
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETHINKING MIXTURE-OF-AGENTS: IS MIXING DIF-
FERENT LARGE LANGUAGE MODELS BENEFICIAL?

Anonymous authors
Paper under double-blind review

ABSTRACT

Ensembling outputs from diverse sources is a straightforward yet effective ap-
proach to boost performance. Mixture-of-Agents (MoA) is one such popular en-
semble method that aggregates outputs from multiple different Large Language
Models (LLMs). This paper raises the question in the context of language mod-
els: is mixing different LLMs truly beneficial? We propose Self-MoA — an en-
semble method that aggregates outputs from only the single top-performing LLM.
Our extensive experiments reveal that, surprisingly, Self-MoA outperforms stan-
dard MoA that mixes different LLMs in a large number of scenarios: Self-MoA
achieves 6.6% improvement over MoA on the AlpacaEval 2.0 benchmark, and
an average of 3.8% improvement across various benchmarks, including MMLU,
CRUX, and MATH. Applying Self-MoA to one of the top-ranking models in Al-
pacaEval 2.0 directly achieves the new state-of-the-art performance ranking 1st on
the leaderboard. To understand the effectiveness of Self-MoA, we systematically
investigate the trade-off between diversity and quality of outputs under various
MoA settings. We confirm that the MoA performance is rather sensitive to the
quality, and mixing different LLMs often lowers the average quality of the mod-
els. To complement the study, we identify the scenarios where mixing different
LLMs could be helpful. This paper further introduces a sequential version of self-
MoA, that is capable of aggregating a large number of LLM outputs on-the-fly
over multiple rounds, and is as effective as aggregating all outputs at once.

1 INTRODUCTION

Large language models have made remarkable strides in improving performance across different
domains, with notable examples such as GPT (Achiam et al., 2023), Gemini (Team et al., 2023),
and Claude (Anthropic, 2023). Significant efforts have been directed toward increasing model size
and training data to boost capabilities. However, scaling at training time comes with steep costs,
while scaling computation during inference remains largely underexplored.

A straightforward way to utilize test-time compute is ensembling, which aims to combine outputs
of multiple LLMs (Wang et al., 2024a; Lin et al., 2024; Jiang et al., 2023a; Wang et al., 2024a).
Among various ensembling approaches, Mixture-of-Agents (MoA) (Wang et al., 2024a) has gar-
nered significant interest, achieving superior performance in challenging tasks such as instruction
following (Wang et al., 2024a), summarization, data extraction (OpenPipe, 2024), and real-world
code issue resolution (Zhang et al., 2024b). Specifically, MoA first queries multiple LLMs (pro-
posers) to generate responses, and then uses an LLM (aggregator) to synthesize and summarize
these responses into a high-quality response.

Previous research highlights the significance of model diversity within the proposers for optimizing
the performance of MoA, primarily focusing on strategies for ensembling a diverse set of individ-
ual models. We consider cross-model diversity as the variation among different models. However,
pursuing cross-model diversity may inadvertently include low-quality models, resulting in a quality-
diversity trade-off. While previous studies mainly concentrate on achieving a high cross-model di-
versity (Wang et al., 2024a; Zhang et al., 2024b), we adopt a holistic perspective on model diversity
by considering in-model diversity, which arises from the variability of multiple responses generated
by the same model. In-model diversity enables us to aggregate multiple outputs from an individual
model. Intuitively, leveraging outputs from the best-performing individual model can more effec-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tively navigate the quality-diversity trade-off by creating a higher-quality proposer mixture. Thus,
we propose Self-MoA as depicted in Figure 1b, which utilizes the same prompting template as MoA
but aggregates outputs that are repeatedly sampled from the same model, rather than from a set of
different models. To distinguish, we use Mixed-MoA to refer to MoA configurations that combine
different individual models when necessary.

Surprisingly, we find that Mixed-MoA is usually sub-optimal compared with Self-MoA, especially
when there exist significant quality differences among the proposers. Specifically, we revisit the
same experiment setting of MoA with six open-source instruction fine-tuned models as Wang et al.
(2024a). Compared with Mixed-MoA which aggregates all six models, Self-MoA on the strongest
model surpasses its mixed counterpart with merely half of the forward passes on the AlpacaEval 2.0
benchmark, showing a case of when intra-model diversity is more effective. Moreover, Self-MoA
combined with two best-performed models on AlpacaEval 2.0 consistently achieves a 2-3 point
gain and secures the top position on the leaderboard, which further confirms the effectiveness of
Self-MoA in this evaluation task.

To explore the limits of model diversity for MoA, we extend our experiments to a setting with
three specialized models, each excelling in a specific task. Specifically, we utilize Qwen2-7B-
Instruct (Bai et al., 2023) for common sense QA (MMLU-redux (Gema et al., 2024)), Qwen2-Math-
7B-Instruct (Bai et al., 2023) for mathematics (MATH (Hendrycks et al., 2020)), and DeepSeek-
Coder-V2-Lite-Instruct (Zhu et al., 2024) for coding (CRUX (Gu et al., 2024)). We compare Self-
MoA against a range of Mixed-MoA strategies, evaluating 13 combinations of individual models
based on their average performance across the three tasks. Our findings indicate that, even in this
promising scenario for Mixed-MoA where each individual model excels in a specific subtask, only
two Mixed-MoA strategies slightly outperform Self-MoA by 0.17% and 0.35%. Furthermore, if we
have prior knowledge of the tasks and employ task-specific models as proposers for Self-MoA such
as DeepSeek-Coder-V2-Lite-Instruct on CRUX or Qwen2-Math-7B-Instruct on MATH, Self-MoA
can significantly outperform the best Mixed-MoA.

To better understand the effectiveness of Self-MoA, we conduct a comprehensive investigation of the
trade-off between quality and diversity in MoA, involving over 200 experiments. We use the Vendi
Score (Dan Friedman & Dieng, 2023) to evaluate the diversity among the outputs of the proposers,
while the average performance of the proposers serves as the measure of quality. In Section 3, we
confirm that MoA performance has a positive correlation with both quality and diversity. Moreover,
we clearly show a trade-off along the achievable Pareto front of quality and diversity. Interestingly,
we find that MoA is quite sensitive to variations in quality, with optimal performance typically
occurring in regions characterized by high quality and relatively low diversity. This finding naturally
explains the effectiveness of Self-MoA, as it utilizes the strongest model as the proposer, ensuring
high quality in its outputs.

Finally, we evaluate the performance of Self-MoA under increasing computational budgets. As the
number of outputs grows, the scalability of Self-MoA becomes constrained by the context length
of the aggregator. To address this issue, we introduce Self-MoA-Seq (Figure 1c), a sequential ver-
sion that processes samples using a sliding window, allowing it to handle an arbitrary number of
model outputs. Our findings show that Self-MoA-Seq performs at least as effectively as Self-MoA,
enabling scalable ensembling for LLMs with shorter context lengths without compromising final
performance.

Overall, our contributions are three-fold:

• We introduce Self-MoA, which leverages in-model diversity by synthesizing multiple out-
puts from the same model. Surprisingly, it demonstrates superior performance compared
to existing Mixed-MoA approaches, which emphasize cross-model diversity, across a wide
range of benchmarks.

• Through systematic experiments and statistical analysis, we uncover a core trade-off be-
tween diversity and quality among the proposers, emphasizing that MoA is highly sensitive
to proposer quality. This finding also explains the success of Self-MoA, which leverages
outputs from the highest-performing model, ensuring superior overall quality.

• We extend Self-MoA to its sequential version Self-MoA-Seq, which iteratively aggregates
a small amount of outputs step by step. Self-MoA-Seq unlocks LLMs that are constrained
by the context length and enables computation scaling during inference.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

		𝑜!!

		𝑜!"

		𝑜"!

		𝑜""

		𝑜#!

		𝑜#"

	𝑀!

	𝑀"

	𝑀#

	𝐴 		𝑜$

(a) MoA (b) Self-MoA (c) Self-MoA-Seq

		𝑜!!

		𝑜!"

		𝑜!#

		𝑜!%

		𝑜!&

		𝑜!'

	𝐴 		𝑜$	𝑀!

		𝑜!!

		𝑜!"

		𝑜!#

		𝑜!%

		𝑜!&

		𝑜!'

	𝐴 		𝑜$!

		𝑜$! 	𝐴 		𝑜$"

	𝑀!

Figure 1: Comparison of MoA, Self-MoA, and Self-MoA-Seq. (a) In MoA, multiple models respond
to a query, followed by an aggregator synthesizing their outputs. (b) Self-MoA simplifies this by
repeatedly sampling from a single model. (c) Self-MoA-Seq extends Self-MoA by applying a sliding
window to combine the best output so far with candidate outputs. At each timestep, the synthesized
output is repeated to bias the aggregator towards it, reducing the context length requirements and
expanding the method’s applicability. Note that MoA can extend to multiple rounds of aggregation
(Appendix B.1), while Self-MoA and Self-MoA-Seq can extend to more outputs, but we omit them
here for clarity.

2 IS ENSEMBLING DIFFERENT LLMS BENEFICIAL?

As introduced in Section 1, previous research primarily emphasizes cross-model diversity, which
can inadvertently include low-quality proposers. In this work, we introduce Self-MoA (Figure 1),
which uses a single top-performing model to generate multiple outputs and aggregate them to pro-
duce the final result. Self-MoA leverages in-model diversity as repeated sampling often produces
varied outputs. We propose our research question as follows:

Does the benefit of MoA stem from cross-model diversity?
Can we build a stronger MoA by utilizing in-model diversity?

2.1 EXPERIMENTS ON ALPACAEVAL 2.0 WITH GENERAL PURPOSE MODELS

Evaluation benchmarks. We adopt the same experiment setting as Wang et al. (2024a) in Al-
pacaEval 2.0 benchmark (Dubois et al., 2024) and compare the performance of MoA and Self-
MoA1. AlpacaEval 2.0 is a widely used benchmark for assessing the instruction-following abilities
of LLMs. It offers a set of real-world instructions and employs a GPT-4-based annotator to compare
the model’s responses against reference answers generated by GPT-4. To address length bias inher-
ent in model-based evaluation, Dubois et al. (2024) introduced the length-controlled (LC) win rate
as a more robust evaluation metric.

Models. Following Wang et al. (2024a), we construct MoA based on six individual mod-
els: Qwen1.5-110B-Chat (Bai et al., 2023), Qwen1.5-72B-Chat (Bai et al., 2023), WizardLM-
8x22B (Xu et al., 2023), LLaMA-3-70B-Instruct (Touvron et al., 2023), Mixtral-8x22B-Instruct-
v0.1 (Jiang et al., 2024a), and dbrx-instruct (Team et al., 2024b). Each model is sampled with a
temperature of 0.7, following the default in (Wang et al., 2024a). For Self-MoA, we aggregate
six outputs sampled from WizardLM-2-8x22B, as it consistently outperforms the other models. In
line with Wang et al. (2024a), we use Qwen1.5-110B-Chat as the aggregator for both MoA and
Self-MoA.

Results. We present the LC win rate for each model configuration in Table 1. For individual
models, we report the higher value between the leaderboard results and our reproduction. Addi-
tionally, we include the total number of forward passes, where one forward pass is counted each

1We note that this experiment is similar to the “single-proposer” setting in Wang et al. (2024a), however
our reproduced result is different. We conjecture that such a major difference is due to different choices of the
proposer model, which is not mentioned in Wang et al. (2024a). As we shall see later in Section 3, ensembling
performance is more sensitive to quality rather than diversity. Therefore, a worse proposer model will lead to
suboptimal performance of Self-MoA.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Comparison of Self-MoA and Mixed-MoA on AlpacaEval 2.0 leaderboard. We use
Qwen1.5-110B-Chat as the aggregator.

Model Configuration LC Win Rate # Forward Passes

Individual

WizardLM-2-8x22B 53.1 1
Qwen1.5-110B-Chat 43.9 1
LLaMA-3-70B-Instruct 34.4 1
Qwen1.5-72B-Chat 36.6 1
Mixtral-8x22B-Instruct-v0.1 30.2 1
dbrx-instruct 25.4 1

Mixed-MoA 2-Layer MoA (Wang et al., 2024a) 59.1 7
3-Layer MoA (Wang et al., 2024a) 65.4 13

Self-MoA 2-Layer Self-MoA + WizardLM-2-8x22B 65.7 7

Table 2: Self-MoA achieves state-of-the-art performance on the AlpacaEval 2.0 leaderboard when
using top-performing models as both proposers and aggregators. We only ensemble 4 outputs due
to context window constraints.

Model Configuration LC Win Rate

Individual gemma-2-9b-it-WPO-HB 76.7
gemma-2-9b-it-SimPO 72.4

Self-MoA Self-MoA + gemma-2-9b-it-WPO-HB 78.5 (rank #1)
Self-MoA + gemma-2-9b-it-SimPO 75.0

time a proposer model generates an output or an aggregator synthesizes a result. Notably, Self-
MoA demonstrates remarkable effectiveness in this task, outperforming the strongest MoA baseline
with only half the forward passes. This suggests that, while using multiple models intuitively offers
greater diversity, ensembling multiple outputs from a single model is more effective.

Applying Self-MoA on top performing models. To further validate the effectiveness of Self-
MoA, we apply it to the two top-performing models on AlpacaEval 2.0: gemma-2-9b-it-WPO-
HB (Zhou et al., 2024) and gemma-2-9b-it-SimPO (Meng et al., 2024). We use each model as both
the proposer and the aggregator2, with a temperature of 0.7 for all the generations. Due to the context
length constraint of Gemma 2 (Team et al., 2024a), the aggregator can only take four samples as the
input. As shown in Table 2, Self-MoA consistently achieves a 2-3 point gain and secures the top
position on the leaderboard during submission.

2.2 EXPERIMENTS ON MULTIPLE DATASETS WITH SPECIALIZED MODELS

In this section, we explore different ensembling methods on a diverse set of benchmarks using
specialized models.

Evaluation datasets. We conduct evaluations across a diverse set of benchmarks:

• MMLU (Hendrycks et al., 2020) is a multiple-choice dataset designed to assess a model’s
multitask accuracy. MMLU is widely used to evaluate both the breadth and depth of lan-
guage understanding capabilities of current LLMs across a diverse array of subjects, includ-
ing mathematics, history, computer science, logic, and law. We adopt MMLU-redux (Gema
et al., 2024) for evaluation, which is a subset of MMLU with 3,000 samples fixing the errors
in the dataset through human re-annotating.

• CRUX (Gu et al., 2024) consists of 800 Python code functions, each containing 3 to 13
lines along with an input-output pair. Based on this dataset, Gu et al. (2024) constructs
two tasks: input prediction and output prediction. To successfully complete these tasks, the
LLM must demonstrate code reasoning abilities.

2Qwen1.5-110B-Chat is not used as the aggregator since the two top models significantly outperform it.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 3: Comparison of Self-MoA and Mixed-MoA in MMLU, CRUX, and MATH. Mixed-MoA
models with top two average performances are highlighted by underline. The labels i, m, and d
refer to Qwen2-7B-Instruct, DeepSeek-Coder-V2-Lite-Instruct, and Qwen2-Math-7B-Instruct, re-
spectively. The average performance represents the mean accuracy across MMLU, CRUX, and
MATH. TaskBest indicates that we use the strongest model for each task as both proposer and
aggregator. For instance, in the case of CRUX, TaskBest refers to DeepSeek-Coder-V2-Lite-
Instruct (d).

Aggregator Proposer MMLU CRUX MATH Average

Individual
- i 66.16 36.25 53.81 52.07
- d 60.91 49.51 53.82 54.74
- m 54.36 27.88 69.576 50.60

Mixed-MoA i

iimmdd 67.89 42.88 64.38 58.38
imdddd 67.42 44.50 63.90 58.61
iiiimd 68.90 41.25 63.00 57.72
immmmd 66.63 42.75 66.02 58.47
iimmmm 66.23 39.25 66.10 57.19
iiimmm 67.49 38.25 64.16 56.63
iiiimm 68.00 37.00 62.92 55.97
iidddd 68.21 45.50 62.56 58.76
iiiddd 68.21 42.88 62.38 57.82
iiiidd 68.47 40.75 61.24 56.82
mmdddd 66.34 46.75 66.48 59.86
mmmddd 65.80 47.00 67.32 60.04
mmmmdd 65.44 42.50 67.62 58.52

Self-MoA
i dddddd 65.23 50.75 63.08 59.69
i 6×TaskBest 69.01 50.75 68.42 62.73

TaskBest 6×TaskBest 69.01 52.62 69.806 63.81

• MATH (Hendrycks et al., 2021) comprises 12,500 challenging competition-level mathe-
matics problems. For our analysis, we utilize the testing subset of MATH, which consists
of 5,000 samples.

Models. To ensure sufficient diversity, we select three LLMs with specialized strengths: Qwen2-
7B-Instruct3, DeepSeek-Coder-V2-Lite-Instruct4, and Qwen2-Math-7B-Instruct5. We fix the num-
ber of proposers to six and sweep various combinations of these three models. For convenience,
we denote Qwen2-7B-Instruct as i, DeepSeek-Coder-V2-Lite-Instruct as d, and Qwen2-Math-7B-
Instruct as m. The evaluation results in Table 3 show that Qwen2-7B-Instruct, DeepSeek-Coder-
V2-Lite-Instruct, and Qwen2-Math-7B-Instruct excel on MMLU, CRUX, and MATH, respectively.
We use the short name for the mixture of proposers. For example, iiddmm indicates the inclusion
of two samples from each model respectively. When a model is represented multiple times in the
proposer mixture, we ensure that two samples are generated with different random seeds. We set
the temperature of each model to be 0.7 for the individual model, and use temperature 0 for the
aggregator. We mainly use Qwen2-7B-Instruct as the aggregator but also try different models as the
aggregator. We explore various MoA configurations, including individual models, combinations of
two or three models as proposers, and using a single model as the proposer (Self-MoA).

Results. The results are shown in Table 3. When considering i as the aggregator, among 11 tested
combinations of proposers for MoA, only two combinations slightly outperformed Self-MoA with
dddddd. Specifically, the combinations mmdddd and mmmddd outperformed dddddd by 0.17%
and 0.35%, respectively. The performance of the remaining MoA models was inferior to that of
dddddd.

3https://huggingface.co/Qwen/Qwen2-7B-Instruct
4https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
5https://huggingface.co/Qwen/Qwen2-Math-7B-Instruct
6As Qwen2-Math-7B-Instruct only supports context length of 4096, for these two data points, we sample

the proposer with a reduced token length of 1024, and only aggregates three outputs from the proposer.

5

https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
https://huggingface.co/Qwen/Qwen2-Math-7B-Instruct

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

40 45 50 55 60 65
Quality

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Di
ve

rs
ity

MMLU
Mixed-MoA
Self-MoA

61

62

63

64

65

66

67

68

69

M
oA

 P
er

fo
rm

an
ce

20 25 30 35 40 45
Quality

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Di
ve

rs
ity

CRUX
Mixed-MoA
Self-MoA

36

38

40

42

44

46

48

50

M
oA

 P
er

fo
rm

an
ce

35 40 45 50 55 60 65 70
Quality

1.2

1.4

1.6

1.8

2.0

2.2

Di
ve

rs
ity

MATH
Mixed-MoA
Self-MoA

58

60

62

64

66

68

M
OA

 P
er

fo
rm

an
ce

Figure 2: The diversity-quality trade-off: Mixed-MoA incorporates different individual models
as proposers, while Self-MoA uses the same individual model for this role. Quality is assessed
based on the average performance of each proposer, and diversity is computed with the Vendi
Score (Dan Friedman & Dieng, 2023) of outputs generated by proposers on the same prompts.

Adding model diversity does not necessarily enhance performance. For instance, MoA with
iimmdd performs worse than mmmddd in terms of average accuracy. Although model i is the
strongest on MMLU among individual models, its inclusion in the proposers does not improve
overall performance on the mixed datasets, i.e., mmmddd has 60.04% overall performance while
iimmdd only has 58.38%.

The performance of Self-MoA can be significantly improved when we are allowed to select the
strongest model for each task. This is particularly beneficial when we have prior knowledge of the
task we wish to address. As shown in Table 3, when we use Qwen2-7B-Instruct as the aggregator,
Self-MoA achieves a performance of 62.73% by selecting the appropriate proposer for each task.
Additionally, employing a task-specific aggregator further boosts overall performance to 63.81%.
We postpone more discussion to Section 3.2.

3 THE QUALITY-DIVERSITY TRADE-OFF

We investigate factors that contribute to the strong performance of Self-MoA through careful exper-
iments. Previous studies have mainly focused on increasing model diversity within the group (Wang
et al., 2024a; Jiang et al., 2023a; Zhang et al., 2024b). However, searching for diverse models can
sometimes lead to including poorly performed models, resulting in a trade-off between diversity and
quality, where quality refers to how well each individual model performs in the group.

Therefore, we aim to identify the existence of a general relationship between MoA’s performance
and quality as well as diversity. Following Section 2, we evaluate MoA’s performance on MMLU,
CRUX, and MATH, which cover tasks requiring a wide range of capabilities. We vary the quality
and diversity with two orders of freedom: 1) combinations of individual models in proposers from
Section 2.2; and 2) sampling temperature. i.e., 0.5, 0.7, 1.0, 1.1, and 1.2. This results in a total of
over 70 unique MoA proposer mixtures. We measure the quality and diversity as follows:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

• Diversity: We utilize the Vendi Score (Dan Friedman & Dieng, 2023) to assess the diversity
among individual models in the proposer mixture. The Vendi Score represents the effective
number of unique elements within a collection of samples (Dan Friedman & Dieng, 2023),
with further details provided in the Appendix B.2. Specifically, for a given prompt x, we
obtain responses from each model, denoted as y1, y2, . . . , y6. The diversity of the proposers
for prompt x, denoted as d(x), is calculated using the Vendi Score on the set [y1, . . . , y6].
We then compute the overall diversity across the dataset S as:

d =
1

|S|
∑
x∈S

d(x).

• Quality: We first determine the accuracy of each model on the dataset S, yielding values
q1, q2, . . . , q6. The average accuracy, q = 1

6 (q1 + q2 + . . .+ q6), serves as our measure of
the quality of the proposers. We will explore additional quality measurement strategies in
later sections.

Results. We plot MoA’s performance with corresponding diversity and quality for each mixture of
proposers in Figure 2. We summarize key observations as follows:

• The trends among MMLU, CRUX, and MATH are consistently aligned.

• When the quality is fixed, increasing diversity can enhance MoA’s performance.

• When the diversity is fixed, improving quality can also boost MoA’s performance.

• There exists a trade-off in the achievable Pareto front between diversity and quality.

• Notably, the best performance of MoA is typically observed in the bottom right of each
subplot, indicating a strong sensitivity to quality.

Previous work on ensembles (Wang et al., 2024a; Jiang et al., 2023a; Zhang et al., 2024b) primarily
focuses on increasing the diversity of models within the proposer mixture. However, as shown in
Figure 2, compared to Self-MoA on the best-performing model, simply aiming for greater diversity
in the proposer mixture can result in lower overall quality, which may negatively impact MoA’s
performance. This trade-off between diversity and quality helps to explain why Self-MoA achieves
superior performance across various benchmarks.

3.1 STATISTICAL ANALYSIS

To further understand the numerical correlation between MoA’s performance and diversity as well as
quality, we conduct linear regression for MoA’s performance t on diversity d and quality q. Specifi-
cally, we fit the following equation for each dataset:

t = α× q + β × d+ γ, (1)

where α, β, γ ∈ R are real-valued coefficients to be determined. For each dataset, we collect around
70 data points from Figure 2 to construct the set {qi, di, ti}Ni=1. The coefficients α, β, and γ are then
derived by solving a linear regression on {qi, di, ti}Ni=1. To make coefficients α and β comparable,
we normalize q and d by subtracting their means and dividing by their standard deviations (detailed
in Appendix B.3), respectively. The results are presented in Table 4. We observe that the p-values for
both α and β are less than 0.001, indicating a significant correlation between MoA’s performance
and both quality and diversity (Arnold, 1990). The R-squared values from the linear regression
across three datasets are approximately around 0.7, indicating that the linear model based on quality
and diversity explains 70% MoA’s performance and hence a strong correlation between inputs and
outputs, according to Appendix B.4. In later parts, we show that using a more fine-grained quality
calculation can further increase the R-square value.

Comparing the effect strength of quality and diversity. From Table 4, we observe that α is
greater than β across all three datasets. In particular, for CRUX and MATH, the gap between these
two measures is even more pronounced. These results suggest that MoA’s performance is particu-
larly sensitive to variations in quality, highlighting the importance of prioritizing quality within the
proposer mixture. This finding is also consistent with our observation that MoA achieves its best

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Linear regression (Equation 1) of MoA’s performance t on diversity d and quality q.

Dataset α β R-squareCoefficient P-value Coefficient P-value

MMLU 2.558 ± 0.176 < 0.001 1.841 ± 0.176 < 0.001 0.771

CRUX 4.548 ± 0.459 < 0.001 1.421 ± 0.459 < 0.001 0.685

MATH 4.719 ± 0.416 < 0.001 2.839 ± 0.416 < 0.001 0.760

Table 5: The R-square of the linear regression when we use different quality measurement methods.
We find using Centered-1/K-Norm with K=2 can achieve good performance among all these three
datasets.

Dataset Method Average (K=1) K=2 K=3 K=4

MMLU K-Norm 0.771 0.809 0.832 0.845
Centered-1/K-Norm 0.771 0.881 0.902 0.903

CRUX K-Norm 0.685 0.736 0.765 0.779
Centered-1/K-Norm 0.685 0.753 0.758 0.753

MATH K-Norm 0.760 0.720 0.692 0.672
Centered-1/K-Norm 0.760 0.720 0.692 0.672

performance in the bottom right of the plot in Figure 2, further supporting the effectiveness of our
proposed Self-MoA approach.

Alternative quality measurements. We use the averaged accuracy of each individual model to
measure quality in the previous analysis. In this section, we explore alternative methods for assessing
the quality of proposers. Recall that q1, . . . , q6 denote the accuracy of each individual model among
proposers, and without loss of generality, we assume q1 ≥ q2 ≥ . . . ≥ q6. It is reasonable to assume
that the aggregator can select the correct answer from the proposers, particularly when the responses
of individual models are inconsistent. In such cases, the aggregator would rely more heavily on
models with better individual performance, meaning the weight of q1 would be greater than that of
q6.

Therefore, we compare the following methods to calculate quality:

• Average: 1
6

∑6
i=1 qi.

• K-Norm:
(

1
6

∑6
i=1 q

K
i

)1/K
, where a larger K places more emphasis on stronger individ-

ual models.

• Centered-1/K-Norm: q1 −
(

1
6

∑6
i=1(q1 − qi)

1/K
)K

. In this formulation, we first com-
pute the difference between qi and the best model’s q1. The 1/K norm emphasizes the
weights of models whose performance is closer to q1.

All three methods are the same when K = 1. For each quality measurement, we fit a linear regres-
sion to assess the relationship between MoA’s performance and the quality and diversity metrics,
reporting the R-squared values in Table 5. Our analysis shows that in MMLU and CRUX, apply-
ing a larger weight to better-performing individual models tends to increase the R-squared values.
However, this trend is inconsistent for MATH. We conjecture that this inconsistency arises because
the aggregator Qwen2-7B-Instruct is relatively weak on MATH compared to the strongest individual
model, Qwen2-Math-7B-Instruct. This limitation constrains the performance of MoA, leading to an
inconsistent trend in the linear regression results. In contrast, on MMLU, where Qwen2-7B-Instruct
is the strongest individual model, we find that the R-squared value can exceed 0.9 with K = 2 using
the Centered-1/K-Norm. This indicates a very strong linear relationship between MoA performance
and the quality and diversity metrics. Overall, we conclude that employing Centered-1/K-Norm
with K = 2 (marked in blue) achieves strong performance across all three datasets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: MoA of Llama-3.1-8B-Instruct and Qwen2-7B-Instruct. l is short for Llama-3.1-8B-
Instruct and i is short for Qwen2-7B-Instruct.

Aggregator Proposer MMLU

Individual - i 66.16
- l 66.40

Mixed-MoA i iiilll 70.73

Self-MoA i iiiiii 69.01
i llllll 71.27

3.2 WHEN MIXED-MOA OUTPERFORMS SELF-MOA?

According to the quality-diversity trade-off illustrated in Figure 2, we conjecture that increasing
diversity can enhance MoA’s performance when the quality is controlled.

Typically, Mixed-MoA exhibits greater diversity than Self-MoA. Therefore, conditioned on sim-
ilar quality, Mixed-MoA can outperform Self-MoA. This scenario arises when individual models
demonstrate similar performance while still exhibiting significant cross-model diversity. For in-
stance, if we combine three tasks of MMLU, CRUX, and MATH, the average performances of the
individual models are 52.07%, 54.74%, and 50.60%, respectively (Table 3). In this combined task,
each model specializes in different parts, with i performing best on MMLU, d on CRUX, and m on
MATH.

From the “Average” column of Table 3, we observe that Mixed-MoA indeed outperforms Self-
MoA of dddddd, which is aggregating samples from the individual model with the best average
performance. Specifically, Mixed-MoA of mmdddd and mmmddd achieves the average performance
of 59.86% and 60.04%, improves upon Self-MoA of dddddd by 0.35%. Given the reported small
margin, we argue that Self-MoA is still a very competitive baseline under this setting, not to mention
the dominant performance of Self-MoA over Mixed-MoA when focusing on one single task.

We further consider another single-task case on MMLU, involving two individual models: Llama-
3.1-8B-Instruct and Qwen2-7B-Instruct, with Qwen2-7B-Instruct serving as the aggregator. We
choose Llama-3.1-8B-Instruct because it performs similarly to Qwen2-7B-Instruct as an individual
model. Table 6 demonstrates that even when the performance of two individual models is close,
Self-MoA—utilizing six Llama-3.1-8B-Instruct proposers (denoted as llllll)—still outperforms
the Mixed-MoA configuration (denoted as iiilll).

4 SCALING INFERENCE COMPUTE WITH SELF-MOA

In previous sections, we have provided evidence that Self-MoA over one strong model is straight-
forward but effective. As the community is becoming more aware of scaling inference time comput-
ing (Brown et al., 2024; Snell et al., 2024; Wu et al., 2024), one natural question to ask is:

Given a strong model, does Self-MoA’s performance scale with the number of repeated samples?

Intuitively, Self-MoA cannot scale indefinitely by simply increasing the computation budget for at
least three reasons:

• As more responses are sampled from a single model, the diversity among those samples
tends to plateau.

• Aggregating information from many samples is more challenging for LLMs compared to
handling a smaller number of samples.

• Every LLM has a context length limit (e.g., 8192 tokens for Gemma 2), which restricts the
number of responses an aggregator can process at once.

While the first limitation is inherent to repeated sampling, we address the latter two by introduc-
ing Self-MoA-Seq, a sequential variant designed to manage large numbers of responses without

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 10 15 20 25 30

Number of Samples

67.0

67.5

68.0

68.5

69.0

69.5

70.0

70.5

Ac
cu

ra
cy

MMLU

Self-MoA
Self-MoA-Seq
Base Model (Qwen2-7B-Instruct)

5 10 15 20 25 30

Number of Samples

47

48

49

50

51

52

53

54

Ac
cu

ra
cy

CRUX

Self-MoA
Self-MoA-Seq
Base Model (DeepSeek-Coder-V2-Lite-Instruct)

Figure 3: The performance of Self-MoA and Self-MoA-Seq with a growing number of samples.
Dashed lines indicate the performance of a single forward pass with the base model.

overwhelming the aggregator. Self-MoA-Seq uses a sliding window to aggregate a fixed number of
responses at a time, allowing it to handle an unlimited number of responses, regardless of context
length constraints. A visual illustration is provided in Figure 1.

We evaluate the performance of Self-MoA and Self-MoA-Seq with increasing sample sizes on the
MMLU and CRUX benchmarks to study their scaling behavior. For each benchmark, we use the
best-performing model as both the proposer and aggregator (Qwen2-7B-Instruct for MMLU and
DeepSeek-Coder-V2-Lite-Instruct for CRUX), with a sampling temperature of 0.7. In Self-MoA-
Seq, the window size is set to six, with the first three slots reserved for the current synthesized
output. We vary the number of samples from 6 to 30 and plot the accuracy curves from three runs
with different seeds in Figure 3. Our key observations are as follows:

• Both Self-MoA and Self-MoA-Seq significantly improve performance over the individual
base model.

• Adding more samples can have both positive and negative effects, meaning there is no
universal compute-optimal solution.

• Self-MoA-Seq delivers performance that is comparable to, or slightly better than, Self-
MoA.

These findings suggest that Self-MoA-Seq can extend the effectiveness of Self-MoA to LLMs with
shorter context lengths, without sacrificing performance. Following Section 3.2, we explore whether
introducing a second model can enhance performance in the sequential setting. Given that Llama-
3.1-8B-Instruct performs similarly to Qwen2-7B-Instruct on the MMLU task, we compare the im-
pact of adding Llama-3.1-8B-Instruct and DeepSeek-Coder-V2-Lite-Instruct (which underperforms
Qwen2-7B-Instruct by 5%) after aggregating 30 samples from Qwen2-7B-Instruct in Self-MoA-Seq.
We find that incorporating Llama-3.1-8B-Instruct boosts accuracy by around 2%, whereas adding
DeepSeek-Coder-V2-Lite-Instruct reduces accuracy by more than 1.5%. This result provides an-
other example of cross-model diversity benefiting MoA, and shows the potential of Self-MoA-Seq
with increasing computation budget.

5 CONCLUSION

In this paper, we introduce Self-MoA, an innovative approach that utilizes in-model diversity to
enhance the performance of large language models during inference. Our experiments demonstrate
that Self-MoA outperforms traditional Mixed-MoA strategies in many popular benchmarks, particu-
larly when the proposer model quality varies. By aggregating outputs from a single high-performing
model, Self-MoA effectively addresses the quality-diversity trade-off. We further identify the sce-
narios where mixing LLM can be potentially beneficial and extend Self-MoA to the constrained
context length setting. These findings highlight the potential of in-model diversity in optimizing
LLM performance and pave the way for further advancements in ensemble methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

AI Anthropic. Introducing claude, 2023.

Harvey J. Arnold. Introduction to the practice of statistics. Technometrics, 32:347–348, 1990. URL
https://api.semanticscholar.org/CorpusID:122891525.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit Bansal. Reconcile: Round-table conference
improves reasoning via consensus among diverse llms. arXiv preprint arXiv:2309.13007, 2023a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Sandy Chen, Leqi Zeng, Abhinav Raghunathan, Flora Huang, and Terrence C Kim. Moa is all you
need: Building llm research team using mixture of agents. arXiv preprint arXiv:2409.07487,
2024.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
model generation. arXiv preprint arXiv:2311.17311, 2023b.

Dan Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for
machine learning. Transactions on machine learning research, 2023.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria
Mancino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani,
et al. Are we done with mmlu? arXiv preprint arXiv:2406.04127, 2024.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Lin Gui, Cristina Gârbacea, and Victor Veitch. Bonbon alignment for large language models and
the sweetness of best-of-n sampling. arXiv preprint arXiv:2406.00832, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024a.

11

https://api.semanticscholar.org/CorpusID:122891525

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024b. URL https://arxiv.org/abs/2401.04088.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023a.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language mod-
els with pairwise ranking and generative fusion, 2023b. URL https://arxiv.org/abs/
2306.02561.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need, 2024.
URL https://arxiv.org/abs/2402.05120.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng
Tu, and Shuming Shi. Encouraging divergent thinking in large language models through multi-
agent debate. arXiv preprint arXiv:2305.19118, 2023.

Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang
Wang, Wenbin Hu, Hanning Zhang, Hanze Dong, Renjie Pi, Han Zhao, Nan Jiang, Heng Ji, Yuan
Yao, and Tong Zhang. Mitigating the alignment tax of rlhf, 2024. URL https://arxiv.
org/abs/2309.06256.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models, 2023. URL
https://arxiv.org/abs/2311.08692.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

OpenPipe. Openpipe mixture of agents: Outperform gpt-4 at 1/25th the cost, 2024. URL https:
//openpipe.ai/blog/mixture-of-agents.

Alexandre Ramé, Johan Ferret, Nino Vieillard, Robert Dadashi, Léonard Hussenot, Pierre-Louis
Cedoz, Pier Giuseppe Sessa, Sertan Girgin, Arthur Douillard, and Olivier Bachem. Warp: On
the benefits of weight averaged rewarded policies, 2024. URL https://arxiv.org/abs/
2406.16768.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Ketut Sarjana, Laila Hayati, and Wahidaturrahmi Wahidaturrahmi. Mathematical modelling and
verbal abilities: How they determine students’ ability to solve mathematical word problems?
Beta: Jurnal Tadris Matematika, 13(2):117–129, 2020.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning problems. arXiv preprint arXiv:2310.12397, 2023.

12

https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2402.05120
https://arxiv.org/abs/2309.06256
https://arxiv.org/abs/2309.06256
https://arxiv.org/abs/2311.08692
https://openpipe.ai/blog/mixture-of-agents
https://openpipe.ai/blog/mixture-of-agents
https://arxiv.org/abs/2406.16768
https://arxiv.org/abs/2406.16768
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Fer-
ret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Char-
line Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-
son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,
Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar,
Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Wein-
berger, Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang,
Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin,
Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen
Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway,
Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez,
Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mo-
hamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir
Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leti-
cia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Mar-
tins, Machel Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth,
Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi,
Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khat-
wani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Os-
car Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko
Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana,
Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah
Perrin, Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth,
Sue Ronstrom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Ko-
cisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren
Barkley, Wei Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao
Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris
Warkentin, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine
Banks, Anca Dragan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu,
Clement Farabet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen
Kenealy, Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a
practical size, 2024a. URL https://arxiv.org/abs/2408.00118.

Mosaic Research Team et al. Introducing dbrx: A new state-of-the-art open llm, 2024. URL
https://www. databricks. com/blog/introducing-dbrx-new-state-art-open-llm. Accessed on April,
26, 2024b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans? arXiv preprint arXiv:2310.08118, 2023.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024a.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, and Yangqiu Song. Rethinking the bounds
of llm reasoning: Are multi-agent discussions the key? arXiv preprint arXiv:2402.18272, 2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

13

https://arxiv.org/abs/2408.00118

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis
of compute-optimal inference for problem-solving with language models, 2024. URL https:
//arxiv.org/abs/2408.00724.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

Kaiyan Zhang, Biqing Qi, and Bowen Zhou. Towards building specialized generalist ai with system
1 and system 2 fusion. arXiv preprint arXiv:2407.08642, 2024a.

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei Li,
Renze Lou, Jiacheng Xu, et al. Diversity empowers intelligence: Integrating expertise of software
engineering agents. arXiv preprint arXiv:2408.07060, 2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Wenxuan Zhou, Ravi Agrawal, Shujian Zhang, Sathish Reddy Indurthi, Sanqiang Zhao, Kaiqiang
Song, Silei Xu, and Chenguang Zhu. Wpo: Enhancing rlhf with weighted preference optimiza-
tion. arXiv preprint arXiv:2406.11827, 2024.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

14

https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

Ensembles of LLMs. Model ensembling aims to combine strengths from multiple models. Pre-
vious studies have explored various methods to leverage a diverse set of models, including but not
limited to prompting (Wang et al., 2024a), weight averaging (Lin et al., 2024; Ramé et al., 2024),
routing (Jiang et al., 2024b; Lu et al., 2023), training a generative fusion model (Jiang et al., 2023b),
and so on. Zhang et al. (2024a) argues that the fusion of specialized models with certain general
abilities could be a promising direction toward Artificial General Intelligence. Mixture-of-Agents
(MoA, Wang et al. (2024a)) first queries multiple LLMs to generate responses, then iteratively ag-
gregates these samples through several rounds of synthesis. MoA shows promising results on several
benchmarks, and its variants achieve superior performance on the AlpacaEval 2.0 leaderboard. Our
method is inspired by the prompt pipeline proposed in MoA. However, while existing MoA fo-
cuses on unleashing the strength from multiple different models (Wang et al., 2024a; Jiang et al.,
2023b; Zhang et al., 2024b), we demonstrate the trade-off between diversity and quality within the
proposers, highlighting that focusing solely on diversity may compromise overall quality and final
performance.

LLM Inference with Repeated Sampling. Previous studies have shown that combining model
outputs from repeated sampling can yield a better response in various domains. In tasks with au-
tomatic verifiers available, such as math (Hendrycks et al., 2021) and code (Chen et al., 2021),
simply sampling LLMs multiple times can significantly improve the pass@k metric and hence boost
the success rate of solving the tasks (Roziere et al., 2023; Li et al., 2022; Brown et al., 2024). In
more general tasks without verification tools, we can conduct techniques like majority vote, self-
consistency, and best-of-n to choose the most promising one from candidate responses (Wang et al.,
2022; Chen et al., 2023b; Gui et al., 2024; Li et al., 2024). Therefore, repeated sampling is recently
regarded as one approach of scaling compute during inference time (Brown et al., 2024). In this
work, we identify the surprising effectiveness of repeated sampling in the context of MoA. Unlike
majority vote or best-of-N, Self-MoA asks LLMs to synthesize outputs generated from repeated
sampling, hence can further improve over each individual output.

Collaborative Agents There is a surge of interest in building agent systems based on verification,
critique, discussion, and refinement. For example, Stechly et al. (2023), Valmeekam et al. (2023),
and Madaan et al. (2024) use self-critique to iteratively refine outputs through a chain structure.
Madaan et al. (2024), Chen et al. (2024), and Wang et al. (2024a) explore the incorporation of
multiple models to create a stronger agent that outperform each individual model. Du et al. (2023)
incorporates multiple LLMs that propose and debate their individual responses over several rounds
to reach a common final answer. Liang et al. (2023) proposes Multi-Agent Debate, which encourages
divergent thinking during LLM debates to arrive at more informative conclusions and avoid rushing
to incorrect answers. Chen et al. (2023a) introduces RECONCILE, which adopts a confidence-
weighted voting mechanism for better consensus among LLM discussions. Interestingly, Wang
et al. (2024b) shows that a single model with carefully designed prompts can sometimes match the
performance of agent discussions. Moreover, agent discussions mainly outperform a single LLM
when the prompts are insufficient.

B SUPPLEMENTS

B.1 MULTI-LAYER MOA

MoA can be extended to multiple layers. For MoA with l layers and n LLMs {Ai,j}nj=1 in each
layer i, we can formulate it as follows:

yi =

n⊕
j=1

[Ai,j(xi)] + x1, xi+1 = yi,

where each LLM Aj
i generates a response for the query xi, which is further concatenated with the

original query by the aggregator’s prompt
⊕

.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.2 VENDI SCORE

The Vendi Score (VS) is a metric designed to evaluate diversity in machine learning. It takes as
input a collection of samples along with a pairwise similarity function, and it outputs a single value
that represents the effective number of unique elements within the sample set.

The score is computed using a positive semi-definite similarity matrix K ∈ Rn×n as follows:

V S(K) = exp

(
−tr
(
K

n
log

(
K

n

)))
= exp

(
−

n∑
i=1

λi log(λi)

)

Here, λi are the eigenvalues of the normalized matrix K
n , and 0 log 0 = 0. Essentially, the Vendi

Score is the exponential of the von Neumann entropy of K
n , which reflects the Shannon entropy of

its eigenvalues, also referred to as the effective rank. This metric provides a quantitative measure of
diversity based on the distribution of similarity scores among the samples.

B.3 NORMALIZATION OF INPUTS

Given a sequence of inputs x1, ..., xn. Let x′ denote the normalized x. We have

x′ =
xi − x̄

std(x)
, where x̄ =

1

n

n∑
i=1

xi, and std(x) =

√√√√ 1

n

n∑
i=1

(xi − x̄)2

B.4 IMPLICATION OF R-SQURE

The implications of R-squared are presented in Table 7, illustrating the degree of influence between
the independent and dependent variables. (Sarjana et al., 2020).

Table 7: The interpretation of R-square
R-square Level

[0, 0.2) Very weak

[0.2, 0.4) Weak

[0.4, 0.6) Median

[0.6, 0.8) Strong

[0.8, 1.0] Very Strong

C ADDITIONAL RESULTS

C.1 MT-BENCH RESULTS

We also compare MoA and Self-MoA on the MT-Bench (Zheng et al., 2023) benchmark under the
same experiment setting as Wang et al. (2024a). We copy the numbers from Wang et al. (2024a) for
3-Layer MoA settings, and report our implemented results for the other experiments to ensure that
2-Layer experiments are fair comparisons. Table 8 shows that Self-MoA outperforms its Mixed-
MoA counterpart, and using GPT-4o as the aggregator can achieve the best performance even with
fewer forward passes compared to 3-Layer MoA with GPT-4o.

C.2 COMPARISON TO UNIVERSAL SELF-CONSISTENCY

We conduct further experiments to compare Self-Consistency (Wang et al., 2022) with MoA and
Self-MoA on the AlpacaEval 2.0 benchmark. As this benchmark is an instruction-following task

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: Comparison of Self-MoA and Mixed-MoA on MT-Bench. We use Qwen1.5-110B-Chat
and GPT-4o as the aggregator.

Model Configuration Avg. 1st turn 2nd turn # Forward Passes

Individual

WizardLM-2-8x22B 8.99 9.05 8.93 1
Qwen1.5-110B-Chat 8.61 8.77 8.45 1
LLaMA-3-70B-Instruct 8.84 9.14 8.54 1
Qwen1.5-72B-Chat 8.62 8.66 8.58 1
Mixtral-8x22B-Instruct-v0.1 8.49 8.89 8.09 1
dbrx-instruct 7.82 8.21 7.43 1

Mixed-MoA

2-Layer MoA 9.06 9.23 8.89 7
2-Layer MoA w/ GPT-4o 9.39 9.40 9.37 7
3-Layer MoA 9.25 9.44 9.07 13
3-Layer MoA w/ GPT-4o 9.40 9.49 9.31 13

Self-MoA +
WizardLM-2-8x22B

2-Layer Self-MoA 9.13 9.36 8.89 7
2-Layer Self-MoA w/ GPT-4o 9.52 9.56 9.47 7

Figure 4: An illustration from a causal perspective

without exact answers, we evaluate on Universal Self-Consistency (USC) (Chen et al., 2023b) which
prompts LLMs to generate the most consistent response. We report the result in Table 10, which
shows that USC performs worse than its MoA counterpart when proposers and aggregators are
controlled. This further suggests that rather than finding the most consistent response, MoA and
Self-MoA can encourage LLM to synthesize the references and produce a better response.

C.3 NORMALIZING SUB-TASKS IN TABLE 3

The results in Table 3 indicate that the variance of models on CRUX is generally higher than that
of the other two tasks, which could bias the average performance towards CRUX. To ensure that
each task contributes equally to the overall performance metric, we assign weights to the three tasks
based on the inverse of their variance.

For example, considering MMLU, we report 19 performance metrics (including individual mod-
els, Mixed-MoA, and Self-MoA) in Table 3. The standard deviation of performance for MMLU
across these 19 settings is calculated to be 3.50. In comparison, the standard deviation for CRUX
and MATH are 5.70 and 4.27, respectively. Consequently, the weight assigned to MMLU when
calculating the “WeightedAvg” is given by:

WeightMMLU =
1/3.50

(1/3.50) + (1/5.70) + (1/4.27)

The performance of weighted average is shown in Table 9.

C.4 A DISCUSSION FROM A CAUSAL PERSPECTIVE

Consider the setting described in Table 3, where we focus on the average accuracy across three
tasks. The performance of MoA is influenced by six proposers. For instance, in the combination
iiiddd, the MoA achieves an accuracy of 57.82%. The causal graph illustrating this relationship
is shown in Figure 4 Left. Now, let’s examine a do intervention where we replace one instance of i
with d. This changes the combination from iiiddd to iidddd, resulting in a less diverse set of

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Aggregator Proposer MMLU CRUX MATH Average WeightedAvg

Individual - i 66.16 36.25 53.81 52.07 54.46
Individual - d 60.91 49.51 53.82 54.74 55.65
Individual - m 54.36 27.88 69.57 50.60 52.80
Mixed-MoA i iimmdd 67.89 42.88 64.38 58.38 60.40
Mixed-MoA i imdddd 67.42 44.50 63.90 58.61 60.46
Mixed-MoA i iiiimd 68.90 41.25 63.00 57.72 59.94
Mixed-MoA i immmmd 66.63 42.75 66.02 58.47 60.40
Mixed-MoA i iimmmm 66.23 39.25 66.10 57.19 59.38
Mixed-MoA i iiimmm 67.49 38.25 64.16 56.63 59.00
Mixed-MoA i iiiimm 68.00 37.00 62.92 55.97 58.47
Mixed-MoA i iidddd 68.21 45.50 62.56 58.76 60.58
Mixed-MoA i iiiddd 68.21 42.88 62.38 57.82 59.86
Mixed-MoA i iiiidd 68.47 40.75 61.24 56.82 59.05
Mixed-MoA i mmdddd 66.34 46.75 66.48 59.86 61.45
Mixed-MoA i mmmddd 65.80 47.00 67.32 60.04 61.57
Mixed-MoA i mmmmdd 65.44 42.50 67.62 58.52 60.39

Self-MoA i dddddd 65.23 50.75 63.08 59.69 60.86
Self-MoA i 6×TaskBest 69.01 50.75 68.42 62.73 64.21
Self-MoA TaskBest TaskBest 69.01 52.62 69.80 63.81 65.14

Table 9: This table compares Self-MoA and Mixed-MoA using a weighted composition of three sub-
tasks. The weights are assigned to each sub-task to prevent a high-variance task, such as CRUX,
from disproportionately influencing the overall performance metrics. This approach ensures a more
balanced evaluation, allowing for a fairer comparison between the two models.

Table 10: Comparison of Self-MoA, Mixed-MoA, and Universal Self-Consistency (USC) on Al-
pacaEval 2.0 leaderboard. We use Qwen1.5-110B-Chat as the aggregator.

Model Configuration LC Win Rate # Forward Passes
Mixed-MoA MoA 59.1 7

Self-MoA Self-MoA + WizardLM-2-8x22B 65.7 7

Universal Self-Consistency Mixed-USC 53.8 7
Self-USC + WizardLM-2-8x22B 60.2 7

proposers, as it is now biased towards d. However, the quality of the proposers improves, since d is
a stronger proposer in terms of average performance. This intervention demonstrates that the MoA
performance increases (see Figure 4 Right), highlighting the significance of proposer quality.

18

	Introduction
	Is Ensembling Different LLMs Beneficial?
	Experiments on AlpacaEval 2.0 with General Purpose Models
	Experiments on Multiple Datasets with Specialized Models

	The Quality-Diversity Trade-off
	Statistical Analysis
	When Mixed-MoA Outperforms Self-MoA?

	Scaling Inference Compute with Self-MoA
	Conclusion
	Related Work
	Supplements
	Multi-Layer MoA
	Vendi Score
	Normalization of Inputs
	Implication of R-squre

	Additional Results
	MT-Bench Results
	Comparison to Universal Self-Consistency
	Normalizing Sub-tasks in Table 3
	A discussion from a causal perspective

