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ABSTRACT

Applications of machine learning in chemistry are often limited by the scarcity
and expense of labeled data, restricting traditional supervised methods. In this
work, we introduce a framework for molecular reasoning using general-purpose
Large Language Models (LLMs) that operates without requiring labeled training
data. Our method anchors chain-of-thought reasoning to the molecular structure
by using unique atomic identifiers. First, the LLM performs a one-shot task to
identify relevant fragments and their associated chemical labels or transformation
classes. In an optional second step, this position-aware information is used in a
few-shot task with provided class examples to predict the chemical transformation.
We apply our framework to single-step retrosynthesis, a task where LLMs have
previously underperformed. Across academic benchmarks and expert-validated
drug discovery molecules, our work enables LLMs to achieve high success rates
in identifying chemically plausible reaction sites (≥ 90%), named reaction classes
(≥ 40%), and final reactants (≥ 74%). Beyond solving complex chemical tasks,
our work also provides a method to generate theoretically grounded synthetic
datasets by mapping chemical knowledge onto the molecular structure and thereby
addressing data scarcity.

1 INTRODUCTION

General-purpose large language models (LLMs) have advanced rapidly in recent years, finding in-
creasing application in the domain of chemistry. A prominent example of this trend is the use
of LLMs like GPT-4 Achiam et al. (2023) as high-level reasoning agents that leverage special-
ized chemistry tools to automate complex tasks Boiko et al. (2023); M. Bran et al. (2024). In this
paradigm, the LLM orchestrates tool calls that encapsulate chemical logic and subsequently reasons
over the tool outputs.

Beyond the use of general-purpose models, prevailing approaches either train specialized chem-
istry LLMs or adapt general-purpose LLMs to the chemical domain, where molecular data is rep-
resented in the Simplified Molecular Input Line Entry System (SMILES) format Weininger (1988);
Weininger et al. (1989), a chemical notation for representing chemical graph structures as computer-
readable strings. Examples of specialized chemistry LLMs include models that are solely pre-trained
on SMILES data and then either fine-tuned for a specific downstream task (e.g., Ross et al. (2022);
Irwin et al. (2022)) or used to extract molecular embeddings for downstream tasks (e.g., Ross et al.
(2022); Sadeghi et al. (2024); Masood et al. (2025)). Alternatively, general-purpose LLMs are
adapted to the chemical domain through methods such as supervised fine-tuning (SFT) Kim et al.
(2024); Cavanagh et al. (2024), preference optimization (PO) Cavanagh et al. (2024), or the direct
extraction of task-specific embeddings from general-purpose LLMs Sadeghi et al. (2024). Finally,
recent work adapts Chain-of-Thought (CoT) Wei et al. (2023) chemistry reasoning models follow-
ing the Deepseek-R1 Guo et al. (2025) paradigm, e.g., ether0 Narayanan et al. (2025) fine-tunes
Mistral-Small-24B-Instruct Mis using SFT on Deepseek-R1 reasoning traces and PO on chemistry
tasks.

However, a central challenge in chemical machine learning is the scarcity and high cost of labeled
data. This presents a significant limitation, as the aforementioned approaches all rely on labeled data
for model training. Nevertheless, recent studies have shown that general-purpose LLMs are capable
of reasoning over chemical structures, yet this capability is often exercised indirectly. For instance,
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general-purpose LLMs have been used to enrich SMILES with text descriptions to fine-tune smaller
models Qian et al. (2023), address diverse chemistry tasks via zero-shot and few-shot prompting
with varying success Guo et al. (2023), and solve chemical mathematical calculations by generating
and refining code-based solutions Ouyang et al. (2024). A final category of applications addresses
synthesis planning, the task of identifying viable synthetic routes by deconstructing a target molecule
into smaller precursors using reactions until a set of commercially available starting materials is
found Segler et al. (2018); Corey & Cheng (1989). In this context, LLMs can reason about chemical
structures to guide and evaluate the synthesis planning process itself based on a desired provided
route outcome prompt, without directly manipulating the structures Bran et al. (2025). As LLMs
tend to struggle with generating high-quality reaction predictions directly, they can be paired with
an evolutionary algorithm to reason over and evolve a population of full synthesis routes Wang
et al. (2025). To ensure chemical validity, this process uses a database of known reactions and
molecule routes, which are queried via a nearest-neighbor search in an embedding space to identify
structurally similar precedents for chemical grounding.

In this work, we build on these insights to introduce a framework that enables general-purpose LLMs
to successfully reason directly over molecular structures. Our method works by anchoring the rea-
soning process to a molecule’s atom-maps, which are unique identifiers for each atom in a molecular
SMILES. This approach mirrors a chemist’s workflow, operates without labeled training data or
task-specific model training, and consists of two stages. First, in a zero-shot task, the model per-
forms a chemical analysis on the chemical structure to identify the atom-maps of relevant fragments
for the task and assigns structural labels for these fragments solely based on chemical reasoning.
Second, in an optional few-shot task, it transforms the chemical structure based on these identi-
fied fragments, guided by examples from a specific chemical transformation class (e.g., a particular
reaction or other defined chemical transformation).

We apply this framework to single-step retrosynthesis, where the goal is to identify, given a
product molecule, a set of plausible reactant molecules (precursors) that can form the product
in a single reaction step Torren-Peraire et al. (2024). Formally, the goal is to learn a function
f(P ) → [R1, R2, . . . , Rn] that maps a product molecule P to a ranked list of plausible reactant
sets, [R1, R2, . . . , Rn], where each Ri is a set of one or more reactant molecules, {r1, r2, . . . },
proposed to synthesize P . In this task, prior research shows that general-purpose LLMs are not
competitive with specialized models as they underperform their specialized counterparts by more
than 40 percentage points in top-1 accuracy Guo et al. (2023) or solve only one out of five test
examples correctly Li et al. (2025). Our approach marks a shift from conventional supervised meth-
ods, which either (1) directly map products to reactants using Transformers Irwin et al. (2022); Tetko
et al. (2020), Graph Neural Networks Chen & Jung (2021); Zhong et al. (2023), Markov Bridges
Igashov et al. (2024), or fine-tuned LLMs Yang et al. (2024); Nguyen-Van et al. (2024), or (2) use
a two-step, disconnection-aware paradigm where a model first learns to identify a bond disconnec-
tion site and second applies a transformation afterward. Our approach evolves the second paradigm.
Whereas these supervised methods apply a learned mapping by selecting a site either automatically
Thakkar et al. (2023); Kreutter & Reymond (2023) or with human guidance Thakkar et al. (2023);
Westerlund et al. (2025), our work introduces explicit chemical reasoning as the core mechanism for
both steps, leading to the following key contributions:

1. We introduce a novel reasoning framework that enables LLMs to zero-shot analyze and
few-shot transform molecular structures without task-specific training by anchoring their
reasoning process directly to the molecule’s SMILES atom maps, thereby eliminating the
need for labeled training data or task-specific model training.

2. We demonstrate the framework’s effectiveness in single-step retrosynthesis on both aca-
demic benchmarks and expert-validated real drug discovery molecules, where it success-
fully identifies strategic disconnections, executes the corresponding transformation to pre-
dict reactant structures, and provides a chemically-grounded, explainable rationale for its
predictions.

3. We establish a general blueprint for applying LLMs to data-scarce problems in computa-
tional chemistry, enabling the generation of novel synthetic datasets by mapping general
chemical knowledge directly onto molecular structures.
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2 METHODS

Zero-Shot Position Model Few-Shot Transition Model (Optional)

C[CH2:1][C:2]([C:3](=[O:4])[CH2:5][S:6]
...

C[CH2:1][C:2]([C:3](=[O:4])[CH2:5][S:6]
...

Figure 1: Adaptation of our general framework to the task of retrosynthesis. First, the Zero-Shot
Position Model (fposition retro or fp retro, guided by rposition) analyzes an atom-mapped product m0

together with the reaction ontology O to identify and rank disconnection candidates (Si, βi, ιi, ρi).
Second, the (optional) Few-Shot Transition Model (ftransition retro or fp retro, guided by rtransition and
a library Lretro of βi reaction examples) applies the selected reaction βi at the site Si to generate
plausible reactant molecules (Rk) with validity assessment (γk) and chemical rationale (ωk).

2.1 FRAMEWORK

Conventional drug discovery models learn a direct mapping f : X → Y , treating molecular repre-
sentations x ∈ X as abstract data points to predict properties y ∈ Y . This paradigm disregards the
underlying chemical knowledge that could govern the relationship r between a molecule’s structure
and its properties. In contrast, our approach circumvents this data-driven mapping by leveraging the
emergent reasoning capabilities of a pre-trained LLM. Guided by a natural language prompt, the
LLM performs a detailed chemical analysis with its reasoning explicitly anchored to the molecule’s
SMILES atom maps, ensuring a precise linkage to specific structural locations. This structurally-
grounded analysis enables the direct inference of chemical properties, eliminating the need for task-
specific fine-tuning. Our approach operates in two stages:

1. Zero-Shot Structural Analysis and Property Prediction (Position Model): Guided by
a natural language prompt rposition that encodes domain knowledge about the task, the
LLM analyzes an atom-mapped molecule SMILES m to identify relevant substructures.
Based on this prompt-guided reasoning, which is explicitly linked to atom map indices, the
position model fposition(m) predicts a set of properties P = {p1, . . . , pn}. Each prediction
pi is a tuple pi = (Si, Ai), where Si ⊆ V (m) is a set of atom indices from the molecule
m (the structural label), and Ai = (a1, a2, ..., ak) is an ordered tuple of inferred chemical
attributes relevant to the task (e.g., ”toxic,” ”reaction”). Each individual attribute ai in this
tuple can be a passive descriptor or an actionable transformation.

2. Prompt-Guided Molecular Transformation (Transition Model): In an optional second
phase, predictions pi = (Si, Ai) containing an actionable transformation in their attribute
tuple Ai are executed. For each general chemical task, a transformation function ftransition
is defined by a second natural language prompt rtransition. This transition function exe-
cutes an actionable attribute aj ∈ Ai by applying ftransition to an initial molecule m0 at the
location Si to yield a new molecule m1, such that m1 = ftransition(m0, Si, aj , L). Here,
L is a context library providing examples or any relevant information for the established
chemical operations identified by the actionable attribute ai from the tuple Ai. This is
feasible because many chemical transformations are discrete, well-established operations,
allowing in-context learning to ensure chemical validity.

2.2 A POSITION MODEL FOR RETROSYNTHESIS

The Position Model emulates a human chemist’s analytical workflow to identify and rank potential
disconnection sites in a product molecule. Formally, given an atom-mapped product molecule m, the
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Position Model is a function fposition retro(m) that predicts a set of potential retrosynthetic discon-
nection candidates, D = {d1, d2, . . . , dN}. Each candidate di = (Si, βi, ιi, ρi), which instantiates
the general property prediction pi = (Si, Ai) for retrosynthesis, is generated by the function:

D = {(Si, βi, ιi, ρi)}Ni=1 = fposition retro(m0, O)

This function maps a set of inputs:

• m0: The atom-mapped target product molecule canonicalized SMILES.
• O: A reaction ontology containing reaction names corresponding to a library of executable

transformations L, providing a bridge to the optional transformation phase.

to a set of N distinct tuples:

• Si ⊆ V (m) is the structural label: a set of atom indices defining the disconnection point.
• βi is the predicted reaction name: a chemical attribute identifying a suitable transformation

(e.g., ”Suzuki Coupling”). To make this actionable, we ground predictions using the reac-
tion ontology (O), but do not strictly constrain them, allowing the suggestion of reactions
outside of O (which are flagged).

• ιi ∈ R is the retrosynthesis importance: a score ranking the strategic value of the disconnec-
tion, which can be used to prioritize the most promising reactions (e.g., major ring-forming
reactions, core scaffold construction).

• ρi is the chemical rationale: a text-based justification tied to primary strategic goals of
retrosynthesis (e.g., structural simplification, reaction robustness, and stereochemical con-
trol).

The entire reasoning process of fposition retro is defined by a natural language prompt rposition
(see Prompt 1). Crucially, rposition does not contain explicit transformation rules (e.g., SMARTS
patterns) or any other reaction-specific rules. Instead, it instructs the LLM to emulate a chemist’s
analytical workflow. Reframing the retrosynthesis task necessitates a shift in evaluation, moving
beyond classical top-n performance based on product-reactant replication. Our evaluation instead
measures the model’s ability to correctly identify the ground-truth disconnection site and reaction
type, for which the following metrics are defined:

1. Partial Match Accuracy: An indicator metric that is true if any predicted disconnection
Si ∈ D has a non-empty intersection with the ground truth Sgt.

2. Best Match Jaccard: The highest Jaccard similarity between any predicted structural label
Si ∈ D and the ground truth set Sgt.

3. Exact Match Accuracy: A stricter metric that is true if the best-matching predicted discon-
nection site (by Jaccard score) is identical to the ground truth Sgt.

4. Conditional Reaction Accuracy: Conditional on a partial match and the highest Jaccard
similarity in D, this metric evaluates the reaction name(s) βi from the disconnection can-
didate(s) di. The metric is 1 if any of these βi match the ground truth reaction name, βgt.

2.3 A TRANSITION MODEL FOR RETROSYNTHESIS

To complete the retrosynthesis workflow, we define the Transition Model as ftransition retro. This model
uses a disconnection candidate di and a target product m0 to generate a set of plausible reactants R.
To simulate a chemist’s literature lookup for a reaction, the reaction name βi ∈ O is used to sample
up to five reaction examples from a training dataset to create the task-specific, in-context library
Lretro. The one-to-many Transition Model is then defined as:

{(Rk, γk, ωk)}Nk=1 = ftransition retro(m0, Si, βi, Lretro)

This function maps a single set of inputs:

• m0: The atom-mapped target product molecule canoncialized SMILES.
• Si: The set of disconnection point atom indices.
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• βi: The reaction name, serving as the actionable attribute aj .

• Lretro: The context library, containing examples of the reaction βi.

to a set of N distinct tuples:

• Rk: The k-th predicted set of reactant molecules {r1, r2, . . . , rn}.

• γk : The specific chemical validity assessment (stability, chemoselectivity, stereochemical
consistency) for the transformation leading to Rk.

• ωk: The specific chemical rationale that justifies the validity of the k-th outcome.

The transition function ftransition retro is defined by prompt rtransition (see Prompt 2), which emu-
lates a chemist’s reasoning and avoids explicit reaction rules. Beyond reactant prediction, the model
can also generalize transformations by abstracting a reaction template Rt, which is flagged accord-
ingly. This template can handle complex cases, such as multiple atoms being viable for reaction
side or added reagents, thereby preventing exhaustive iteration. We evaluate performance by com-
paring the predicted reactant sets, Rpred = {R1, . . . , RN}, against the ground-truth reactants, Rgt.
As multiple reactant sets can be chemically valid, our goal is to assess the model’s ability to recover
the known, ground-truth transformation without ranking. The following metrics are calculated per-
prediction and averaged across the dataset.

1. Template Accuracy: measures if any predicted reactant template set Rt ∈ Rpred correctly
identifies the core structure of the ground-truth reactants Rgt. A prediction is considered
a match if for every ground-truth reactant rgt ∈ Rgt there is a corresponding predicted
reactant template rt ∈ Rt sharing at least 75% of its atoms and having a direct substructure
match.

2. Reactant Accuracy: measures if any predicted reactant set Rk is an exact, non-template
match for the ground-truth set Rgt.

3. Combined Accuracy: measures if a prediction meets either the Template or Reactant Ac-
curacy criterion.

2.4 EXPERIMENTAL SETUP

We evaluate the Position (fposition retro) and Transition (ftransition retro) models across a diverse
set of LLMs to assess the scaling of reasoning capabilities. Our selection includes various open-
source models (Qwen3-2507 4B, 30B, 235B Yang et al. (2025), DeepSeek-R1-0528 Guo et al.
(2025)), several closed-source models (Gemini 2.5 Flash/Pro Comanici et al. (2025), Claude Sonnet
4 Anthropic (2025), GPT5 OpenAI (2025)), and a chemistry-specialized model, ether0 Narayanan
et al. (2025). For efficiency, the largest open-source models were quantized for inference on an 8x
H100 DGX node and used default inference parameters (see Table 2).

We use two public reaction datasets: USPTO50k Lowe (2012); Schneider et al. (2016) and PaRoutes
Genheden & Bjerrum (2022). For USPTO50k (n ≈ 5 × 104), we use an adjusted version that
corrects a known atom-mapping bias Somnath et al. (2021). For PaRoutes (n ≈ 1×106), we use the
provided data splits Torren-Peraire et al. (2024). For all datasets, we preprocess the data to generate
structural labels (Si), reaction names (βi) and reaction ontology (O). The labels (Si) define the
reaction center by annotating atoms of bonds that are broken, formed, or changed in type from the
product’s perspective. We prioritize changes in connectivity (bonds breaking or forming) over bond
type changes, where the atom structure itself remains unchanged, unless no connectivity change
occurs. The reaction names (βi) and their reaction classes are extracted using the open-source rxn-
insight package Dobbelaere et al. (2024), allowing the release of our labeled data. The ontology
(O) is constructed from unique reaction names (βi) in the respective training data. To mitigate
the skewed distribution of reaction names in the USPTO50k test set (n = 5 × 103) and prevent
redundant evaluation, we create a subsampled version, USPTO50k-LLM (see Fig. 5). This 541-
point evaluation set contains up to five examples per unique reaction name, preserving the original
proportion of unclassified reactions. Unless specified otherwise, we use this set with a reaction
ontology (n = 136) derived from the USPTO50k training data.
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3 RESULTS

3.1 POSITION MODEL

Our analysis of structural chemical reasoning shows performance scales with model size, with large
closed-source models such as the top-performing Gemini 2.5 Pro required for the best results (Fig.
2). We evaluated models on four tasks of increasing difficulty: partial position match, maximizing
Jaccard overlap, exact position match, and correct reaction prediction given a partial match. A
consistent pattern emerged, where performance increased with the size of the model. For instance,
partial match scores jumped from 73% for 4B models to 87% for 235B+ models. This trend held
across all tasks, with the performance gap becoming most stark on the reaction prediction task,
where smaller models scored just 4%. In contrast, only the largest proprietary models achieved a
moderate success rate of 40-47%, showing a trade-off between higher accuracy and lower prediction
efficiency (i.e., more predictions per success; see Table 3).
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Figure 2: A) Position model performance on USPTO-LLM. The plot compares various foundation models
on the task of reaction position prediction, measured by four evaluation metrics: achieving a partial positional
match, maximizing the Jaccard metric, identifying the exact position, and predicting the correct reaction (con-
ditional on a partial match). B) Confusion matrix of predicted versus ground-truth reaction classes for the
Gemini 2.5 Pro model on USPTO-LLM. The analysis is conditional, including only predictions where the
model successfully identified at least a partial positional match. For this visualization, reactions outside the
defined reaction ontology were excluded. The matrix was generated using the original class-to-name mappings
from the ground-truth data, with any unassigned reactions grouped into the ’Miscellaneous’ category.

Three models warrant a specific discussion. First, the ether0 model, a Mistral-24B variant fine-tuned
for chemistry, fails to produce any valid predictions, generating neither valid outputs nor chemically
valid positions, unlike other models that fail only occasionally (see Table 3). This total failure sug-
gests that its specialized training, which utilizes chemistry reasoning traces and GRPO on chemical
tasks, hindered generalizability to our problem. Second, an ablation of Qwen-235B-Instruct reveals
a trade-off with its thinking counterpart. Despite a comparable partial match score, the instruct
model showed poor prediction efficiency, generating far more candidate positions, and was only
half as effective at identifying the correct reaction (see Table 3), highlighting the importance of
CoT reasoning. Interestingly, this pattern does not appear for Gemini 2.5 Flash, where its think-
ing and non-thinking versions perform comparably with high reaction accuracy and low prediction
efficiency.

Our problem involves a one-to-many relationship in which a chemical position can have multiple
valid reactions. To evaluate one of the best performing models, Gemini 2.5 Pro, we mapped its pre-
dictions to broader reaction classes using the reaction class mapping from rxn-insight on the ground
truth data (see Fig. 2). The model often suggests alternative reactions from the correct class rather
than predicting a reaction from a different class. However, some exceptions represented chemically
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plausible alternative strategies: for ’Aromatic Heterocycle Formation’, the model often predicted ’C-
C couplings’, and for ’Protection’ reactions, it suggested ’Reductions’. The ’Heteroatom Alkylation
and Arylation’ class was a notable outlier, being proposed for most other categories except ’FGI’
and ’C-C couplings’. This predictive pattern of staying within-class and these specific exceptions
also holds at the individual reaction-name level (see Fig. 6).

3.2 TRANSITION MODEL

We evaluated various LLMs on their ability to predict ground-truth transformations using the reac-
tion’s position, name, and up to five examples (Figure 3). Model performance scales logarithmically
with size before plateauing at the scale of Deepseek-R1. Gemini 2.5 Pro is the top performer, ex-
celling both at direct reactant prediction (”Reactant”; see example Fig. 11) and in combination with
a reaction template (”Combined”). This template generation (”Template”; see example Fig. 12),
which is a proxy for chemical understanding, is strongest in proprietary models, such as GPT-5
and Gemini 2.5 Pro (44% accuracy). In contrast, Deepseek-R1 performs worse than its smaller
open-source peers in template prediction, while ether0 fails again at this task.
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Figure 3: Transition Model Performance on USPTO-LLM. The plot evaluates various LLMs on
their ability to predict chemical transformations. Accuracy is measured using three metrics: direct
reactant prediction (’Reactants’), valid template generation (’Template’), and a combined approach
where either is considered a success (’Combined’).

In a first ablation study, our results reveal the critical importance of a defined reaction name to act as
a chemical anchor (Appendix Fig. 7). Performance dropped by approx. 50% for unknown reactions
in a zero-shot setting (no examples provided) compared to known ones in a few-shot setting (up
to five examples). The decline was particularly severe for the prediction of direct reactants, with
accuracy falling from approximately 75% to 30%. In a second ablation study on Gemini 2.5 Pro, we
further isolate the contributions of prompt detail versus few-shot examples on overall (”combined”)
performance (Appendix Figure 8). Although the model achieved (52%) baseline accuracy from a
minimal prompt, and the detailed prompts offered some improvement through the reaction template
(59%), the inclusion of examples was the dominant factor (69%); a simple prompt with examples
was much more effective than a detailed prompt without them. The best performance required both
(81%). Finally, CoT reasoning improves reactant and combined accuracy, but it underperforms non-
reasoning models on reaction template prediction, at the cost of lower prediction efficiency (compare
Qwen3-235B Table 4).

Analyzing LLM failure modes reveals two distinct error types (Appendix Fig. 9). First, reac-
tion class-specific performance variations among the top-performing models indicate that no single
model is universally superior, suggesting solutions such as multi-model ensembles or best-of-n sam-
pling. Second, all models consistently fail on a small set of reaction classes with few data points
(e.g., Wohl-Ziegler bromination). This systemic failure likely stems from data deficiencies, such as
incorrect labeling, poor examples that make the task ill-posed, rather than fundamental mechanistic
reasoning challenges for current LLM architectures.
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.

Priority 1: C:12 N:14
Reaction: Carboxylic acid to amide conversion
Importance: 4 - Ontology: True
Rationale: Identified via Inter-Fragment Analysis, this 
is a very high-impact, convergent disconnection linking the
chiral piperazine amine and the aryl carboxylic acid core, 
drastically simplifying the molecule (Goals a, c). The 
forward reaction (amide coupling) is robust and high-
yielding (Goal b). No major chemoselectivity issues are 
expected with modern coupling reagents.

Figure 4: Zero-shot position model prediction for compound LEI-515 Jiang et al. (2023) using the
PaRoutes reaction ontology highlighting reaction priority 1. See Table 5 for all priorities (1-14).

4 APPLICATION

While LLMs demonstrated strong performance on USPTO50k, such academic tests risk data con-
tamination for models pre-trained on vast data corpora. To conduct a more rigorous, real-world
validation, we evaluated our approach on five molecules that were previously synthesized and pub-
lished in high-impact journals (see Fig. 10), for which we were able to discuss the experimental
procedures with the respective lab chemists. Although this small sample size prevents broad statisti-
cal generalization, the case study provides a crucial assessment of the model’s practical capabilities
and limitations. For this evaluation, we used one of our top-performing LLMs (Gemini 2.5 Pro)
with the PaRoutes reaction ontology (n=335) and annotated atom-maps by sequentially counting the
atoms in a canonicalized SMILES. Our position model first proposed potential disconnection points,
which the respective lab chemist of the molecule then curated for chemical relevance and to avoid
redundancy for the transition model evaluation (an example for LEI-515 is provided in Appendix
5). This process yielded 63 distinct position predictions for assessment and 19 selected positions
with a total of 98 transitions. Afterwards, the chemist assessed these predictions against predefined
questions, and we calculated accuracy as the percentage of correct model responses (compare Table
1).

Table 1: Questions for chemists with regard to the Position model (P) and Transition Model (T). n
indicates here the overall number of data points and accuracy (Acc.), as well as the percentage of
correct predictions. Actionable refers here to non-template and not to chemically invalid predicted
reactant sets from the model. We provide a full overview in the appendix (see Table 6 & 7)

Question n Acc.

P1: Disconnection position chemically plausible? 63 90.5
P2: Reaction correct for the proposed disconnection position? 63 85.7
P3: Chemical reasoning correct for the position and reaction? 63 73.0
P4: Given all the information, could this reaction realistically work in the lab? 63 77.8
P5: Specific reaction successfully performed in the lab for the molecule? 63 25.4
P6: Strategically important disconnection predictions missing for the molecule? 5 80.0

T1: Given a predicted reaction template, does it capture the underlying reaction? 16 81.3
T2: Given a predicted reaction template, is the chemical reasoning correct? 16 87.5
T3: Among the reactant predictions, is there at least one chemically correct set? 19 89.5
T4: Given the correct set of reactants, is the chemical reasoning also correct? 19 89.5
T5: Given the reaction was used in the lab, are the predicted reactants the same? 15 73.3
T6: Given that the reactants are flagged ’chemically invalid’, is the reasoning correct? 7 100
T7: What % of all the actionable suggested reactants are chemically correct? 98 74.5

The case study results were highly encouraging. The model’s suggested disconnection points
(90.5%) and associated reaction names (85.7%) were overwhelmingly judged as chemically plau-
sible, with the latter often providing non-obvious alternatives to our expert chemists. While the
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accuracy for chemical reasoning was lower (73.0%), a majority of all suggestions (77.8%) were
deemed applicable in a laboratory setting. Notably, the model rediscovered 25.4% of the experi-
mentally validated disconnections. This figure is lower because the model often proposes multiple
valid reactions for a single position, where only one would be used in practice. However, the system
has limitations. For four of the five molecules evaluated, the model missed disconnections antici-
pated by our chemists. It might, for example, propose a feasible reaction (e.g., Buchwald-Hartwig
coupling) where an expert would prefer an alternative (e.g., an SNAr reaction). Our analysis in-
dicates that errors typically originate from the LLM’s misinterpretation of the molecular structure
(compare, for instance, the misidentified Cl position in Table 5, position 10). This initial error then
propagates through the prediction, ultimately leading to an incorrect suggestion for the position,
reaction or reasoning.

A key strength of the position model is its ability to provide a comprehensive set of plausible discon-
nections for an entire synthetic route, not just a single retrosynthetic step. Our chemists considered
these predictions valid if the proposed disconnection could occur at any stage of the synthesis route.
This holistic approach has two important consequences: First, the generated positions constrain the
search space for a synthesis planning algorithm (e.g., Hassen et al. (2025)), streamlining the identi-
fication of an optimal reaction sequence. Second, these predictions highlight vectors for molecular
modification, proving invaluable for guiding and accelerating medicinal chemistry campaigns by
providing a strategic blueprint for replacing molecular cores or side-chains.

The transition model also demonstrated strong performance. It achieved 81.3% accuracy for predict-
ing reaction templates and 87.5% for the associated reasoning, although chemists noted it worked
mainly for standard reactions and is less reliable for complex ones (see Fig. 12). In 89.5% of cases,
the model generated at least one chemically valid reactant set with sound reasoning (see Fig. 11),
a reasoning quality judged comparable to that of a master’s or PhD-level chemist. Furthermore, it
successfully identified 73.3% of reactants previously conducted in the lab. A key strength was its
perfect (100%) accuracy in identifying non-viable reactions (see Fig. 13), correctly explaining why
a proposed reaction would fail (e.g., identifying that a specific atom cannot exist at a given position).
This highlights its role as a filter, as it sometimes corrected position model suggestions by proposing
more intuitive reactions or filtering out disconnections that were invalid without prerequisite syn-
thesis steps. The model achieved a 74.5% overall accuracy in predicting reactants after excluding
predictions that were reaction template-based or flagged as chemically invalid. Failures typically
occurred in one of two ways: the model either failed to return any valid reactant set (accounting for
15/29 failures in our evaluation), or it failed due to incorrect SMILES parsing (see Fig. 14), even
when the underlying chemical reasoning was correct.

5 CONCLUSION

We introduce a reasoning framework that leverages the chemical knowledge in general-purpose
LLMs to address data scarcity in computational chemistry, requiring no labeled training data or
task-specific model training. Our framework anchors chain-of-thought reasoning to the molecular
structure by using atom maps in molecular SMILES as chemical anchors and operates in two stages:
a one-shot position model identifies relevant molecular fragments and their associated chemical
labels or transformations, and an optional position-aware few-shot transition model executes chemi-
cal transformations based on provided class examples. Applied to single-step retrosynthesis without
task-specific training, our method effectively identifies chemically valid and strategically sound dis-
connection positions, their corresponding reaction classes, and reactant structures for both academic
and expert-validated real-world drug molecules, while providing a chemically grounded, explain-
able rationale for each prediction. Our work immediately enables new approaches in chemistry,
where identified disconnection points define the search space for synthesis planning Westerlund
et al. (2025); Kreutter & Reymond (2023) or can be used with a user-defined reaction ontology
for robotic or parallel chemistry (e.g., Dombrowski et al. (2022)). More broadly, our framework
demonstrates that LLMs can generate realistic synthetic datasets by mapping high-level chemical
concepts directly to molecular structures, which in turn can guide applications such as the design
of novel, synthetically feasible molecules in de novo drug design. Ultimately, our methodology
provides a general blueprint for applying LLM reasoning to various challenges in the molecular sci-
ences where substructure identification is key, establishing atom-anchored LLMs as a powerful and
data-efficient addition to the modern drug discovery toolbox.
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LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used throughout the creation of this manuscript to improve
spelling mistakes, grammar, and the overall reading flow. All LLM suggestions were profusely
checked for correctness and refined by the authors of this work. The LLM was not used for any
research-related tasks.

REPRODUCIBILITY STATEMENT

The code for AAL-Chem can be found on an anonymized repository at https://github.com/AAL-
Chem/AAL-Chem. The datasets and raw LLM response files can be found in the DATA/ directory.
Figures and tables used in this manuscript can be reproduced via Jupyter notebooks included in the
NOTEBOOKS/ directory.
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dan I. Florea, Vincenzo Di Marzo, Wytse J. Wadman, Chris G. Kruse, Herman S. Overkleeft,
Thomas Hankemeier, Taco R. Werkman, Benjamin F. Cravatt, and Mario Van Der Stelt. Highly
Selective, Reversible Inhibitor Identified by Comparative Chemoproteomics Modulates Diacyl-
glycerol Lipase Activity in Neurons. Journal of the American Chemical Society, 137(27):8851–
8857, July 2015. ISSN 0002-7863, 1520-5126. doi: 10.1021/jacs.5b04883.

Daniil A. Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570–578, December 2023. ISSN 0028-0836,
1476-4687. doi: 10.1038/s41586-023-06792-0.

Andres M. Bran, Theo A. Neukomm, Daniel P. Armstrong, Zlatko Jončev, and Philippe Schwaller.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

Table 2: A summary of the Large Language Models (LLMs) evaluated in this work. The table
specifies whether the model is open-source, its status as a reasoning-optimized (”Thinking”) variant,
and its thinking budget allocation (in number of tokens) for closed-source models along with other
parameters.

Source Model Name
Thinking

model
Open-
Source

Model
quantization

Max output
length

Thinking
budget

Yang et al. (2025) Qwen3-4B-Thinking-2507 yes yes 32768 -
Narayanan et al. (2025) ether0 (24B) yes yes 32768 -
Yang et al. (2025) Qwen-3-30B-A3B-Thinking-2507 yes yes 8bit 32768 -
Yang et al. (2025) Qwen3-235B-A22B-Instruct-2507-FP8 no yes 8bit 32768 -
Yang et al. (2025) Qwen3-235B-A22B-Thinking-2507-FP8 yes yes 8bit 32768 -
Guo et al. (2025) RedHat-DeepSeek-R1-0528-w4a16 (670B) yes yes 4bit 32768 -
Comanici et al. (2025) Gemini 2.5 Flash yes no API 65536 30000
Comanici et al. (2025) Gemini 2.5 Pro yes no API 65536 30000
Anthropic (2025) Claude Sonnet 4 yes no API 64000 30000
OpenAI (2025) GPT5 yes no API 128000 ’High’

0 100 200 300 400 500 600
Number of samples

OtherReaction
N-alkylation of secondary amines with alkyl halides

Carboxylic acid with primary amine to amide
Williamson Ether Synthesis

Acylation of Nitrogen Nucleophiles by Carboxylic Acids
Ester saponification (methyl deprotection)

Reduction of nitro groups to amines
Suzuki coupling with boronic acids

Ester saponification (alkyl deprotection)
Acylation of Nitrogen Nucleophiles by Acyl/Thioacyl/Carbamoyl Halides and Analogs_OS

Boc amine deprotection
Suzuki coupling with boronic esters

Ullmann-Goldberg Substitution amine
Hydrogenolysis of amides/imides/carbamates

Aminolysis of esters
N-arylation (Buchwald-Hartwig/Ullmann-Goldberg)

Goldberg coupling aryl amine-aryl chloride
Sulfonamide synthesis (Schotten-Baumann) primary amine

Reductive amination with aldehyde
reductive amination

Hydrogenation (double to single)
Oxidation or Dehydrogenation of Alcohols to Aldehydes and Ketones

Reduction of ester to primary alcohol
Hydrogenolysis of tertiary amines

Boc amine protection with Boc anhydride
Mitsunobu aryl ether

Reduction of ketone to secondary alcohol
Sonogashira alkyne_aryl halide

Schotten-Baumann to ester
Cleavage of methoxy ethers to alcohols

Formation of Sulfonic Esters
Hydrolysis or Hydrogenolysis of Carboxylic Esters or Thioesters

Reduction of carboxylic acid to primary alcohol
Buchwald-Hartwig/Ullmann-Goldberg/N-arylation secondary amine

Aldol condensation
N-alkylation of primary amines with alkyl halides

Deprotection of carboxylic acid
Sulfonamide synthesis (Schotten-Baumann) secondary amine

Esterification of Carboxylic Acids
Hydroxyl benzyl deprotection

Urea synthesis via isocyanate and primary amine
Reduction of nitrile to amine

Reductive amination with ketone
Wittig with Phosphonium

Alcohol deprotection from silyl ethers
thioether_nucl_sub

Buchwald-Hartwig/Ullmann-Goldberg/N-arylation primary amine
Phthalimide deprotection

Stille reaction_aryl
Wohl-Ziegler bromination benzyl primary

Alkylation of amines
thiourea

Reduction of secondary amides to amines
Aromatic dehalogenation

Bouveault aldehyde synthesis
Reduction of aldehydes and ketones to alcohols

Azide to amine reduction (Staudinger)
Negishi

Reductive amination with alcohol
Sulfanyl to sulfinyl_peroxide

Urea synthesis via isocyanate and secondary amine
Ullmann-Goldberg Substitution thiol
Carboxylic acid to amide conversion

Goldberg coupling
Heck terminal vinyl

Protection of carboxylic acid
Friedel-Crafts acylation

Pyrazole formation
Reduction of tertiary amides to amines

Appel reaction
Ketal hydrolysis to ketone

Reduction of primary amides to amines
TMS deprotection from alkyne

Mitsunobu esterification
Suzuki coupling with boronic acids OTf

Mitsunobu_imide
Stille reaction_other

oxa-Michael addition
Sulfanyl to sulfinyl

thiazole
Wittig reaction with triphenylphosphorane

Addition of primary amines to aldehydes/thiocarbonyls
Chan-Lam etherification

Acetal hydrolysis to aldehyde
Amine and thiophosgene to isothiocyanate

Addition of primary amines to ketones/thiocarbonyls
S-alkylation of thiols 

Dehalogenation
Grignard_alcohol

Suzuki coupling with boronic esters OTf
Huisgen alkyne-azide 1,3 dipolar cycloaddition

Sonogashira alkyne_aryl OTf
Suzuki

Diels-Alder
Wohl-Ziegler bromination carbonyl tertiary

Urea synthesis via isocyanate and diazo
Decarboxylation

Stille reaction_allyl
Hydrogenation (triple to double)

Boc amine protection of secondary amine
Negishi coupling

Stille reaction_vinyl
Schotten-Baumann_amide

Stille reaction_vinyl OTf
Paal-Knorr pyrrole synthesis

Ether cleavage to primary alcohol
Alcohol to ether

Wohl-Ziegler bromination allyl primary
Ester with secondary amine to amide

Boc amine protection (ethyl Boc)
Henry Reaction

Wohl-Ziegler bromination benzyl tertiary
Sonogashira alkyne_alkenyl halide

Petasis reaction with amines and boronic acids
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Figure 5: Distribution of reaction names in the USPTO-50k test set. From this dataset, we created
a balanced subsample (USPTO-LLM) for evaluation by selecting up to five examples per named
reaction class, while maintaining the original proportion of the ’otherReaction’ class.
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A.2 POSITION MODEL

Table 3: A comprehensive comparison of various models based on several key performance metrics. The table
highlights the average number of predictions, partial and exact match percentages, reaction accuracy, and the
total number of successes and failures for each model. The best performance in each column is highlighted in
bold.

Model
Avg. number
of predictions

Partial
match (%)

Exact
match (%)

Reaction
acc. (%)

Total
predictions

Failed
predictions

Ether0 0.0 0.0 0.0 0.0 0 541
Qwen3-4B 4.0 73.01 31.61 3.51 541 0
Qwen3-30B 3.8 74.86 34.75 14.23 541 0
Gemini 2.5 Flash 15.3 90.54 56.59 37.11 539 2
Gemini 2.5 Flash (thinking) 16.3 91.84 61.6 35.81 539 2
Qwen3-235B-thinking 5.9 88.5 58.07 25.97 539 2
Qwen3-235B-instruct 9.6 86.67 49.44 13.33 540 1
DeepSeek-R1-670B 7.3 87.25 53.23 29.21 541 0
Claude Sonnet 4 10.0 92.57 58.55 39.03 538 3
GPT-5 15.1 91.08 54.28 47.03 538 3
Gemini 2.5 Pro 11.1 91.87 66.54 40.3 541 0
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Predicted Reactions

Acylation of Nitrogen Nucleophiles by Acyl/Thioacyl/Carbamoyl Halides and Analogs_OS

Acylation of Nitrogen Nucleophiles by Carboxylic Acids

Aminolysis of esters

Carboxylic acid to amide conversion

Carboxylic acid with primary amine to amide

Ester with secondary amine to amide

Formation of Sulfonic Esters

Mitsunobu esterification

Schotten-Baumann to ester

Schotten-Baumann_amide

Sulfonamide synthesis (Schotten-Baumann) primary amine

Sulfonamide synthesis (Schotten-Baumann) secondary amine

Urea synthesis via isocyanate and diazo

Urea synthesis via isocyanate and primary amine

Urea synthesis via isocyanate and secondary amine

Paal-Knorr pyrrole synthesis

Pyrazole formation

thiazole

Aldol condensation

Bouveault aldehyde synthesis

Diels-Alder

Friedel-Crafts acylation

Grignard_alcohol

Heck terminal vinyl

Henry Reaction

Negishi

Negishi coupling

Sonogashira alkyne_alkenyl halide

Sonogashira alkyne_aryl OTf

Sonogashira alkyne_aryl halide

Stille reaction_allyl

Stille reaction_aryl

Stille reaction_other

Stille reaction_vinyl

Stille reaction_vinyl OTf

Suzuki

Suzuki coupling with boronic acids

Suzuki coupling with boronic acids OTf
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Stille

Wohl-Ziegler bromination allyl secondary

Wohl-Ziegler bromination benzyl secondary
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Figure 6: Confusion matrix of predicted versus ground-truth reaction names for the Gemini 2.5 Pro
model. The analysis is conditional, including only predictions where the model successfully identi-
fied at least a partial positional match. For this visualization, reactions outside the defined reaction
ontology were excluded. The matrix was generated using the original class-to-name mappings from
the ground-truth data, with any unassigned reactions grouped into the ’Miscellaneous’ category.
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A.3 TRANSITION MODEL

This section covers additional results on the transition model (reactant prediction).

Table 4: A comparison of model performance on the transition task (reactant prediction). This table presents
the total successful predictions, along with accuracy scores for reactants, templates, and combined category.
The best performance in each column is highlighted in bold.

Model
Avg. number
of predictions

Reactants
accuracy

Template
accuracy

Combined
accuracy

Total
predictions

Failed
predictions

Ether0 0.0 0.0 0.0 0.0 0.0 541
Qwen3-4B 3.0 0.11 0.05 0.13 529 12
Qwen3-30B 3.6 0.22 0.12 0.27 535 6
Gemini 2.5 Flash 4.4 0.44 0.31 0.51 513 28
Qwen3-235B-thinking 4.4 0.56 0.29 0.61 522 19
Qwen3-235B-instruct 6.6 0.40 0.39 0.48 537 4
DeepSeek-R1-670B 4.4 0.64 0.28 0.70 528 13
Claude Sonnet 4 5.0 0.65 0.39 0.71 515 26
GPT-5 10.4 0.68 0.44 0.73 510 31
Gemini 2.5 Pro 5.7 0.75 0.44 0.81 512 29
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Figure 7: Performance difference between known and unknown reaction names. For unknown reactions,
no equivalent name reaction examples within the USPTO50k training dataset are provided, illustrating the
importance of the reaction name as a chemical anchor for retrieving reaction examples and chemical reasoning.
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Figure 8: An ablation study on the impact of prompt instruction detail and the inclusion of in-context examples
on the performance of the Gemini 2.5 Pro transition model. We evaluate four settings: 1) a simple prompt
without examples (see Appendix 3); 2) a detailed prompt without examples (see Appendix 2); 3) a simple
prompt with examples; and 4) a detailed prompt with examples.
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OtherReaction (n=70)
N-alkylation of secondary amines with alkyl halides (n=5)

Carboxylic acid with primary amine to amide (n=5)
Williamson Ether Synthesis (n=5)

Acylation of Nitrogen Nucleophiles by Carboxylic Acids (n=5)
Ester saponification (methyl deprotection) (n=5)

Reduction of nitro groups to amines (n=5)
Suzuki coupling with boronic acids (n=5)

Ester saponification (alkyl deprotection) (n=5)
Acylation of Nitrogen Nucleophiles by Acyl/Thioacyl/Carbamoyl Halides and Analogs_OS (n=5)

Boc amine deprotection (n=4)
Suzuki coupling with boronic esters (n=5)

Ullmann-Goldberg Substitution amine (n=5)
Hydrogenolysis of amides/imides/carbamates (n=5)

Aminolysis of esters (n=5)
N-arylation (Buchwald-Hartwig/Ullmann-Goldberg) (n=5)

Goldberg coupling aryl amine-aryl chloride (n=5)
Sulfonamide synthesis (Schotten-Baumann) primary amine (n=4)

Reductive amination with aldehyde (n=5)
reductive amination (n=5)

Hydrogenation (double to single) (n=5)
Oxidation or Dehydrogenation of Alcohols to Aldehydes and Ketones (n=5)

Reduction of ester to primary alcohol (n=5)
Hydrogenolysis of tertiary amines (n=5)

Boc amine protection with Boc anhydride (n=4)
Mitsunobu aryl ether (n=4)

Reduction of ketone to secondary alcohol (n=5)
Sonogashira alkyne_aryl halide (n=5)

Schotten-Baumann to ester (n=5)
Cleavage of methoxy ethers to alcohols (n=4)

Formation of Sulfonic Esters (n=5)
Hydrolysis or Hydrogenolysis of Carboxylic Esters or Thioesters (n=5)

Reduction of carboxylic acid to primary alcohol (n=5)
Buchwald-Hartwig/Ullmann-Goldberg/N-arylation secondary amine (n=5)

Aldol condensation (n=5)
N-alkylation of primary amines with alkyl halides (n=5)

Deprotection of carboxylic acid (n=3)
Sulfonamide synthesis (Schotten-Baumann) secondary amine (n=5)

Esterification of Carboxylic Acids (n=5)
Hydroxyl benzyl deprotection (n=5)

Urea synthesis via isocyanate and primary amine (n=5)
Reduction of nitrile to amine (n=5)

Reductive amination with ketone (n=5)
Wittig with Phosphonium (n=5)

Alcohol deprotection from silyl ethers (n=5)
thioether_nucl_sub (n=5)

Buchwald-Hartwig/Ullmann-Goldberg/N-arylation primary amine (n=5)
Phthalimide deprotection (n=5)

Stille reaction_aryl (n=5)
Wohl-Ziegler bromination benzyl primary (n=5)

Alkylation of amines (n=5)
thiourea (n=5)

Reduction of secondary amides to amines (n=5)
Aromatic dehalogenation (n=5)

Bouveault aldehyde synthesis (n=5)
Reduction of aldehydes and ketones to alcohols (n=5)

Azide to amine reduction (Staudinger) (n=5)
Negishi (n=5)

Reductive amination with alcohol (n=5)
Sulfanyl to sulfinyl_peroxide (n=4)

Urea synthesis via isocyanate and secondary amine (n=5)
Ullmann-Goldberg Substitution thiol (n=5)
Carboxylic acid to amide conversion (n=5)

Goldberg coupling (n=4)
Heck terminal vinyl (n=5)

Protection of carboxylic acid (n=5)
Friedel-Crafts acylation (n=5)

Pyrazole formation (n=5)
Reduction of tertiary amides to amines (n=5)

Appel reaction (n=5)
Ketal hydrolysis to ketone (n=5)

Reduction of primary amides to amines (n=5)
TMS deprotection from alkyne (n=5)

Mitsunobu esterification (n=5)
Suzuki coupling with boronic acids OTf (n=5)

Mitsunobu_imide (n=5)
Stille reaction_other (n=5)

oxa-Michael addition (n=5)
Sulfanyl to sulfinyl (n=5)

thiazole (n=4)
Wittig reaction with triphenylphosphorane (n=5)

Addition of primary amines to aldehydes/thiocarbonyls (n=5)
Chan-Lam etherification (n=4)

Acetal hydrolysis to aldehyde (n=4)
Amine and thiophosgene to isothiocyanate (n=4)

Addition of primary amines to ketones/thiocarbonyls (n=4)
S-alkylation of thiols  (n=4)

Dehalogenation (n=4)
Grignard_alcohol (n=3)

Suzuki coupling with boronic esters OTf (n=2)
Huisgen alkyne-azide 1,3 dipolar cycloaddition (n=3)

Sonogashira alkyne_aryl OTf (n=3)
Suzuki (n=2)

Diels-Alder (n=2)
Wohl-Ziegler bromination carbonyl tertiary (n=2)

Urea synthesis via isocyanate and diazo (n=2)
Decarboxylation (n=2)

Stille reaction_allyl (n=2)
Hydrogenation (triple to double) (n=2)

Boc amine protection of secondary amine (n=1)
Negishi coupling (n=1)

Stille reaction_vinyl (n=1)
Schotten-Baumann_amide (n=1)

Stille reaction_vinyl OTf (n=1)
Paal-Knorr pyrrole synthesis (n=1)

Ether cleavage to primary alcohol (n=1)
Alcohol to ether (n=1)

Wohl-Ziegler bromination allyl primary (n=1)
Ester with secondary amine to amide (n=1)

Boc amine protection (ethyl Boc) (n=1)
Henry Reaction (n=1)

Wohl-Ziegler bromination benzyl tertiary (n=1)
Sonogashira alkyne_alkenyl halide (n=1)

Petasis reaction with amines and boronic acids (n=1)

R
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n 
N
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0.043 0.085 0.284 0.186 0.394 0.388 0.364 0.418
0.000 0.000 0.000 0.800 0.800 1.000 0.800 1.000
0.000 0.200 0.400 0.400 1.000 0.800 1.000 1.000
0.000 0.000 0.200 0.800 0.600 0.600 0.800 0.800
0.000 0.200 0.200 0.400 1.000 0.800 1.000 0.800
0.800 1.000 0.750 1.000 1.000 1.000 1.000 1.000
0.400 0.600 0.800 0.600 1.000 0.800 1.000 1.000
0.000 0.000 0.400 0.600 0.400 0.400 1.000 0.800
0.800 0.600 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.400 0.750 1.000 1.000 1.000 1.000 1.000
0.250 0.800 1.000 0.800 1.000 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.200 0.600 0.800
0.000 0.000 0.000 0.600 0.800 0.800 1.000 1.000
0.000 0.750 0.400 0.800 1.000 1.000 0.600 1.000
0.000 0.000 0.400 0.600 0.400 0.600 0.600 0.600
0.200 0.000 0.500 1.000 1.000 1.000 0.750 1.000
0.000 0.400 1.000 0.800 0.600 1.000 0.750 1.000
0.000 0.000 1.000 0.800 0.800 1.000 1.000 1.000
0.000 0.200 0.600 0.600 0.800 0.600 0.800 0.600
0.000 0.000 0.400 0.800 0.600 0.400 0.600 0.600
0.400 0.200 0.800 0.800 0.750 0.800 1.000 1.000
0.200 0.600 1.000 0.800 1.000 0.400 1.000 1.000
0.600 0.800 1.000 1.000 1.000 1.000 1.000 1.000
0.400 0.000 0.600 0.600 0.750 0.600 0.000 1.000
0.000 0.200 0.400 0.800 0.600 0.800 0.600 0.800
0.000 0.000 0.600 0.600 1.000 1.000 1.000 0.800
0.400 1.000 1.000 0.800 0.800 0.600 1.000 1.000
0.000 0.200 0.333 0.200 0.800 0.333 1.000 1.000
0.000 0.400 0.600 0.600 1.000 0.800 1.000 0.800
0.500 0.800 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.400 0.600 0.800 1.000 0.800 1.000 1.000
0.600 0.400 0.600 0.800 0.600 0.800 0.800 0.800
0.400 0.600 1.000 1.000 1.000 1.000 0.600 0.800
0.200 0.200 0.600 0.800 0.600 0.000 0.600 1.000
0.000 0.000 0.600 0.800 0.600 0.400 0.800 0.800
0.000 0.200 0.800 0.800 1.000 1.000 0.750 0.750
0.667 1.000 0.800 1.000 1.000 1.000 1.000 1.000
0.000 1.000 0.200 0.800 1.000 0.800 1.000 1.000
0.000 0.000 0.600 0.400 0.600 0.800 0.800 0.400
0.000 0.800 0.600 0.600 0.750 0.600 1.000 1.000
0.000 0.000 0.500 0.600 0.800 1.000 1.000 0.500
0.600 0.400 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.600 0.600 0.800 1.000 0.800 1.000 1.000
0.000 0.000 0.400 0.200 0.000 0.200 0.250 0.600
0.200 0.600 0.800 0.400 0.800 0.800 0.800 0.400
0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000
0.000 0.200 0.800 0.600 0.800 0.600 1.000 1.000
0.000 0.200 0.800 0.800 0.600 0.800 0.400 1.000
0.000 0.000 0.600 0.250 0.750 0.800 0.800 0.600
0.000 0.000 0.000 0.000 0.000 0.750 0.250 0.250
0.000 0.000 0.400 0.600 0.800 1.000 0.800 1.000
0.000 0.400 0.800 0.250 0.600 0.200 1.000 1.000
1.000 0.600 1.000 1.000 1.000 1.000 1.000 1.000
0.600 0.400 0.250 0.800 0.800 1.000 1.000 1.000
0.000 0.600 0.000 0.400 0.600 0.200 1.000 1.000
0.800 0.600 1.000 1.000 1.000 1.000 1.000 1.000
0.600 0.600 0.600 1.000 1.000 1.000 1.000 0.800
0.000 0.200 0.200 0.200 0.500 0.800 0.000 0.400
0.000 0.000 0.600 0.800 0.600 0.800 1.000 1.000
0.000 0.200 0.600 0.600 0.800 1.000 0.200 1.000
0.000 0.000 1.000 0.600 0.800 0.750 1.000 1.000
0.000 0.400 0.400 0.200 0.600 0.600 1.000 1.000
0.400 0.800 1.000 0.600 1.000 1.000 1.000 1.000
0.000 0.000 0.000 0.600 0.800 1.000 0.333 1.000
0.000 0.200 0.800 0.600 1.000 1.000 1.000 0.800
0.200 0.800 0.400 0.800 0.800 1.000 1.000 0.800
0.000 0.600 0.500 1.000 0.800 0.750 1.000 1.000
0.000 0.000 0.200 0.667 0.000 0.800 0.600 0.800
0.000 1.000 0.800 0.800 1.000 0.800 1.000 1.000
0.000 0.000 0.000 0.000 0.800 0.600 0.000 0.400
0.200 0.800 1.000 0.500 1.000 1.000 0.800 1.000
0.000 0.000 0.000 0.800 0.400 0.333 0.333 1.000
0.800 0.400 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.600 0.600 0.600 0.800 0.800 0.800
0.000 0.200 0.600 0.400 0.400 0.600 0.600 0.800
0.000 0.200 0.250 0.200 1.000 0.800 1.000 1.000
0.000 0.000 0.800 1.000 0.800 0.800 0.750 0.600
0.000 0.000 0.200 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.000 0.600 1.000 1.000 0.000 0.400
0.000 0.000 0.400 1.000 0.200 0.600 0.200 0.800
0.000 0.000 0.750 1.000 0.200 0.500 1.000 1.000
0.000 0.400 0.667 0.800 1.000 0.667 0.333 1.000
0.000 0.000 0.250 0.500 0.250 0.750 1.000 0.750
0.000 0.750 1.000 0.500 0.750 1.000 1.000 1.000
0.000 0.750 0.000 0.750 0.750 1.000 0.750 1.000
0.250 0.500 0.750 1.000 0.750 1.000 1.000 1.000
0.000 0.000 0.000 0.500 1.000 0.500 1.000 1.000
0.750 0.250 1.000 0.750 1.000 0.750 1.000 1.000
0.000 0.000 0.000 1.000 1.000 0.333 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.667 0.667 0.667
0.000 0.000 0.000 1.000 0.333 0.667 1.000 1.000
0.000 0.000 0.333 0.667 0.667 0.667 1.000 1.000
0.000 0.000 0.500 0.500 0.000 0.000 0.500 0.500
0.000 0.000 0.500 0.000 0.500 0.500 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.500 1.000 1.000 1.000 0.500 0.500 1.000
0.000 0.500 0.500 1.000 1.000 1.000 0.500 1.000
0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 1.000 1.000 1.000 1.000
0.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 1.000 1.000 0.000 1.000 0.000 1.000
0.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000
0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.000
0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
0.000 0.000 0.000 0.000 1.000 1.000 0.000 1.000

Performance Heatmap: All Reactions vs Model Size

Figure 9: Confusion Matrix Highlighting the performance of different Transition Models on respec-
tive reaction name classes using either template or reactant accuracy. The reactions are sorted by the
number of reaction examples available in the set (high-to-low).
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A.4 APPLICATION EXAMPLES

LEI-515

LEI-102LEI-105

LEI-401DH376

Figure 10: Five real-world drug disovery molecules used in our case study: DH376 Deng et al.
(2017), LEI-102 Li et al. (2023), LEI-105 Baggelaar et al. (2015), LEI-401 Mock et al. (2020), LEI-
515 Jiang et al. (2023)

Table 5: Predicted Disconnection Sites for LEI 515 Jiang et al. (2023). Header descriptions are as
follows: Prio.: Priority Ranking of the Disconnections; Position: The position where the discon-
nection is; Reaction: The forward reaction; Ontology: If the reaction is in the reaction ontology
for which examples are available; Imp.: Retrosynthesis Importance, alignment with retrosynthesis
goals; Rationale: The chemical rationale.

Prio. Position Reaction Ontology Imp. Rationale
1 C:12 N:14 Carboxylic acid to

amide conversion
Yes 4 Identified via Inter-Fragment Analy-

sis, this is a very high-impact, con-
vergent disconnection linking the chi-
ral piperazine amine and the aryl car-
boxylic acid core, drastically simplify-
ing the molecule (Goals a, c). The for-
ward reaction (amide coupling) is ro-
bust and high-yielding (Goal b). No
major chemoselectivity issues are ex-
pected with modern coupling reagents.

2 C:12 N:14 Acylation of Nitro-
gen Nucleophiles by
Acyl/Thioacyl/Car-
bamoyl Halides and
Analogs N

Yes 4 Identified via Inter-Fragment Analy-
sis, this is a very high-impact, conver-
gent disconnection that simplifies the
molecule into two key fragments (Goals
a, c). Activation of the carboxylic acid
as an acyl chloride is a classic, ro-
bust method for amide formation (Goal
b), though it may require protection of
other nucleophilic sites.

3 N:17 c:18 Buchwald-
Hartwig/Ullmann-
Goldberg/N-
arylation secondary
amine

Yes 4 Identified via Inter-Fragment Analysis,
this key convergent C-N bond forma-
tion builds the N-arylpiperazine mo-
tif (Goal c). The forward reaction,
a Buchwald-Hartwig amination, is a
powerful and reliable method for this
transformation, simplifying the chiral
amine precursor (Goals a, b). Potential
for competitive reaction at N:14 neces-
sitates a protecting group strategy.
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Prio. Position Reaction Ontology Imp. Rationale
4 N:17 c:18 N-arylation

(Buchwald-
Hartwig/Ullmann-
Goldberg)

Yes 4 Identified via Inter-Fragment Analysis,
this strategic disconnection simplifies
the chiral piperazine component by re-
moving the aryl group (Goal a). The
forward N-arylation is a powerful and
reliable reaction for constructing this
key bond (Goals b, c). Regioselectivity
between the two piperazine nitrogens
is a key issue that must be controlled,
likely with a protecting group on N:14.

5 C:5 S:6 S-alkylation of thiols Yes 3 Identified via Strategic Bond Analysis.
This disconnects the beta-keto sulfox-
ide side chain from the aryl core (Goal
c). The forward synthesis involves S-
alkylation of the corresponding thio-
phenol with an alpha-halo ketone pre-
cursor, followed by oxidation. This is a
robust way to build this key C-S bond,
but the electrophile itself requires sepa-
rate synthesis (Goals a, b).

6 c:11 C:12 Grignard with CO2
to carboxylic acid

Yes 3 Identified via FGI Analysis. Strategic
C-C bond formation to install the car-
boxyl group on the central aromatic ring
(Goal c). The forward synthesis via car-
boxylation of an organometallic (e.g.,
Grignard) from an aryl halide is clas-
sic and reliable (Goals a, b). Chemos-
electivity is a concern, as formation of
the organometallic must be compatible
with the sulfide/sulfoxide group.

7 S:6 O:7 Sulfanyl to
sulfinyl H2O2

Yes 2 Identified via FGI Analysis. Standard
FGI to install the sulfoxide from a
more stable and easier to handle sulfide
precursor. The oxidation can be per-
formed late-stage, but requires careful
control of conditions to prevent over-
oxidation to the sulfone, which presents
a chemoselectivity challenge (Goal b).

8 C:2 F:32 F:33 Fluorination Yes 2 Identified via FGI Analysis. This dis-
connection corresponds to a forward
reaction installing the difluoro moiety.
Electrophilic fluorination of the beta-
keto sulfoxide enolate is a viable route
(Goal c). Chemoselectivity could be
an issue due to multiple acidic protons
(at C:5) and potential for mono- vs di-
fluorination, requiring kinetic control.

9 c:30 Cl:31 Aromatic chlorina-
tion

Yes 2 Identified via FGI Analysis. This FGI
installs the chloro substituent via elec-
trophilic aromatic substitution (Goal
c). The regioselectivity of the chlo-
rination would be directed by the ex-
isting sulfoxide/sulfide and carboxy-
late/amide groups. Predicting and con-
trolling the outcome relative to other
open positions on the ring requires care-
ful consideration of the combined di-
recting effects.
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Prio. Position Reaction Ontology Imp. Rationale
10 c:20 Cl:21 Aromatic chlorina-

tion
Yes 2 Identified via FGI Analysis. This FGI

installs the chloro substituent on the N-
aryl ring via electrophilic aromatic sub-
stitution (Goal c). The reaction would
be strongly directed by the activating
amine substituent, likely leading to the
observed para-chlorination, making this
a reliable and predictable transforma-
tion (Goal b).

11 C:3 O:4 Oxidation or Dehy-
drogenation of Al-
cohols to Aldehydes
and Ketones

Yes 2 Identified via FGI analysis. Standard
FGI to form the ketone from a sec-
ondary alcohol precursor. While many
mild oxidation reagents are available,
the presence of the easily oxidizable
sulfoxide (or its sulfide precursor) on
the same molecule presents a major
chemoselectivity challenge that must be
carefully managed (Goal b).

12 C:12 O:13 N:14 Nitrile to amide Yes 2 Identified via FGI analysis. This trans-
forms the amide into a nitrile precursor,
offering an alternative synthetic route to
the central aromatic core (Goal a). A
nitrile can be introduced via methods
like the Sandmeyer reaction. The for-
ward reaction, partial hydrolysis of the
nitrile to the amide, can be challenging
to stop without proceeding to the car-
boxylic acid.

13 N:14 Boc amine deprotec-
tion

Yes 1 Identified via Protecting Group Analy-
sis. This is a tactical deprotection step.
A protecting group like Boc on N:14
would be crucial in a forward synthe-
sis to ensure regioselective N-arylation
at N:17. This step reveals the nucle-
ophilic amine for the final amide cou-
pling and is a common, practical con-
sideration (Goal d).

14 C:2 C:3 Enolate Acylation No 3 Identified via Strategic Bond Analy-
sis. This strategic C-C bond discon-
nection breaks down the beta-keto side
chain (Goal a). The forward reaction,
likely an enolate acylation, is a power-
ful method for ketone synthesis (Goal
c). However, generating and control-
ling the reactivity and stability of the re-
quired difluoroenolate precursor could
be challenging.
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Proposed Transitions

Transition 3

Forward Reaction: Buchwald-Hartwig/Ullmann-Goldberg/N-arylation secondary amine

Is Chemically Valid: True

Is Template-based: False

Reasoning: This option is highly plausible. The reactants are stable. The greater reactivity of the C-Br

bond versus the C-Cl bonds allows for high chemoselectivity under typical Buchwald-Hartwig conditions.

The reaction does not affect the existing stereocenters.

Reactant 1: C[CH2:1][C:2]([C:3](=[O:4])[CH2:5][S:6](=[O:7])[c:8]1[cH:9][cH:10][c:11]([C:12](=[O:13])

[N:14]2[CH2:15][CH2:16][NH:17][C@@H:25]([CH3:26])[C@@H:27]2[CH3:28])[cH:29][c:30]1[Cl:31])([F:32])[F:33]

Reactant 2: Br[c:18]1[cH:19][c:20]([Cl:21])[cH:22][cH:23][cH:24]1

• 

• 

• 

• 

• 

• 

Figure 11: Correct reactant prediction for LEI-515 Jiang et al. (2023) by the Transition model (po-
sition priority 3, transition prediction 3).Proposed Transitions

Transition 1

Forward Reaction: Buchwald-Hartwig/Ullmann-Goldberg/N-arylation secondary amine

Is Chemically Valid: True

Is Template-based: True

Reasoning: This is the general template for an N-arylation reaction. The aryl partner is an activated aryl

ring where the wildcard atom [*] represents a suitable leaving group from the class , such as F, Cl, Br, I,

OTf, OTs.

Reactant 1: C[CH2:1][C:2]([C:3](=[O:4])[CH2:5][S:6](=[O:7])[c:8]1[cH:9][cH:10][c:11]([C:12](=[O:13])

[N:14]2[CH2:15][CH2:16][NH:17][C@@H:25]([CH3:26])[C@@H:27]2[CH3:28])[cH:29][c:30]1[Cl:31])([F:32])[F:33]

Reactant 2: *[c:18]1[cH:19][c:20]([Cl:21])[cH:22][cH:23][cH:24]1

• 

• 

• 

• 

• 

• 

Figure 12: Correct reactant template prediction for LEI-515 Jiang et al. (2023) by the Transition
model (position priority 3, transition prediction 1).
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Proposed Transitions

Transition 1

Forward Reaction: Boc amine deprotection

Is Chemically Valid: False

Is Template-based: False

Reasoning: This permutation is invalid. The specified reaction center, N:14, is a tertiary amide nitrogen

within the product structure, not a primary or secondary amine. The forward reaction ‘Boc amine

deprotection’ implies the product is a free amine and the reactant is a Boc-protected amine (a neutral

carbamate). Applying the retrosynthetic protection step to a tertiary amide nitrogen is not a standard or

plausible transformation. It would generate a highly reactive and unstable N-acyl quaternary ammonium

salt, which is not a viable precursor for a deprotection reaction. The specified reaction name is inconsistent

with the provided product structure at the indicated reaction center.

Reactant 1: C[CH2:1][C:2]([C:3](=[O:4])[CH2:5][S:6](=[O:7])[c:8]1[cH:9][cH:10][c:11]([C:12](=[O:13])

[N+:14]2(C(=O)OC(C)(C)C)[CH2:15][CH2:16][N:17]([c:18]3[cH:19][c:20]([Cl:21])[cH:22][cH:23][cH:24]3)

[C@@H:25]([CH3:26])[C@@H:27]2[CH3:28])[cH:29][c:30]1[Cl:31])([F:32])[F:33]

• 

• 

• 

• 

• 

Figure 13: Correctly flagged chemically invalid prediction for LEI-515 Jiang et al. (2023) by the
Transition Model (position priority 13, transition prediction 1).

Transition 4

Forward Reaction: Carboxylic acid to amide conversion

Is Chemically Valid: True

Is Template-based: False

Reasoning: This permutation is valid and represents a modern approach to amide synthesis. Acyl fluorides

offer a good balance of reactivity and stability, often being more chemoselective and causing less

racemization at adjacent stereocenters than the corresponding chlorides. An external base is typically

used.

Reactant 1:

[CH3:28][C@@H:27]1[N:14](H)[CH2:15][CH2:16][N:17]([c:18]2[cH:19][c:20]([Cl:21])[cH:22][cH:23][cH:24]2)

[C@@H:25]1[CH3:26]  (Could not visualize)

Reactant 2: C[CH2:1][C:2]([C:3](=[O:4])[CH2:5][S:6](=[O:7])[c:8]1[cH:9][cH:10][c:11]([C:12](=[O:13])F)

[cH:29][c:30]1[Cl:31])([F:32])[F:33]

Reactant 2

Transition 5

Forward Reaction: Carboxylic acid to amide conversion

Is Chemically Valid: True

Is Template-based: False

Reasoning: This permutation is valid. Acyl bromides are highly reactive electrophiles suitable for amide

formation, though they are generally more reactive and less commonly used than acyl chlorides due to

stability and cost concerns. An external base is required.

Reactant 1:

[CH3:28][C@@H:27]1[N:14](H)[CH2:15][CH2:16][N:17]([c:18]2[cH:19][c:20]([Cl:21])[cH:22][cH:23][cH:24]2)

[C@@H:25]1[CH3:26]  (Could not visualize)

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Figure 14: Syntactically invalid SMILES prediction for LEI-515 Jiang et al. (2023) by the Transition
model (position priority 1, transition prediction 4).
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A.5 APPLICATION QUESTIONAIRE

Table 6: Full list of questions for the expert validation study. These are the complete, verbatim
questions presented to chemists to benchmark the performance of our framework. The evaluation
was split into two parts: assessing the disconnection sites proposed by the Position (P) model and
the final reactant structures generated by the Transition (T) model.

Q. Description

P1 Is the suggested disconnection position chemically plausible (i.e., not violating fundamental princi-
ples)?

P2 Is the suggested reaction name a correct label for the proposed disconnection position?
P3 Is the provided chemical reasoning for the suggested disconnection (position and reaction name)

scientifically sound?
P4 Considering all the provided information, could this suggested step realistically work in a laboratory

setting?
P5 Has this specific transformation actually been performed successfully in practice for the molecule?
P6 Are there any strategically important disconnections that are obviously missing from this prediction?

T1 Given the transition prediction includes a reaction template, does the reaction template capture the
overall chemical transformation of the reaction?

T2 Given the transition prediction includes a reaction template, does the chemical reasoning for the
reaction template align with the underlying reaction?

T3 Among the reactant predictions, is there at least one that provides a chemically correct set of reac-
tants to form the target product?

T4 If the model predicts a chemically correct set of reactants, is the model’s chemical reasoning for that
specific set of reactants correct?

T5 If the reaction was conducted in the lab, does the model correctly predict the set of reactants that
were used in the lab?

T6 If the model flags one of its own predictions as ’chemically invalid’, is its reasoning for that assess-
ment correct?

T7 How many reactants are predicted as chemically valid and are not reaction templates are correct?

Table 7: Detailed reponse data.

ID P1 P2 P3 P4 P5 P6 T1 T2 T3 T4 T5 T6 T7
DH376 Deng et al. (2017) 12/13 11/13 8/13 11/13 5/13 1 4/4 4/4 4/4 4/4 3/4 2/2 23/31
LEI-102 Li et al. (2023) 14/16 12/16 12/16 14/16 2/16 1 3/3 3/3 4/4 4/4 4/4 3/3 18/18
LEI-105 Baggelaar et al. (2015) 8/9 8/9 8/9 5/9 2/9 1 2/2 2/2 2/2 2/2 1/1 - 11/11
LEI-401 Mock et al. (2020) 11/11 11/11 7/11 11/11 2/11 0 2/3 3/3 3/3 3/3 2/2 1/1 10/15
LEI-515 Jiang et al. (2023) 12/14 12/14 11/14 8/14 5/14 1 2/4 2/4 4/6 4/6 1/4 1/1 11/23
Acc. 90.5 85.7 73.0 77.8 25.4 80.0 81.3 87.5 89.5 89.5 73.3 1 74.5
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A.6 PROMPTS

A.6.1 POSITION MODEL

1 **Persona:**
2 You are an expert chemist specializing in retrosynthetic analysis.
3
4 **Primary Goal:**
5 Your primary goal is to perform a comprehensive retrosynthetic analysis on a given molecule. You will identify

all strategically viable disconnection points, rank them according to the provided framework, and
format the entire output as a single, valid JSON object.

6
7 **Input Schema:**
8 - product_smiles: The atom-mapped SMILES string of the product molecule.
9 - reaction_ontology: The provided JSON object containing the reaction ontology.

10
11 **Internal Analysis Pipeline:**
12 To generate the final JSON object, you will internally execute the following data transformation pipeline. The

output of each step serves as the direct input for the next, ensuring a dependent, step-by-step
analysis.

13
14 1. **Step 1: Identify All Candidate Transformations**
15 Process steps A - L sequentially. For each step, you must perform a complete and independent analysis to

identify all transformations that fit its description. A finding in one step does not exclude
findings in others.

16 * **Input:** The ‘product_smiles‘.
17 * **Process:**
18 * A) **Symmetry Analysis:** First, assess the molecule for any elements of symmetry. If symmetrical

fragments exist, identify transformations that could form the molecule by coupling two identical
precursors.

19 * B) **Fragment Partitioning:** Mentally partition the molecule into its major constituent fragments.
The goal is to find disconnections that lead to a **convergent synthesis**.

20 * C) **Inter-Fragment Analysis:** Identify the bonds that **connect these major fragments**. These are
candidates for strategic coupling reactions.

21 * D) **Strategic Bond Analysis:** Within the identified fragments, specifically look for bonds that
are adjacent to functional groups, making them chemically activated and strategic targets for
disconnection (e.g., bonds alpha/beta to carbonyls, bonds within key functional groups like
amides and esters).

22 * E) **Intra-Fragment Analysis:** Within each major fragment, identify bonds that could be
strategically formed via an **intramolecular (ring-closing) reaction**.

23 * F) **Stereochemical Analysis:** Identify all stereocenters. For each one, consider transformations
that could set that stereocenter (e.g., asymmetric reactions, chiral pool approach).

24 * G) **Rearrangement Analysis:** Look for structural motifs that could be efficiently formed via a
powerful **skeletal rearrangement**.

25 * H) **FGI Analysis:** For each functional group in the molecule, systematically identify all possible
functional groups that are candidates for standard Functional Group Interconversions. This

analysis **must** include, but is not limited to:
26 * **i. Oxidation/Reduction:** Identify all groups that could be retrosynthetically derived from a

different oxidation state.
27 * **ii. Non-Redox FGIs:** Identify all non-redox interconversions. This involves analyzing polar

carbon-heteroatom bonds within functional groups that are classically disconnected via
substitution or hydrolysis-type mechanisms.

28 * I) **Protecting Group Analysis:** Analyze for protecting group strategies by proposing protections
for sensitive functional groups or deprotections for existing, recognizable protecting groups.
Note that a retrosynthethic protection is a forward deprotection reaction and vice versa.

29 * J) **Multi-Bond / Multi-Component Analysis:** Analyze the product for structural motifs that could
be formed via reactions that form multiple bonds in one step, such as **cycloadditions** (ring-
forming reactions between unsaturated systems) or **multi-component reactions** (where 3+
reactants combine in a single operation).

30 * K) **Radical Mechanism Analysis:** K) Radical Mechanism Analysis: Analyze the molecule for
transformations whose mechanism is best described as proceeding via radical (uncharged, open-
shell) intermediates. This involves identifying bonds whose formation or cleavage is
characteristic of single-electron processes (homolysis), as distinct from the two-electron
processes of polar (ionic) reactions.

31 * L) **Novel or Uncategorized Strategies:** If you identify a powerful, chemically sound
transformation that does not clearly fit into categories A-K, classify it here.

32 * **Output (Internal):** A list of formatted transformation strings representing all identified
transformations. Each string must adhere to the format specified for the ‘"disconnection"‘ key in
the Constraints & Formatting Rules. You MUST return all found disconnections. You are not allowed to
leave any found and valid disconnection out.

33
34 2. **Step 2: Assign Candidate Reactions**
35 * **Input:** The list of transformation strings from Step 1.
36 * **Process:** For each transformation, determine all appropriate forward reaction names. A single

transformation may have multiple corresponding reactions.
37 * **Output (Internal):** A list of objects, where each object contains a transformation and a list of its

assigned ‘forwardReaction‘ names.
38 * **Example:** ‘[{ "disconnection": "C:4 C:7", "reactions": ["Suzuki-Miyaura coupling", "Stille coupling"]

}]‘
39
40 3. **Step 3: Expand and Evaluate Pairs**
41 * **Input:** The list of objects from Step 2.
42 * **Process:** Expand the input into a flat list by creating a **new, separate entry for each reaction**

associated with a transformation. Then, for each of these new entries, apply the Retrosynthetic
Analysis Framework to assign a ‘Retrosynthesis Importance‘ value and write a concise ‘rationale‘.

43 * **Output (Internal):** A flat list of fully populated objects, where each object represents one unique
transformation-reaction pair.

44
45 4. **Step 4: Final Formatting and Priority Assignment**
46 * **Input:** The flat list of objects from Step 3.
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47 * **Process:** For each object, format it according to the ‘Constraints & Formatting Rules‘. Then,
calculate a ‘Priority‘ number for each entry by ranking them based on two criteria: 1. ‘"
isInOntology"‘ (‘true‘ before ‘false‘), and 2. ‘"Retrosynthesis Importance"‘ (descending). Assign
the resulting rank (‘1, 2, 3...‘) to the ‘"Priority"‘ key.

48 * **Output:** The final, single JSON object. The list in this JSON does not need to be sorted.
49
50 **Constraints & Formatting Rules:**
51 * The final output **MUST** be a single JSON object. Do not include any text, explanations, or markdown

formatting before or after the JSON.
52 * If no valid disconnections are identified after the full analysis, the output must be a valid JSON object

with an empty ‘disconnections‘ list (i.e., ‘{"disconnections": []}‘).
53 * The root key of the object must be ‘"disconnections"‘, containing a list of disconnection objects.
54 * Each object in the list must contain the following keys:
55 * ‘"disconnection"‘: A string representing the complete reaction center **as viewed from the product

molecule**. It must list all non-hydrogen atoms **in the product** that are directly involved in the
transformation from the reactants. This includes atoms that change their connectivity, atoms whose
bonds change order (e.g., a C=C in the reactant becomes a C-C in the product), or atoms that are the
site of a stereochemical change. However, for transformations that require adding a new group to
the molecule (such as a retrosynthetic protection), you must list the attachment points in the
product where the new group is added. The atoms must be separated by spaces.

56 * **Example (Bond Cleavage / Deprotection):** ‘"C:5 N:7"‘ (These two atoms are bonded in the product
but were on separate reactant molecules).

57 * **Example (Cycloaddition):** ‘"c:1 c:2 c:3 c:4 c:5 c:6"‘ (These six atoms in the product form a new
ring that was not present in the reactants).

58 * **Example (Functional Group Interconversion - FGI):** ‘"C:8 C:9"‘ (Represents a transformation on
the bond between these atoms, such as reducing a double bond to a single bond) or ‘"N:1 O:2 O:3"
‘ (Represents replacing one functional group, like an amine, with its precursor, like a nitro
group).

59 * **Example (Protection):** ‘"N:26"‘ (Represents a transformation at a single or multiple atoms, such
as adding a protecting group to an amine nitrogen. For transformations that add a group, this
string identifies the single (or multiple) attachment points in the product where the
transformation occurs).

60 * **Example (Stereochemical Change):** ‘"C:25"‘ (This atom in the product has a specific
stereochemistry that was set during the reaction).

61 * ‘"Reaction"‘: A list representing all reactions of a specific disconnection point. Each individual
reaction has:

62 * ‘"forwardReaction"‘: A string for the reaction name. If the reaction is from the ontology, use its
exact ‘id‘. If you determine that no ontology entry is a good fit and a different reaction is
more appropriate (the ‘OtherReaction‘ case), you must use your own standard, descriptive name
for that reaction (e.g., ‘"Intramolecular Friedel-Crafts"‘).

63 * ‘"isInOntology"‘: A boolean (‘true‘ or ‘false‘) indicating if the ‘"forwardReaction"‘ name was found
in the provided ‘reaction_ontology‘ JSON.

64 * ‘"forwardReactionClass"‘: The broader reaction class of the ‘"forwardReaction"‘ selected from: ’
Reduction’, ’Acylation’, ’Heteroatom Alkylation and Arylation’, ’Functional Group Addition’, ’
Protection’, ’C-C Coupling’, ’Deprotection’, ’Functional Group Interconversion’, ’Aromatic
Heterocycle Formation’, ’Oxidation’. In case of no matching class pick ’Miscellaneous’.

65 * ‘"Retrosynthesis Importance"‘: A numerical value from 4 to 1, corresponding to the ranking rationale
(4 = Very High, 1 = Lower).

66 * ‘"Priority"‘: A sequential integer (‘1, 2, 3...‘) representing the calculated priority of the
disconnection.

67 * ‘"rationale"‘: A concise string explaining the strategic value. It must justify the importance level
by referencing the strategic goals (a, b, c, d, e), **explicitly state which analysis from Step
1 led to this disconnection** (e.g., ’Convergent disconnection...’), and **comment on any

potential chemoselectivity issues, the need for protecting groups, or thermodynamic vs. kinetic
control considerations.**

68 * **JSON Output Example:**
69 {
70 "disconnections": [
71 {
72 "disconnection": "C:1 C:2",
73 "reactions": [
74 {
75 "forwardReaction": "Forward reaction name",
76 "isInOntology": true,
77 "forwardReactionClass": "Broader reaction class",
78 "Retrosynthesis Importance": 4,
79 "Priority": 1,
80 "rationale": "string"
81 },
82 // more reactions for the same disconnection point
83 ]
84 },
85 // more disconnection points
86 ]
87 }
88
89 **Retrosynthetic Analysis Framework**
90 * **Primary Strategic Goals:** Analyze the molecule according to the following framework. Note: You must

identify and report reactions on all strategic goal levels. The strategic goals are for the rationale in
the final output, not for filtering. Do not omit lesser strategic reactions like protecting group

removals.
91 * a) **Structural Simplification:** Lead to readily available or simpler starting materials.
92 * b) **Reaction Robustness:** Involve robust, high-yielding, and reliable forward reactions.
93 * c) **Strategic Construction:** Strategically build the core scaffold or install key functionalities

efficiently.
94 * d) **Practicality & Efficiency:** Prioritize reactions with good atom economy that avoid notoriously

toxic or expensive reagents and are known to be scalable.
95 * e) **Stereochemical Control:** For chiral molecules, the plan must address how each stereocenter will be

controlled.
96 * **Ranking Rationale (for assigning Importance value):** Analyze the molecule according to the following

framework. Note: You must identify and report reactions from all relevant importance levels. The
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importance score is for prioritization in the final output, not for filtering. Do not omit lower-
importance findings like protecting group removals.

97 * **Importance 4 (Very High):** Major ring-forming reactions, disconnections that reveal symmetry, or
those that convergently connect major fragments. Includes powerful skeletal rearrangements that
build the core.

98 * **Importance 3 (High):** Reliable attachment of key functional groups or substituents to an existing
core. Includes the strategic installation of a key stereocenter via an asymmetric reaction.

99 * **Importance 2 (Medium):** Standard functional group interconversions (FGIs) or formation of less
complex C-C or C-X bonds. Includes less critical rearrangements or stereochemical modifications.

100 * **Importance 1 (Lower):** Disconnections of simple, easily accessible fragments or those related to
reagent synthesis (e.g., protecting groups).

101 ####
102
103 **Reaction Ontology:**
104
105 <reaction_ontology>
106
107 ### Molecule for Analysis
108
109 **Product SMILES:**
110
111 <canonicalized_product>
112
113 ####
114
115 Remember to return all possible reactions. You can identify more than one reaction for a specific position.

Listing 1: Position Model Prompt.

A.6.2 TRANSITION MODEL

Note: This prompts is slightly altered for visualization purposes.
1 **Persona:**
2 You are an expert chemist specializing in synthetic reaction modeling.
3
4 **Primary Goal:**
5 Given a product molecule, a specified reaction center, and a reaction type, your task is to generate all

chemically reasonable reactant molecules that would form the product. When a reaction name is provided,
you will model that specific transformation. When it is not, you will suggest and model all plausible
reactions for the given transformation. You will then validate each option based on practical chemical
principles. The entire output must be a single, valid JSON object.

6
7 **Input Schema:**
8 * ‘reaction_center_atoms‘: A string identifying the **approximate location** of the transformation, using atom

mappings. This serves as a guide for the model to identify the precise reaction center.
9 * **Example (Bond Cleavage):** ‘"C:5 N:7"‘

10 * **Example (Ring Formation/Cycloaddition):** ‘"c:1 c:2 c:3 c:4 c:5 c:6"‘
11 * **Example (FGI):** ‘"C:8 C:9"‘
12 * **Example (Protection):** ‘"N:26"‘
13 * **Example (Stereochemical Change):** ‘"C:25"‘
14 * ‘product_smiles‘: The atom-mapped SMILES string of the product molecule.
15 * ‘forward_reaction_name‘ (optional): The name of a specific forward reaction to be modeled.
16 * ‘retrosynthesis_reaction_examples‘ (optional): A list of retrosynthesis reaction SMILES strings to use as a

blueprint.
17
18 **Internal Analysis Pipeline:**
19 To generate the final JSON object, you will internally execute the following data transformation pipeline.

This is a strict, one-way sequence from Step 1 to the final output. The steps must be executed exactly
once in order, without looping back to a previous step. The output of each step serves as the direct
input for the next.

20
21 1. **Step 1: Determine Reaction(s) to Model**
22 * **Input:** The ‘forward_reaction_name‘ (optional) and ‘reaction_center_atoms‘ from the user.
23 * **Process:** If a ‘forward_reaction_name‘ is provided, use it as the sole reaction. If not, analyze the

‘reaction_center_atoms‘ to generate a list of potential ‘forward_reaction_name‘s.
24 * **Output (Internal):** A list of reaction names to be modeled.
25
26 2. **Step 2: Refine Reaction Center**
27 * **Input:** The list of ‘forward_reaction_name‘s (Step 1), the users ‘reaction_center_atoms‘, and any ‘

retrosynthesis_reaction_examples‘.
28 * **Process:** For each ‘forward_reaction_name‘, use your expert chemical knowledge and the provided

examples to determine the **precise and complete reaction center**. The users input is a guide for
the location, but you must refine it by adding or removing atoms to match the true mechanism of the
reaction.

29 * **Output (Internal):** A mapping of each ‘forward_reaction_name‘ to its ‘precise_reaction_center_atoms‘
string.

30
31 3. **Step 3: Extract Atom-Level Reaction Template**
32 * **Input:** The list of ‘forward_reaction_name‘s from Step 1, the **precise reaction center** from step

2, and the user-provided ‘retrosynthesis_reaction_examples‘.
33 * **Process:** For each ‘forward_reaction_name‘, analyze its corresponding valid example(s). Your primary

goal is to extract the **structural pattern** and **JSON format** of the transformation from these
examples. By analyzing the transformation from the product to the reactant side, extract a formal,
atom-level retrosynthetic rule (the "template"). If a specific chemical detail in an examples ‘
modification_smarts‘ seems inconsistent with the ‘forward_reaction_name‘, prioritize deriving the
correct chemical group based on your expert knowledge, while strictly adhering to the JSON structure
taught by the example. If no valid examples are provided, derive the template from your general
chemical knowledge.
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34
35 * **Output (Internal):** A mapping of each reaction name to its extracted reaction template. The template

**must** be a single JSON object following this structure:
36 ‘‘‘json
37 // Template Structure: A self-contained rule object
38 {
39 "precise_reaction_center_atoms": "<space_separated_list_of_atom_maps>",
40 "modifications": [
41 {
42 "target_atom_map": "<map_number_of_atom_to_modify>",
43 "modification_smarts": "<SMILES_or_SMARTS_of_the_complete_functional_

group_on_this_atom_in_the_reactant>"
44 }
45 // ... one object for each atom that is modified ...
46 ]
47 }
48 ‘‘‘
49
50 * **Example 1 (Intermolecular Disconnection):** This pattern covers reactions where **one product is

formed from two** reactant molecules.
51 ‘‘‘json
52 {
53 "precise_reaction_center_atoms": "C:1 C:7",
54 "modifications": [
55 { "target_atom_map": "1", "modification_smarts": "[c:1][X]" },
56 { "target_atom_map": "7", "modification_smarts": "[c:7][Y]" }
57 ]
58 }
59 ‘‘‘
60
61 * **Example 2 (Intramolecular Cyclization):** This pattern covers reactions where a new ring is formed

within a **single precursor molecule**.
62 ‘‘‘json
63 {
64 "precise_reaction_center_atoms": "C:1 C:6",
65 "modifications": [
66 { "target_atom_map": "1", "modification_smarts": "[C:1]X" },
67 { "target_atom_map": "6", "modification_smarts": "[C:6]Y" }
68 ]
69 }
70 ‘‘‘
71
72 * **Example 3 (Functional Group Interconversion - FGI):** This pattern covers reactions where a functional

group is transformed into another on a **single molecule**.
73 ‘‘‘json
74 {
75 "precise_reaction_center_atoms": "C:1 O:2",
76 "modifications": [
77 { "target_atom_map": "1", "modification_smarts": "[C:1]=[O:2]" }
78 ]
79 }
80 ‘‘‘
81
82 * **Example 4 (Multi-Component Reaction - MCR):** This pattern covers reactions where **one product is

formed from three or more** reactant molecules.
83 ‘‘‘json
84 {
85 "precise_reaction_center_atoms": "A:1 B:2 C:3",
86 "modifications": [
87 { "target_atom_map": "1", "modification_smarts": "[A]X" },
88 { "target_atom_map": "2", "modification_smarts": "[B]Y" },
89 { "target_atom_map": "3", "modification_smarts": "[C]Z" }
90 ]
91 }
92 ‘‘‘
93
94 4. **Step 4: Generate Precursor Molecule(s)**
95 * **Input:** The ‘product_smiles‘ and ‘precise_reaction_center_atoms‘.
96 * **Process:** Based on the number of fragments implied by the transformation type (e.g., two for an

intermolecular disconnection, one for an FGI, three for a 3-component MCR), generate the
corresponding core precursor molecule(s). This is done by cleaving the necessary bonds in the
product or, for 1-to-1 transformations, identifying the single precursor scaffold.

97 * **Output (Internal):** The distinct molecular fragment(s) with atom mapping preserved.
98
99 5. **Step 5: Apply Reaction Template to Generate Reactant Permutations**

100 * **Input:** The precursor(s) (Step 4) and the reaction templates (Step 3).
101 * **Process:** For each reactions template, apply the extracted retrosynthetic template to the precursor(s

). The ‘precise_reaction_center_atoms‘ provided by the user defines the **locality** of the
transformation. You must use your chemical expertise to apply the template correctly to the atoms **
in and around this specified location**, ensuring the final transformation is chemically consistent
with the templates logic. This process must include generating **all possible permutations** of the
reactive groups. This directive must be interpreted with absolute completeness in two ways:

102 1. **Fragment-Role Permutations:** For a disconnection into multiple fragments with distinct reactive
groups, you must generate reactant sets for **all** possible assignments of those groups to the
fragments.

103 2. **Intra-Group Class Permutations:** If a generated reactive group belongs to a general chemical
class (e.g., an "organohalide," "leaving group," or "protecting group"), you are required to
generate an exhaustive list of separate options for **all chemically distinct members of that
class known to be compatible with the reaction.**

104 The model is **explicitly forbidden** from filtering this list based on commonality, synthetic
efficiency, or perceived viability. If a variant is chemically possible, it must be included in
the output.
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105 * **Output (Internal):** A list of all potential reactant options generated from this exhaustive process,
each associated with a ‘forward_reaction_name‘. No chemically possible permutations may be omitted.
Please dont provide reagents as reactants.

106
107 6. **Step 6: Validate and Justify Each Option**
108 * **Input:** The list of potential reactant options from Step 5.
109 * **Process:** For each generated option, perform a rigorous chemical validation.
110 * A) **Stability:** Are the proposed reactants chemically stable?
111 * B) **Chemoselectivity:** Would the reaction be selective? Are there other functional groups that

would interfere?
112 * C) **Stereochemical Consistency:** Is the transformation stereochemically sound? Does it correctly

account for the creation or modification of stereocenters in the product?
113 * D) **Plausibility:** Is the reaction electronically and sterically plausible for this specific pair?
114 * **Output (Internal):** The same list of options, but now each object contains an ‘is_valid‘ boolean and

a detailed ‘reasoning‘ string that explicitly addresses these validation points.
115
116 ### **Step 7: Final Formatting and Grouping**
117 * **Input:** The validated and justified flat list of *real chemical options* from Step 6.
118 * **Process:**
119 1. **Group Options:** Begin by grouping the list of validated options by their ‘forward_reaction_name‘.
120 2. **Extract Wildcard Reaction Class** Looking at the validated options and their reaction names, you

must deduct a general reaction class template if possible using the ‘<CLASS:..>‘ tag. It signals
that a member of this chemical class (e.g. ‘<CLASS:AmineProtectingGroup>‘) should be used instead of
an explicit molecular structure.

121 3. **Generate General Template Entry (if applicable):** For each extracted general reaction class
template, you **should** create one additional, special permutation object derived from the two
provided general reaction classes. This object serves as the general, machine-readable
representation for the entire transformation class and should be placed at the **beginning** of the
‘reactant_permutations‘ list. The two possible options for this general reaction class template are:

122 * For a **Defined Chemical Class** (e.g., ‘<CLASS:Halogen>‘), where the reactants share a specific
generalizable atoms across all precursor molecule(s) from Step 6, introduce the a SMARTS pattern
(e.g., ‘[A,B,C]‘) as a replacement for these generalizable atoms. If possible, create a joined

template covering generalizable atoms on all possible reactants instead of creating multiple
templates.

123 * For a **Wildcard Addition Class** (e.g., ‘<CLASS:ProtectingGroup>‘), where the specific reagent
added in the retrosynthetic step is a strategic choice from a broad and variable unknown set,
the added group is represented by a generic wildcard atom (‘[*]‘). This string is generated by
taking the appropriate precursor molecule(s) from Step 6 and creating a new bond between the
wildcard atom (‘[*]‘) and the product that generalizes the explicit reactant options.

124 * This special permutation object must have the following structure:
125 * ‘reactants‘: A list containing the single, atom-mapped SMILES string with the general

representation.
126 * ‘is_valid‘: ‘true‘.
127 * ‘is_template‘: ‘true‘. Indicating that this result is a wildcard template.
128 * ‘reasoning‘: A string that explicitly identifies this as the general template and names the

chemical class in the format ‘<Class:XYZ>‘.
129 4. **Assemble Final List:** For each unique reaction, create a single object containing the ‘

forward_reaction_name‘ and its final ‘reactant_permutations‘ list. This list will now contain the
general template entry at the top (if applicable), followed by all the validated, specific examples
from Step 6.

130 5. **Finalize and Clean:** Assemble these grouped objects into the final ‘reaction_analysis‘ list
according to the ‘Output Schema‘. Keep the original atom mapping of the product where possible and
do not introduce new atom maps on the reactant side, but use unmapped atoms.

131 * **Output:** The final, single JSON object.
132
133 **Output Schema Strict JSON Only:**
134 ‘‘‘json
135 {
136 "product": "<SMILES>",
137 "reaction_analysis": [
138 {
139 "forward_reaction_name": "Name of Reaction 1 (e.g., Suzuki-Miyaura coupling)",
140 "reactant_permutations": [
141 {
142 "reactants": ["<SMILES_1A>", "<SMILES_1B>"],
143 "is_valid": true,
144 "is_template": false,
145 "reasoning": "This permutation is valid. The reactants are stable and the reaction is chemoselective

."
146 },
147 {
148 "reactants": ["<SMILES_2A>", "<SMILES_2B>"],
149 "is_valid": false,
150 "is_template": false,
151 "reasoning": "This permutation is invalid due to severe steric hindrance at the reaction site."
152 }
153 ]
154 }
155 // ... one object for each unique reaction suggested in Step 1 ...
156 ]
157 }
158
159 ** Input **
160
161 "reaction_center_atoms": <REACTION_POSITION>
162 "forward_reaction_name": <REACTION_NAME>
163 "product_smiles": <PRODUCT_SMILES>
164 "retrosynthesis_reaction_examples": <TRAIN_REACTION_EXAMPLES>

Listing 2: Transition Model Prompt.
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1 Task:
2 Given a product molecule, a reaction center, and an optional reaction name, your task is to generate all

chemically reasonable reactant molecules that would form the product. The entire output must be a single
, valid JSON object following the specified schema.

3
4 Instructions:
5
6 Identify the reaction(s) to model based on the inputs.
7
8 For each reaction, determine the retrosynthetic disconnection.
9

10 Generate all possible reactant permutations, including variations for chemical classes (e.g., all halogens
for an organohalide). Do not filter out any chemically possible options.

11
12 For each permutation, validate its chemical feasibility (stability, selectivity, etc.) and provide a brief

justification.
13
14 Group the results by forward_reaction_name in the final JSON output.
15
16 Input Schema:
17
18 reaction_center_atoms: A string identifying the approximate location of the transformation, using atom

mappings.
19
20 Example (Bond Cleavage): "C:5 N:7"
21
22 Example (Ring Formation/Cycloaddition): "c:1 c:2 c:3 c:4 c:5 c:6"
23
24 Example (FGI): "C:8 C:9"
25
26 Example (Protection): "N:26"
27
28 Example (Stereochemical Change): "C:25"
29
30 product_smiles: The atom-mapped SMILES string of the product molecule.
31
32 forward_reaction_name (optional): The name of a specific forward reaction to be modeled.
33
34 retrosynthesis_reaction_examples (optional): A list of retrosynthesis reaction SMILES strings to use as a

blueprint.
35
36 Output Schema Strict JSON Only:
37
38 {
39 "product": "<SMILES>",
40 "reaction_analysis": [
41 {
42 "forward_reaction_name": "Name of Reaction 1 (e.g., Suzuki-Miyaura coupling)",
43 "reactant_permutations": [
44 {
45 "reactants": ["<SMILES_1A>", "<SMILES_1B>"],
46 "is_valid": true,
47 "is_template": false,
48 "reasoning": "This permutation is valid. The reactants are stable and the reaction is chemoselective

."
49 },
50 {
51 "reactants": ["<SMILES_2A>", "<SMILES_2B>"],
52 "is_valid": false,
53 "is_template": false,
54 "reasoning": "This permutation is invalid due to severe steric hindrance at the reaction site."
55 }
56 ]
57 }
58 // ... one object for each unique reaction suggested ...
59 ]
60 }
61
62
63
64 ** Input **
65
66 "reaction_center_atoms": <REACTION_POSITION>
67 "forward_reaction_name": <REACTION_NAME>
68 "product_smiles": <PRODUCT_SMILES>
69 "retrosynthesis_reaction_examples": <TRAIN_REACTION_EXAMPLES>

Listing 3: Ablation Study Short Transition Model Prompt.
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