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ABSTRACT

Ensembling outputs from diverse sources is a straightforward yet effective ap-
proach to boost performance. Mixture-of-Agents (MoA) is one such popular en-
semble method that aggregates outputs from multiple different Large Language
Models (LLMs). This paper raises the question in the context of language mod-
els: is mixing different LLMs truly beneficial? We propose Self-MoA — an en-
semble method that aggregates outputs from only the single top-performing LLM.
Our extensive experiments reveal that, surprisingly, Self-MoA outperforms stan-
dard MoA that mixes different LLMs in a large number of scenarios: Self-MoA
achieves 6.6% improvement over MoA on the AlpacaEval 2.0 benchmark, and
an average of 3.8% improvement across various benchmarks, including MMLU,
CRUX, and MATH. Applying Self-MoA to one of the top-ranking models in Al-
pacaEval 2.0 directly achieves the new state-of-the-art performance ranking 1% on
the leaderboard. To understand the effectiveness of Self-MoA, we systematically
investigate the trade-off between diversity and quality of outputs under various
MoA settings. We confirm that the MoA performance is rather sensitive to the
quality, and mixing different LLMs often lowers the average quality of the mod-
els. To complement the study, we identify the scenarios where mixing different
LLMs could be helpful. This paper further introduces a sequential version of self-
MoA, that is capable of aggregating a large number of LLM outputs on-the-fly
over multiple rounds, and is as effective as aggregating all outputs at once.

1 INTRODUCTION

Large language models have made remarkable strides in improving performance across different
domains, with notable examples such as GPT (Achiam et al.l [2023), Gemini (Team et al.| |2023)),
and Claude (Anthropic, [2023). Significant efforts have been directed toward increasing model size
and training data to boost capabilities. However, scaling at training time comes with steep costs,
while scaling computation during inference remains largely underexplored.

A straightforward way to utilize test-time compute is ensembling, which aims to combine outputs
of multiple LLMs (Wang et al., [2024a; [Lin et al., [2024} Jiang et al., [2023a; [Wang et al., 2024a).
Among various ensembling approaches, Mixture-of-Agents (MoA) (Wang et al.,, [2024a) has gar-
nered significant interest, achieving superior performance in challenging tasks such as instruction
following (Wang et al., [2024a)), summarization, data extraction (OpenPipe} |2024), and real-world
code issue resolution (Zhang et al., 2024b). Specifically, MoA first queries multiple LLMs (pro-
posers) to generate responses, and then uses an LLM (aggregator) to synthesize and summarize
these responses into a high-quality response.

Previous research highlights the significance of model diversity within the proposers for optimizing
the performance of MoA, primarily focusing on strategies for ensembling a diverse set of individ-
ual models. We consider cross-model diversity as the variation among different models. However,
pursuing cross-model diversity may inadvertently include low-quality models, resulting in a quality-
diversity trade-off. While previous studies mainly concentrate on achieving a high cross-model di-
versity (Wang et al.| 2024a; |Zhang et al.,|2024b), we adopt a holistic perspective on model diversity
by considering in-model diversity, which arises from the variability of multiple responses generated
by the same model. In-model diversity enables us to aggregate multiple outputs from an individual
model. Intuitively, leveraging outputs from the best-performing individual model can more effec-
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tively navigate the quality-diversity trade-off by creating a higher-quality proposer mixture. Thus,
we propose Self-MoA as depicted in Figure[Tp, which utilizes the same prompting template as MoA
but aggregates outputs that are repeatedly sampled from the same model, rather than from a set of
different models. To distinguish, we use Mixed-MoA to refer to MoA configurations that combine
different individual models when necessary.

Surprisingly, we find that Mixed-MoA is usually sub-optimal compared with Self-MoA, especially
when there exist significant quality differences among the proposers. Specifically, we revisit the
same experiment setting of MoA with six open-source instruction fine-tuned models as|Wang et al.
(2024a). Compared with Mixed-MoA which aggregates all six models, Self-MoA on the strongest
model surpasses its mixed counterpart with merely half of the forward passes on the AlpacaEval 2.0
benchmark, showing a case of when intra-model diversity is more effective. Moreover, Self-MoA
combined with two best-performed models on AlpacaEval 2.0 consistently achieves a 2-3 point
gain and secures the top position on the leaderboard, which further confirms the effectiveness of
Self-MoA in this evaluation task.

To explore the limits of model diversity for MoA, we extend our experiments to a setting with
three specialized models, each excelling in a specific task. Specifically, we utilize Qwen2-7B-
Instruct (Bai et al., [2023)) for common sense QA (MMLU-redux (Gema et al., 2024)), Qwen2-Math-
7B-Instruct (Bai et al. 2023)) for mathematics (MATH (Hendrycks et al., |2020)), and DeepSeek-
Coder-V2-Lite-Instruct (Zhu et al., 2024) for coding (CRUX (Gu et al., 2024)). We compare Self-
MoA against a range of Mixed-MoA strategies, evaluating 13 combinations of individual models
based on their average performance across the three tasks. Our findings indicate that, even in this
promising scenario for Mixed-MoA where each individual model excels in a specific subtask, only
two Mixed-MoA strategies slightly outperform Self-MoA by 0.17% and 0.35%. Furthermore, if we
have prior knowledge of the tasks and employ task-specific models as proposers for Self-MoA such
as DeepSeek-Coder-V2-Lite-Instruct on CRUX or Qwen2-Math-7B-Instruct on MATH, Self-MoA
can significantly outperform the best Mixed-MoA.

To better understand the effectiveness of Self-MoA, we conduct a comprehensive investigation of the
trade-off between quality and diversity in MoA, involving over 200 experiments. We use the Vendi
Score (Dan Friedman & Diengl 2023) to evaluate the diversity among the outputs of the proposers,
while the average performance of the proposers serves as the measure of quality. In Section [3| we
confirm that MoA performance has a positive correlation with both quality and diversity. Moreover,
we clearly show a trade-off along the achievable Pareto front of quality and diversity. Interestingly,
we find that MoA is quite sensitive to variations in quality, with optimal performance typically
occurring in regions characterized by high quality and relatively low diversity. This finding naturally
explains the effectiveness of Self-MoA, as it utilizes the strongest model as the proposer, ensuring
high quality in its outputs.

Finally, we evaluate the performance of Self-MoA under increasing computational budgets. As the
number of outputs grows, the scalability of Self-MoA becomes constrained by the context length
of the aggregator. To address this issue, we introduce Self-MoA-Seq (Figure[Tk), a sequential ver-
sion that processes samples using a sliding window, allowing it to handle an arbitrary number of
model outputs. Our findings show that Self-MoA-Seq performs at least as effectively as Self-MoA,
enabling scalable ensembling for LLMs with shorter context lengths without compromising final
performance.

Overall, our contributions are three-fold:

* We introduce Self-MoA, which leverages in-model diversity by synthesizing multiple out-
puts from the same model. Surprisingly, it demonstrates superior performance compared
to existing Mixed-MoA approaches, which emphasize cross-model diversity, across a wide
range of benchmarks.

» Through systematic experiments and statistical analysis, we uncover a core trade-off be-
tween diversity and quality among the proposers, emphasizing that MoA is highly sensitive
to proposer quality. This finding also explains the success of Self-MoA, which leverages
outputs from the highest-performing model, ensuring superior overall quality.

* We extend Self-MoA to its sequential version Self-MoA-Seq, which iteratively aggregates
a small amount of outputs step by step. Self-MoA-Seq unlocks LLMs that are constrained
by the context length and enables computation scaling during inference.
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(a) MoA (b) Self-MoA (c) Self-MoA-Seq

Figure 1: Comparison of MoA, Self-MoA, and Self-MoA-Seq. (a) In MoA, multiple models respond
to a query, followed by an aggregator synthesizing their outputs. (b) Self-MoA simplifies this by
repeatedly sampling from a single model. (c) Self-MoA-Seq extends Self-MoA by applying a sliding
window to combine the best output so far with candidate outputs. At each timestep, the synthesized
output is repeated to bias the aggregator towards it, reducing the context length requirements and
expanding the method’s applicability. Note that MoA can extend to multiple rounds of aggregation
(Appendix [B.T)), while Self-MoA and Self-MoA-Seq can extend to more outputs, but we omit them
here for clarity.

2 IS ENSEMBLING DIFFERENT LLMS BENEFICIAL?

As introduced in Section [} previous research primarily emphasizes cross-model diversity, which
can inadvertently include low-quality proposers. In this work, we introduce Self-MoA (Figure |1},
which uses a single top-performing model to generate multiple outputs and aggregate them to pro-
duce the final result. Self-MoA leverages in-model diversity as repeated sampling often produces
varied outputs. We propose our research question as follows:

Does the benefit of MoA stem from cross-model diversity?
Can we build a stronger MoA by utilizing in-model diversity?

2.1 EXPERIMENTS ON ALPACAEVAL 2.0 WITH GENERAL PURPOSE MODELS

Evaluation benchmarks. We adopt the same experiment setting as [Wang et al.| (2024a) in Al-
pacaEval 2.0 benchmark (Dubois et al., 2024) and compare the performance of MoA and Self-
MoA[H AlpacaEval 2.0 is a widely used benchmark for assessing the instruction-following abilities
of LLMs. It offers a set of real-world instructions and employs a GPT-4-based annotator to compare
the model’s responses against reference answers generated by GPT-4. To address length bias inher-
ent in model-based evaluation, Dubois et al.| (2024) introduced the length-controlled (LC) win rate
as a more robust evaluation metric.

Models. Following Wang et al.| (2024a), we construct MoA based on six individual mod-
els: Qwenl.5-110B-Chat (Bai et al., [2023), Qwenl1.5-72B-Chat (Bai et al., 2023), WizardLM-
8x22B (Xu et al., 2023), LLaMA-3-70B-Instruct (Touvron et al., [2023)), Mixtral-8x22B-Instruct-
v0.1 (Jiang et al., [2024a), and dbrx-instruct (Team et al.| |2024b). Each model is sampled with a
temperature of 0.7, following the default in (Wang et al., |2024a). For Self-MoA, we aggregate
six outputs sampled from WizardLM-2-8x22B, as it consistently outperforms the other models. In
line with [Wang et al.| (2024a), we use Qwenl.5-110B-Chat as the aggregator for both MoA and
Self-MoA.

Results. We present the LC win rate for each model configuration in Table [I] For individual
models, we report the higher value between the leaderboard results and our reproduction. Addi-
tionally, we include the total number of forward passes, where one forward pass is counted each

"We note that this experiment is similar to the “single-proposer” setting in [Wang et al.| (2024a), however
our reproduced result is different. We conjecture that such a major difference is due to different choices of the
proposer model, which is not mentioned in[Wang et al| (20244). As we shall see later in Section 3] ensembling
performance is more sensitive to quality rather than diversity. Therefore, a worse proposer model will lead to
suboptimal performance of Self-MoA.
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Table 1: Comparison of Self-MoA and Mixed-MoA on AlpacaEval 2.0 leaderboard. We use
Qwenl1.5-110B-Chat as the aggregator.

| Model Configuration | LC Win Rate | # Forward Passes

WizardLM-2-8x22B 53.1 1
Qwenl.5-110B-Chat 43.9 1

Individual LLaMA-3-70B-Instruct 34.4 1
Qwen1.5-72B-Chat 36.6 1
Mixtral-8x22B-Instruct-v0.1 30.2 1

dbrx-instruct 25.4 1

. 2-Layer MoA (Wang et al., 2024a) 59.1 7
Mixed-MoA 3-Layer MoA (Wang et al.,[2024a) 65.4 13
Self-MoA | 2-Layer Self-MoA + WizardLM-2-8x22B | 65.7 \ 7

Table 2: Self-MoA achieves state-of-the-art performance on the AlpacaEval 2.0 leaderboard when
using top-performing models as both proposers and aggregators. We only ensemble 4 outputs due
to context window constraints.

| Model Configuration | LC Win Rate
Individual gemma-2-9b-it-WPO-HB 76.7
gemma-2-9b-it-SimPO 72.4

Self-MoA ‘ Self-MoA + gemma-2-9b-it-WPO-HB ‘ 78.5 (rank #1)

Self-MoA + gemma-2-9b-it-SimPO 75.0

time a proposer model generates an output or an aggregator synthesizes a result. Notably, Self-
MoA demonstrates remarkable effectiveness in this task, outperforming the strongest MoA baseline
with only half the forward passes. This suggests that, while using multiple models intuitively offers
greater diversity, ensembling multiple outputs from a single model is more effective.

Applying Self-MoA on top performing models. To further validate the effectiveness of Self-
MoA, we apply it to the two top-performing models on AlpacaEval 2.0: gemma-2-9b-it-WPO-
HB (Zhou et al.,|2024) and gemma-2-9b-it-SimPO (Meng et al.,|2024). We use each model as both
the proposer and the aggregatoﬂ with a temperature of 0.7 for all the generations. Due to the context
length constraint of Gemma 2 (Team et al., 2024al), the aggregator can only take four samples as the
input. As shown in Table [2] Self-MoA consistently achieves a 2-3 point gain and secures the top
position on the leaderboard during submission.

2.2  EXPERIMENTS ON MULTIPLE DATASETS WITH SPECIALIZED MODELS

In this section, we explore different ensembling methods on a diverse set of benchmarks using
specialized models.

Evaluation datasets. We conduct evaluations across a diverse set of benchmarks:

* MMLU (Hendrycks et al., 2020) is a multiple-choice dataset designed to assess a model’s
multitask accuracy. MMLU is widely used to evaluate both the breadth and depth of lan-
guage understanding capabilities of current LLMs across a diverse array of subjects, includ-
ing mathematics, history, computer science, logic, and law. We adopt MMLU-redux (Gema
et al.,[2024)) for evaluation, which is a subset of MMLU with 3,000 samples fixing the errors
in the dataset through human re-annotating.

* CRUX (Gu et al., |2024)) consists of 800 Python code functions, each containing 3 to 13
lines along with an input-output pair. Based on this dataset, |Gu et al.| (2024) constructs
two tasks: input prediction and output prediction. To successfully complete these tasks, the
LLM must demonstrate code reasoning abilities.

2Qwen1.5-110B-Chat is not used as the aggregator since the two top models significantly outperform it.
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Table 3: Comparison of Self-MoA and Mixed-MoA in MMLU, CRUX, and MATH. Mixed-MoA
models with top two average performances are highlighted by underline. The labels i, m, and d
refer to Qwen2-7B-Instruct, DeepSeek-Coder-V2-Lite-Instruct, and Qwen2-Math-7B-Instruct, re-
spectively. The average performance represents the mean accuracy across MMLU, CRUX, and
MATH. TaskBest indicates that we use the strongest model for each task as both proposer and
aggregator. For instance, in the case of CRUX, TaskBest refers to DeepSeek-Coder-V2-Lite-
Instruct (d).

| Aggregator | Proposer | MMLU | CRUX | MATH | Average

- il 66.16 | 3625 | 53.81 | 52.07
Individual - d 60.91 | 4951 | 53.82 | 54.74
- m 5436 | 27.88 | 69.57 | 50.60

iimmdd 67.89 42.88 64.38 58.38
imdddd 67.42 4450 | 63.90 58.61
iiiimd 68.90 41.25 63.00 57.72
immmmd 66.63 42.75 66.02 58.47
iimmmm 66.23 39.25 66.10 57.19
iiimmm 67.49 38.25 64.16 56.63
Mixed-MoA i iiiimm 68.00 37.00 | 62.92 55.97
iidddd 68.21 4550 | 62.56 58.76
iiiddd 68.21 42.88 62.38 57.82
iiiidd 68.47 40.75 61.24 56.82
mmdddd 66.34 46.75 66.48 59.86
mmmddd 65.80 47.00 | 67.32 60.04
mmmmdd 65.44 4250 | 67.62 58.52

i dddddd 65.23 50.75 63.08 59.69
Self-MoA i 6 x TaskBest 69.01 50.75 68.42 62.73
TaskBest 6 x TaskBest 69.01 52.62 | 69.808 63.81

* MATH (Hendrycks et al., |2021) comprises 12,500 challenging competition-level mathe-
matics problems. For our analysis, we utilize the testing subset of MATH, which consists
of 5,000 samples.

Models. To ensure sufficient diversity, we select three LLMs with specialized strengths: Qwen2-
7B-Instruc DeepSeek—Coder-VZ—Lite-Instrucﬂ and QwenZ-Math—7B-Instrucﬂ We fix the num-
ber of proposers to six and sweep various combinations of these three models. For convenience,
we denote Qwen2-7B-Instruct as i, DeepSeek-Coder-V2-Lite-Instruct as d, and Qwen2-Math-7B-
Instruct as m. The evaluation results in Table E] show that Qwen2-7B-Instruct, DeepSeek-Coder-
V2-Lite-Instruct, and Qwen2-Math-7B-Instruct excel on MMLU, CRUX, and MATH, respectively.
We use the short name for the mixture of proposers. For example, iiddmm indicates the inclusion
of two samples from each model respectively. When a model is represented multiple times in the
proposer mixture, we ensure that two samples are generated with different random seeds. We set
the temperature of each model to be 0.7 for the individual model, and use temperature O for the
aggregator. We mainly use Qwen2-7B-Instruct as the aggregator but also try different models as the
aggregator. We explore various MoA configurations, including individual models, combinations of
two or three models as proposers, and using a single model as the proposer (Self-MoA).

Results. The results are shown in Table[3] When considering i as the aggregator, among 11 tested
combinations of proposers for MoA, only two combinations slightly outperformed Self-MoA with
dddddd. Specifically, the combinations mmdddd and mmmddd outperformed dddddd by 0.17%
and 0.35%, respectively. The performance of the remaining MoA models was inferior to that of
dddddd.

*https://huggingface.co/Qwen/Qwen2-7B-Instruct

‘https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct

Shttps://huggingface.co/Qwen/Qwen2-Math-7B-Instruct

%As Qwen2-Math-7B-Instruct only supports context length of 4096, for these two data points, we sample
the proposer with a reduced token length of 1024, and only aggregates three outputs from the proposer.


https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
https://huggingface.co/Qwen/Qwen2-Math-7B-Instruct
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Figure 2: The diversity-quality trade-off:

Mixed-MoA incorporates different individual models

as proposers, while Self-MoA uses the same individual model for this role. Quality is assessed
based on the average performance of each proposer, and diversity is computed with the Vendi
Score (Dan Friedman & Dieng 2023)) of outputs generated by proposers on the same prompts.

Adding model diversity does not necessarily enhance performance. For instance, MoA with
iimmdd performs worse than mmmddd in terms of average accuracy. Although model i is the
strongest on MMLU among individual models, its inclusion in the proposers does not improve
overall performance on the mixed datasets, i.e., mmmddd has 60.04% overall performance while
iimmdd only has 58.38%.

The performance of Self-MoA can be significantly improved when we are allowed to select the
strongest model for each task. This is particularly beneficial when we have prior knowledge of the
task we wish to address. As shown in Table[3] when we use Qwen2-7B-Instruct as the aggregator,
Self-MoA achieves a performance of 62.73% by selecting the appropriate proposer for each task.
Additionally, employing a task-specific aggregator further boosts overall performance to 63.81%.
We postpone more discussion to Section 3.2}

3 THE QUALITY-DIVERSITY TRADE-OFF

We investigate factors that contribute to the strong performance of Self-MoA through careful exper-
iments. Previous studies have mainly focused on increasing model diversity within the group (Wang
et al., [2024a; Jiang et al |2023a; Zhang et al. [2024b). However, searching for diverse models can
sometimes lead to including poorly performed models, resulting in a trade-off between diversity and
quality, where quality refers to how well each individual model performs in the group.

Therefore, we aim to identify the existence of a general relationship between MoA’s performance
and quality as well as diversity. Following Section 2} we evaluate MoA’s performance on MMLU,
CRUX, and MATH, which cover tasks requiring a wide range of capabilities. We vary the quality
and diversity with two orders of freedom: 1) combinations of individual models in proposers from
Section@; and 2) sampling temperature. i.e., 0.5, 0.7, 1.0, 1.1, and 1.2. This results in a total of
over 70 unique MoA proposer mixtures. We measure the quality and diversity as follows:
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* Diversity: We utilize the Vendi Score (Dan Friedman & Dieng, [2023) to assess the diversity
among individual models in the proposer mixture. The Vendi Score represents the effective
number of unique elements within a collection of samples (Dan Friedman & Dieng, 2023)),
with further details provided in the Appendix [B.2] Specifically, for a given prompt z, we
obtain responses from each model, denoted as y1, y2, . . . , Y. The diversity of the proposers
for prompt x, denoted as d(z), is calculated using the Vendi Score on the set [y, . . ., Yg].
We then compute the overall diversity across the dataset S as:

1
d= EZd(g;).

zes

* Quality: We first determine the accuracy of each model on the dataset .S, yielding values
Q1,92, - - -,q¢- The average accuracy, q = %(ql + g2+ ...+ gg), serves as our measure of
the quality of the proposers. We will explore additional quality measurement strategies in
later sections.

Results. We plot MoA’s performance with corresponding diversity and quality for each mixture of
proposers in Figure 2] We summarize key observations as follows:

* The trends among MMLU, CRUX, and MATH are consistently aligned.

* When the quality is fixed, increasing diversity can enhance MoA’s performance.

* When the diversity is fixed, improving quality can also boost MoA’s performance.

* There exists a trade-off in the achievable Pareto front between diversity and quality.

* Notably, the best performance of MoA is typically observed in the bottom right of each
subplot, indicating a strong sensitivity to quality.

Previous work on ensembles (Wang et al.,|2024a}; Jiang et al.,|2023a}; [Zhang et al.,|2024b) primarily
focuses on increasing the diversity of models within the proposer mixture. However, as shown in
Figure[2] compared to Self-MoA on the best-performing model, simply aiming for greater diversity
in the proposer mixture can result in lower overall quality, which may negatively impact MoA’s
performance. This trade-off between diversity and quality helps to explain why Self-MoA achieves
superior performance across various benchmarks.

3.1 STATISTICAL ANALYSIS

To further understand the numerical correlation between MoA’s performance and diversity as well as
quality, we conduct linear regression for MoA’s performance ¢ on diversity d and quality ¢. Specifi-
cally, we fit the following equation for each dataset:

t=axq+8xd+, (1)

where «, 3,y € R are real-valued coefficients to be determined. For each dataset, we collect around
70 data points from Figureto construct the set {q’, d*, '} ;. The coefficients «, 3, and y are then
derived by solving a linear regression on {g*, d*, '} ;. To make coefficients « and 3 comparable,
we normalize ¢ and d by subtracting their means and dividing by their standard deviations (detailed
in Appendix [B.3)), respectively. The results are presented in Table[d] We observe that the p-values for
both a and § are less than 0.001, indicating a significant correlation between MoA’s performance
and both quality and diversity (Arnold, [1990). The R-squared values from the linear regression
across three datasets are approximately around 0.7, indicating that the linear model based on quality
and diversity explains 70% MoA’s performance and hence a strong correlation between inputs and
outputs, according to Appendix In later parts, we show that using a more fine-grained quality
calculation can further increase the R-square value.

Comparing the effect strength of quality and diversity. From Table 4] we observe that « is
greater than 3 across all three datasets. In particular, for CRUX and MATH, the gap between these
two measures is even more pronounced. These results suggest that MoA’s performance is particu-
larly sensitive to variations in quality, highlighting the importance of prioritizing quality within the
proposer mixture. This finding is also consistent with our observation that MoA achieves its best
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Table 4: Linear regression (Equation|[I)) of MoA’s performance ¢ on diversity d and quality q.

o B
Dataset Coefficient | P-value Coefficient | P-value R-square

MMLU | 2.558 +0.176 | < 0.001 | 1.841 =0.176 | < 0.001 | 0.771
CRUX | 4.548 +0.459 | <0.001 | 1.421 +0.459 | <0.001 | 0.685
MATH | 4719 +0.416 | <0.001 | 2.839 +0.416 | < 0.001 | 0.760

Table 5: The R-square of the linear regression when we use different quality measurement methods.
We find using Centered-1/K-Norm with K=2 can achieve good performance among all these three
datasets.

Dataset | Method | Average (K=1) K=2 K=3 K=4
K-Norm 0.771 0.809 0.832 0.845

MMLU | e ptered-1/K-Norm 0.771 0.881 0902 0.903
CRUX K-Norm 0.685 0.736 0.765 0.779
Centered-1/K-Norm 0.685 0.753 0.758 0.753

MATH K-Norm 0.760 0.720 0.692 0.672
Centered-1/K-Norm 0.760 0.720 0.692 0.672

performance in the bottom right of the plot in Figure [2| further supporting the effectiveness of our
proposed Self-MoA approach.

Alternative quality measurements. We use the averaged accuracy of each individual model to
measure quality in the previous analysis. In this section, we explore alternative methods for assessing
the quality of proposers. Recall that ¢4, . . . , ¢¢ denote the accuracy of each individual model among
proposers, and without loss of generality, we assume q; > g2 > ... > gg. It is reasonable to assume
that the aggregator can select the correct answer from the proposers, particularly when the responses
of individual models are inconsistent. In such cases, the aggregator would rely more heavily on
models with better individual performance, meaning the weight of g; would be greater than that of
de-

Therefore, we compare the following methods to calculate quality:
« Average: 50 ¢,

1/K
* K-Norm: (% Z?Zl qk ) , where a larger K places more emphasis on stronger individ-
ual models.

K
* Centered-1/K-Norm: ¢; — (% S0 (g —q) VK ) . In this formulation, we first com-

pute the difference between ¢; and the best model’s ¢;. The 1/K norm emphasizes the
weights of models whose performance is closer to q;.

All three methods are the same when K = 1. For each quality measurement, we fit a linear regres-
sion to assess the relationship between MoA’s performance and the quality and diversity metrics,
reporting the R-squared values in Table 5] Our analysis shows that in MMLU and CRUX, apply-
ing a larger weight to better-performing individual models tends to increase the R-squared values.
However, this trend is inconsistent for MATH. We conjecture that this inconsistency arises because
the aggregator Qwen2-7B-Instruct is relatively weak on MATH compared to the strongest individual
model, Qwen2-Math-7B-Instruct. This limitation constrains the performance of MoA, leading to an
inconsistent trend in the linear regression results. In contrast, on MMLU, where Qwen2-7B-Instruct
is the strongest individual model, we find that the R-squared value can exceed 0.9 with K = 2 using
the Centered-1/K-Norm. This indicates a very strong linear relationship between MoA performance
and the quality and diversity metrics. Overall, we conclude that employing Centered-1/K-Norm
with K = 2 (marked in blue) achieves strong performance across all three datasets.
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Table 6: MoA of Llama-3.1-8B-Instruct and Qwen2-7B-Instruct. 1 is short for Llama-3.1-8B-
Instruct and 1 is short for Qwen2-7B-Instruct.

| Aggregator | Proposer | MMLU

i, - i 66.16
Individual ‘ ] ‘ 1 ‘ 66.40
Mixed-MoA | i | 11i111 | 70.73

i iiiiii | 69.01
Sel-MoA ‘ i 111111 | 71.27

3.2  WHEN MIXED-MOA OUTPERFORMS SELF-MOA?

According to the quality-diversity trade-off illustrated in Figure [2| we conjecture that increasing
diversity can enhance MoA’s performance when the quality is controlled.

Typically, Mixed-MoA exhibits greater diversity than Self-MoA. Therefore, conditioned on sim-
ilar quality, Mixed-MoA can outperform Self-MoA. This scenario arises when individual models
demonstrate similar performance while still exhibiting significant cross-model diversity. For in-
stance, if we combine three tasks of MMLU, CRUX, and MATH, the average performances of the
individual models are 52.07%, 54.74%, and 50.60%, respectively (Table . In this combined task,
each model specializes in different parts, with 1 performing best on MMLU, d on CRUX, and m on
MATH.

From the “Average” column of Table 3] we observe that Mixed-MoA indeed outperforms Self-
MoA of dddddd, which is aggregating samples from the individual model with the best average
performance. Specifically, Mixed-MoA of mmdddd and mmmddd achieves the average performance
of 59.86% and 60.04%, improves upon Self-MoA of dddddd by 0.35%. Given the reported small
margin, we argue that Self-MoA is still a very competitive baseline under this setting, not to mention
the dominant performance of Self-MoA over Mixed-MoA when focusing on one single task.

We further consider another single-task case on MMLU, involving two individual models: Llama-
3.1-8B-Instruct and Qwen2-7B-Instruct, with Qwen2-7B-Instruct serving as the aggregator. We
choose Llama-3.1-8B-Instruct because it performs similarly to Qwen2-7B-Instruct as an individual
model. Table [ demonstrates that even when the performance of two individual models is close,
Self-MoA—utilizing six Llama-3.1-8B-Instruct proposers (denoted as 11111 1)—still outperforms
the Mixed-MoA configuration (denoted as 111111).

4 SCALING INFERENCE COMPUTE WITH SELF-MOA

In previous sections, we have provided evidence that Self-MoA over one strong model is straight-
forward but effective. As the community is becoming more aware of scaling inference time comput-
ing (Brown et al., [2024; [Snell et al., 2024; Wu et al., | 2024)), one natural question to ask is:

Given a strong model, does Self-MoA’s performance scale with the number of repeated samples?

Intuitively, Self-MoA cannot scale indefinitely by simply increasing the computation budget for at
least three reasons:

* As more responses are sampled from a single model, the diversity among those samples
tends to plateau.

* Aggregating information from many samples is more challenging for LLMs compared to
handling a smaller number of samples.

» Every LLM has a context length limit (e.g., 8192 tokens for Gemma 2), which restricts the
number of responses an aggregator can process at once.

While the first limitation is inherent to repeated sampling, we address the latter two by introduc-
ing Self-MoA-Seq, a sequential variant designed to manage large numbers of responses without
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Figure 3: The performance of Self-MoA and Self-MoA-Seq with a growing number of samples.
Dashed lines indicate the performance of a single forward pass with the base model.

overwhelming the aggregator. Self-MoA-Seq uses a sliding window to aggregate a fixed number of
responses at a time, allowing it to handle an unlimited number of responses, regardless of context
length constraints. A visual illustration is provided in Figure I]

We evaluate the performance of Self-MoA and Self-MoA-Seq with increasing sample sizes on the
MMLU and CRUX benchmarks to study their scaling behavior. For each benchmark, we use the
best-performing model as both the proposer and aggregator (Qwen2-7B-Instruct for MMLU and
DeepSeek-Coder-V2-Lite-Instruct for CRUX), with a sampling temperature of 0.7. In Self-MoA-
Seq, the window size is set to six, with the first three slots reserved for the current synthesized
output. We vary the number of samples from 6 to 30 and plot the accuracy curves from three runs
with different seeds in Figure[3] Our key observations are as follows:

* Both Self-MoA and Self-MoA-Seq significantly improve performance over the individual
base model.

* Adding more samples can have both positive and negative effects, meaning there is no
universal compute-optimal solution.

* Self-MoA-Seq delivers performance that is comparable to, or slightly better than, Self-
MoA.

These findings suggest that Self-MoA-Seq can extend the effectiveness of Self-MoA to LLMs with
shorter context lengths, without sacrificing performance. Following Section[3.2] we explore whether
introducing a second model can enhance performance in the sequential setting. Given that Llama-
3.1-8B-Instruct performs similarly to Qwen2-7B-Instruct on the MMLU task, we compare the im-
pact of adding Llama-3.1-8B-Instruct and DeepSeek-Coder-V2-Lite-Instruct (which underperforms
Qwen2-7B-Instruct by 5%) after aggregating 30 samples from Qwen2-7B-Instruct in Self-MoA-Seq.
We find that incorporating Llama-3.1-8B-Instruct boosts accuracy by around 2%, whereas adding
DeepSeek-Coder-V2-Lite-Instruct reduces accuracy by more than 1.5%. This result provides an-
other example of cross-model diversity benefiting MoA, and shows the potential of Self-MoA-Seq
with increasing computation budget.

5 CONCLUSION

In this paper, we introduce Self-MoA, an innovative approach that utilizes in-model diversity to
enhance the performance of large language models during inference. Our experiments demonstrate
that Self-MoA outperforms traditional Mixed-MoA strategies in many popular benchmarks, particu-
larly when the proposer model quality varies. By aggregating outputs from a single high-performing
model, Self-MoA effectively addresses the quality-diversity trade-off. We further identify the sce-
narios where mixing LLM can be potentially beneficial and extend Self-MoA to the constrained
context length setting. These findings highlight the potential of in-model diversity in optimizing
LLM performance and pave the way for further advancements in ensemble methods.
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A RELATED WORK

Ensembles of LLMs. Model ensembling aims to combine strengths from multiple models. Pre-
vious studies have explored various methods to leverage a diverse set of models, including but not
limited to prompting (Wang et al., 2024a)), weight averaging (Lin et al.| [2024; [Ramé et al., |2024),
routing (Jiang et al.,[2024b; [Lu et al., 2023), training a generative fusion model (Jiang et al.,[2023b),
and so on. |Zhang et al|(2024a) argues that the fusion of specialized models with certain general
abilities could be a promising direction toward Artificial General Intelligence. Mixture-of-Agents
(MoA, Wang et al.[(20244a))) first queries multiple LLMs to generate responses, then iteratively ag-
gregates these samples through several rounds of synthesis. MoA shows promising results on several
benchmarks, and its variants achieve superior performance on the AlpacaEval 2.0 leaderboard. Our
method is inspired by the prompt pipeline proposed in MoA. However, while existing MoA fo-
cuses on unleashing the strength from multiple different models (Wang et al. 2024a; [Jiang et al.,
2023bj [Zhang et al.| 2024b), we demonstrate the trade-off between diversity and quality within the
proposers, highlighting that focusing solely on diversity may compromise overall quality and final
performance.

LLM Inference with Repeated Sampling. Previous studies have shown that combining model
outputs from repeated sampling can yield a better response in various domains. In tasks with au-
tomatic verifiers available, such as math (Hendrycks et al., 2021) and code (Chen et al., [2021)),
simply sampling LLMs multiple times can significantly improve the pass @k metric and hence boost
the success rate of solving the tasks (Roziere et al. [2023; [Li et al.l |2022; Brown et al., [2024). In
more general tasks without verification tools, we can conduct techniques like majority vote, self-
consistency, and best-of-n to choose the most promising one from candidate responses (Wang et al.,
2022;|Chen et al.|[2023b; |Gui et al., [2024; L1 et al., [2024). Therefore, repeated sampling is recently
regarded as one approach of scaling compute during inference time (Brown et al., [2024). In this
work, we identify the surprising effectiveness of repeated sampling in the context of MoA. Unlike
majority vote or best-of-N, Self-MoA asks LLMs to synthesize outputs generated from repeated
sampling, hence can further improve over each individual output.

Collaborative Agents There is a surge of interest in building agent systems based on verification,
critique, discussion, and refinement. For example, [Stechly et al.| (2023), [Valmeekam et al.| (2023)),
and [Madaan et al.| (2024) use self-critique to iteratively refine outputs through a chain structure.
Madaan et al| (2024), (Chen et al| (2024), and |Wang et al.| (2024a) explore the incorporation of
multiple models to create a stronger agent that outperform each individual model. |Du et al.| (2023
incorporates multiple LLMs that propose and debate their individual responses over several rounds
to reach a common final answer. [Liang et al.|(2023) proposes Multi-Agent Debate, which encourages
divergent thinking during LLM debates to arrive at more informative conclusions and avoid rushing
to incorrect answers. |Chen et al.| (2023a) introduces RECONCILE, which adopts a confidence-
weighted voting mechanism for better consensus among LLM discussions. Interestingly, Wang
et al.| (2024b)) shows that a single model with carefully designed prompts can sometimes match the
performance of agent discussions. Moreover, agent discussions mainly outperform a single LLM
when the prompts are insufficient.

B SUPPLEMENTS

B.1 MULTI-LAYER MOA
MoA can be extended to multiple layers. For MoA with [ layers and n LLMs {A;, j}?:l in each
layer i, we can formulate it as follows: ‘

n

Yi = @ [Aij(zi)] + 21, Zig1 =i,
j=1
where each LLM Ag generates a response for the query x;, which is further concatenated with the

original query by the aggregator’s prompt €p.
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B.2 VENDI SCORE

The Vendi Score (VS) is a metric designed to evaluate diversity in machine learning. It takes as
input a collection of samples along with a pairwise similarity function, and it outputs a single value
that represents the effective number of unique elements within the sample set.

The score is computed using a positive semi-definite similarity matrix K € R™*™ as follows:

vtk s (- (S (1)) oo (- 3o nc)

Here, \; are the eigenvalues of the normalized matrix %, and Olog0 = 0. Essentially, the Vendi

Score is the exponential of the von Neumann entropy of %, which reflects the Shannon entropy of
its eigenvalues, also referred to as the effective rank. This metric provides a quantitative measure of
diversity based on the distribution of similarity scores among the samples.

B.3 NORMALIZATION OF INPUTS

Given a sequence of inputs x1, ..., Z,,. Let 2’ denote the normalized z. We have

2 = b:tidﬁ’ where & = ;xl, and std(z) =

B.4 IMPLICATION OF R-SQURE

The implications of R-squared are presented in Table[7] illustrating the degree of influence between
the independent and dependent variables. (Sarjana et al.|[2020).

Table 7: The interpretation of R-square

R-square |  Level
[0,0.2) | Very weak
02,0.4) | Weak
[0.4,0.6) | Median
[0.6,0.8) |  Strong
[0.8,1.0] | Very Strong

C ADDITIONAL RESULTS

C.1 MT-BENCH RESULTS

We also compare MoA and Self-MoA on the MT-Bench (Zheng et al.| [2023)) benchmark under the
same experiment setting as|Wang et al.|(2024a). We copy the numbers from |[Wang et al.|(2024a)) for
3-Layer MoA settings, and report our implemented results for the other experiments to ensure that
2-Layer experiments are fair comparisons. Table [§] shows that Self-MoA outperforms its Mixed-
MoA counterpart, and using GPT-40 as the aggregator can achieve the best performance even with
fewer forward passes compared to 3-Layer MoA with GPT-4o.

C.2 COMPARISON TO UNIVERSAL SELF-CONSISTENCY

We conduct further experiments to compare Self-Consistency (Wang et al.| [2022)) with MoA and
Self-MoA on the AlpacaEval 2.0 benchmark. As this benchmark is an instruction-following task
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Table 8: Comparison of Self-MoA and Mixed-MoA on MT-Bench. We use Qwen1.5-110B-Chat
and GPT-4o as the aggregator.

| Model Configuration | Avg. | 1stturn | 2nd turn | # Forward Passes

WizardLM-2-8x22B 8.99 9.05 8.93 1

Qwen1.5-110B-Chat 8.61 8.77 8.45 1

Individual LLaMA-3-70B-Instruct 8.84 9.14 8.54 1
Qwen1.5-72B-Chat 8.62 8.66 8.58 1
Mixtral-8x22B-Instruct-v0.1 8.49 8.89 8.09 1

dbrx-instruct 7.82 8.21 7.43 1

2-Layer MoA 9.06 9.23 8.89 7

. 2-Layer MoA w/ GPT-40 9.39 9.40 9.37 7
Mixed-MoA 3-Layer MoA 925 | 944 9.07 13
3-Layer MoA w/ GPT-40 9.40 9.49 9.31 13

Self-MoA + 2-Layer Self-MoA 9.13 9.36 8.89 7
WizardLM-2-8x22B | 2-Layer Self-MoA w/ GPT-40 | 9.52 9.56 9.47 7

Intervention

Accuracy=57.82%

Accuracy=58.76%

Figure 4: An illustration from a causal perspective

without exact answers, we evaluate on Universal Self-Consistency (USC) 2023Db) which
prompts LLMs to generate the most consistent response. We report the result in Table [I0] which
shows that USC performs worse than its MoA counterpart when proposers and aggregators are
controlled. This further suggests that rather than finding the most consistent response, MoA and
Self-MoA can encourage LLM to synthesize the references and produce a better response.

C.3 NORMALIZING SUB-TASKS IN TABLE 3

The results in Table [3] indicate that the variance of models on CRUX is generally higher than that
of the other two tasks, which could bias the average performance towards CRUX. To ensure that
each task contributes equally to the overall performance metric, we assign weights to the three tasks
based on the inverse of their variance.

For example, considering MMLU, we report 19 performance metrics (including individual mod-
els, Mixed-MoA, and Self-MoA) in Table El The standard deviation of performance for MMLU
across these 19 settings is calculated to be 3.50. In comparison, the standard deviation for CRUX
and MATH are 5.70 and 4.27, respectively. Consequently, the weight assigned to MMLU when
calculating the “WeightedAvg” is given by:

1/3.50

Weightyu = (1/3.50) + (1/5.70) + (1/4.27)

The performance of weighted average is shown in Table ]

C.4 A DISCUSSION FROM A CAUSAL PERSPECTIVE

Consider the setting described in Table 3, where we focus on the average accuracy across three
tasks. The performance of MoA is influenced by six proposers. For instance, in the combination
iiiddd, the MoA achieves an accuracy of 57.82%. The causal graph illustrating this relationship
is shown in FigureElLeft. Now, let’s examine a do intervention where we replace one instance of i
with d. This changes the combination from iiiddd to iidddd, resulting in a less diverse set of
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Aggregator  Proposer MMLU CRUX MATH Average WeightedAvg

Individual - i 66.16  36.25 53.81 52.07 54.46
Individual - d 60.91  49.51 53.82 54.74 55.65
Individual - m 5436  27.88 69.57 50.60 52.80
Mixed-MoA i iimmdd 67.89  42.88 64.38 58.38 60.40
Mixed-MoA i imdddd 6742 4450  63.90 58.61 60.46
Mixed-MoA 1 iiiimd 68.90 41.25 63.00 57.72 59.94
Mixed-MoA i immmmd 66.63  42.75 66.02 58.47 60.40
Mixed-MoA 1 iimmmm 66.23  39.25 66.10 57.19 59.38
Mixed-MoA 1 iiimmm 6749  38.25 64.16 56.63 59.00
Mixed-MoA i iiiimm 68.00 37.00 6292 55.97 58.47
Mixed-MoA 1 iidddd 68.21 4550  62.56 58.76 60.58
Mixed-MoA 1 iiiddd 68.21  42.88 62.38 57.82 59.86
Mixed-MoA i iiiidd 68.47  40.75 61.24 56.82 59.05
Mixed-MoA i mmdddd 66.34  46.75 66.48 59.86 61.45
Mixed-MoA 1 mmmddd 65.80 47.00  67.32 60.04 61.57
Mixed-MoA 1 mmmmdd 6544 4250  67.62 58.52 60.39
Self-MoA i dddddd 65.23  50.75 63.08 59.69 60.86
Self-MoA i 6xTaskBest 69.01  50.75 68.42 62.73 64.21
Self-MoA TaskBest TaskBest 69.01 52.62 69.80 63.81 65.14

Table 9: This table compares Self-MoA and Mixed-MoA using a weighted composition of three sub-
tasks. The weights are assigned to each sub-task to prevent a high-variance task, such as CRUX,
from disproportionately influencing the overall performance metrics. This approach ensures a more
balanced evaluation, allowing for a fairer comparison between the two models.

Table 10: Comparison of Self-MoA, Mixed-MoA, and Universal Self-Consistency (USC) on Al-
pacaEval 2.0 leaderboard. We use Qwen1.5-110B-Chat as the aggregator.

| Model Configuration | LC Win Rate | # Forward Passes
Mixed-MoA | MoA \ 59.1 \ 7
Self-MoA | Self-MoA + WizardLM-2-8x22B | 65.7 \ 7
. . Mixed-USC 53.8 7
Universal Self-Consistency | q.j¢ (15C + WizardL M-2-8x22B 60.2 7

proposers, as it is now biased towards d. However, the quality of the proposers improves, since d is
a stronger proposer in terms of average performance. This intervention demonstrates that the MoA
performance increases (see Figure ] Right), highlighting the significance of proposer quality.
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