi: 10.1038/s41467-020-19266-y.

683 Amol Thakkar, Alain C. Vaucher, Andrea Byekwaso, Philippe Schwaller, Alessandra Toniato, and
 684 Teodoro Laino. Unbiasing Retrosynthesis Language Models with Disconnection Prompts. *ACS
 685 Central Science*, 9(7):1488–1498, July 2023. ISSN 2374-7943, 2374-7951. doi: 10.1021/
 686 acscentsci.3c00372.

687 Paula Torren-Peraire, Alan Kai Hassen, Samuel Genheden, Jonas Verhoeven, Djork-Arné Clevert,
 688 Mike Preuss, and Igor V. Tetko. Models Matter: The impact of single-step retrosynthesis on
 689 synthesis planning. *Digital Discovery*, 3(3):558–572, 2024. ISSN 2635-098X. doi: 10.1039/
 690 D3DD00252G.

691 Haorui Wang, Jeff Guo, Lingkai Kong, Rampi Ramprasad, Philippe Schwaller, Yuanqi Du, and
 692 Chao Zhang. LLM-Augmented Chemical Synthesis and Design Decision Programs, May 2025.

693 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
 694 Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,
 695 January 2023.

702 David Weininger. SMILES, a chemical language and information system. 1. Introduction to method-
703 ology and encoding rules. *Journal of Chemical Information and Computer Sciences*, 28(1):31–36,
704 February 1988. ISSN 0095-2338, 1520-5142. doi: 10.1021/ci00057a005.

705

706 David Weininger, Arthur Weininger, and Joseph L. Weininger. SMILES. 2. Algorithm for generation
707 of unique SMILES notation. *Journal of Chemical Information and Computer Sciences*, 29(2):97–
708 101, May 1989. ISSN 0095-2338, 1520-5142. doi: 10.1021/ci00062a008.

709

710 Annie M. Westerlund, Lakshidaa Saigiridharan, and Samuel Genheden. Human-guided synthesis
711 planning via prompting. *Chemical Science*, 16(32):14655–14667, 2025. ISSN 2041-6520, 2041-
712 6539. doi: 10.1039/D5SC00927H.

713

714 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
715 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
716 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
717 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
718 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
719 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
720 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
721 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
722 Qiu. Qwen3 Technical Report, May 2025.

723

724 Yifei Yang, Runhan Shi, Zuchao Li, Shu Jiang, Bao-Liang Lu, Yang Yang, and Hai Zhao. BatGPT-
725 Chem: A Foundation Large Model For Retrosynthesis Prediction, August 2024.

726

727 Weihe Zhong, Ziduo Yang, and Calvin Yu-Chian Chen. Retrosynthesis prediction using an end-to-
728 end graph generative architecture for molecular graph editing. *Nature Communications*, 14(1):
729 3009, May 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-38851-5.

730

731 Xijun Zhu, Woong Sub Byun, Dominika Ewa Pieńkowska, Kha The Nguyen, Jan Gerhartz, Qixiang
732 Geng, Tian Qiu, Jianing Zhong, Zixuan Jiang, Mengxiong Wang, Roman C. Sarott, Stephen M.
733 Hinshaw, Tinghu Zhang, Laura D. Attardi, Radosław P. Nowak, and Nathanael S. Gray. Activat-
734 ing p53y220c with a mutant-specific small molecule. *bioRxiv*, 2024. doi: 10.1101/2024.10.23.
735 619961. URL <https://www.biorxiv.org/content/early/2024/10/28/2024.10.23.619961>.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

A APPENDIX

A.1 EXPERIMENTAL SETUP

Table 2: A summary of the Large Language Models (LLMs) evaluated in this work. The table specifies whether the model is open-source, its status as a reasoning-optimized ("Thinking") variant, and its thinking budget allocation (in number of tokens) for closed-source models along with other parameters.

Source	Model Name	Thinking model	Open-Source	Model quantization	Max output length	Thinking budget
Yang et al. (2025)	Qwen3-4B-Thinking-2507	yes	yes		32768	-
Narayanan et al. (2025)	Ether0 (24B)	yes	yes		32768	-
Yang et al. (2025)	Qwen3-30B-A3B-Thinking-2507	yes	yes	8bit	32768	-
Yang et al. (2025)	Qwen3-235B-A22B-Instruct-2507-FP8	no	yes	8bit	32768	-
Yang et al. (2025)	Qwen3-235B-A22B-Thinking-2507-FP8	yes	yes	8bit	32768	-
Guo et al. (2025)	RedHat-DeepSeek-R1-0528-w4a16 (670B)	yes	yes	4bit	32768	-
Comanici et al. (2025)	Gemini 2.5 Flash	yes	no	API	65536	30000
Comanici et al. (2025)	Gemini 2.5 Pro	yes	no	API	65536	30000
Anthropic (2025)	Claude Sonnet 4	yes	no	API	64000	30000
OpenAI (2025)	GPT5	yes	no	API	128000	'High'

Table 3: Cost per model call derived from official provider API pricing. Variations in input/output token counts are attributed to differences in tokenizer architectures and model verbosity. Costs for open-source models are excluded, as they rely on variable hardware configurations for inference.

Model	Task	Molecules	Avg. Input Tokens	Avg. Output Tokens	Avg. Cost Mol.
Gemini 2.5 Pro	Position	541	9202.7	5917.3	0.071\$
GPT5	Position	538	4244.64	6952.1	0.075\$
Claude Sonnet 4	Position	538	4926.1	9123.0	0.152\$
Gemini 2.5 Flash	Position	539	11604.9	6572.2	0.020\$
RedHat-DeepSeek-R1-0528-w4a16 (670B)	Position	541	4183.1	12232.0	-
Qwen3-235B-A22B-Thinking-2507-FP8	Position	541	4365.0	16518.0	-
Qwen3-30B-A3B-Thinking-2507	Position	541	4365.0	13287.8	-
Qwen3-4B-Thinking-2507	Position	541	4365.0	13410.4	-
Ether0	Position	541	4229.3	739.5	-
Gemini 2.5 Pro	Transition	512	9301.1	6226.9	0.074\$
GPT5	Transition	510	3766.2	14288.6	0.148\$
Claude Sonnet 4	Transition	515	4059.6	5056.5	0.103\$
Gemini 2.5 Flash	Transition	513	10327.8	4579.15	0.015\$
RedHat-DeepSeek-R1-0528-w4a16 (670B)	Transition	528	4408.7	10847.9	-
Qwen3-235B-A22B-Thinking-2507-FP8	Transition	537	4435.5	17550.0	-
Qwen3-30B-A3B-Thinking-2507	Transition	535	4435.5	15002.7	-
Qwen3-4B-Thinking-2507	Transition	529	4435.5	15311.0	-
Ether0	Transition	541	4542.6	5512.3	-

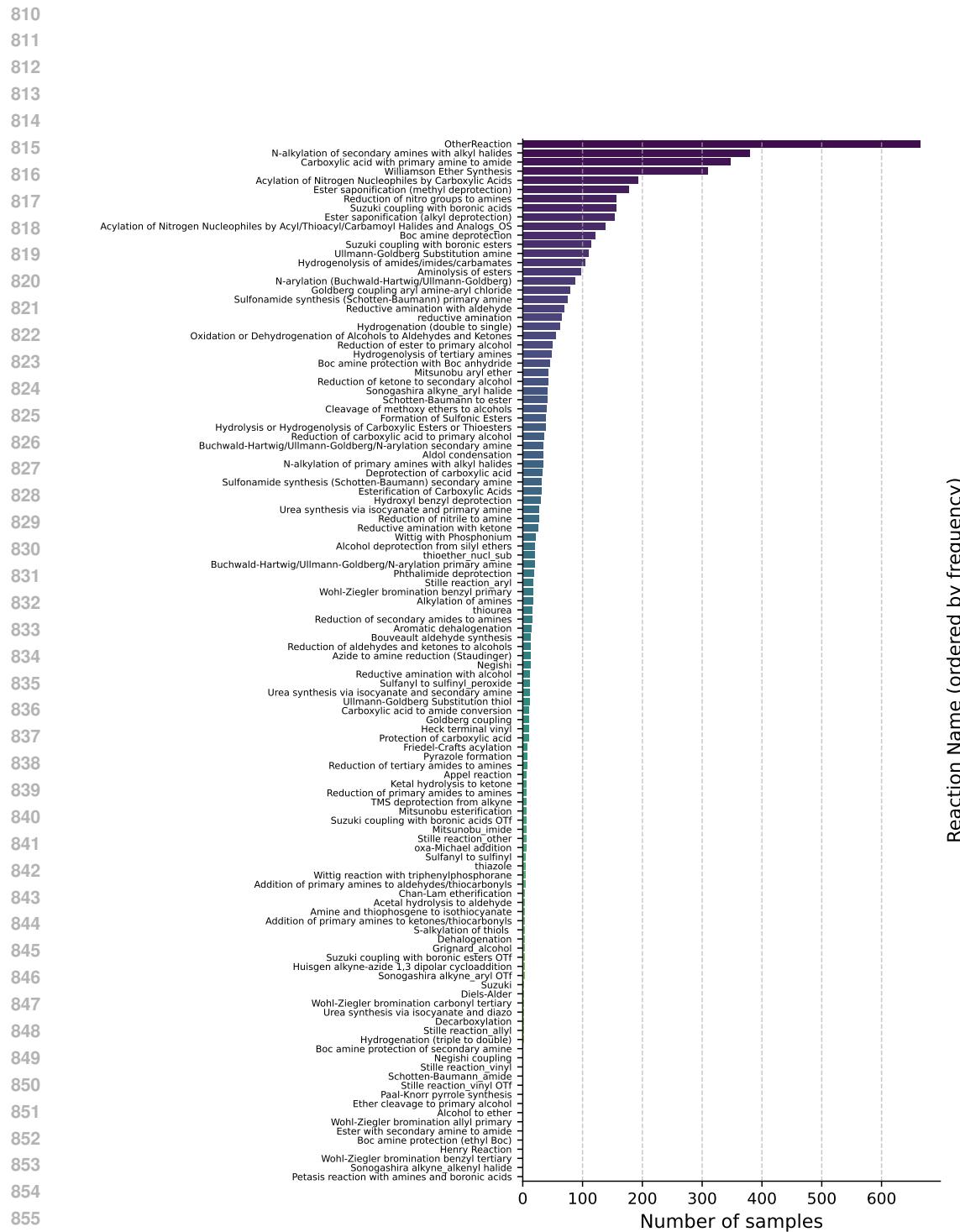
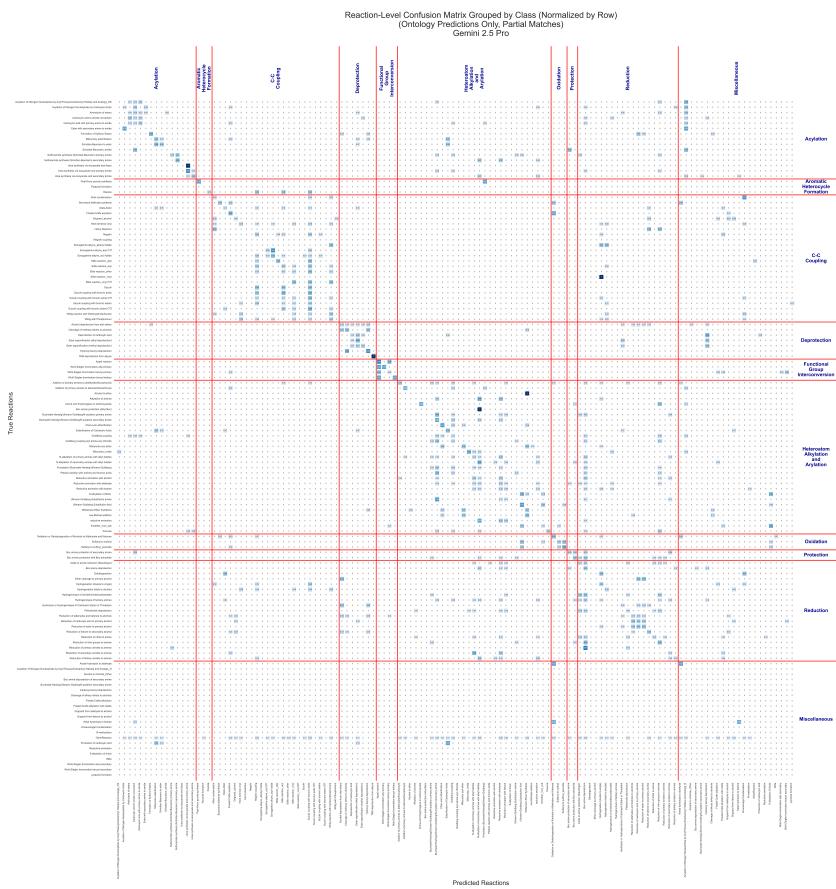



Figure 5: Distribution of reaction names in the USPTO-50k test set. From this dataset, we created a balanced subsample (USPTO-LLM) for evaluation by selecting up to five examples per named reaction class, while maintaining the original proportion of the 'otherReaction' class.

864 A.2 POSITION MODEL
865
866867 Table 4: A comprehensive comparison of various models based on several key performance metrics. The table
868 highlights the average number of predictions, partial and exact match percentages, reaction accuracy, and the
869 total number of successes and failures for each model. The best performance in each column is highlighted in
870 bold.
871

872 Model	873 Avg. number 874 of predictions	875 Partial 876 match (%)	877 Exact 878 match (%)	879 Reaction 880 acc. (%)	881 Total 882 predictions	883 Failed 884 predictions
Ether0	0.0	0.0	0.0	0.0	0	541
Qwen3-4B	4.0	73.01	31.61	3.51	541	0
Qwen3-30B	3.8	74.86	34.75	14.23	541	0
Gemini 2.5 Flash	15.3	90.54	56.59	37.11	539	2
Gemini 2.5 Flash (thinking)	16.3	91.84	61.6	35.81	539	2
Qwen3-235B-thinking	5.9	88.5	58.07	25.97	539	2
Qwen3-235B-instruct	9.6	86.67	49.44	13.33	540	1
DeepSeek-R1-670B	7.3	87.25	53.23	29.21	541	0
Claude Sonnet 4	10.0	92.57	58.55	39.03	538	3
GPT-5	15.1	91.08	54.28	47.03	538	3
Gemini 2.5 Pro	11.1	91.87	66.54	40.3	541	0

913 Figure 6: Confusion matrix of predicted versus ground-truth reaction names for the Gemini 2.5 Pro
914 model. The analysis is conditional, including only predictions where the model successfully identified
915 at least a partial positional match. For this visualization, reactions outside the defined reaction
916 ontology were excluded. The matrix was generated using the original class-to-name mappings from
917 the ground-truth data, with any unassigned reactions grouped into the 'Miscellaneous' category.
918

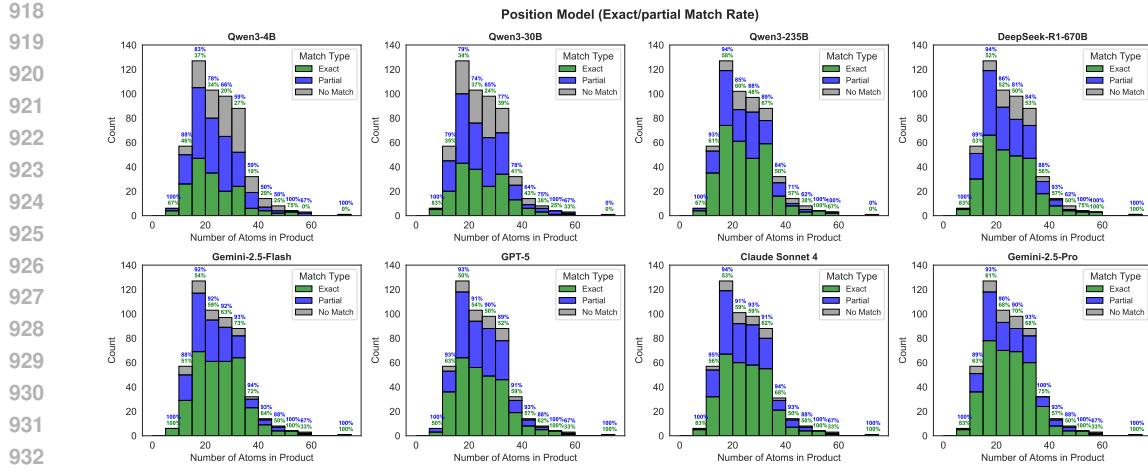


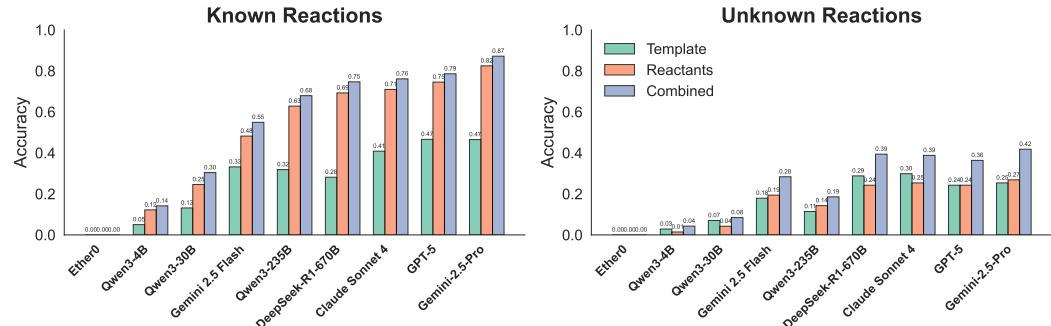
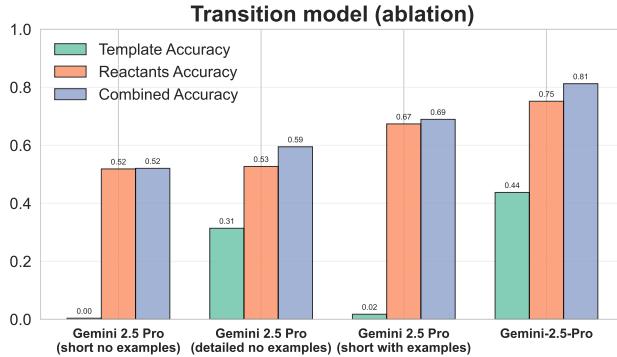
Figure 7: Impact of molecule size on position model performance. The figure displays exact and partial match accuracy for predicted disconnection positions, stratified by the number of atoms (bin size = 5) across all tested LLMs.

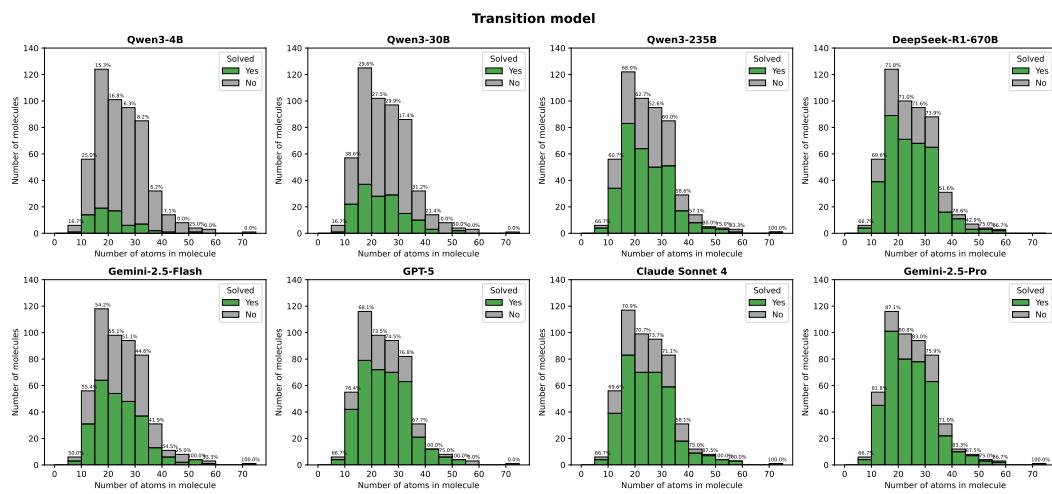
A.3 TRANSITION MODEL

This section covers additional results on the transition model (reactant prediction).

Table 5: A comparison of model performance on the transition task (reactant prediction). This table presents the total successful predictions, along with accuracy scores for reactants, templates, and the combined category. The best performance in each column is highlighted in bold.

Model	Avg. number of predictions	Reactants accuracy	Template accuracy	Combined accuracy	Total predictions	Failed predictions
Ether0	0.0	0.0	0.0	0.0	0.0	541
Qwen3-4B	3.0	0.11	0.05	0.13	529	12
Qwen3-30B	3.6	0.22	0.12	0.27	535	6
Gemini 2.5 Flash	4.4	0.44	0.31	0.51	513	28
Qwen3-235B-thinking	4.4	0.56	0.29	0.61	522	19
Qwen3-235B-instruct	6.6	0.40	0.39	0.48	537	4
DeepSeek-R1-670B	4.4	0.64	0.28	0.70	528	13
Claude Sonnet 4	5.0	0.65	0.39	0.71	515	26
GPT-5	10.4	0.68	0.44	0.73	510	31
Gemini 2.5 Pro	5.7	0.75	0.44	0.81	512	29


Figure 8: Performance difference between known and unknown reaction names. For unknown reactions, no equivalent name reaction examples within the *USPTO50k* training dataset are provided, illustrating the importance of the reaction name as a chemical anchor for retrieving reaction examples and chemical reasoning.

972
973
974
975
976
977

988
989 Figure 9: An ablation study on the impact of prompt instruction detail and the inclusion of in-context examples
990 on the performance of the Gemini 2.5 Pro transition model. We evaluate four settings: 1) a simple prompt
991 without examples (see Prompt 3); 2) a detailed prompt without examples (see Prompt 2); 3) a simple prompt
992 with examples; and 4) a detailed prompt with examples.

993
994
995
996
997
998
999
1000
1001
1002
1003

1019 Figure 10: Impact of molecule size on transition model performance. The figure displays Reactant
1020 Accuracy, stratified by the number of atoms (bin size = 5) across all evaluated LLMs.
1021

1022
1023
1024
1025

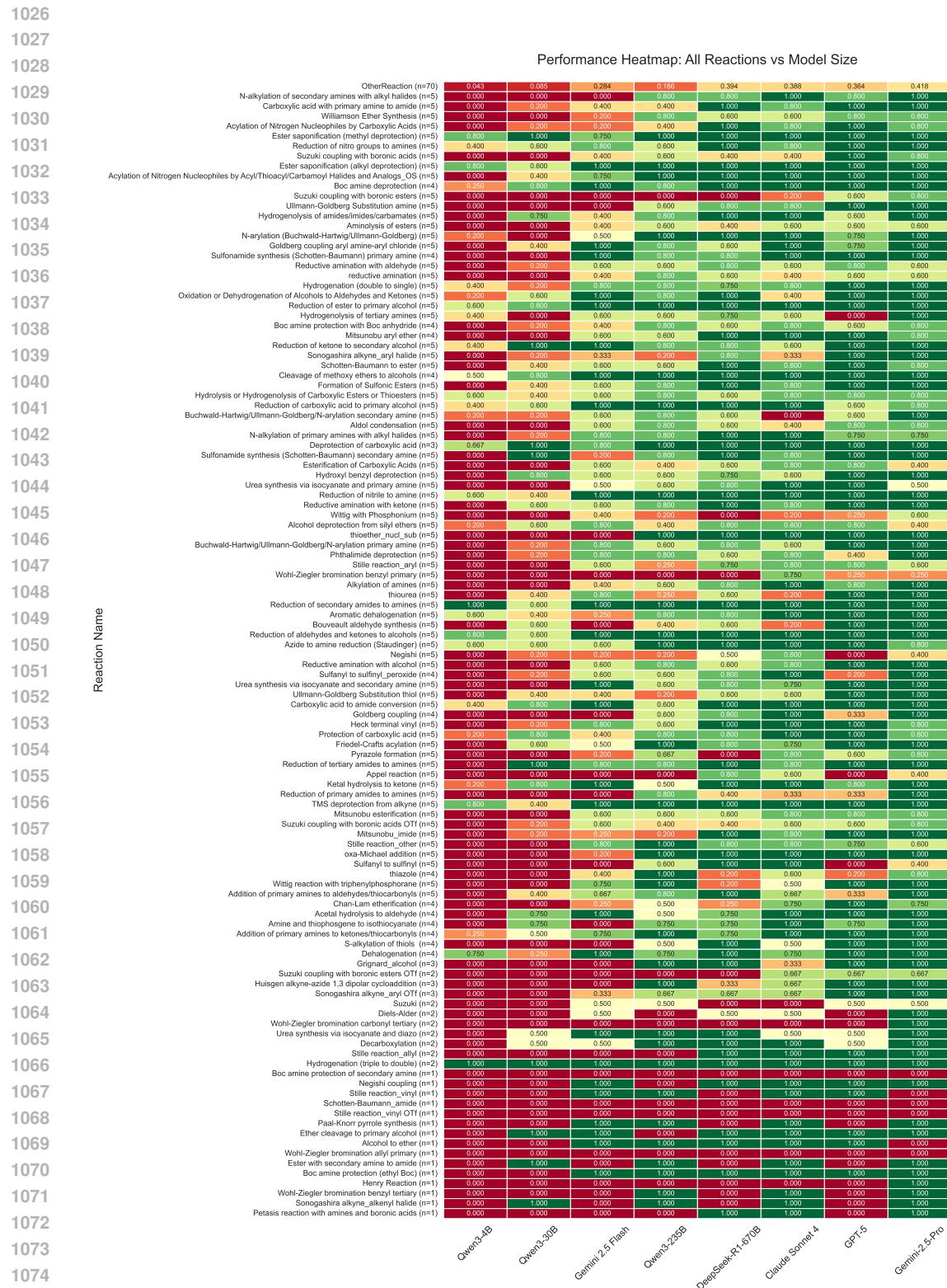
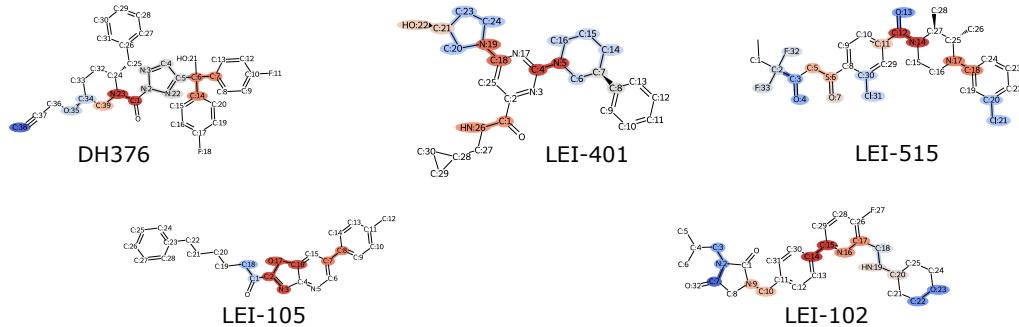



Figure 11: Confusion matrix highlighting the performance of different Transition Models on respective reaction name classes using either template or reactant accuracy. The reactions are sorted by the number of reaction examples available in the set (high-to-low).

1080 A.4 APPLICATION EXAMPLES
1081

1088
1089
1090
1091
1092
1093
1094 Figure 12: Five real-world drug discovery molecules used in our case study: DH376 Deng et al.
1095 LEI-102 Li et al. (2023), LEI-105 Baggelaar et al. (2015), LEI-401 Mock et al. (2020), LEI-
1096 515 Jiang et al. (2023)

1097
1098 Table 6: Predicted Disconnection Sites for LEI-515 Jiang et al. (2023). Header descriptions are as
1099 follows: **Prio.:** Priority Ranking of the Disconnections; **Position:** The position where the discon-
1100 nection is; **Reaction:** The forward reaction; **Ontology:** If the reaction is in the reaction ontology
1101 for which examples are available; **Imp.:** Retrosynthesis Importance, alignment with retrosynthesis
1102 goals; **Rationale:** The chemical rationale.

Prio.	Position	Reaction	Ontology	Imp.	Rationale
1	C:12 N:14	Carboxylic acid to amide conversion	Yes	4	Identified via Inter-Fragment Analysis, this is a very high-impact, convergent disconnection linking the chiral piperazine amine and the aryl carboxylic acid core, drastically simplifying the molecule (Goals a, c). The forward reaction (amide coupling) is robust and high-yielding (Goal b). No major chemoselectivity issues are expected with modern coupling reagents.
2	C:12 N:14	Acylation of Nitrogen Nucleophiles by Acyl/Thioacyl/Carbamoyl Halides and Analogs_N	Yes	4	Identified via Inter-Fragment Analysis, this is a very high-impact, convergent disconnection that simplifies the molecule into two key fragments (Goals a, c). Activation of the carboxylic acid as an acyl chloride is a classic, robust method for amide formation (Goal b), though it may require protection of other nucleophilic sites.
3	N:17 c:18	Buchwald-Hartwig/Ullmann-Goldberg/N-arylation secondary amine	Yes	4	Identified via Inter-Fragment Analysis, this key convergent C-N bond formation builds the N-arylpiperazine motif (Goal c). The forward reaction, a Buchwald-Hartwig amination, is a powerful and reliable method for this transformation, simplifying the chiral amine precursor (Goals a, b). Potential for competitive reaction at N:14 necessitates a protecting group strategy.

Prio.	Position	Reaction	Ontology	Imp.	Rationale	
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151	4 N:17 c:18	N-arylation (Buchwald- Hartwig/Ullmann- Goldberg)	Yes	4	Identified via Inter-Fragment Analysis, this strategic disconnection simplifies the chiral piperazine component by removing the aryl group (Goal a). The forward N-arylation is a powerful and reliable reaction for constructing this key bond (Goals b, c). Regioselectivity between the two piperazine nitrogens is a key issue that must be controlled, likely with a protecting group on N:14.	
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166	5 C:5 S:6	S-alkylation of thiols	Yes	3	Identified via Strategic Bond Analysis. This disconnects the beta-keto sulfoxide side chain from the aryl core (Goal c). The forward synthesis involves S-alkylation of the corresponding thiophenol with an alpha-halo ketone precursor, followed by oxidation. This is a robust way to build this key C-S bond, but the electrophile itself requires separate synthesis (Goals a, b).	
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	6 c:11 C:12	Grignard with CO ₂ to carboxylic acid	Yes	3	Identified via FGI Analysis. Strategic C-C bond formation to install the carboxyl group on the central aromatic ring (Goal c). The forward synthesis via carboxylation of an organometallic (e.g., Grignard) from an aryl halide is classic and reliable (Goals a, b). Chemoselectivity is a concern, as the formation of the organometallic must be compatible with the sulfide/sulfoxide group.	
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	7 S:6 O:7	Sulfanyl sulfinyl H ₂ O ₂	to	Yes	2	Identified via FGI Analysis. Standard FGI to install the sulfoxide from a more stable and easier to handle sulfide precursor. The oxidation can be performed late-stage, but requires careful control of conditions to prevent over-oxidation to the sulfone, which presents a chemoselectivity challenge (Goal b).
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	8 C:2 F:32 F:33	Fluorination	Yes	2	Identified via FGI Analysis. This disconnection corresponds to a forward reaction installing the difluoro moiety. Electrophilic fluorination of the beta-keto sulfoxide enolate is a viable route (Goal c). Chemoselectivity could be an issue due to multiple acidic protons (at C:5) and potential for mono- vs di-fluorination, requiring kinetic control.	
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	9 c:30 Cl:31	Aromatic chlorination	Yes	2	Identified via FGI Analysis. This FGI installs the chloro substituent via electrophilic aromatic substitution (Goal c). The regioselectivity of the chlorination would be directed by the existing sulfoxide/sulfide and carboxylate/amide groups. Predicting and controlling the outcome relative to other open positions on the ring requires careful consideration of the combined directing effects.	

Prio.	Position	Reaction	Ontology	Imp.	Rationale	
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203	10	c:20 Cl:21	Aromatic chlorination	Yes	2	Identified via FGI Analysis. This FGI installs the chloro substituent on the N-aryl ring via electrophilic aromatic substitution (Goal c). The reaction would be strongly directed by the activating amine substituent, likely leading to the observed para-chlorination, making this a reliable and predictable transformation (Goal b).
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219	11	C:3 O:4	Oxidation or Dehydrogenation of Alcohols to Aldehydes and Ketones	Yes	2	Identified via FGI analysis. Standard FGI to form the ketone from a secondary alcohol precursor. While many mild oxidation reagents are available, the presence of the easily oxidizable sulfoxide (or its sulfide precursor) on the same molecule presents a major chemoselectivity challenge that must be carefully managed (Goal b).
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	12	C:12 O:13 N:14	Nitrile to amide	Yes	2	Identified via FGI analysis. This transforms the amide into a nitrile precursor, offering an alternative synthetic route to the central aromatic core (Goal a). A nitrile can be introduced via methods like the Sandmeyer reaction. The forward reaction, partial hydrolysis of the nitrile to the amide, can be challenging to stop without proceeding to the carboxylic acid.
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	13	N:14	Boc amine deprotection	Yes	1	Identified via Protecting Group Analysis. This is a tactical deprotection step. A protecting group like Boc on N:14 would be crucial in a forward synthesis to ensure regioselective N-arylation at N:17. This step reveals the nucleophilic amine for the final amide coupling and is a common, practical consideration (Goal d).
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	14	C:2 C:3	Enolate Acylation	No	3	Identified via Strategic Bond Analysis. This strategic C-C bond disconnection breaks down the beta-keto side chain (Goal a). The forward reaction, likely an enolate acylation, is a powerful method for ketone synthesis (Goal c). However, generating and controlling the reactivity and stability of the required difluoroenolate precursor could be challenging.

1242
 1243 Table 7: Predicted Disconnection Sites for LEI-401 Mock et al. (2020). Header descriptions are as
 1244 follows: **Prio.:** Priority Ranking of the Disconnections; **Position:** The position where the discon-
 1245 nection is; **Reaction:** The forward reaction; **Ontology:** If the reaction is in the reaction ontology
 1246 for which examples are available; **Imp.:** Retrosynthesis Importance, alignment with retrosynthesis
 1247 goals; **Rationale:** The chemical rationale.

Prio.	Position	Reaction	Ontology	Imp.	Rationale
1	C:4 N:5	Buchwald- Hartwig/Ullmann- Goldberg/N- arylation secondary amine	Yes	4	Identified from Inter-Fragment Analysis (C), this is a very high importance disconnection that convergently couples the phenylpiperidine fragment to the central imidazole core. This modern cross-coupling reaction is robust and strategically sound for scaffold construction (goal c). The synthesis would require a di-halogenated imidazole, and chemoselectivity between the two coupling sites would need to be controlled, possibly via differential reactivity of the halides (e.g., Br vs. I).
2	C:18 N:19	Buchwald- Hartwig/Ullmann- Goldberg/N- arylation secondary amine	Yes	4	Identified from Inter-Fragment Analysis (C), this is a key convergent disconnection of the hydroxypiperidine fragment. A C-N cross-coupling is a powerful method for building the core scaffold (goal c). The free hydroxyl group on the piperidine fragment might require protection to prevent interference with the palladium catalyst, a potential chemoselectivity issue.
3	C:1 N:26	Carboxylic acid to amide conversion	Yes	3	Identified via Strategic Bond Analysis (D), this amide bond disconnection is a classic, high-importance step. The forward reaction is a robust and high-yielding amide coupling, simplifying the molecule to a carboxylic acid precursor and commercially available cyclopropylmethylamine (goals a, b). The secondary amines on the piperidine rings are significantly less nucleophilic, so chemoselectivity should be high.
4	C:1 N:26	Acylation of Nitro- gen Nucleophiles by Acyl/Thioacyl/Car- bamoyl Halides and Analogs_N	Yes	3	Identified via Strategic Bond Analysis (D), this is an alternative high-importance disconnection for the amide bond via a more reactive acyl chloride. This reaction is often very fast and high-yielding (goal b), though it requires an extra step to prepare the acyl chloride from the acid. Chemoselectivity is generally excellent.
5	C:21 O:22	Reduction of ketone to secondary alcohol	Yes	3	Identified from Stereochemical Analysis (F) and FGI Analysis (H), this disconnection allows for the creation of the C21 stereocenter. The forward asymmetric reduction of a ketone precursor is a powerful strategy for stereochemical control (goal e) and is a robust reaction (goal b). This approach offers excellent control over the final product's stereochemistry.

Prio.	Position	Reaction	Ontology	Imp.	Rationale
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312	6 C:7 C:8	Suzuki coupling with boronic acids	Yes	2	Identified via Strategic Bond Analysis (D), this C-C bond disconnection breaks down a key fragment. However, since chiral 3-phenylpiperidine is accessible, this is less strategic than connecting the whole fragment to the core. A Suzuki coupling would be a reliable method (goal b) but adds steps compared to using the intact piperidine.
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327	7 N:5 C:6 C:7 C:14 C:15 C:16	Arene hydrogenation	Yes	2	Identified via FGI Analysis (H.i), this disconnection simplifies the 3-phenylpiperidine starting material to 3-phenylpyridine. The forward hydrogenation of a pyridine derivative is a common way to access piperidines (goal a). Asymmetric hydrogenation conditions could potentially be employed to set the C7 stereocenter (goal e).
1328 1329 1330 1331 1332 1333 1334	8 N:19 C:21 C:23 C:24	Arene hydrogenation	Yes	2	Identified via FGI Analysis (H.i), this disconnection simplifies the 3-hydroxypiperidine fragment to 3-hydroxypyridine. While this simplifies the starting material (goal a), controlling the subsequent reduction of the ketone (formed from the hydroxyl) and setting the stereocenter would be a separate, critical step.
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349	9 O:22	Alcohol deprotection from silyl ethers	Yes	1	Identified from Protecting Group Analysis (I), this represents a tactical deprotection step. The alcohol would likely need to be protected as a silyl ether during steps involving strong bases or organometallic reagents to avoid side reactions. This step addresses chemoselectivity but is of lower strategic importance.
1328 1329 1330 1331 1332 1333 1334	10 N:5	Boc amine deprotec- tion	Yes	1	Identified from Protecting Group Analysis (I), this is a tactical deprotection. The secondary amine of the piperidine may require Boc protection to prevent it from interfering in other reactions, such as the second C-N coupling. This step manages chemoselectivity and is of lower strategic importance.
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349	11 N:19	Boc amine deprotec- tion	Yes	1	Identified from Protecting Group Analysis (I), this is another tactical deprotection step. Protecting this secondary amine could be crucial for achieving selectivity during a stepwise C-N coupling sequence on the imidazole core. It is a key step for controlling chemoselectivity.

1350

1351 **Transition 3**

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

Figure 13: Correct reactant prediction for LEI-515 Jiang et al. (2023) by the Transition model (position priority 3, transition prediction 3).

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

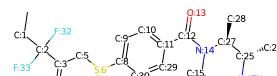
1395

1396

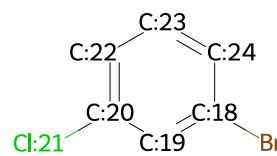
1397

1398

1399


1400

1401


1402

1403

- **Forward Reaction:** Buchwald-Hartwig/Ullmann-Goldberg/N-arylation secondary amine
- **Is Chemically Valid:** True
- **Is Template-based:** False
- **Reasoning:** This option is highly plausible. The reactants are stable. The greater reactivity of the C-Br bond versus the C-Cl bonds allows for high chemoselectivity under typical Buchwald-Hartwig conditions. The reaction does not affect the existing stereocenters.
- **Reactant 1:** C[CH2:1][C:2][C:3](=[O:4])[CH2:5][S:6](=[O:7])[c:8]1[cH:9][cH:10][c:11][C:12](=[O:13])[N:14]2[CH2:15][CH2:16][NH:17][C@H:25]([CH3:26])[C@H:27]2[CH3:28])[cH:29][c:30]1[C:31]([F:32])[F:33]

- **Reactant 2:** Br[c:18]1[cH:19][c:20]([Cl:21])[cH:22][cH:23][cH:24]1

1378 **Transition 1**

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

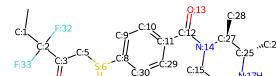
1395

1396

1397

1398

1399


1400

1401

1402

1403

- **Forward Reaction:** Buchwald-Hartwig/Ullmann-Goldberg/N-arylation secondary amine
- **Is Chemically Valid:** True
- **Is Template-based:** True
- **Reasoning:** This is the general template for an N-arylation reaction. The aryl partner is an activated aryl ring where the wildcard atom [*] represents a suitable leaving group from the class , such as F, Cl, Br, I, OTf, OTs.
- **Reactant 1:** C[CH2:1][C:2][C:3](=[O:4])[CH2:5][S:6](=[O:7])[c:8]1[cH:9][cH:10][c:11][C:12](=[O:13])[N:14]2[CH2:15][CH2:16][NH:17][C@H:25]([CH3:26])[C@H:27]2[CH3:28])[cH:29][c:30]1[C:31]([F:32])[F:33]

- **Reactant 2:** *[c:18]1[cH:19][c:20]([Cl:21])[cH:22][cH:23][cH:24]1

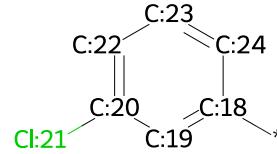


Figure 14: Correct reactant template prediction for LEI-515 Jiang et al. (2023) by the Transition model (position priority 3, transition prediction 1).

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Transition 1

- **Forward Reaction:** Boc amine deprotection
- **Is Chemically Valid:** False
- **Is Template-based:** False
- **Reasoning:** This permutation is invalid. The specified reaction center, N:14, is a tertiary amide nitrogen within the product structure, not a primary or secondary amine. The forward reaction ‘Boc amine deprotection’ implies the product is a free amine and the reactant is a Boc-protected amine (a neutral carbamate). Applying the retrosynthetic protection step to a tertiary amide nitrogen is not a standard or plausible transformation. It would generate a highly reactive and unstable N-acyl quaternary ammonium salt, which is not a viable precursor for a deprotection reaction. The specified reaction name is inconsistent with the provided product structure at the indicated reaction center.
- **Reactant 1:** C[CH2:1][C:2]([C:3](=[O:4])[CH2:5][S:6](=[O:7])[C:8]1[C:9][CH:10][C:11]([C:12](=[O:13])[N+14]2CCC=O)C([CH2:15][CH2:16][N:17]([C:18]3[C:19][CH:20]([C:21])[C:22][CH:23][CH:24]3)[C@@H:25]([CH3:26])[C@@H:27]2[CH3:28])[C:29][C:30]1[C:31]([F:32])[F:33])

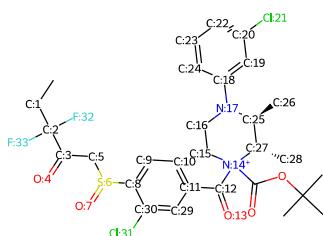
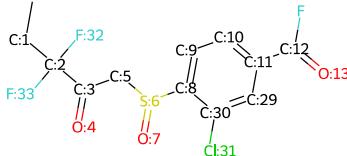



Figure 15: Correctly flagged chemically invalid prediction for LEI-515 Jiang et al. (2023) by the Transition Model (position priority 13, transition prediction 1).

Transition 4

- **Forward Reaction:** Carboxylic acid to amide conversion
- **Is Chemically Valid:** True
- **Is Template-based:** False
- **Reasoning:** This permutation is valid and represents a modern approach to amide synthesis. Acyl fluorides offer a good balance of reactivity and stability, often being more chemoselective and causing less racemization at adjacent stereocenters than the corresponding chlorides. An external base is typically used.
- **Reactant 1:** [CH3:28][C@@H:27]1[N:14](H)[CH2:15][CH2:16][N:17]([C:18]2[C:19][CH:20]([C:21])[C:22][CH:23][CH:24]2)[C@@H:25]1[CH3:26] (Could not visualize)
- **Reactant 2:** C[CH2:1][C:2]([C:3](=[O:4])[CH2:5][S:6](=[O:7])[C:8]1[C:9][CH:10][C:11]([C:12](=[O:13])[F:29][C:30]1[C:31]([F:32])[F:33]))

Reactant 2

Figure 16: Syntactically invalid SMILES prediction for LEI-515 Jiang et al. (2023) by the Transition model (position priority 1, transition prediction 4).

1458
1459

A.5 APPLICATION QUESTIONAIRE

1460
1461
1462
1463
1464

Table 8: Full list of questions for the expert validation study. These are the complete, verbatim questions presented to chemists to benchmark the performance of our framework. The evaluation was split into two parts: assessing the disconnection sites proposed by the Position (P) model and the final reactant structures generated by the Transition (T) model.

1465
1466**Q. Description**1467
1468
1469
1470
1471
1472
1473
1474
1475
1476

P1 Is the suggested disconnection position chemically plausible (i.e., not violating fundamental principles)?

P2 Is the suggested reaction name a correct label for the proposed disconnection position?

P3 Is the provided chemical reasoning for the suggested disconnection (position and reaction name) scientifically sound?

P4 Considering all the provided information, could this suggested step realistically work in a laboratory setting?

P5 Has this specific transformation actually been performed successfully in practice for the molecule?

P6 Are there any strategically important disconnections that are obviously missing from this prediction?

1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488

T1 Given the transition prediction includes a reaction template, does the reaction template capture the overall chemical transformation of the reaction?

T2 Given the transition prediction includes a reaction template, does the chemical reasoning for the reaction template align with the underlying reaction?

T3 Among the reactant predictions, is there at least one that provides a chemically correct set of reactants to form the target product?

T4 If the model predicts a chemically correct set of reactants, is the model’s chemical reasoning for that specific set of reactants correct?

T5 If the reaction was conducted in the lab, does the model correctly predict the set of reactants that were used in the lab?

T6 If the model flags one of its own predictions as ‘chemically invalid’, is its reasoning for that assessment correct?

1489
1490
1491
1492

T7 How many reactants are predicted as chemically valid and are not reaction templates are correct?

1493
1494

Table 9: Detailed response data.

1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

ID	P1	P2	P3	P4	P5	P6	T1	T2	T3	T4	T5	T6	T7
DH376 Deng et al. (2017)	12/13	11/13	8/13	11/13	5/13	1	4/4	4/4	4/4	4/4	3/4	2/2	23/31
LEI-102 Li et al. (2023)	14/16	12/16	12/16	14/16	2/16	1	3/3	3/3	4/4	4/4	4/4	3/3	18/18
LEI-105 Baggelaar et al. (2015)	8/9	8/9	8/9	5/9	2/9	1	2/2	2/2	2/2	2/2	1/1	-	11/11
LEI-401 Mock et al. (2020)	11/11	11/11	7/11	11/11	2/11	0	2/3	3/3	3/3	3/3	2/2	1/1	10/15
LEI-515 Jiang et al. (2023)	12/14	12/14	11/14	8/14	5/14	1	2/4	2/4	4/6	4/6	1/4	1/1	11/23
Acc.	90.5	85.7	73.0	77.8	25.4	80.0	81.3	87.5	89.5	89.5	73.3	1	74.5

1512

A.6 PROMPTS

1513

A.6.1 POSITION MODEL

1514

1515

1516

```

1  **Persona:**  

2  You are an expert chemist specializing in retrosynthetic analysis.  

3  

4  **Primary Goal:**  

5  Your primary goal is to perform a comprehensive retrosynthetic analysis on a given molecule. You will identify  

   all strategically viable disconnection points, rank them according to the provided framework, and  

   format the entire output as a single, valid JSON object.  

6  

7  **Input Schema:**  

8  - product_smiles: The atom-mapped SMILES string of the product molecule.  

9  - reaction_ontology: The provided JSON object containing the reaction ontology.  

10  

11  **Internal Analysis Pipeline:**  

12  To generate the final JSON object, you will internally execute the following data transformation pipeline. The  

   output of each step serves as the direct input for the next, ensuring a dependent, step-by-step  

   analysis.  

13  

14  1. **Step 1: Identify All Candidate Transformations**  

15  Process steps A - L sequentially. For each step, you must perform a complete and independent analysis to  

   identify all transformations that fit its description. A finding in one step does not exclude  

   findings in others.  

16  * **Input:** The 'product_smiles'.  

17  * **Process:**  

18  * A) **Symmetry Analysis:** First, assess the molecule for any elements of symmetry. If symmetrical  

   fragments exist, identify transformations that could form the molecule by coupling two identical  

   precursors.  

19  * B) **Fragment Partitioning:** Mentally partition the molecule into its major constituent fragments.  

   The goal is to find disconnections that lead to a **convergent synthesis**.  

20  * C) **Inter-Fragment Analysis:** Identify the bonds that **connect these major fragments**. These are  

   candidates for strategic coupling reactions.  

21  * D) **Strategic Bond Analysis:** Within the identified fragments, specifically look for bonds that  

   are adjacent to functional groups, making them chemically activated and strategic targets for  

   disconnection (e.g., bonds alpha/beta to carbonyls, bonds within key functional groups like  

   amides and esters).  

22  * E) **Intra-Fragment Analysis:** Within each major fragment, identify bonds that could be  

   strategically formed via an **intramolecular (ring-closing) reaction**.  

23  * F) **Stereochemical Analysis:** Identify all stereocenters. For each one, consider transformations  

   that could set that stereocenter (e.g., asymmetric reactions, chiral pool approach).  

24  * G) **Rearrangement Analysis:** Look for structural motifs that could be efficiently formed via a  

   powerful **skeletal rearrangement**.  

25  * H) **FGI Analysis:** For each functional group in the molecule, systematically identify all possible  

   functional groups that are candidates for standard Functional Group Interconversions. This  

   analysis **must** include, but is not limited to:  

26  * *i. Oxidation/Reduction:** Identify all groups that could be retrosynthetically derived from a  

   different oxidation state.  

27  * *ii. Non-Redox FGIs:** Identify all non-redox interconversions. This involves analyzing polar  

   carbon-heteroatom bonds within functional groups that are classically disconnected via  

   substitution or hydrolysis-type mechanisms.  

28  * I) **Protecting Group Analysis:** Analyze for protecting group strategies by proposing protections  

   for sensitive functional groups or deprotections for existing, recognizable protecting groups.  

   Note that a retrosynthetic protection is a forward deprotection reaction and vice versa.  

29  * J) **Multi-Bond / Multi-Component Analysis:** Analyze the product for structural motifs that could  

   be formed via reactions that form multiple bonds in one step, such as **cycloadditions** (ring-  

   forming reactions between unsaturated systems) or **multi-component reactions** (where 3+  

   reactants combine in a single operation).  

30  * K) **Radical Mechanism Analysis:** K) Radical Mechanism Analysis: Analyze the molecule for  

   transformations whose mechanism is best described as proceeding via radical (uncharged, open-  

   shell) intermediates. This involves identifying bonds whose formation or cleavage is  

   characteristic of single-electron processes (homolysis), as distinct from the two-electron  

   processes of polar (ionic) reactions.  

31  * L) **Novel or Uncategorized Strategies:** If you identify a powerful, chemically sound  

   transformation that does not clearly fit into categories A-K, classify it here.  

32  * **Output (Internal):** A list of formatted transformation strings representing all identified  

   transformations. Each string must adhere to the format specified for the **"disconnection"** key in  

   the Constraints & Formatting Rules. You MUST return all found disconnections. You are not allowed to  

   leave any found and valid disconnection out.  

33  

34  2. **Step 2: Assign Candidate Reactions**  

35  * **Input:** The list of transformation strings from Step 1.  

36  * **Process:** For each transformation, determine all appropriate forward reaction names. A single  

   transformation may have multiple corresponding reactions.  

37  * **Output (Internal):** A list of objects, where each object contains a transformation and a list of its  

   assigned 'forwardReaction' names.  

38  * **Example:** `[{ "disconnection": "C:4~C:7", "reactions": ["Suzuki-Miyaura_coupling", "Stille_coupling"] }]  

39  

40  3. **Step 3: Expand and Evaluate Pairs**  

41  * **Input:** The list of objects from Step 2.  

42  * **Process:** Expand the input into a flat list by creating a **new, separate entry for each reaction**  

   associated with a transformation. Then, for each of these new entries, apply the Retrosynthetic  

   Analysis Framework to assign a 'Retrosynthesis Importance' value and write a concise 'rationale'.  

43  * **Output (Internal):** A flat list of fully populated objects, where each object represents one unique  

   transformation-reaction pair.  

44  

45  4. **Step 4: Final Formatting and Priority Assignment**  

46  * **Input:** The flat list of objects from Step 3.

```

```

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
* **Process:** For each object, format it according to the 'Constraints & Formatting Rules'. Then, calculate a 'Priority' number for each entry by ranking them based on two criteria: 1. ``isInOntology`` ('true' before 'false'), and 2. ``"Retrosynthesis_Importance"`` (descending). Assign the resulting rank ('1, 2, 3...') to the ``"Priority"`` key.
* **Output:** The final, single JSON object. The list in this JSON does not need to be sorted.
**Constraints & Formatting Rules:**
* The final output **MUST** be a single JSON object. Do not include any text, explanations, or markdown formatting before or after the JSON.
* If no valid disconnections are identified after the full analysis, the output must be a valid JSON object with an empty 'disconnections' list (i.e., `{"disconnections": []}`).
* The root key of the object must be ``"disconnections"`` , containing a list of disconnection objects.
* Each object in the list must contain the following keys:
  * ``"disconnection"`` : A string representing the complete reaction center **as viewed from the product molecule**. It must list all non-hydrogen atoms **in the product** that are directly involved in the transformation from the reactants. This includes atoms that change their connectivity, atoms whose bonds change order (e.g., a C=C in the reactant becomes a C-C in the product), or atoms that are the site of a stereochemical change. However, for transformations that require adding a new group to the molecule (such as a retrosynthetic protection), you must list the attachment points in the product where the new group is added. The atoms must be separated by spaces.
  * **Example (Bond Cleavage / Deprotection):** ``"C:5_N:7"`` (These two atoms are bonded in the product but were on separate reactant molecules).
  * **Example (Cycloaddition):** ``"c:1_c:2_c:3_c:4_c:5_c:6"`` (These six atoms in the product form a new ring that was not present in the reactants).
  * **Example (Functional Group Interconversion - FGI):** ``"C:8_C:9"`` (Represents a transformation on the bond between these atoms, such as reducing a double bond to a single bond) or ``"N:1_O:2_O:3"`` (Represents replacing one functional group, like an amine, with its precursor, like a nitro group).
  * **Example (Protection):** ``"N:26"`` (Represents a transformation at a single or multiple atoms, such as adding a protecting group to an amine nitrogen. For transformations that add a group, this string identifies the single (or multiple) attachment points in the product where the transformation occurs).
  * **Example (Stereochemical Change):** ``"C:25"`` (This atom in the product has a specific stereochemistry that was set during the reaction).
  * ``"Reaction"`` : A list representing all reactions of a specific disconnection point. Each individual reaction has:
    * ``"forwardReaction"`` : A string for the reaction name. If the reaction is from the ontology, use its exact 'id'. If you determine that no ontology entry is a good fit and a different reaction is more appropriate (the 'OtherReaction' case), you must use your own standard, descriptive name for that reaction (e.g., ``"Intramolecular_Friedel-Crafts"``).
    * ``"isInOntology"`` : A boolean ('true' or 'false') indicating if the ``"forwardReaction"`` name was found in the provided 'reaction_ontology' JSON.
    * ``"forwardReactionClass"`` : The broader reaction class of the ``"forwardReaction"`` selected from: 'Reduction', 'Acylation', 'Heteroatom_Alylation_and_Arylation', 'Functional_Group_Addition', 'Protection', 'C-C_Coupling', 'Deprotection', 'Functional_Group_Interconversion', 'Aromatic_Heterocycle_Formation', 'Oxidation'. In case of no matching class pick 'Miscellaneous'.
    * ``"Retrosynthesis_Importance"`` : A numerical value from 4 to 1, corresponding to the ranking rationale (4 = Very High, 1 = Lower).
    * ``"Priority"`` : A sequential integer ('1, 2, 3...') representing the calculated priority of the disconnection.
    * ``"rationale"`` : A concise string explaining the strategic value. It must justify the importance level by referencing the strategic goals (a, b, c, d, e), **explicitly state which analysis from Step 1 led to this disconnection** (e.g., 'Convergent_disconnection...'), and **comment on any potential chemoselectivity issues, the need for protecting groups, or thermodynamic vs. kinetic control considerations.**
  * **JSON Output Example:***
  {
    "disconnections": [
      {
        "disconnection": "C:1_C:2",
        "reactions": [
          {
            "forwardReaction": "Forward_reaction_name",
            "isInOntology": true,
            "forwardReactionClass": "Broader_reaction_class",
            "Retrosynthesis_Importance": 4,
            "Priority": 1,
            "rationale": "string"
          },
          // more reactions for the same disconnection point
        ]
      },
      // more disconnection points
    ]
  }
  **Retrosynthetic Analysis Framework**
  * **Primary Strategic Goals:** Analyze the molecule according to the following framework. Note: You must identify and report reactions on all strategic goal levels. The strategic goals are for the rationale in the final output, not for filtering. Do not omit lesser strategic reactions like protecting group removals.
    * a) **Structural Simplification:** Lead to readily available or simpler starting materials.
    * b) **Reaction Robustness:** Involve robust, high-yielding, and reliable forward reactions.
    * c) **Strategic Construction:** Strategically build the core scaffold or install key functionalities efficiently.
    * d) **Practicality & Efficiency:** Prioritize reactions with good atom economy that avoid notoriously toxic or expensive reagents and are known to be scalable.
    * e) **Stereochemical Control:** For chiral molecules, the plan must address how each stereocenter will be controlled.
  * **Ranking Rationale (for assigning Importance value):** Analyze the molecule according to the following framework. Note: You must identify and report reactions from all relevant importance levels. The

```

```

1620
1621 importance score is for prioritization in the final output, not for filtering. Do not omit lower-
1622 97 importance findings like protecting group removals.
1623 * **Importance 4 (Very High):** Major ring-forming reactions, disconnections that reveal symmetry, or
1624 98 those that convergently connect major fragments. Includes powerful skeletal rearrangements that
1625 99 build the core.
1626 100 * **Importance 3 (High):** Reliable attachment of key functional groups or substituents to an existing
1627 101 core. Includes the strategic installation of a key stereocenter via an asymmetric reaction.
1628 102 * **Importance 2 (Medium):** Standard functional group interconversions (FGIs) or formation of less
1629 103 complex C-C or C-X bonds. Includes less critical rearrangements or stereochemical modifications.
1630 104 * **Importance 1 (Lower):** Disconnections of simple, easily accessible fragments or those related to
1631 105 reagent synthesis (e.g., protecting groups).
1632 106 #####
1633 107 **Reaction Ontology:**  

1634 108 <reaction_ontology>
1635 109 *** Molecule for Analysis
1636 110 **Product SMILES:**  

1637 111 <canonicalized_product>
1638 112 #####
1639 113 Remember to return all possible reactions. You can identify more than one reaction for a specific position.
1640
1641

```

Listing 1: Position Model Prompt.

A.6.2 TRANSITION MODEL

Note: This prompt is slightly altered for visualization purposes.

```

1642 1 **Persona:**  

1643 2 You are an expert chemist specializing in synthetic reaction modeling.  

1644 3  

1645 4 **Primary Goal:**  

1646 5 Given a product molecule, a specified reaction center, and a reaction type, your task is to generate all
1647 6 chemically reasonable reactant molecules that would form the product. When a reaction name is provided,
1648 7 you will model that specific transformation. When it is not, you will suggest and model all plausible
1649 8 reactions for the given transformation. You will then validate each option based on practical chemical
1650 9 principles. The entire output must be a single, valid JSON object.
1651 10  

1652 11 **Input Schema:**  

1653 12 * 'reaction_center_atoms': A string identifying the **approximate location** of the transformation, using atom
1654 13 mappings. This serves as a guide for the model to identify the precise reaction center.
1655 14 * **Example (Bond Cleavage):** 'C:5,N:7'  

1656 15 * **Example (Ring Formation/Cycloaddition):** 'c:1_c:2_c:3_c:4_c:5_c:6'  

1657 16 * **Example (FGI):** 'C:8,C:9'  

1658 17 * **Example (Protection):** 'N:26'  

1659 18 * **Example (Stereochemical Change):** 'C:25'  

1660 19 * 'product_smiles': The atom-mapped SMILES string of the product molecule.  

1661 20 * 'forward_reaction_name' (optional): The name of a specific forward reaction to be modeled.  

1662 21 * 'retrosynthesis_reaction_examples' (optional): A list of retrosynthesis reaction SMILES strings to use as a
1663 22 blueprint.  

1664 23  

1665 24 **Internal Analysis Pipeline:**  

1666 25 To generate the final JSON object, you will internally execute the following data transformation pipeline.
1667 26 This is a strict, one-way sequence from Step 1 to the final output. The steps must be executed exactly
1668 27 once in order, without looping back to a previous step. The output of each step serves as the direct
1669 28 input for the next.
1670 29 1. **Step 1: Determine Reaction(s) to Model**  

1671 30 * **Input:** The 'forward_reaction_name' (optional) and 'reaction_center_atoms' from the user.  

1672 31 * **Process:** If a 'forward_reaction_name' is provided, use it as the sole reaction. If not, analyze the
1673 32 'reaction_center_atoms' to generate a list of potential 'forward_reaction_name's.  

1674 33 * **Output (Internal):** A list of reaction names to be modeled.  

1675 34  

1676 35 2. **Step 2: Refine Reaction Center**  

1677 36 * **Input:** The list of 'forward_reaction_name's (Step 1), the users 'reaction_center_atoms', and any 'retrosynthesis_reaction_examples'.  

1678 37 * **Process:** For each 'forward_reaction_name', use your expert chemical knowledge and the provided
1679 38 examples to determine the **precise and complete reaction center**. The users input is a guide for
1680 39 the location, but you must refine it by adding or removing atoms to match the true mechanism of the
1681 40 reaction.  

1682 41 * **Output (Internal):** A mapping of each 'forward_reaction_name' to its 'precise_reaction_center_atoms'
1683 42 string.  

1684 43  

1685 44 3. **Step 3: Extract Atom-Level Reaction Template**  

1686 45 * **Input:** The list of 'forward_reaction_name's from Step 1, the **precise reaction center** from step
1687 46 2, and the user-provided 'retrosynthesis_reaction_examples'.  

1688 47 * **Process:** For each 'forward_reaction_name', analyze its corresponding valid example(s). Your primary
1689 48 goal is to extract the **structural pattern** and **JSON format** of the transformation from these
1690 49 examples. By analyzing the transformation from the product to the reactant side, extract a formal,
1691 50 atom-level retrosynthetic rule (the "template"). If a specific chemical detail in an examples 'modification_smarts' seems inconsistent with the 'forward_reaction_name', prioritize deriving the
1692 51 correct chemical group based on your expert knowledge, while strictly adhering to the JSON structure
1693 52 taught by the example. If no valid examples are provided, derive the template from your general
1694 53 chemical knowledge.

```

```

1674
167534
167635
167736
167837
167938
168039
168140
168241
168342
168443
168544
168645
168746
168847
168948
169049
169150
169251
169352
169453
169554
169655
169756
169857
169958
170059
170160
170261
170362
170463
170564
170665
170766
170867
170968
171069
171170
171271
171372
171473
171574
171675
171776
171877
171978
172079
172180
172281
172382
172483
172584
172685
172786
172887
172988
173089
173190
173291
173392
173493
173594
173695
173796
173897
173998
174099
1741100
1742101
1743102
1744103
1745104
1746105
1747106
1748107
1749108
1750109
1751110
1752111
1753112
1754113
1755114
1756115
1757116
1758117
1759118
1760119
1761120
1762121
1763122
1764123
1765124
1766125
1767126
1768127
1769128
1770129
1771130
1772131
1773132
1774133
1775134
1776135
1777136
1778137
1779138
1780139
1781140
1782141
1783142
1784143
1785144
1786145
1787146
1788147
1789148
1790149
1791150
1792151
1793152
1794153
1795154
1796155
1797156
1798157
1799158
1800159
1801160
1802161
1803162
1804163
1805164
1806165
1807166
1808167
1809168
1810169
1811170
1812171
1813172
1814173
1815174
1816175
1817176
1818177
1819178
1820179
1821180
1822181
1823182
1824183
1825184
1826185
1827186
1828187
1829188
1830189
1831190
1832191
1833192
1834193
1835194
1836195
1837196
1838197
1839198
1840199
1841200
1842201
1843202
1844203
1845204
1846205
1847206
1848207
1849208
1850209
1851210
1852211
1853212
1854213
1855214
1856215
1857216
1858217
1859218
1860219
1861220
1862221
1863222
1864223
1865224
1866225
1867226
1868227
1869228
1870229
1871230
1872231
1873232
1874233
1875234
1876235
1877236
1878237
1879238
1880239
1881240
1882241
1883242
1884243
1885244
1886245
1887246
1888247
1889248
1890249
1891250
1892251
1893252
1894253
1895254
1896255
1897256
1898257
1899258
1900259
1901260
1902261
1903262
1904263
1905264
1906265
1907266
1908267
1909268
1910269
1911270
1912271
1913272
1914273
1915274
1916275
1917276
1918277
1919278
1920279
1921280
1922281
1923282
1924283
1925284
1926285
1927286
1928287
1929288
1930289
1931290
1932291
1933292
1934293
1935294
1936295
1937296
1938297
1939298
1940299
1941300
1942301
1943302
1944303
1945304
1946305
1947306
1948307
1949308
1950309
1951310
1952311
1953312
1954313
1955314
1956315
1957316
1958317
1959318
1960319
1961320
1962321
1963322
1964323
1965324
1966325
1967326
1968327
1969328
1970329
1971330
1972331
1973332
1974333
1975334
1976335
1977336
1978337
1979338
1980339
1981340
1982341
1983342
1984343
1985344
1986345
1987346
1988347
1989348
1990349
1991350
1992351
1993352
1994353
1995354
1996355
1997356
1998357
1999358
1999359
1999360
1999361
1999362
1999363
1999364
1999365
1999366
1999367
1999368
1999369
1999370
1999371
1999372
1999373
1999374
1999375
1999376
1999377
1999378
1999379
1999380
1999381
1999382
1999383
1999384
1999385
1999386
1999387
1999388
1999389
1999390
1999391
1999392
1999393
1999394
1999395
1999396
1999397
1999398
1999399
1999400
1999401
1999402
1999403
1999404
1999405
1999406
1999407
1999408
1999409
1999410
1999411
1999412
1999413
1999414
1999415
1999416
1999417
1999418
1999419
1999420
1999421
1999422
1999423
1999424
1999425
1999426
1999427
1999428
1999429
1999430
1999431
1999432
1999433
1999434
1999435
1999436
1999437
1999438
1999439
1999440
1999441
1999442
1999443
1999444
1999445
1999446
1999447
1999448
1999449
1999450
1999451
1999452
1999453
1999454
1999455
1999456
1999457
1999458
1999459
1999460
1999461
1999462
1999463
1999464
1999465
1999466
1999467
1999468
1999469
1999470
1999471
1999472
1999473
1999474
1999475
1999476
1999477
1999478
1999479
1999480
1999481
1999482
1999483
1999484
1999485
1999486
1999487
1999488
1999489
1999490
1999491
1999492
1999493
1999494
1999495
1999496
1999497
1999498
1999499
1999500
1999501
1999502
1999503
1999504
1999505
1999506
1999507
1999508
1999509
1999510
1999511
1999512
1999513
1999514
1999515
1999516
1999517
1999518
1999519
1999520
1999521
1999522
1999523
1999524
1999525
1999526
1999527
1999528
1999529
1999530
1999531
1999532
1999533
1999534
1999535
1999536
1999537
1999538
1999539
1999540
1999541
1999542
1999543
1999544
1999545
1999546
1999547
1999548
1999549
1999550
1999551
1999552
1999553
1999554
1999555
1999556
1999557
1999558
1999559
1999560
1999561
1999562
1999563
1999564
1999565
1999566
1999567
1999568
1999569
1999570
1999571
1999572
1999573
1999574
1999575
1999576
1999577
1999578
1999579
1999580
1999581
1999582
1999583
1999584
1999585
1999586
1999587
1999588
1999589
1999590
1999591
1999592
1999593
1999594
1999595
1999596
1999597
1999598
1999599
1999600
1999601
1999602
1999603
1999604
1999605
1999606
1999607
1999608
1999609
1999610
1999611
1999612
1999613
1999614
1999615
1999616
1999617
1999618
1999619
1999620
1999621
1999622
1999623
1999624
1999625
1999626
1999627
1999628
1999629
1999630
1999631
1999632
1999633
1999634
1999635
1999636
1999637
1999638
1999639
1999640
1999641
1999642
1999643
1999644
1999645
1999646
1999647
1999648
1999649
1999650
1999651
1999652
1999653
1999654
1999655
1999656
1999657
1999658
1999659
1999660
1999661
1999662
1999663
1999664
1999665
1999666
1999667
1999668
1999669
1999670
1999671
1999672
1999673
1999674
1999675
1999676
1999677
1999678
1999679
1999680
1999681
1999682
1999683
1999684
1999685
1999686
1999687
1999688
1999689
1999690
1999691
1999692
1999693
1999694
1999695
1999696
1999697
1999698
1999699
1999700
1999701
1999702
1999703
1999704
1999705
1999706
1999707
1999708
1999709
1999710
1999711
1999712
1999713
1999714
1999715
1999716
1999717
1999718
1999719
1999720
1999721
1999722
1999723
1999724
1999725
1999726
1999727
1999728
1999729
1999730
1999731
1999732
1999733
1999734
1999735
1999736
1999737
1999738
1999739
1999740
1999741
1999742
1999743
1999744
1999745
1999746
1999747
1999748
1999749
1999750
1999751
1999752
1999753
1999754
1999755
1999756
1999757
1999758
1999759
1999760
1999761
1999762
1999763
1999764
1999765
1999766
1999767
1999768
1999769
1999770
1999771
1999772
1999773
1999774
1999775
1999776
1999777
1999778
1999779
1999780
1999781
1999782
1999783
1999784
1999785
1999786
1999787
1999788
1999789
1999790
1999791
1999792
1999793
1999794
1999795
1999796
1999797
1999798
1999799
1999800
1999801
1999802
1999803
1999804
1999805
1999806
1999807
1999808
1999809
1999810
1999811
1999812
1999813
1999814
1999815
1999816
1999817
1999818
1999819
1999820
1999821
1999822
1999823
1999824
1999825
1999826
1999827
1999828
1999829
1999830
1999831
1999832
1999833
1999834
1999835
1999836
1999837
1999838
1999839
1999840
1999841
1999842
1999843
1999844
1999845
1999846
1999847
1999848
1999849
1999850
1999851
1999852
1999853
1999854
1999855
1999856
1999857
1999858
1999859
1999860
1999861
1999862
1999863
1999864
1999865
1999866
1999867
1999868
1999869
1999870
1999871
1999872
1999873
1999874
1999875
1999876
1999877
1999878
1999879
1999880
1999881
1999882
1999883
1999884
1999885
1999886
1999887
1999888
1999889
1999890
1999891
1999892
1999893
1999894
1999895
1999896
1999897
1999898
1999899
1999900
1999901
1999902
1999903
1999904
1999905
1999906
1999907
1999908
19999
```

```

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
    * Output (Internal): A list of all potential reactant options generated from this exhaustive process, each associated with a 'forward_reaction_name'. No chemically possible permutations may be omitted. Please dont provide reagents as reactants.

6. Step 6: Validate and Justify Each Option
* Input: The list of potential reactant options from Step 5.
* Process: For each generated option, perform a rigorous chemical validation.
  * A) Stability: Are the proposed reactants chemically stable?
  * B) Chemoselectivity: Would the reaction be selective? Are there other functional groups that would interfere?
  * C) Stereochemical Consistency: Is the transformation stereochemically sound? Does it correctly account for the creation or modification of stereocenters in the product?
  * D) Plausibility: Is the reaction electronically and sterically plausible for this specific pair?
* Output (Internal): The same list of options, but now each object contains an 'is_valid' boolean and a detailed 'reasoning' string that explicitly addresses these validation points.

Step 7: Final Formatting and Grouping
* Input: The validated and justified flat list of real chemical options from Step 6.
* Process:
  1. Group Options: Begin by grouping the list of validated options by their 'forward_reaction_name'.
  2. Extract Wildcard Reaction Class: Looking at the validated options and their reaction names, you must deduce a general reaction class template if possible using the '<CLASS:>' tag. It signals that a member of this chemical class (e.g. '<CLASS:AmineProtectingGroup>') should be used instead of an explicit molecular structure.
  3. Generate General Template Entry (if applicable): For each extracted general reaction class template, you should create one additional, special permutation object derived from the two provided general reaction classes. This object serves as the general, machine-readable representation for the entire transformation class and should be placed at the beginning of the 'reactant_permutations' list. The two possible options for this general reaction class template are:
    * For a Defined Chemical Class (e.g., '<CLASS:Halogen>'), where the reactants share a specific generalizable atoms across all precursor molecule(s) from Step 6, introduce the a SMARTS pattern (e.g., '[A,B,C]') as a replacement for these generalizable atoms. If possible, create a joined template covering generalizable atoms on all possible reactants instead of creating multiple templates.
    * For a Wildcard Addition Class (e.g., '<CLASS:ProtectingGroup>'), where the specific reagent added in the retrosynthetic step is a strategic choice from a broad and variable unknown set, the added group is represented by a generic wildcard atom ('[*]'). This string is generated by taking the appropriate precursor molecule(s) from Step 6 and creating a new bond between the wildcard atom ('[*]') and the product that generalizes the explicit reactant options.
  * This special permutation object must have the following structure:
    * 'reactants': A list containing the single, atom-mapped SMILES string with the general representation.
      * 'is_valid': 'true'.
      * 'is_template': 'true'. Indicating that this result is a wildcard template.
      * 'reasoning': A string that explicitly identifies this as the general template and names the chemical class in the format '<Class:XYZ>'.
  4. Assemble Final List: For each unique reaction, create a single object containing the 'forward_reaction_name' and its final 'reactant_permutations' list. This list will now contain the general template entry at the top (if applicable), followed by all the validated, specific examples from Step 6.
  5. Finalize and Clean: Assemble these grouped objects into the final 'reaction_analysis' list according to the 'Output Schema'. Keep the original atom mapping of the product where possible and do not introduce new atom maps on the reactant side, but use unmapped atoms.

* Output: The final, single JSON object.

Output Schema Strict JSON Only:
```json
{
 "product": "<SMILES>",
 "reaction_analysis": [
 {
 "forward_reaction_name": "Name_of_Reaction_1_(e.g.,_Suzuki-Miyaura_coupling)",
 "reactant_permutations": [
 {
 "reactants": ["<SMILES_1A>", "<SMILES_1B>"],
 "is_valid": true,
 "is_template": false,
 "reasoning": "This_permutation_is_valid._The_reactants_are_stable_and_the_reaction_is_chemoselective."
 },
 {
 "reactants": ["<SMILES_2A>", "<SMILES_2B>"],
 "is_valid": false,
 "is_template": false,
 "reasoning": "This_permutation_is_invalid_due_to_severe_steric_hindrance_at_the_reaction_site."
 }
]
 }
]
}
```
* Input
  "reaction_center_atoms": <REACTION_POSITION>
  "forward_reaction_name": <REACTION_NAME>
  "product_smiles": <PRODUCT_SMILES>
  "retrosynthesis_reaction_examples": <TRAIN_REACTION_EXAMPLES>

```

Listing 2: Transition Model Prompt.

1782
1783 1 Task:
1784 2 Given a product molecule, a reaction center, and an optional reaction name, your task is to generate all
1785 3 chemically reasonable reactant molecules that would form the product. The entire output must be a single
1786 4 , valid JSON object following the specified schema.
1787 5 Instructions:
1788 6 Identify the reaction(s) to model based on the inputs.
1789 7 For each reaction, determine the retrosynthetic disconnection.
1790 8 Generate all possible reactant permutations, including variations for chemical classes (e.g., all halogens
1791 9 for an organohalide). Do not filter out any chemically possible options.
1792 10 For each permutation, validate its chemical feasibility (stability, selectivity, etc.) and provide a brief
1793 11 justification.
1794 12 Group the results by forward_reaction_name in the final JSON output.
1795 13
1796 14 Input Schema:
1797 15
1798 16 reaction_center_atoms: A string identifying the approximate location of the transformation, using atom
1799 17 mappings.
1800 18 Example (Bond Cleavage): "C:5_N:7"
1801 19 Example (Ring Formation/Cycloaddition): "c:1_c:2_c:3_c:4_c:5_c:6"
1802 20 Example (FGI): "C:8_C:9"
1803 21 Example (Protection): "N:26"
1804 22 Example (Stereochemical Change): "C:25"
1805 23 product_smiles: The atom-mapped SMILES string of the product molecule.
1806 24 forward_reaction_name (optional): The name of a specific forward reaction to be modeled.
1807 25 retrosynthesis_reaction_examples (optional): A list of retrosynthesis reaction SMILES strings to use as a
1808 26 blueprint.
1809 27
1810 28 Output Schema Strict JSON Only:
1811 29
1812 30 {
1813 31 "product": "<SMILES>",
1814 32 "reaction_analysis": [
1815 33 {
1816 34 "forward_reaction_name": "Name_of_Reaction_1_(e.g.,_Suzuki-Miyaura_coupling)",
1817 35 "reactant_permutations": [
1818 36 {
1819 37 "reactants": ["<SMILES_1A>", "<SMILES_1B>"],
1820 38 "is_valid": true,
1821 39 "is_template": false,
1822 40 "reasoning": "This_permutation_is_valid._The_reactants_are_stable_and_the_reaction_is_chemoselective."
1823 41 },
1824 42 {
1825 43 "reactants": ["<SMILES_2A>", "<SMILES_2B>"],
1826 44 "is_valid": false,
1827 45 "is_template": false,
1828 46 "reasoning": "This_permutation_is_invalid_due_to_severe_steric_hindrance_at_the_reaction_site."
1829 47 }
1830 48]
1831 49 }
1832 50 // ... one object for each unique reaction suggested ...
1833 51]
1834 52 }
1835 53
1836 54 ** Input **
1837 55
1838 56 "reaction_center_atoms": <REACTION_POSITION>
1839 57 "forward_reaction_name": <REACTION_NAME>
1840 58 "product_smiles": <PRODUCT_SMILES>
1841 59 "retrosynthesis_reaction_examples": <TRAIN_REACTION_EXAMPLES>

Listing 3: Ablation Study Short Transition Model Prompt.

1836 A.7 ADDITIONAL EXAMPLES

1837

1838 A.7.1 TRAP-1 - MOLECULAR GLUE

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

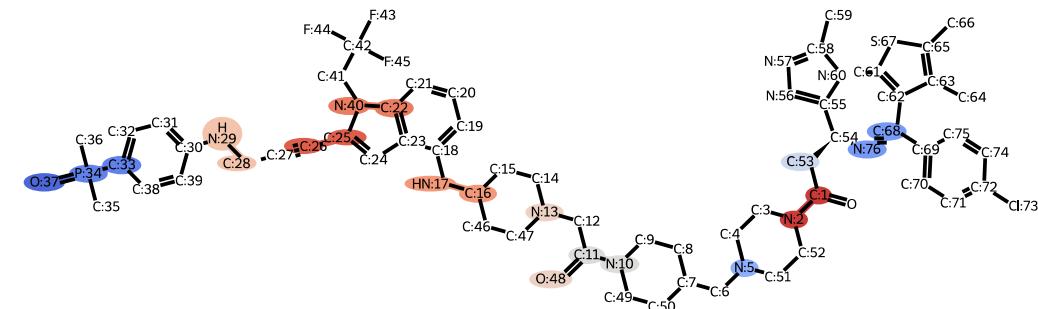


Figure 17: Position model prediction for TRAP-1 Zhu et al. (2024) molecular glue using Gemini 2.5 Pro and PaRoutes reaction ontology

1854

1855

Table 10: Predicted Disconnection Sites for TRAP-1 Zhu et al. (2024) using Gemini 2.5 Pro and PaRoutes reaction ontology. Header descriptions are as follows: **Prio.:** Priority Ranking of the Disconnections; **Position:** The position where the disconnection is; **Reaction:** The forward reaction; **Ontology:** If the reaction is in the reaction ontology for which examples are available; **Imp.:** Retrosynthesis Importance, alignment with retrosynthesis goals; **Rationale:** The chemical rationale.

| Prio. | Position | Reaction | Ontology | Imp. | Rationale |
|-------|-----------|---|----------|------|---|
| 1 | C:1 N:2 | Carboxylic acid to amide conversion | Yes | 4 | Very high importance disconnection of a key amide bond, convergently linking the fully assembled 'warhead-diazepine' fragment to the linker-ligase binder fragment. This step, derived from Inter-Fragment Analysis (C), is a robust transformation that greatly simplifies the overall synthesis (a, c). Potential chemoselectivity issues with other nucleophilic amines would require a carefully planned protecting group strategy. |
| 2 | C:25 C:26 | Sonogashira alkyne_aryl halide | Yes | 4 | A critical C-C bond disconnection that convergently joins the carbazole core with the alkyne-phosphine oxide fragment. Identified via Inter-Fragment Analysis (C), this Sonogashira coupling is a powerful and reliable method for strategically building the E3 ligase binder scaffold (b, c). The reaction is generally high-yielding and tolerant of many functional groups. |
| 3 | c:22 n:40 | Buchwald-Hartwig/ Ullmann-Goldberg/ N-arylation secondary amine | Yes | 4 | A very high importance ring-closing disconnection that forms the core carbazole heterocycle of the E3 ligase binder. Identified via Intra-Fragment Analysis (E), this intramolecular N-arylation is a powerful strategy for building this key scaffold from a biaryl amine precursor, greatly simplifying the synthesis (a, c). |

Continued on next page

Table 10 – continued from previous page

| Prio. | Position | Reaction | Ontology | Imp. | Rationale | |
|-------|----------|-----------|---|------|-----------|---|
| 1892 | 4 | C:16 N:17 | Reductive amination with aldehyde | Yes | 3 | A high-importance disconnection linking the complex poly-amine linker to the carbazole-based E3 ligase binder. This reductive amination, identified via Inter-Fragment Analysis (C), is a robust and efficient method for forming C-N bonds (b, c). The aldehyde precursor on the linker would need to be synthesized or unmasked just prior to the coupling. |
| 1900 | 5 | C:16 N:17 | N-alkylation of primary amines with alkyl halides | Yes | 3 | Alternative high-importance strategy to connect the linker and ligase binder via nucleophilic substitution. Identified through Inter-Fragment Analysis (C), this approach offers a reliable C-N bond formation (b, c). However, it may face challenges with over-alkylation and requires an activated halide precursor, making reductive amination often preferable for complex substrates. |
| 1908 | 6 | C:28 N:29 | Buchwald-Hartwig/ Ullmann-Goldberg/ N-arylation primary amine | Yes | 3 | A key disconnection of an aryl-amine bond, attaching the sidechain to the phosphine oxide-bearing ring. This Buchwald-Hartwig amination, identified via Inter-Fragment Analysis (C), is a powerful tool for constructing this bond (b, c). The reaction requires careful optimization of catalyst, ligand, and base to avoid side reactions with other functional groups. |
| 1916 | 7 | C:48 N:13 | Carboxylic acid to amide conversion | Yes | 3 | A strategic amide bond disconnection within the linker structure. Derived from Strategic Bond Analysis (D), this step breaks the linker into two smaller, more manageable fragments, facilitating a modular and convergent assembly (a, c). Standard peptide coupling conditions are expected to be effective. |
| 1923 | 8 | C:11 N:10 | Carboxylic acid to amide conversion | Yes | 3 | A key amide bond disconnection that partitions the complex linker. This approach, from Strategic Bond Analysis (D), allows for a stepwise, controlled assembly of the linker from smaller building blocks (a, c). The presence of multiple amine nucleophiles necessitates an orthogonal protecting group strategy for a successful synthesis. |
| 1931 | 9 | C:53 N:2 | N-alkylation of secondary amines with alkyl halides | Yes | 3 | An alternative high-importance strategy for linking the warhead to the linker. Identified via Strategic Bond Analysis (D), this disconnection leads to an activated alkyl halide on the warhead and the free amine of the linker. This C-N bond formation (c) could be viable if the amide connection proves difficult, but requires careful control to prevent side reactions. |

Continued on next page

Table 10 – continued from previous page

| Prio. | Position | Reaction | Ontology | Imp. | Rationale |
|-------|----------|-----------|-------------------------------------|------|--|
| 1946 | 10 | N:17 | Reduction of nitro groups to amines | Yes | 2 |
| 1947 | | | | | A standard Functional Group Interconversion (FGI) step, deriving the key aniline nitrogen from a nitro group precursor. Identified via FGI Analysis (H), this is a robust transformation (b). The nitro group serves as a masked amine and can influence the reactivity of the aromatic ring during earlier synthetic steps before being reduced for linker attachment. |
| 1948 | | | | | |
| 1949 | | | | | |
| 1950 | | | | | |
| 1951 | | | | | |
| 1952 | | | | | |
| 1953 | | | | | |
| 1954 | 11 | N:29 | Reduction of nitro groups to amines | Yes | 2 |
| 1955 | | | | | A common Functional Group Interconversion (FGI) identified via FGI Analysis (H), where the aniline is derived from reduction of a nitro group. This is a very reliable reaction that allows the use of nitro-group chemistry (e.g., directing effects in EAS) earlier in the synthesis of the phosphine oxide-bearing fragment (a, b). |
| 1956 | | | | | |
| 1957 | | | | | |
| 1958 | | | | | |
| 1959 | | | | | |
| 1960 | | | | | |
| 1961 | | | | | |
| 1962 | 12 | N:5 | Boc amine deprotection | Yes | 1 |
| 1963 | | | | | A necessary deprotection step to reveal a reactive amine within the linker for subsequent elaboration. Identified via Protecting Group Analysis (I), this step is crucial for the sequential, controlled construction of the linker (c). While of lower strategic importance for bond formation, it is of high practical importance for the overall synthetic route's success. |
| 1964 | | | | | |
| 1965 | | | | | |
| 1966 | | | | | |
| 1967 | | | | | |
| 1968 | | | | | |
| 1969 | | | | | |
| 1970 | 13 | C:68 N:76 | Intramolecular Imine Formation | No | 4 |
| 1971 | | | | | This represents the key intramolecular ring-closing step to form the seven-membered diazepine ring of the warhead. Derived from Intra-Fragment Analysis (E), this disconnection breaks the core scaffold down to a more flexible linear precursor, which simplifies installation of the chiral center C:54 (a, c, e). This is a thermodynamically driven condensation. |
| 1972 | | | | | |
| 1973 | | | | | |
| 1974 | | | | | |
| 1975 | | | | | |
| 1976 | | | | | |
| 1977 | | | | | |
| 1978 | | | | | |
| 1979 | 14 | C:33 P:34 | Palladium-catalyzed P-C coupling | No | 3 |
| 1980 | | | | | High importance disconnection of the aryl C-P bond, which installs the key dimethylphosphine oxide group. This disconnection, from Inter-Fragment Analysis (C), simplifies the aromatic precursor to a simple aryl halide or triflate (a). The forward reaction is a reliable palladium-catalyzed coupling of an aryl halide with a P(V) species like H-P(O)Me ₂ (b, c). |
| 1981 | | | | | |
| 1982 | | | | | |
| 1983 | | | | | |
| 1984 | | | | | |
| 1985 | | | | | |
| 1986 | | | | | |
| 1987 | 15 | P:34 O:37 | Phosphine Oxidation | No | 2 |
| 1988 | | | | | A Functional Group Interconversion (FGI) where the phosphine oxide is formed by oxidation of the corresponding tertiary phosphine. This step, from FGI Analysis (H), is often performed late in the synthesis as the precursor phosphine can act as a ligand and be poisoned in preceding metal-catalyzed coupling steps (c). The oxidation itself is typically straightforward and high-yielding. |
| 1989 | | | | | |
| 1990 | | | | | |
| 1991 | | | | | |
| 1992 | | | | | |
| 1993 | | | | | |
| 1994 | | | | | |
| 1995 | | | | | |
| 1996 | | | | | |
| 1997 | | | | | |

1998 A.7.2 MCL-1 COMPOUND 25 - MACROCYCLE
1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

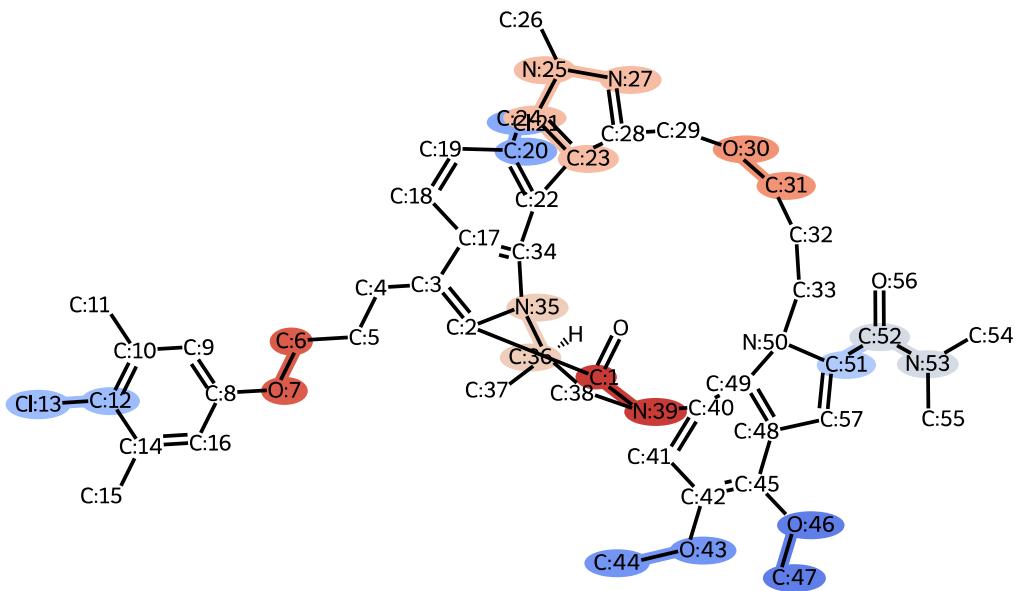


Figure 18: Position model prediction for MCL-1 compound 25 Tarr et al. (2025) Macrocyclic using Gemini 2.5 Pro and PaRoutes reaction ontology

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

Table 11: Predicted Disconnection Sites for MCL-1 compound 25 Tarr et al. (2025) using Gemini 2.5 Pro and PaRoutes reaction ontology. Header descriptions are as follows: **Prio.:** Priority Ranking of the Disconnections; **Position:** The position where the disconnection is; **Reaction:** The forward reaction; **Ontology:** If the reaction is in the reaction ontology for which examples are available; **Imp.:** Retrosynthesis Importance, alignment with retrosynthesis goals; **Rationale:** The chemical rationale.

| Prio. | Pos. | Reaction | Ont. | Imp. | Rationale |
|-------|----------|-------------------------------------|-------|------|--|
| 1 | C:1 N:39 | Carboxylic acid to amide conversion | Yes | 4 | Very high importance disconnection forming the central seven-membered diazepinone ring via a reliable intramolecular lactamization. (Analysis E) This is a key strategic step for constructing the core scaffold (c). The reaction is robust, but requires high-dilution conditions to prevent intermolecular polymerization (d). |
| 2 | C:6 O:7 | Williamson Synthesis | Ether | Yes | Very high importance disconnection that convergently couples the complex core scaffold to a simpler, readily available 4-chloro-2,5-dimethylphenol fragment. (Analysis C) This approach greatly simplifies the overall synthesis (a). Potential chemoselectivity issues between N- and O-alkylation on the precursor must be addressed by careful choice of base and conditions. |

Continued on next page

Table 11 – continued from previous page

| Prio. | Pos. | Reaction | Ont. | Imp. | Rationale |
|--------------|-------------|---------------------|---|-------------|--|
| 2052 | 3 | C:6 O:7 | Mitsunobu aryl ether | Yes | 4 |
| 2053 | | | | | An alternative very high importance convergent disconnection linking the core to the phenol side chain. (Analysis C) The Mitsunobu reaction proceeds under mild conditions but suffers from poor atom economy and uses hazardous reagents, impacting its practicality for large-scale synthesis (d). |
| 2054 | 4 | C:31 O:30 | Williamson Ether | Yes | 4 |
| 2055 | | | | | Very high importance disconnection that convergently assembles the molecule by coupling the indole core with the pyrazole-containing side chain. (Analysis C) This is a robust and strategic C-O bond formation (b, c) that breaks the molecule into two large, more manageable synthons (a). |
| 2056 | 5 | C:31 O:30 | Mitsunobu aryl ether | Yes | 4 |
| 2057 | | | | | An alternative very high importance disconnection for coupling the indole and pyrazole fragments. (Analysis C) This offers a mild route for the ether formation but is less atom-economical than the Williamson synthesis, which is a key consideration for efficiency (d). |
| 2058 | 6 | c:23 n:27 n:25 c:24 | Pyrazole formation | Yes | 4 |
| 2059 | | | | | Very high importance multi-bond disconnection that constructs the pyrazole ring in a single, powerful step from acyclic precursors. (Analysis J) This is a classic, high-yielding heterocycle synthesis (b) that dramatically simplifies one of the key fragments (a, c). |
| 2060 | 7 | N:35 C:36 | Reductive amination with ketone | Yes | 3 |
| 2061 | | | | | High importance disconnection that simplifies the core scaffold by opening the diazepinone ring. (Analysis D) This strategy creates a linear precursor and provides a direct pathway to install the C:36 stereocenter via an asymmetric variant of the forward reaction (c, e). |
| 2062 | 8 | C:36 | Reductive amination with ketone | Yes | 3 |
| 2063 | | | | | High importance transformation focused on creating the molecule's sole stereocenter. (Analysis F) An asymmetric reductive amination or the reduction of the corresponding imine is a powerful strategy for establishing the required stereochemistry with high control (e). |
| 2064 | 9 | C:52 N:53 | Carboxylic acid to amide conversion | Yes | 3 |
| 2065 | | | | | High importance disconnection for the installation of the terminal dimethylamide group. (Analysis H) This is a robust and extremely common transformation (b), coupling a carboxylic acid precursor with dimethylamine, both of which are simple starting materials (a). |
| 2066 | 10 | C:52 N:53 | Acylation of Nitrogen Nucleophiles by Acyl/Thioacyl/Carbamoyl Halides and Analogs.N | Yes | 3 |
| 2067 | | | | | An alternative high importance disconnection for forming the dimethylamide. (Analysis H) Using an activated acyl chloride precursor is a highly reliable and efficient method for this acylation, representing a key functional group installation (c, d). |
| 2068 | | | | | Continued on next page |
| 2069 | | | | | |
| 2070 | | | | | |
| 2071 | | | | | |
| 2072 | | | | | |
| 2073 | | | | | |
| 2074 | | | | | |
| 2075 | | | | | |
| 2076 | | | | | |
| 2077 | | | | | |
| 2078 | | | | | |
| 2079 | | | | | |
| 2080 | | | | | |
| 2081 | | | | | |
| 2082 | | | | | |
| 2083 | | | | | |
| 2084 | | | | | |
| 2085 | | | | | |
| 2086 | | | | | |
| 2087 | | | | | |
| 2088 | | | | | |
| 2089 | | | | | |
| 2090 | | | | | |
| 2091 | | | | | |
| 2092 | | | | | |
| 2093 | | | | | |
| 2094 | | | | | |
| 2095 | | | | | |
| 2096 | | | | | |
| 2097 | | | | | |
| 2098 | | | | | |
| 2099 | | | | | |
| 2100 | | | | | |
| 2101 | | | | | |
| 2102 | | | | | |
| 2103 | | | | | |
| 2104 | | | | | |
| 2105 | | | | | |

2106

2107 **Table 11 – continued from previous page**

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

| Prio. | Pos. | Reaction | Ont. | Imp. | Rationale |
|-------|------------|--------------------------|------|------|--|
| 11 | c:51 C:52 | Friedel-Crafts acylation | Yes | 3 | High importance disconnection creating a key C-C bond by attaching the amide sidechain to the indole core. (Analysis D) This strategy relies on the electrophilic substitution of an electron-rich indole system (c). Regiocontrol could be challenging and may require specific reaction conditions or a pre-functionalized indole. |
| 12 | c:12 Cl:13 | Aromatic chlorination | Yes | 2 | Medium importance disconnection for a standard functional group interconversion. (Analysis H) The chlorine atom can be installed via electrophilic aromatic substitution. This is a reliable reaction (b), though regioselectivity would be dictated by other substituents on the ring. |
| 13 | c:20 Cl:21 | Aromatic chlorination | Yes | 2 | Medium importance FGI for installing the second chlorine atom. (Analysis H) This transformation would likely occur on an advanced intermediate, and control of regioselectivity would be crucial for the success of this step (c). |
| 14 | O:43 C:44 | O-methylation | Yes | 2 | Medium importance disconnection representing a standard functional group interconversion. (Analysis H) Installation of the methoxy group via methylation of a phenol precursor provides synthetic flexibility and starts from a simpler material (a). It is a robust reaction (b). |
| 15 | O:46 C:47 | O-methylation | Yes | 2 | Medium importance FGI for the second methoxy group. (Analysis H) Methylating a di-phenol precursor is a common strategy. If sequential methylation is needed, a protecting group strategy would be required to ensure chemoselectivity. |
| 16 | N:39 | Boc amine deprotection | Yes | 1 | Lower importance disconnection related to a tactical protecting group strategy. (Analysis I) This implies the use of a Boc group on the amide nitrogen to prevent unwanted side reactions during synthesis. Its removal is a necessary but not a core strategic bond-forming step (d). |

2151 A.8 DEEPSEEK-R1 POSITION MODEL REASONING TRACE

2152 Note: This reasoning trace using the PaRoutes reaction ontology has been slightly altered for vi-
 2153 sualization purposes. Deepseek-R1 was utilized for this demonstration because it provides full raw
 2154 reasoning traces, whereas Gemini 2.5 Pro outputs only summaries. Therefore, this trace serves as an
 2155 illustrative example of our "atom anchor" molecular reasoning framework rather than a benchmark
 2156 of maximum model performance. Additionally, the text includes explanatory notes on the reasoning
 2157 process and expert commentary by a chemist regarding chemical validity.

2158 1 #DeepSeek-R1 Reasoning Trace for LEI-515 with explanations & chemist comments

2159 2 > Input Smiles: ```C[CH2:1][C:2]([C:3](=[O:4])[CH2:5][S:6](=[O:7])[c:8]1[cH:9][cH:10][c:11]([C:12](=[O:13])[N
 3 :14]2[CH2:15][CH2:16][N:17]([c:18]3[cH:19][c:20]([C:21])[cH:22][cH:23][cH:24]3)[C@H:25]([CH3:26])[C@H:
 4 :27]2[CH3:28])[cH:29][c:30]1[C:31])([F:32])[F:33]```

2160
 5 We are given the product SMILES string with atom mapping. We need to perform retrosynthetic analysis step-by-step as described.
 2161
 6 Step 1: Identify All Candidate Transformations (A to L)
 2162
 7 Lets break down the molecule:
 2163
 8
 9 **# Explanation 1: This section provides a detailed breakdown of the mapped SMILES string. The purpose is to accurately parse the molecules architecture, identifying all key functional groups, ring systems, and their precise connectivity before proceeding to the strategic analysis.**
 10
 11
 12 The molecule has the following features:
 13 - A central carbon (C:2) attached to:
 14 - A ethyl group (C:1 is methyl, attached to CH2:1? Actually, the SMILES starts with C[CH2:1] meaning atom 1 is CH2, attached to a methyl (C) and then to C:2). So its a propyl group? Actually, the SMILES: C[CH2:1][C:2]... means that atom 1 is CH2 (carbon with two Hs) attached to a methyl (C) and to C:2. So the group is -CH2CH3? But note: the methyl is not mapped. So the group is ethyl? Actually, the SMILES: C[CH2:1] means a carbon (unmapped) attached to CH2:1. So the group is -CH2-CH3? But the atom mapping: [CH2:1] is atom 1, and the preceding C is unmapped. So the group is ethyl: -CH2-CH3, but the methyl is not mapped.
 13
 14
 15 **# Chemist: The model rightfully points out that C:0 is not mapped!**
 16
 17 Let me write the molecule in a more readable way:
 18
 19 The SMILES:
 20 ```C[CH2:1][C:2]([C:3](=[O:4])[CH2:5][S:6](=[O:7])[c:8]1[cH:9][cH:10][c:11](=[C:12](=[O:13])[N:14]2[CH2:15][CH2:16][N:17](=[c:18]3[cH:19][c:20]([C1:21])[cH:22][cH:23][cH:24]3)[C@H:25]([CH3:26])[C@H:27]2[CH3:28])[cH:29][c:30]1[C1:31]([F:32])[F:33]````
 21
 22
 23 We can see:
 24 - The molecule has a central carbon (C:2) that is tertiary, attached to:
 25 1. A group: -CH2-CH3 (atoms: unmapped C and CH2:1)
 26 2. Two fluorines (F:32 and F:33)
 27 3. A chain: -C(=O)-CH2-S(=O)-aryl
 28
 29 **# Chemist: Due to how the input SMILES was structured, C:2 is given the role as central carbon which is debatable, but understandable from a SMILES linguistic point of view**
 30
 31 The chain:
 32 - C:3 is carbonyl carbon, attached to O:4 (double bond) and then CH2:5
 33 - CH2:5 attached to S:6, which has double bond to O:7 and attached to aryl ring (c:8)
 34
 35 The aryl ring (c:8) is substituted at positions:
 36 - c:8 attached to c:9 (CH), c:10 (CH), c:11 (C), c:29 (CH), c:30 (C) and then back to c:8? Actually, its a benzene ring: c:8, c:9, c:10, c:11, c:29, c:30, and then c:30 attached to C1:31 and back to c:8?
 37 Actually, the SMILES: [c:8]1[cH:9][cH:10][c:11](...)[cH:29][c:30]1[C1:31] -> so its a benzene ring with substituents at c:11 and c:30? Actually, c:11 has a substituent: [C:12](=[O:13])[N:14]2[CH2:15][CH2:16][N:17](...)[C@H:25]([CH3:26])[C@H:27]2[CH3:28]
 38
 39 So the substituent at c:11 is: -C(=O)-N< (where the nitrogen is part of a piperazine-like ring? Actually, N:14 is attached to C1:12 (carbonyl) and then to CH2:15 and CH2:16, then N:17. Then N:17 is attached to an aryl group (c:18) and to C:25 (which is chiral) and then to C:27 (which is also chiral) and then back to N:14? Wait, the ring is: N:14 - CH2:15 - CH2:16 - N:17 - C@H:25(CH3:26) - C@H:27(CH3:28) - N:14? That would be a 6-membered ring? But note: the atom after N:17 is [C@H:25] and then [C@H:27], so the ring is: N:14 - C:15 - C:16 - N:17 - C:25 - C:27 - and then back to N:14? But the atom mapping at the end: [C@H:27]2[CH3:28] and then the ring is closed by the 2 at the end? Actually, the ring closure is at N:14 and C:27? Because the ring is defined by the number 2: [N:14]2 ... [C@H:27]2. So the ring is: N:14 - CH2:15 - CH2:16 - N:17 - C:25 - C:27 - and then back to N:14? That would be a 6-membered ring? But note: C:25 and C:27 are both chiral carbons.
 40
 41 **# Chemist: The model correctly identifies the ring shapes in the molecule, meanwhile correctly flagging C25 and C26 as chiral**
 42
 43 Additionally, N:17 is attached to an aryl group: [c:18]3[cH:19][c:20]([C1:21])[cH:22][cH:23][cH:24]3 -> a chlorophenyl group.
 44
 45 So the molecule has:
 46 - A central fluorinated carbon (C:2) with two F atoms and two carbon chains: one ethyl and one chain leading to a sulfonyl group attached to a chlorophenyl ring (with two chlorines? Actually, the ring has C1:31 at c:30 and C1:21 at c:20? So its a dichlorophenyl? Actually, the ring at c:8 has two chlorines: C1:31 at c:30 and C1:21 at c:20? But note: the ring c:8 is attached to S:6, and then the substituents: at c:11 we have the carbonyl-piperazine part, and at c:30 we have C1:31. Also, the ring c:18 (attached to N:17) has C1:21 at c:20.
 47
 48 **# Chemist: The model has a little bit of confusion if both chlorides are at the same ring or on different positions. The model provides no conclusion.**
 49
 50 Now, lets analyze step by step:
 51
 52 **# Explanation 2: This section systematically applies the 12 core principles of retrosynthetic analysis (A-L) to the parsed molecular structure. The goal is to identify all strategically viable disconnections, including inter-fragment (convergent) and intra-fragment (linear) bonds, as well as key functional group interconversions (FGIs).**
 53
 54 A) Symmetry Analysis: The molecule does not appear to have any symmetry.
 55
 56 B) Fragment Partitioning: We can partition the molecule into:
 57 - The ethyl group (C:1 and the unmapped methyl)
 58 - The central fluorinated carbon (C:2) with two fluorines
 59 - The chain: -C(=O)-CH2-SO2-aryl (where the aryl is substituted with a carbonyl-piperazine group and chlorines)

2214
 2215⁶⁰ But note: the chain is complex and includes a piperazine ring and another aryl group. So we might break at the
 2216 sulfonyl group because sulfonyl groups are often formed by oxidation of thiols or by coupling reactions
 .

2217⁶²
 2218⁶³ **# Chemist: First (wrongful) mention of sulfonyl. Should be sulfoxide (sulfoxide: S=O, Sulfonyl: S(=O)=O)**
 2219⁶⁴
 2220⁶⁵ C) Inter-Fragment Analysis: The bonds connecting major fragments:
 2221⁶⁶ - The bond between C:2 and C:3 (the carbonyl carbon) -> disconnection here would give an alkyl halide (from
 2222⁶⁷ C:2) and a nucleophile (from C:3). But note C:3 is carbonyl carbon, so it might be an acyl halide?
 2223⁶⁸ But then we have an ester? Actually, the group attached to C:2 is C:3=O, so its a ketone? But wait: C
 2224⁶⁹ :2 is attached to C:3 with a single bond? Then C:3 is attached to O:4 with a double bond? So its a
 2225⁷⁰ ketone: -C(O)-CH₂-SO₂-aryl.
 2226⁷¹ **# Chemist: Obviously, it is a ketone, intriguing that it takes so long to confirm this.**
 2227⁷² So the central carbon (C:2) is a tertiary carbon with two fluorines and two alkyl groups: ethyl and the ketone
 2228⁷³ chain.
 2229⁷⁴
 2230⁷⁵ D) Strategic Bond Analysis: Within fragments, look for bonds adjacent to functional groups.
 2231⁷⁶ - The bond between C:3 and C:5: C:3 is carbonyl carbon, so the bond C3-C5 is alpha to the carbonyl.
 2232⁷⁷ Disconnection here would be an enolate alkylation? But note: C:5 is CH₂, so its a methylene group.
 2233⁷⁸ Disconnection at C3-C5 would give a nucleophile at C:5 (as an anion) and an electrophile at C:3 (as
 2234⁷⁹ an acyl halide?).
 2235⁸⁰ **# Chemist: Really cool to see the model to reason like this. Its all correct!**
 2236⁸¹
 2237⁸² - The sulfonyl group: S:6 is attached to C:5 and to the aryl ring (c:8). The bond S:6 - c:8 is a sulfonyl-
 2238⁸³ aryl bond. This bond can be disconnected via a sulfonylation reaction (aryl sulfonyl chloride + amine
 2239⁸⁴ ? but here its attached to a methylene, not an amine). Actually, the group attached to S:6 is CH₂ (C
 2240⁸⁵ :5) and the aryl ring. So its an alkyl-arylsulfone. This bond can be formed by nucleophilic
 2241⁸⁶ substitution: the aryl sulfonyl chloride and a carbanion? Or by coupling? Alternatively, we can
 2242⁸⁷ disconnect the sulfonyl group as a whole: the bond S=O might be formed by oxidation of a sulfide.
 2243⁸⁸
 2244⁸⁹ **# Chemist: This is true of both sulfoxide and sulfone, so the analysis doesnt actually suffer much from the**
 2245⁹⁰ **misinterpretation**
 2246⁹¹
 2247⁹² E) Intra-Fragment Analysis: Within major fragments, identify bonds for intramolecular reactions.
 2248⁹³ - The piperazine ring (N:14, C:15, C:16, N:17, C:25, C:27) is already formed. But note: the ring is closed.
 2249⁹⁴ There might not be an intramolecular reaction in the product. However, we can consider that the ring
 2250⁹⁵ was formed by an intramolecular amination? But its already formed.
 2251⁹⁶
 2252⁹⁷ F) Stereochemical Analysis: The molecule has two chiral centers: C:25 and C:27. Both are part of the
 2253⁹⁸ piperazine ring. We need to set the stereochemistry. Possible transformations: asymmetric synthesis,
 2254⁹⁹ chiral pool, or resolution.
 2255¹⁰⁰
 2256¹⁰¹ G) Rearrangement Analysis: No obvious rearrangement motifs.
 2257¹⁰²
 2258¹⁰³ H) FGI Analysis: Functional groups present:
 2259¹⁰⁴ - Ketone: C:3=O
 2260¹⁰⁵ - Sulfonyl: S:6(=O)-aryl
 2261¹⁰⁶ - Amide: C:12=O attached to N:14 (so its an amide)
 2262¹⁰⁷ - Tertiary amine: N:17 (attached to aryl and two carbons)
 2263¹⁰⁸ - Aryl chlorides (c:20-Cl:21 and c:30-Cl:31)
 2264¹⁰⁹ - Fluorines on C:2
 2265¹¹⁰ **# Chemist: Complete, correct.**
 2266¹¹¹
 2267¹¹² i. Oxidation/Reduction:
 2268¹¹³ - The ketone (C:3) could be derived from an alcohol (by oxidation) or from an alkyne (by hydration).
 2269¹¹⁴ - The sulfonyl group could be derived from a sulfide (by oxidation).
 2270¹¹⁵ - The amide (C:12) could be derived from a carboxylic acid or ester.
 2271¹¹⁶
 2272¹¹⁷ ii. Non-Redox FGIs:
 2273¹¹⁸ - The amide (C:12) could be formed from a carboxylic acid and an amine.
 2274¹¹⁹ - The sulfonyl group: the bond S:6-C:5 could be disconnected if we consider the sulfonyl as a whole, but
 2275¹²⁰ thats not FGI. For FGI, we might consider the sulfonyl group as a whole, but note: the sulfonyl
 2276¹²¹ group is attached to two groups: the aryl and the alkyl. So we can disconnect at the S-C bonds?
 2277¹²² But that would be a disconnection, not FGI. FGI would be, for example, converting the sulfonyl
 2278¹²³ group to a thiol? Not common. Alternatively, we might consider the sulfonyl group as a functional
 2279¹²⁴ group that can be interconverted? Typically, sulfonyl groups are formed by oxidation.
 2280¹²⁵
 2281¹²⁶ I) Protecting Group Analysis: The molecule does not have obvious protecting groups. The fluorines and
 2282¹²⁷ chlorines are likely part of the final structure.
 2283¹²⁸
 2284¹²⁹ J) Multi-Bond / Multi-Component Analysis:
 2285¹³⁰ - The piperazine ring might be formed by a cyclization? But its already formed. Alternatively, the entire
 2286¹³¹ molecule might be assembled by a multi-component reaction? Not obvious.
 2287¹³²
 2288¹³³ **# Chemist: There are hints that the model is trying to reason forward in the synthesis, not always grasping**
 2289¹³⁴ **that it is trying to break down the product in a retrosynthetic analysis**
 2290¹³⁵
 2291¹³⁶ K) Radical Mechanism Analysis: No obvious radical disconnections.
 2292¹³⁷
 2293¹³⁸ L) Novel Strategies: None apparent.
 2294¹³⁹
 2295¹⁴⁰ Now, lets list candidate disconnections:
 2296¹⁴¹
 2297¹⁴² **# Explanation 3: This section consolidates the findings from the 12-principle analysis (A-L). It presents a**
 2298¹⁴³ **final, itemized list of the most promising candidate transformations (both bond disconnections and FGIs)**
 2299¹⁴⁴ **. Each transformation string listed here will be carried forward for detailed reaction assignment and**
 2300¹⁴⁵ **evaluation.**

2268

2269¹²¹2270¹²²2271¹²³2272¹²⁴2273¹²⁵2274¹²⁶2275¹²⁷2276¹²⁸2277¹²⁹2278¹³⁰2279¹³¹2280¹³²2281¹³³2282¹³⁴2283¹³⁵2284¹³⁶2285¹³⁷2286¹³⁸2287¹³⁹2288¹⁴⁰2289¹⁴¹2290¹⁴²2291¹⁴³2292¹⁴⁴2293¹⁴⁵2294¹⁴⁶2295¹⁴⁷2296¹⁴⁸2297¹⁴⁹2298¹⁵⁰2299¹⁵¹2300¹⁵²2301¹⁵³2302¹⁵⁴2303¹⁵⁵2304¹⁵⁶2305¹⁵⁷2306¹⁵⁸2307¹⁵⁹2308¹⁶⁰2309¹⁶¹2310¹⁶²2311¹⁶³2312¹⁶⁴2313¹⁶⁵2314¹⁶⁶2315¹⁶⁷2316¹⁶⁸2317¹⁶⁹2318¹⁷⁰2319¹⁷¹2320¹⁷²2321¹⁷³

163

1. Disconnection at the bond between C:2 and C:3 (the ketone carbon). This would disconnect the molecule into two parts:

- Part A: the fluorinated alkyl part: $C[CH_2:1][C:2](F)(F) \rightarrow$ but note: C:2 is attached to two fluorines and ethyl. So it would be 1,1-difluoro-1-ethyl? Actually, C:2 is attached to CH₂:1 (which is ethyl group : -CH₂CH₃) and two fluorines. So the fragment would be [CH₃-CH₂-C(F₂)₂-]? But note: C:2 is a carbon with two fluorines and two groups: ethyl and the ketone chain. Disconnecting at C₂-C₃ would leave C:2 with a halogen? So we would have an alkyl halide: Br-C(F₂)-CH₂CH₃? And the other fragment would be the ketone chain without the attachment to C:2? But wait: after disconnection, the fragment containing C:3 would have a carbonyl and then CH₂-SO₂-aryl. So it would be an enolate equivalent? Actually, we can do a disconnection of the ketone at the bond between C:2 and C:3: this is a disconnection of a ketone that is substituted by an alkyl group (ethyl) and a functionalized alkyl chain. The standard disconnection is to an alkyl halide and an enolate. So the transformation would be alkylation of an enolate.

The disconnection: breaking C:2-C:3. The atoms involved: C:2 and C:3.

2. Disconnection at the sulfonyl group:

a) Disconnect the S-C:5 bond. This would give two fragments:

- The alkyl part: ...C:3(=O)-CH₂:5-X (where X is leaving group? but we are disconnecting, so the alkyl part would be an electrophile: halide?)
- The aryl sulfonyl part: [S:6](=O)(=O)[c:8]... (so an aryl sulfonyl anion? or aryl sulfonyl chloride? Actually, in retrosynthesis, we disconnect to aryl sulfonyl chloride and the alkyl halide. The forward reaction is a nucleophilic substitution: ArSO₂- + R-X → ArSO₂R. But note: the alkyl group is activated? Its a methylene group adjacent to a ketone? So it might be acidic? We can form the carbanion and then do a nucleophilic substitution? Alternatively, we can use the alkyl halide and aryl sulfinate? But the standard way is to form the sulfone from a sulfide and then oxidize? Or directly by coupling?

The disconnection: breaking S:6-C:5. Atoms: S:6 and C:5.

b) Alternatively, we can disconnect the sulfonyl group by considering it was formed by oxidation of a sulfide. So we can do a functional group interconversion: sulfonyl to sulfide. Then disconnect the sulfide: the bond S:6-C:5 and S:6-c:8? That would be two disconnections. But note: FGI is not a disconnection per se. We are asked for disconnection points. So we might consider the oxidation as a transformation? But the disconnection would be the same as above? Or we can do a disconnection at the sulfide level?

Actually, if we do FGI: sulfonyl to sulfide, then we have the sulfide: C:5-S:6-c:8. Then we can disconnect the sulfide bond: for example, S:6-C:5: then we get aryl thiol and alkyl halide? So the disconnection would be at S:6-C:5 for the sulfide, and then we have to do an oxidation to sulfonyl. But the disconnection point is still S:6-C:5.

3. Disconnection at the amide bond: C:12-N:14. This would give a carboxylic acid (from C:12) and the amine (from N:14). The amine is part of the piperazine ring. The transformation is amide formation.

Disconnection: breaking C:12-N:14. Atoms: C:12 and N:14.

4. Disconnection at the bond between the piperazine ring and the aryl group attached to N:17. The bond is N:17-c:18. This is an N-aryl bond. Disconnection would give an amine (the piperazine) and an aryl halide? So the transformation is N-arylation.

Disconnection: breaking N:17-c:18. Atoms: N:17 and c:18 (specifically, the carbon of the aryl ring that is attached? We can use the atom mapping: c:18 is the carbon attached to N:17? So atoms: N:17 and c:18.

5. Disconnection at the ketone in the chain: C:3=O. We can disconnect the ketone by converting it to an alkyne? Or by other methods? But note: the ketone is between two alkyl groups: one is the fluorinated alkyl (from C:2) and the other is the methylene (C:5). So we can disconnect the ketone to the alkyl halide (from the fluorinated side) and the carboxylic acid (from the methylene side) via a Friedel-Crafts acylation? But note: the methylene side is not aromatic. Alternatively, we can do a disconnection at the ketone by converting it to an ester and then do a Grignard? But that would be two steps. We already considered disconnection at C₂-C₃.

Alternatively, we can disconnect the ketone by a Grignard reaction: the bond between C:3 and the group attached to it? But note: C:3 is attached to C:2 (from one side) and to C:5 (from the other). So we can disconnect at C:3-C:5? Then we would have an acyl group (attached to C:2) and a methyl group? But that doesn't match. The standard ketone disconnection is at the bond between the carbonyl carbon and one of the adjacent carbons? We already disconnected at C₂-C₃. The other bond is C₃-C₅. Disconnecting at C₃-C₅ would give two fragments:

- Fragment A: ...C:2-C:3=O (so an aldehyde? Actually, if we disconnect C₃-C₅, then C:3 becomes an aldehyde: O=CH-C:2? But note: C:2 is attached to two fluorines and ethyl, so it would be an aldehyde: O=CH-CF₂-CH₂CH₃?)
- Fragment B: CH₂:5-SO₂-aryl.

Then the forward reaction would be a nucleophilic addition of the fragment B carbanion to the aldehyde? But that would give an alcohol, not a ketone. So we need to oxidize? Alternatively, we can do a Wittig? But that would give an alkene, then we need to hydrogenate?

So the direct disconnection at C₃-C₅ is not straightforward. Therefore, we stick to the disconnection at C₂-C₃.

6. Disconnection at the ethyl group: the bond between C:1 and C:2? But note: the ethyl group is attached to C:2. Disconnecting at C:1-C:2 would give two fragments:

- Fragment A: CH₃-CH₂:1 (so ethane? but we need a synthon: ethyl anion or ethyl cation)
- Fragment B: the rest of the molecule attached to C:2 (which is CF₂- with the ketone chain).

But note: C:2 is tertiary and has two fluorines. So we can have an alkyl halide: F₂C(ketone chain)-Br? and then react with ethyl magnesium bromide? That would be a Grignard reaction.

Chemist: This is chemically not correct. Every 1st year student should know the grignard will react with the ketone, not the bromide.

2322
 164 Disconnection: breaking C:1-C:2. Atoms: C:1 and C:2.
 2323
 165
 2324
 166 7. Stereochemical disconnections: We have two chiral centers at C:25 and C:27. We can consider transformations
 2325 that set the stereochemistry. For example, asymmetric hydrogenation of a double bond? Or using a chiral
 2326 auxiliary? But note: the ring is already formed. So we might consider that the ring was formed by a
 2327 stereoselective reaction? Or we can use a chiral pool starting material?
 2328
 168 However, we dont have a direct disconnection at the chiral centers. We can consider the ring formation: the
 2329 bond between N:14 and C:27? or between N:17 and C:25? But that would break the ring. Alternatively,
 2330 we can form the ring by an intramolecular reaction? For example, the bond between N:17 and C:25? But
 2331 note: the ring is already formed.
 2332
 170 Actually, the ring closure could be done by an intramolecular nucleophilic substitution? For example, if we
 2333 have a diamine with halide at C:25? Then the amine N:17 attacks C:25? But note: the ring is six-
 2334 membered. Alternatively, we can form the ring by reductive amination?
 2335
 172 But note: the ring is already formed in the product. So we can disconnect the ring at one of the bonds? For
 2336 example, break the bond between C:15 and C:16? Then we would have a diamine and a dihalide? But that
 2337 is not convergent. Alternatively, break the bond between N:14 and C:15? Then we have an amine and a
 2338 halide?
 2339
 174 However, we are not required to break the ring if it is readily available. But we can consider
 2340 disconnections at the ring bonds.
 2341
 176 Lets break the ring at the bond between N:14 and C:27? Actually, the ring is: N:14 - C:15 - C:16 - N:17 - C
 2342 :25 - C:27 - N:14. So breaking the bond between N:14 and C:27 would give an open chain:
 2343
 177 HO-C:27 - C:25 - N:17 - C:16 - C:15 - N:14?
 2344 But note: the bond we break is N:14-C:27? Then the fragment would be:
 2345 Fragment A: ...C:12(=O)-N:14 (so the amide) and then the open chain: N:14-H and C:27-OH?
 2346 Fragment B: the rest of the ring?
 2347
 182 This doesnt seem straightforward. Alternatively, we can break the bond between C:25 and C:27? Then we get
 2348 two fragments:
 2349 Fragment A: ...N:17 - C:25 (which would be an amine? because N:17 is attached to C:25? Actually, if we
 2350 break C:25-C:27, then C:25 becomes a carbonyl? and C:27 becomes a carbonyl? Not necessarily.
 2351
 185 Alternatively, we can break the bond between N:17 and C:25? Then we get:
 2352 Fragment A: ...N:17 (which is now NH) and Fragment B: C:25 - C:27 (which would be a carbonyl compound
 2353 ?).
 2354
 188 Then the forward reaction would be reductive amination? Because N:17 is secondary amine? Actually, N:17 is
 2355 tertiary in the product? Because it is attached to the aryl group? So its tertiary. Therefore, we
 2356 cannot break that bond without breaking the aryl bond?
 2357
 190 Given the complexity, we might leave the ring intact and use a commercially available chiral piperazine?
 2358
 192 # Chemist: It took a little while, but this is a wise choice
 2359
 194 So we wont disconnect the ring for now.
 2360
 196 8. Functional group interconversion:
 2361 - The ketone (C:3) could be reduced to an alcohol? But that would be a step backward.
 2362 - The sulfonyl group could be reduced to sulfide? But again, backward.
 2363 - The amide (C:12) could be hydrolyzed to carboxylic acid? Then we would have to form the amide again?
 2364
 201 Instead, we can consider FGI for the synthesis of the sulfonyl group: we can have a sulfide and then
 2365 oxidize. So we add a transformation: oxidation of sulfide to sulfonyl. The disconnection would be the
 2366 same as the sulfide disconnection?
 2367
 203 But note: for the sulfonyl disconnection, we can do:
 2368 Step 1: FGI: sulfonyl to sulfide -> then the sulfide is disconnected to aryl thiol and alkyl halide?
 2369 Then the alkyl halide fragment is ...C:3(=O)-CH2:5-Br?
 2370
 206 So the disconnection for the sulfide would be at S:6-C:5? Then we have two fragments:
 2371 Fragment A: the aryl thiol (with the aryl ring c:8 and substituents)
 2372 Fragment B: the alkyl halide: Br-CH2-C(=O)-C:2(F)(F)CH2CH3?
 2373
 211 Then the forward reaction is nucleophilic substitution: thiolate + alkyl halide -> sulfide. Then oxidation
 2374 to sulfonyl.
 2375
 212 So we can have two transformations:
 2376 a) Nucleophilic substitution: disconnection at S:6-C:5 (for the sulfide)
 2377 b) Oxidation: disconnection of the S=O bonds? But thats not a disconnection of a bond? We dont
 2378 disconnect bonds for oxidation. We just note that we need to oxidize.
 2379
 216 However, the problem asks for disconnection points. For the oxidation, we dont break a bond? We change the
 2380 functional group. So the disconnection for the oxidation step would be the same atoms? Or we dont
 2381 list it as a disconnection?
 2382
 219 # Chemist: From here on, it spends some time thinking about how it should interpret the assignment and what
 2383 a correct answer should look like
 2384
 220 The instructions say: for FGI, we list the atoms involved in the transformation. For example, for oxidation
 2385 of sulfide to sulfonyl, we might list the sulfur atom? But the example says for FGI: `"N:1:O:2,O:3`
 2386 for replacing an amine with a nitro group. So for oxidation of sulfide, we would list the sulfur
 2387 atom? But note: the oxidation doesnt break any bonds? It adds oxygen.
 2388
 223 Alternatively, we can consider the oxidation as a transformation that doesnt break bonds? So we dont
 2389 disconnect? But the instructions for FGI say: "identify_all_possible_functional_groups_that_are,
 2390 candidates_for_standard_Functional_Group_Interconversions". And then in the disconnection string, for
 2391 FGI we list the atoms that change.
 2392
 224

2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429

Example: for reducing a double bond to single bond: `"C:8,C:9"`. So for oxidation of sulfide to sulfonyl, we would list the sulfur atom? Because the sulfur changes from S to S(=O)2? So the disconnection string would be `"S:6"`?

Similarly, for reducing the ketone to alcohol? Then we would list C:3? But note: the ketone carbon is C:3. So `"C:3"`?

But note: the instructions also say: `"for transformations that require adding a new group to the molecule, such as a retrosynthetic protection, you must list the attachment points"`. Oxidation adds oxygen atoms? So we list the sulfur?

However, in the example for protection: `"N:26"` for adding a protecting group to nitrogen. So for oxidation, we list the atom that is oxidized?

Therefore, we can have:
 FGI: oxidation of sulfide to sulfonyl: disconnection string `"S:6"`
 FGI: reduction of ketone to alcohol: `"C:3"`

But note: these are not disconnections? They are functional group interconversions that dont break bonds? So they are not disconnections?

However, the instructions in Step 1 (H) say: `"For each functional group in the molecule, systematically identify all possible functional groups that are candidates for standard Functional Group Interconversions"`. And then we output a transformation string.

So we must include these FGI transformations?

But note: the primary goal is disconnection points? And the transformation string for FGI might be a single atom?

So we will include:

Transformation for FGI (oxidation): `"S:6"`
 Transformation for FGI (reduction): `"C:3"` (if we reduce the ketone, then we have to form the ketone later? So its an option)

However, reducing the ketone might not be strategic because then we lose the activation for the methylene group?

We might also consider FGI for the amide: we can hydrolyze the amide to carboxylic acid? Then disconnection at the amide bond would be the carboxylic acid and amine? But then we have to form the amide again? So the disconnection at the amide bond is already considered (point 3).

Alternatively, we can have FGI: convert the amide to nitrile? Then disconnect? But that is less common.

So for FGI, we have:
 - Oxidation of sulfide: `"S:6"`
 - Reduction of ketone: `"C:3"`
 - Oxidation of alcohol to ketone? But we dont have an alcohol?
 - Reduction of amide? Then we get an amine? But the amide is tertiary? Actually, the amide is secondary: C:12(=O)-N:14 (and N:14 is attached to two carbons: the ring). So its a tertiary amide? Actually, N:14 is attached to C:12 (carbonyl) and two carbons (C:15 and C:27). So its a tertiary amide? But tertiary amides are harder to reduce?

So well stick to the ones above.

9. Protection: The molecule does not have obvious protecting groups? But we might need to protect the amine during synthesis? However, in the product there is no protection. So we dont have a deprotection step?

But note: the amide nitrogen (N:14) is part of the ring? So its not free. The other amine (N:17) is tertiary? So no protection needed?

However, during the synthesis of the piperazine ring, we might need to protect amines? But that is not in the product.

So we skip.

Now, we have the following candidate disconnections (with transformation strings):

1. Disconnection at C:2-C:3: `"C:2,C:3"`
2. Disconnection at S:6-C:5: `"S:6,C:5"`
3. Disconnection at C:12-N:14: `"C:12,N:14"`
4. Disconnection at N:17-C:18: `"N:17,C:18"`
5. Disconnection at C:1-C:2: `"C:1,C:2"`
6. FGI: oxidation of sulfide: `"S:6"`
7. FGI: reduction of ketone: `"C:3"`

But note: the FGI transformations are not disconnections? But we are asked to list all transformations? And the output of Step 1 is a list of transformation strings.

Also, note: the disconnection for the sulfide formation (point 2) is `"S:6,C:5"`. Then the oxidation FGI is `"S:6"`.

Additionally, we might have missed:

8. Disconnection at the bond between C:5 and C:3? But we discussed that it is not straightforward? So we skip.
9. Disconnection at the bond between the aryl ring (C:8) and the sulfonyl group? That is, break the bond S:6-C:8? Then we would have an alkyl sulfonyl chloride and an aryl compound? But the aryl compound would need to have a nucleophile? Not common. Typically, sulfonyl chlorides react with nucleophiles? So breaking S:6-C:8 would be disconnecting the aryl group? Then the forward reaction would be sulfonylation of the

2430

2431

2432²⁹¹

292

2433²⁹³

294

2434²⁹⁵

296

2435²⁹⁷

298

2436²⁹⁹

300

2437²⁹⁷

298

2438²⁹⁹

300

2439³⁰⁰

301

2440³⁰¹

302

2441³⁰²

303

2442³⁰³

304

2443³⁰⁴

305

2444³⁰⁶

307

2445³⁰⁸

309

2446³⁰⁹

310

2447³¹⁰

311

2448³¹¹

312

2449³¹²

313

2450³¹⁴

315

2451³¹⁶

317

2452³¹⁸

319

2453³¹⁹

320

2454³²⁰

321

2455³²¹

322

2456³²²

323

2457³²⁴

325

2458³²⁶

327

2459³²⁸

329

2460³²⁹

330

2461³³⁰

331

2462³³¹

332

2463³³²

333

2464³³³

334

2465³³⁵

336

2466³³⁶

337

2467³³⁸

339

2468³⁴⁰

341

2469³⁴¹

342

2470³⁴²

343

2471³⁴³

344

2472³⁴⁴

345

2473³⁴⁵

346

2474³⁴⁶

347

2475³⁴⁷

348

2476³⁴⁹

350

2477³⁵¹

352

2478³⁵²

353

2479³⁵⁴

355

2480³⁵⁶

357

2481³⁵⁸

359

2482³⁵⁹

360

2483³⁶⁰

361

aryl ring? But sulfonylation of aryl rings is done by Friedel-Crafts? But that would require the aryl ring to be activated? And we have chlorines? Deactivating. So not favorable.

Therefore, we dont consider.

Now, we proceed to Step 2: Assign Candidate Reactions for each transformation.

Explanation 4: This section translates the abstract disconnection strings into practical, nameable synthetic operations. For each transformation, one or more specific forward reactions are assigned (e.g., Acylation... for the C:12-N:14 amide bond). Each reaction is then cross-referenced with the provided ontology to determine its status as a standard, cataloged transformation (isInOntology).

For each transformation string, assign forward reactions:

1. `'C:2_C:3'`: This disconnection corresponds to breaking the bond between C:2 and C:3. In the forward direction, this bond is formed by:
 - Alkylation of an enolate: the enolate from the fragment containing C:3 (which is the ketone chain: -CH2-SO2-aryl) and an alkyl halide from the fluorinated fragment (Br-C(F2)-CH2CH3).
 - Possible reactions:
 - Enolate alkylation: this is a standard reaction. But note: the fluorinated alkyl halide might be electrophilic?
 - The reaction might be called "Alkylation_of_enolates" or "C-alkylation".
 - Check ontology:
 - "C-methylation" -> but we are alkylating with ethyl?
 - "Alkylation_of_amines" -> no, its carbon.
 - "Friedel-Crafts_alkylation" -> no, not aromatic.
 - "Reaction_of_alkyl_halides_with_organometallic_compounds" -> that would be Grignard? But Grignard on what?
 - Actually, the standard name is "Alkylation_of_carbonyl_compounds" or "alpha-alkylation".
 - In the ontology, we have "C-methylation", but that is specific to methyl. We have "Alkylation" but not listed?
 - "N-alkylation_of_primary_amines_with_alkyl_halides" -> no.
 - "S-alkylation_of_thiols" -> no.
 - "Friedel-Crafts_alkylation" -> no.
 - "Wittig" -> no.
 - "Michael_addition" -> no, unless its a Michael acceptor?
 - "Alkylation" is not explicitly listed?
 - We see "C-methylation", which is for methyl. We are alkylating with ethyl? So we might use "OtherReaction": "Enolate_alkylation".

Alternatively, we can use the Grignard reaction? But note: if we disconnect to an acyl compound and a Grignard? That would be disconnecting at C:3-C:5? We are disconnecting at C:2-C:3.

So for `'C:2_C:3'`, we assign:

forwardReaction: "OtherReaction:Enolate_alkylation"

But note: the ontology has "Alkylation_of_Carbon_Nucleophiles_by_Alkyl_Halides"? Not in the list?

Since we dont find a direct match, we use "OtherReaction:Enolate_alkylation".

2. `'S:6_C:5'`: Disconnection of the bond between S:6 and C:5. In the forward direction, this bond can be formed by:
 - Nucleophilic substitution: the thiolate anion (from the aryl thiol) and the alkyl halide (from the fragment: X-CH2-C(=O)-...).
 - Reactions:
 - "S-alkylation_of_thiols" -> yes, in the ontology: "S-alkylation_of_thiols", "S-alkylation_of_thiols_(ethyl)", "S-alkylation_of_thiols_with_alcohols" (but we are using alkyl halide?).
 - Specifically, "S-alkylation_of_thiols" seems appropriate.
3. `'C:12_N:14'`: Disconnection of the amide bond. Forward reactions:
 - Amide formation from carboxylic acid and amine:
 - "Carboxylic_acid_with_primary_amine_to_amide" -> but note: the amine (N:14) is secondary? Because it is part of a piperazine ring? Actually, in the ring, N:14 is attached to two carbons? So its a secondary amine? But the amide is formed from a secondary amine? Then it would be a tertiary amide? Yes, because the nitrogen of the amide is tertiary?
 - The ontology has: "Carboxylic_acid_with_primary_amine_to_amide" -> primary amine gives secondary amide?
 - "Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_Analogs_N" -> this might be for acyl halides?
 - "Acylation_of_Nitrogen_Nucleophiles_by_Carboxylic_Acids" -> but that might require activation?
 - We have: "Carboxylic_acid_to_amide_conversion" -> general?
 - "Aminolysis_of_esters" -> using an ester and amine?
 - "Schotten-Baumann_to_ester" -> no, thats for ester?
 - The standard ways:
 - a) Acyl chloride + amine
 - b) Carboxylic acid + amine with coupling agent
 - c) Ester + amine
 - In the ontology:
 - "Acyl_chloride_with_ammonia_to_amide" -> ammonia, but we have amine?
 - "Carboxylic_acid_with_primary_amine_to_amide" -> but we have secondary amine?
 - "Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_Analogs_N" -> this might be for secondary amines?
 - "Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_Analogs_OS" -> ?

2484
 362 - Also, "Amide_from_carboxylic_acid_and_amine_using_DCC" -> not in ontology?
 2485
 363 - We see: "Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_Analogs_N" ->
 2486
 364 this is for acyl halides?
 2487
 365 # Chemist: These parts clearly show the importance the ontology has in the successfull outcome of
 2488 assignments. The model really tries to understand the partially overlapping reaction names from
 rxn-insight
 2489
 367 - Since the amide is tertiary, we can use:
 2490
 368 - "Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_Analogs_N" -> but the
 2491
 369 name is long?
 2492
 370 - Alternatively, "OtherReaction:Amide_coupling"
 2493
 372 However, the ontology has: "Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_
 2494
 373 Analogs_N" -> well use this for acyl chloride.
 2495
 374 Also, we can use ester aminolysis: "Aminolysis_of_esters"
 2496
 376 So assign two reactions:
 2497
 378 a) "Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_Analogs_N"
 2498
 379 b) "Aminolysis_of_esters"
 2499
 381 4. 'N:17_c:18': Disconnection of the N-aryl bond. Forward reactions:
 2500
 382 - N-arylation of the amine (piperazine) with an aryl halide?
 2501
 383 - Reactions:
 2502
 384 - "Buchwald-Hartwig/Ullmann-Goldberg/N-arylation_secondary_amine" -> because the amine (N:17) is
 2503
 385 tertiary? Wait, in the product, N:17 is attached to the aryl group and to two carbons? So its a
 2504
 386 tertiary amine? But the arylation of a tertiary amine?
 2505
 387 - Actually, the amine in the forward reaction would be secondary? Because we disconnect the aryl group
 2506
 388 ? So the amine fragment would be: the piperazine with N:17 being secondary (attached to two
 2507
 389 carbons: C:16 and C:25, and H).
 2508
 390 - So its a secondary amine?
 2509
 391 - Then we have:
 2510
 392 - "Buchwald-Hartwig/Ullmann-Goldberg/N-arylation_secondary_amine"
 2511
 393 - Also, "Ullmann-Goldberg_Substitution_amine"
 2512
 394 So assign: "Buchwald-Hartwig/Ullmann-Goldberg/N-arylation_secondary_amine"
 2513
 395 Also, "Ullmann-Goldberg_Substitution_amine" -> but the ontology has both?
 2514
 396 Well assign both.
 2515
 397 5. 'C:1_C:2': Disconnection of the bond between C:1 and C:2. Forward reaction:
 2516
 398 - Grignard reaction: the fragment attached to C:2 (without the ethyl) would be a ketone? But note: C:2 is
 2517
 399 attached to two fluorines and the ketone chain? So if we disconnect C:1-C:2, then the fragment
 2518
 400 containing C:2 would be: F2C- (with the ketone chain) -> so it would be a carbonyl? No, because C:2
 2519
 401 is alkyl carbon?
 2520
 402 - Actually, we disconnect to:
 2521
 403 - Fragment A: ethyl magnesium bromide (CH₃CH₂MgBr)
 2522
 404 - Fragment B: a carbonyl compound: O=C(F₂) - (with the ketone chain) -> but that carbonyl would be an
 2523
 405 aldehyde: O=CH-? But note: C:2 is carbon, so if we remove the ethyl group, we have a carbonyl?
 2524
 406 That would be a ketone: the ketone chain is attached to C:2? So we have a ketone: F₂C-C(=O)-R?
 2525
 407 But that is not the case.
 2526
 408 - Alternatively, we can have an alkyl halide: Br-C(F₂) - (with the ketone chain) and then react with ethyl
 2527
 409 magnesium bromide? That would be a Grignard on an alkyl halide? But Grignard reagents are
 2528
 410 nucleophiles, not electrophiles?
 2529
 411 - So the correct disconnection: the bond C:1-C:2 is formed by the reaction of an ethyl nucleophile (ethyl
 2530
 412 anion equivalent) with an electrophile at C:2. The electrophile at C:2 would be a carbonyl? But C:2
 2531
 413 is not a carbonyl.
 2532
 414 - Alternatively, we can have a radical coupling? Or we can have an alkyl halide at C:2 and then do a
 2533
 415 coupling with an ethyl metal?
 2534
 416 - The standard way: the group attached to C:2 is a fluorinated alkyl group? We can have a fluorinated alkyl
 2535
 417 halide: Br-CF₂-CH₂-C(=O)-... and then do a Grignard with ethyl magnesium bromide? But that would be
 2536
 418 a nucleophilic substitution? But CF₂ is not a good electrophile?
 2537
 419 - Alternatively, we can do a transition-metal coupling?
 2538
 420 - Given the challenges, this disconnection might not be robust.
 2539
 421 # Chemist: Correct. Unfortunate that the model still proceeds
 2540
 422 - However, we can consider the reaction:
 2541
 423 "Reaction_of_alkyl_halides_with_organometallic_compounds" -> in the ontology: "Reaction_of_alkyl_
 2542
 424 halides_with_organometallic_compounds"
 2543
 425 - This reaction is for forming C-C bonds?
 2544
 426 - So assign: "Reaction_of_alkyl_halides_with_organometallic_compounds"
 2545
 427 - But note: the alkyl halide would be the fluorinated alkyl halide? and the organometallic would be ethyl
 2546
 428 magnesium bromide?

2538
 430
 2539 431 - Also, we have "Negishi_coupling", "Kumada_cross-coupling", etc.? But those are for sp² carbon?
 2540 432 - So well use: "Reaction_of_alkyl_halides_with_organometallic_compounds"
 2541 433
 2542 434 6. 'S:6': FGI: oxidation of sulfide to sulfonyl. Forward reaction:
 435 - Oxidation of sulfide to sulfone.
 2543 437 - Reactions in ontology:
 438 - "Sulfonyl_to_sulfinyl" -> but that is to sulfoxide?
 2544 439 - "Sulfonyl_to_sulfinyl_H2O", "Sulfonyl_to_sulfinyl_H2O2", etc. -> sulfoxide.
 440 - "Sulfonyl_to_sulfinyl_sulfonyl" -> no, that is sulfoxide to sulfonyl?
 2545 441 - We need sulfide to sulfonyl?
 442 - "Oxidation_of_boronic_acids" -> no.
 2546 443 - "Oxidation_of_alcohols" -> no.
 444
 2547 445 - We see: "Sulfonyl_to_sulfonyl" is not listed?
 446
 2548 447 - The standard reaction is oxidation with mCPBA or hydrogen peroxide?
 448
 2549 449 **# Chemist: Correct!**
 450
 2550 451 - So we use: "OtherReaction: Sulfide_to_sulfone_oxidation"
 452
 2551 453 - Alternatively, the ontology has: "Sulfonyl_to_sulfinyl" and then "Sulfinyl_to_sulfonyl"? But that would
 454 be two steps?
 2552 455 - We are only asked for the transformation? So well use "OtherReaction: Sulfide_to_sulfone_oxidation"
 456
 2553 457 7. 'C:3': FGI: reduction of ketone to alcohol. Forward reaction:
 458 - Reduction of ketone to secondary alcohol.
 2554 459 - Reactions:
 460 - "Reduction_of_aldehydes_and_ketones_to_alcohols" -> yes, in ontology.
 2555 461
 2556 462 So assign: "Reduction_of_aldehydes_and_ketones_to_alcohols"
 463
 2557 464 But note: we might not want to reduce the ketone because it activates the adjacent methylene? So this might
 465 not be strategic? But we include.
 2558 466
 2559 467 Now, we have:
 468
 2560 469 | Transformation | Reactions |
 470 |-----|-----|
 2561 471 | "C:2_C:3" | ["OtherReaction: Enolate_alkylation"] |
 472 | "S:6_C:5" | ["S-alkylation_of_thiols"] |
 2562 473 | "C:12_N:14" | ["Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_Analogs_N", "Aminolysis_of_esters"] |
 2563 474 | "N:17_C:18" | ["Buchwald-Hartwig/Ullmann-Goldberg/N-arylation_secondary_amine", "Ullmann-Goldberg_Substitution_amine"] |
 2564 475 | "C:1_C:2" | ["Reaction_of_alkyl_halides_with_organometallic_compounds"] |
 2565 476 | "S:6" | ["OtherReaction: Sulfide_to_sulfone_oxidation"] |
 2566 477 | "C:3" | ["Reduction_of_aldehydes_and_ketones_to_alcohols"] |
 478
 2567 479 Step 3: Expand and Evaluate Pairs
 480
 2568 481 **# Explanation 5: This step involves the detailed chemical evaluation of each transformation-reaction pair.**
 482 **Each pair is assigned a Retrosynthesis Importance score (1-4) and a supporting rationale. This rationale**
 483 **justifies the score by assessing the strategic value (e.g., FGI, Inter-Fragment Analysis), chemical**
 484 **robustness, and potential challenges (like chemoselectivity or protecting group requirements) of the**
 485 **proposed forward reaction.**

2569 486 We expand each transformation-reaction pair and assign Retrosynthesis Importance and rationale.
 487
 2570 488 Well go one by one:
 489
 2571 490 1. Transformation: "C:2_C:3"
 491 Reaction: "OtherReaction: Enolate_alkylation"
 492 Importance:
 493 - This disconnection separates the molecule into two large fragments: the fluorinated alkyl halide and
 494 the ketone-sulfonyl-aryl fragment.
 495 - It is a convergent disconnection (goal b: convergent synthesis).
 496 - The forward reaction is robust (enolate alkylation) (goal b).
 497 - It avoids the use of protecting groups?
 498 - However, the fluorinated alkyl halide might be difficult to handle?
 499 - Importance: 3 (High) because it attaches a key substituent (the fluorinated alkyl) to the activated
 500 methylene.

2572 501 **# Chemist: Yes, we've tried something similar and the halide is very gaseous at room temperatures!**

2573 502 Rationale: "Convergent_disconnection_(Fragment_Partitioning)_that_separates_the_fluorinated_alkyl_chain_from_the_activated_ketone_fragment_.The_enolate_alkylation_is_a_robust_reaction_.The_fluorinated_alkyl_halide_may_be_reactive_but_requires_careful_handling_.Chemoselectivity:_the_enolate_might_also_attack_other_electrophiles_.The_ketone_might_need_protection_.But_note:_the_ketone_is_present_in_the_product_.This_disconnection_sets_the_quaternary_carbon_center."

2574 503 But note: C:2 is not quaternary? It is attached to two fluorines, ethyl, and the ketone chain? So it is a
 504 tertiary carbon? But fluorines are substituents? So it is a carbon with four substituents? Yes, it is
 505 quaternary: carbon with four carbon/fluorine atoms? So its a quaternary carbon.

2575 506 Importance: 4 (Very High) because it forms a quaternary carbon? But note: the ranking rationale: Importance
 507 4 for major ring-forming or disconnections that reveal symmetry? This doesn't reveal symmetry. But it

2592
 2593 is a convergent disconnection of major fragments? And forms a quaternary carbon? So we can argue for
 4?
 2594⁶⁰⁴
 2595⁶⁰⁵
 2596⁶⁰⁶
 2597⁶⁰⁷
 2598⁶⁰⁸
 2599⁶⁰⁹
 2600⁶¹⁰
 2601⁶¹¹
 2602⁶¹²
 2603⁶¹³
 2604⁶¹⁴
 2605⁶¹⁵
 2606⁶¹⁶
 2607⁶¹⁷
 2608⁶¹⁸
 2609⁶¹⁹
 2610⁶²⁰
 2611⁶²¹
 2612⁶²²
 2613⁶²³
 2614⁶²⁴
 2615⁶²⁵
 2616⁶²⁶
 2617⁶²⁷
 2618⁶²⁸
 2619⁶²⁹
 2620⁶³⁰
 2621⁶³¹
 2622⁶³²
 2623⁶³³
 2624⁶³⁴
 2625⁶³⁵
 2626⁶³⁶
 2627⁶³⁷
 2628⁶³⁸
 2629⁶³⁹
 2630⁶⁴⁰
 2631⁶⁴¹
 2632⁶⁴²
 2633⁶⁴³
 2634⁶⁴⁴
 2635⁶⁴⁵
 2636⁶⁴⁶
 2637⁶⁴⁷
 2638⁶⁴⁸
 2639⁶⁴⁹
 2640⁶⁵⁰
 2641⁶⁵¹
 2642⁶⁵²
 2643⁶⁵³
 2644⁶⁵⁴
 2645⁶⁵⁵

is a convergent disconnection of major fragments? And forms a quaternary carbon? So we can argue for
 4?
 Alternatively, Importance 3: attachment of a key substituent.
 Well assign Importance 3.
 Rationale: "Convergent disconnection (Fragment Partitioning) that separates the molecule into two major fragments: a fluorinated alkyl halide and an enolate precursor. Forms a quaternary carbon center. The reaction is robust but requires the enolate to be chemoselective. The fluorinated alkyl halide may be electrophilic and reactive. No protecting groups needed."
 2. Transformation: "S:6,C:5"
 Reaction: "S-alkylation of thiols"
 Importance: 2 (Medium) because it is a standard C-S bond formation.
 Rationale: "Disconnection at the sulfonyl group precursor (FGI Analysis). This disconnection requires prior FGI to sulfide. The S-alkylation is a reliable reaction. The alkyl halide is activated by the adjacent ketone, ensuring good reactivity. Chemoselectivity: the thiolate might react with other electrophiles? The ketone might need protection? But note: the ketone is present in the product. This disconnection is part of a two-step sequence (alkylation then oxidation)."
Chemist: Multi-step reasoning!
 3. Transformation: "C:12,N:14"
 Reactions:
 a) "Acylation of Nitrogen Nucleophiles by Acyl/Thioacyl/Carbamoyl Halides and Analogs_N"
 Importance: 2 (Medium) because it is a standard amide formation.
 Rationale: "Amide bond disconnection (FGI Analysis). This disconnection separates the piperazine fragment from the carboxylic acid derivative. The acylation with acyl chloride is reliable. The piperazine amine might be nucleophilic enough. Chemoselectivity: the acyl chloride might react with other nucleophiles? The reaction might require base to scavenge acid. No protecting groups needed for the amine? But note: the amine is secondary and might be protected? Not in the product."
 b) "Aminolysis of esters"
 Importance: 2 (Medium)
 Rationale: "Amide bond disconnection (FGI Analysis). This disconnection uses an ester and amine. The reaction is reliable but might require heating. Chemoselectivity: the ester might be hydrolyzed? The amine might be alkylated? Not likely. No protecting groups needed."
 4. Transformation: "N:17,C:18"
 Reactions:
 a) "Buchwald-Hartwig/Ullmann-Goldberg/N-arylation,secondary,amine"
 Importance: 3 (High) because it forms a C-N bond that connects two complex fragments convergently.
 Rationale: "Convergent disconnection (Inter-Fragment Analysis) of the N-aryl bond. This disconnection separates the piperazine fragment from the aryl chloride. The Buchwald-Hartwig reaction is robust for aryl amination. The aryl chloride is activated by the ortho chlorine? Not necessarily, but the reaction can be catalyzed. Chemoselectivity: the catalyst might be sensitive to other functional groups? The piperazine has other nitrogen? But N:14 is amidic? Less nucleophilic. Protecting groups not needed."
 b) "Ullmann-Goldberg Substitution,amine"
 Importance: 3 (High) for the same reason.
 Rationale: "Convergent disconnection (Inter-Fragment Analysis) of the N-aryl bond. Ullmann-Goldberg reaction is a classical method for aryl amination. It might require high temperatures. Chemoselectivity: similar to Buchwald-Hartwig."
 5. Transformation: "C:1,C:2"
 Reaction: "Reaction of alkyl halides with organometallic compounds"
 Importance: 2 (Medium) because it forms a C-C bond, but the fragment is small (ethyl).
 Rationale: "Disconnection of the ethyl group (Strategic Bond Analysis). This disconnection uses an organometallic reagent (ethyl) and an alkyl halide (the fluorinated fragment). The reaction might be challenging because the fluorinated alkyl halide is a primary alkyl halide but with electron-withdrawing groups? It might undergo elimination. The organometallic reagent is highly reactive. Chemoselectivity: the ketone in the fluorinated fragment must be protected? Otherwise, it will react with the Grignard. Therefore, protecting group for the ketone is required. This adds a step."
 6. Transformation: "S:6"
 Reaction: "OtherReaction:Sulfide_to_sulfone_oxidation"
 Importance: 1 (Lower) because it is a functional group interconversion that doesn't simplify the molecule much? But it is necessary if we choose the sulfide disconnection.
 Rationale: "Functional_group_interconversion (FGI Analysis) from sulfide to sulfonyl. This oxidation is reliable and high-yielding. Common oxidants like MCPBA or hydrogen peroxide can be used. No chemoselectivity issues? The sulfide is the only oxidizable group? The ketone might be epoxidized? Not likely. No protecting groups needed."
 7. Transformation: "C:3"
 Reaction: "Reduction_of_aldehydes_and_ketones_to_alcohols"
 Importance: 1 (Lower) because it is a functional group interconversion that doesn't simplify the molecule? And it deactivates the methylene group.
 Rationale: "Functional_group_interconversion (FGI Analysis) reducing the ketone to alcohol. This disconnection is not strategic because it deactivates the adjacent methylene, which is needed for further functionalization. Therefore, it is of lower importance. If used, the alcohol would need to be oxidized back to ketone later? That adds steps. Chemoselectivity: the reduction might affect other carbonyls? Not in this fragment. Protecting groups not needed for this step."
 Step 4: Final Formatting and Priority Assignment
Explanation 6: This final step aggregates all the evaluated transformation-reaction pairs into the required JSON structure. It assigns a global Priority number to each individual reaction by sorting the entire list based on two criteria: 1. isInOntology (true before false), and 2. Retrosynthesis Importance (descending). This final ranking determines the most to least favorable synthetic operations.

2646
 2647 556
 2648 557
 2649 558
 2650 559
 2651 560
 2652 561
 2653 562
 2654 563
 2655 564
 2656 565
 2657 566
 2658 567
 2659 568
 2660 569
 2661 570
 2662 571
 2663 572
 2664 573
 2665 574
 2666 575
 2667 576
 2668 577
 2669 578
 2670 579
 2671 580
 2672 581
 2673 582
 2674 583
 2675 584
 2676 585
 2677 586
 2678 587
 2679 588
 2680 589
 2681 590
 2682 591
 2683 592
 2684 593
 2685 594
 2686 595
 2687 596
 2688 597
 2689 598
 2690 599
 2691 600
 2692 601
 2693 602
 2694 603
 2695 604
 2696 605
 2697 606
 2698 607
 2699 608
 2700 609
 2701 610
 2702 611
 2703 612
 2704 613
 2705 614
 2706 615
 2707 616
 2708 617
 2709 618
 2710 619
 2711 620
 2712 621
 2713 622
 2714 623
 2715 624
 2716 625
 2717 626
 2718 627
 2719 628
 2720 629
 2721 630
 2722 631
 2723 632
 2724 633
 2725 634
 2726 635

We create the disconnection objects. Each disconnection has a list of reactions.

We then assign Priority: first by 'isInOntology' (true before false), then by Importance (descending).

Well list all disconnections and their reactions.

But note: the transformation "S:6" and "C:3" are FGI and not bond disconnections? But we include them.

Now, we check if the reaction name is in the ontology (isInOntology: true or false).

Reactions in the ontology (from the list provided) are:

- "S-alkylation_of_thiols" -> yes
- "Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_Analogs_N" -> yes (exact match)
- "Aminolysis_of_esters" -> yes
- "Buchwald-Hartwig/Ullmann-Goldberg/N-arylation_secondary_amine" -> yes
- "Ullmann-Goldberg_Substitution_amine" -> yes (exact match? We have "Ullmann-Goldberg_Substitution_amine")
- "Reaction_of_alkyl_halides_with_organometallic_compounds" -> yes (exact match)
- "Reduction_of_aldehydes_and_ketones_to_alcohols" -> yes

The "OtherReaction" ones are not in the ontology.

Now, for each reaction, assign the forwardReactionClass:

We have the classes:

- Reduction, Acylation, Heteroatom Alkylation and Arylation, Functional Group Addition, Protection, C-C Coupling, Deprotection, Functional Group Interconversion, Aromatic Heterocycle Formation, Oxidation

Assign:

1. "OtherReaction:_Enolate_alkylation": class C-C Coupling
2. "S-alkylation_of_thiols": class Heteroatom Alkylation and Arylation
3. "Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_Analogs_N": class Acylation
4. "Aminolysis_of_esters": class Acylation (because it forms an amide)
5. "Buchwald-Hartwig/Ullmann-Goldberg/N-arylation_secondary_amine": class Heteroatom Alkylation and Arylation
6. "Ullmann-Goldberg_Substitution_amine": class Heteroatom Alkylation and Arylation
7. "Reaction_of_alkyl_halides_with_organometallic_compounds": class C-C Coupling
8. "OtherReaction:_Sulfide_to_sulfone_oxidation": class Oxidation
9. "Reduction_of_aldehydes_and_ketones_to_alcohols": class Reduction

Now, we build the JSON.

We have 7 transformation strings, but some have multiple reactions.

Well list them in the order we found, then assign priority.

Priority:

- First, sort by isInOntology: true first.
- Then by Importance (descending: 4,3,2,1)

But note: the priority is assigned per entry (per reaction within a disconnection point).

So we create a flat list of all reaction entries (each with its own disconnection string, forwardReaction, etc ..).

Then we assign a priority number: 1,2,3,... based on:

- isInOntology: true comes before false
- Then by Importance descending.

Lets list all entries:

Entry 1: disconnection: "C:2_C:3", forwardReaction: "OtherReaction:_Enolate_alkylation", isInOntology: false, Importance: 3

Entry 2: disconnection: "S:6_C:5", forwardReaction: "S-alkylation_of_thiols", isInOntology: true, Importance: 2

Entry 3: disconnection: "C:12_N:14", forwardReaction: "Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_Analogs_N", isInOntology: true, Importance: 2

Entry 4: disconnection: "C:12_N:14", forwardReaction: "Aminolysis_of_esters", isInOntology: true, Importance: 2

Entry 5: disconnection: "N:17_C:18", forwardReaction: "Buchwald-Hartwig/Ullmann-Goldberg/N-arylation_secondary_amine", isInOntology: true, Importance: 3

Entry 6: disconnection: "N:17_C:18", forwardReaction: "Ullmann-Goldberg_Substitution_amine", isInOntology: true, Importance: 3

Entry 7: disconnection: "C:1_C:2", forwardReaction: "Reaction_of_alkyl_halides_with_organometallic_compounds", isInOntology: true, Importance: 2

Entry 8: disconnection: "S:6", forwardReaction: "OtherReaction:_Sulfide_to_sulfone_oxidation", isInOntology: false, Importance: 1

Entry 9: disconnection: "C:3", forwardReaction: "Reduction_of_aldehydes_and_ketones_to_alcohols", isInOntology: true, Importance: 1

Now, group by disconnection? The output format:

```

  "disconnections": [
    {
      "disconnection": "C:2_C:3",
      "reactions": [ ... ]
    },
    ...
  ]

```

But note: the same disconnection string may have multiple reactions? So we group.

2700
 637 We have:
 638 "**C:2_C:3**": one reaction
 639 "**S:6_C:5**": one reaction
 2702 640 "**C:12_N:14**": two reactions
 2703 641 "**N:17_C:18**": two reactions
 2704 642 "**C:1_C:2**": one reaction
 2705 643 "**S:6**": one reaction
 2706 644 "**C:3**": one reaction
 2707 645
 2708 646 Now, we assign priority per reaction entry? But the Priority field is per reaction entry? The instructions say
 : for each object in the list (each disconnection object) we have a list of reactions. Then for each
 reaction, we have a Priority number?
 2709 647 But the example shows:
 2710 648 "**disconnections**": [
 2711 649 {
 2712 650 "**disconnection**": "**C:1_C:2**",
 2713 651 "**reactions**": [
 2714 652 {
 2715 653 "**forwardReaction**": ...,
 2716 654 "**isInOntology**": ...,
 2717 655 ...,
 2718 656 "**Priority**": 1
 2719 657 },
 2720 658 ... // more reactions for the same disconnection
 2721 659 },
 2722 660 ... // more disconnection points
 2723 661 }
 2724 662]
 2725 663 So the Priority is assigned per reaction entry (not per disconnection point).
 2726 664
 2727 665 Therefore, we must assign a priority number to each reaction entry individually, across the entire list.
 2728 666
 2729 667 So we have 9 reaction entries. We sort them by:
 2730 668 Primary: isInOntology (true first)
 2731 669 Secondary: Retrosynthesis Importance (descending)
 2732 670
 2733 671 But note: the Priority field is a sequential integer (1,2,3,...) representing the calculated priority of the
 disconnection (actually, of the reaction entry).
 2734 672
 2735 673 So we sort the 9 entries:
 2736 674
 2737 675 Group 1: isInOntology=true (entries 2,3,4,5,6,7,9) -> 7 entries
 2738 676 Group 2: isInOntology=false (entries 1,8) -> 2 entries
 2739 677
 2740 678 Within Group 1 (isInOntology=true), sort by Importance descending:
 2741 679
 2742 680 Importance 3: entries 5,6 -> two entries
 2743 681 Importance 2: entries 2,3,4,7 -> four entries
 2744 682 Importance 1: entry 9 -> one entry
 2745 683
 2746 684 Within Group 2 (isInOntology=false), sort by Importance descending:
 2747 685
 2748 686 Importance 3: entry 1
 2749 687 Importance 1: entry 8
 2750 688
 2751 689 Now, assign priority:
 2752 690
 2753 691 Priority 1: entry 5 (isInOntology=true, Importance=3)
 2754 692 Priority 2: entry 6 (isInOntology=true, Importance=3)
 2755 693 Priority 3: entry 2 (isInOntology=true, Importance=2)
 2756 694 Priority 4: entry 3 (isInOntology=true, Importance=2)
 2757 695 Priority 5: entry 4 (isInOntology=true, Importance=2)
 2758 696 Priority 6: entry 7 (isInOntology=true, Importance=2)
 2759 697 Priority 7: entry 9 (isInOntology=true, Importance=1)
 2760 698 Priority 8: entry 1 (isInOntology=false, Importance=3)
 2761 699 Priority 9: entry 8 (isInOntology=false, Importance=1)
 2762 700
 2763 701 But note: the same disconnection point may have multiple reactions? And they are grouped under the same
 disconnection object? So we dont break the grouping.
 2764 702
 2765 703 In the output, we list the disconnection objects, and within each, the reactions are listed. The Priority
 number is assigned per reaction entry.
 2766 704
 2767 705 So well create the disconnection objects and then within each, assign the priority to each reaction entry.
 2768 706
 2769 707 But the priority is global? The instructions say: "calculate_a_Priority_number_for_each_entry_by_ranking_them
 2770 708 based_on_two_criteria:1._isInOntology_(true_before_false),_and_2._Retrosynthesis_Importance_(descending
 2771 709)."
 2772 710
 2773 711 So the ranking is across all reaction entries (all 9). Then assign the rank.
 2774 712
 2775 713 Therefore, we assign the priority numbers as above.
 2776 714
 2777 715 Now, we write the JSON.
 2778 716
 2779 717 Note: the rationale must explicitly state which analysis from Step 1 led to the disconnection?
 2780 718
 2781 719 For example:
 2782 720 For "C:2_C:3": Fragment Partitioning (B) or Strategic Bond Analysis (D)?
 2783 721 We said: Fragment Partitioning and Strategic Bond Analysis?

2754
2755 722
2756 723
2757 724
2758 725
2759 726
2760 727
2761 728
2762 729
2763 730
2764 731
2765 732
2766 733
2767 734
2768 735
2769 736
2770 737
2771 738
2772 739
2773 740
2774 741
2775 742
2776 743
2777 744
2778 745
2779 746
2780 747
2781 748
2782 749
2783 750
2784 751
2785 752
2786 753
2787 754
2788 755
2789 756
2790 757
2791 758
2792 759
2793 760
2794 761
2795 762
2796 763
2797 764
2798 765
2799 766
2800 767
2801 768
2802 769
2803 770
2804 771
2805 772
2806 773
2807 774
2808 775
2809 776
2810 777
2811 778
2812 779
2813 780
2814 781
2815 782
2816 783
2817 784
2818 785
2819 786
2820 787
2821 788
2822 789
2823 790
2824 791
2825 792
2826 793
2827 794
2828 795
2829 796
2830 797
2831 798
2832 799

In the rationale, we should say: "Convergent_Disconnection_(Fragment_Partitioning)" or "Strategic_Bond_Analysis:_bond_alpha_to_carbonyl".

Well adjust the rationales accordingly.

Lets write the JSON.

```
```json
{
 "disconnections": [
 {
 "disconnection": "N:17_C:18",
 "reactions": [
 {
 "forwardReaction": "Buchwald-Hartwig/Ullmann-Goldberg/N-arylation_secondary_amine",
 "isInOntology": true,
 "forwardReactionClass": "Heteroatom_Aalkylation_and_Arylation",
 "Retrosynthesis_Importance": 3,
 "Priority": 1,
 "rationale": "Convergent_Disconnection_(Inter-Fragment_Analysis)_connecting_major_fragments_via_robust_N-arylation_. Addresses_stereochemical_retention;_chemoselectivity_ensured_by_palladium_catalysis_. Importance:_High_(3)_for_strategic_construction_of_key_C-N_bond."
 },
 {
 "forwardReaction": "Ullmann-Goldberg/Substitution_amine",
 "isInOntology": true,
 "forwardReactionClass": "Heteroatom_Aalkylation_and_Arylation",
 "Retrosynthesis_Importance": 3,
 "Priority": 2,
 "rationale": "Convergent_Disconnection_(Inter-Fragment_Analysis)_for_N-arylation_.Classical_copper-mediated_coupling;_potential_chemoselectivity_issues_with_amine_nucleophilicity_require_optimization_. Importance:_High_(3)_for_efficient_scaffold_assembly."
 }
]
 },
 {
 "disconnection": "C:2_C:3",
 "reactions": [
 {
 "forwardReaction": "OtherReaction:Enolate_alkylation",
 "isInOntology": false,
 "forwardReactionClass": "C-C_Coupling",
 "Retrosynthesis_Importance": 3,
 "Priority": 8,
 "rationale": "Strategic_Bond_Analysis_targeting_C-C_bond_alpha_to_ketone_.Forms_quaternary_center;_robust_but_requires_chemoselective_enolate_generation_.Fluorinated_alkyl_halide_electrophile_may_pose_stability_issues_. Importance:_High_(3)_for_core_scaffold_construction."
 }
]
 },
 {
 "disconnection": "C:12_N:14",
 "reactions": [
 {
 "forwardReaction": "Acylation_of_Nitrogen_Nucleophiles_by_Acyl/Thioacyl/Carbamoyl_Halides_and_Analogs_N",
 "isInOntology": true,
 "forwardReactionClass": "Acylation",
 "Retrosynthesis_Importance": 2,
 "Priority": 4,
 "rationale": "FGI_Analysis_for_amide_Disconnection_.Acyl_chloride_coupling_reliable;_chemoselectivity_managed_via_stoichiometry_.Piperazine_nucleophilicity_sufficient_without_protection_. Importance:_Medium_(2)_for_functional_group_installation."
 },
 {
 "forwardReaction": "Aminolysis_of_esters",
 "isInOntology": true,
 "forwardReactionClass": "Acylation",
 "Retrosynthesis_Importance": 2,
 "Priority": 5,
 "rationale": "FGI_Analysis_for_amideFormation_.Thermally_driven_esteaminolysis;_slower_but_avoids_acyl_chloride_handling_.Potential_competing_hydrolysis_requires_anhydrous_conditions_. Importance:_Medium_(2)_for_practical_amide_synthesis."
 }
]
 },
 {
 "disconnection": "S:6_C:5",
 "reactions": [
 {
 "forwardReaction": "S-alkylation_of_thiols",
 "isInOntology": true,
 "forwardReactionClass": "Heteroatom_Aalkylation_and_Arylation",
 "Retrosynthesis_Importance": 2,
 "Priority": 3,
 "rationale": "FGI_Analysis_precursor_Disconnection_.Alkylation_of_thiolate_with_activated_alkyl_halide_high_yield_due_to_ketone_activation_.Chemoselectivity:_thiolate_may_require_protection_if_other_electrophiles_present_. Importance:_Medium_(2)_for_sulfideFormation."
 }
]
 }
]
}
```

```

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
```
  "disconnection": "C:1\u2192C:2",
  "reactions": [
    {
      "forwardReaction": "Reaction_of_alkyl_halides_with_organometallic_compounds",
      "isInOntology": true,
      "forwardReactionClass": "C-C_Coupling",
      "Retrosynthesis_Importance": 2,
      "Priority": 6,
      "rationale": "Strategic_Bond_Analysis_for_ethyl_group_attachment._Grignard_addition_to_alkyl_halide;_fluorinated_electrophile_may_undergo_elimination._Ketone_protection_essential_pre-reaction._Importance:_Medium_(2)_for_fragment_coupling."
    }
  ]
},
{
  "disconnection": "C:3",
  "reactions": [
    {
      "forwardReaction": "Reduction_of_aldehydes_and_ketones_to_alcohols",
      "isInOntology": true,
      "forwardReactionClass": "Reduction",
      "Retrosynthesis_Importance": 1,
      "Priority": 7,
      "rationale": "FGI_Analysis_(reduction)._Deactivates_alpha-methylene_for_sulfone_synthesis;_requires_re-oxidation_later._Chemoselective_for_ketone;_low_strategic_value._Importance:_Lower_(1)_for_non-simplifying_interconversion."
    }
  ]
},
{
  "disconnection": "S:6",
  "reactions": [
    {
      "forwardReaction": "OtherReaction:_Sulfide_to_sulfone_oxidation",
      "isInOntology": false,
      "forwardReactionClass": "Oxidation",
      "Retrosynthesis_Importance": 1,
      "Priority": 9,
      "rationale": "FGI_Analysis_(oxidation)._Converts_sulfide_to_sulfone;_reliable_with_peroxides._Epoxidation_side-reaction_unlikely_with_ketone_present._Importance:_Lower_(1)_for_late-stage_functionalization."
    }
  ]
}
```

```

Listing 4: Deepseek-R1 position model reasoning trace for LEI-515.