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Abstract
Transfer reinforcement learning aims to derive a
near-optimal policy for a target environment with
limited data by leveraging abundant data from
related source domains. However, it faces two
key challenges: the lack of performance guaran-
tees for the transferred policy, which can lead
to undesired actions, and the risk of negative
transfer when multiple source domains are in-
volved. We propose a novel framework based
on the pessimism principle, which constructs and
optimizes a conservative estimation of the tar-
get domain’s performance. Our framework effec-
tively addresses the two challenges by providing
an optimized lower bound on target performance,
ensuring safe and reliable decisions, and by ex-
hibiting monotonic improvement with respect to
the quality of the source domains, thereby avoid-
ing negative transfer. We construct two types
of conservative estimations, rigorously character-
ize their effectiveness, and develop efficient dis-
tributed algorithms with convergence guarantees.
Our framework provides a theoretically sound and
practically robust solution for transfer learning in
reinforcement learning.

1. Introduction
Reinforcement learning (RL) aims to learn a policy that
optimizes an agent’s performance when interacting with
its environment. RL has achieved remarkable success in
areas such as game playing (Silver et al., 2016; 2017; Mnih
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et al., 2013), transportation (He et al., 2023a;b; Wang et al.,
2023a), robotics (Nguyen & La, 2019; Liu et al., 2021) or
natural language processing (Sharma & Kaushik, 2017; Uc-
Cetina et al., 2023; Kirk et al., 2023a). These successes,
however, often depend on access to vast amounts of data,
which are critical for enabling agents to understand their
environments and develop effective policies. In domains
with limited data—due to high exploration costs or other
constraints—RL performance typically degrades. A promis-
ing solution is transfer learning (TL), which leverages more
data from related environments (source domains) to train
policies that can be transferred to target environments. We
focus on zero-shot transfer, where no target domain data is
available prior to deployment, and multi-domain transfer,
where multiple source domains are utilized.

Despite its potential, TL is often hindered by the Sim-to-
Real Gap (Salvato et al., 2021; Zhao et al., 2020), which
refers to performance degradation when transferring learned
policies from source to target domains. TL typically relies
on constructing a proxy to approximate target domain per-
formance and transferring the proxy’s optimal policy. While
successful when source domains closely resemble the target
domain (e.g., high-fidelity simulations), significant diver-
gence between the source and target domains—caused by
modeling errors, non-stationarity, or perturbations—leads
to inaccurate proxies and degraded transfer performance.

In multi-domain transfer, the presence of multiple source
domains introduces additional challenges, particularly nega-
tive transfer. Source domains that differ significantly from
the target domain can skew the proxy, resulting in overly
pessimistic or suboptimal policies that hinder the transfer
process if they cannot be identified and treated properly.

These challenges are critical in practical applications, where
ineffective policies may have severe consequences, such as
mechanical damage in robotics or traffic accidents in au-
tonomous driving. Existing TL methods, such as domain
randomization (DR) or imitation learning, lack systematic
guarantees for transferred performance, as they fail to es-
tablish a robust connection between the proxy and target
domain outcomes. To address these limitations, and inspired
by the effectiveness of pessimism principle in various RL
settings, particularly in scenarios where conservativeness is
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advantageous, such as offline RL (Jin et al., 2020; Shi et al.,
2022), we propose a novel framework that incorporates the
pessimism principle in proxy construction for TL. By using
a pessimistic estimation of target domain performance, our
approach ensures that transferred policies achieve satisfac-
tory outcomes while avoiding severe consequences from
overly optimistic actions. Our framework also mitigates
negative transfer in multi-domain settings. We rigorously
characterize the effectiveness of this approach and design
concrete algorithms with convergence guarantees. Our con-
tributions are summarized as follows.

Introducing pessimism principle in transfer learning.
We introduce the pessimism principle to transfer learning,
enabling the transfer of conservative yet effective policies
to the target domain. We characterize the framework’s ef-
fectiveness, showing that the target domain’s optimality gap
depends on the degree of pessimism used in proxy construc-
tion. This motivates the design of proxies with minimal but
sufficient pessimism, ensuring robust lower bounds on trans-
ferred performance and avoiding the severe consequences
common in other TL methods.

Construction of pessimistic proxy and design of concrete
algorithms. Leveraging the inherent pessimism in robust
RL frameworks, we construct pessimistic proxies by incor-
porating prior knowledge of domain similarities, such as
upper bounds on the distance between source and target
domains. We develop several proxy types, demonstrate
their effectiveness, and propose a distributed algorithm for
multi-domain transfer. This algorithm ensures convergence
and yields conservative but effective policies across diverse
source domains.

Design of proxy and algorithm to avoid negative transfer.
In multi-domain transfer, some source domains may signifi-
cantly diverge from the target, leading to overly pessimistic
policies if treated equally. We show that the pessimism prin-
ciple inherently mitigates negative transfer by improving
the proxy’s value without overly optimistic assumptions.
Building on this insight, we propose a refined proxy that
avoids negative transfer and design a convergent algorithm
to ensure effective policy transfer in such settings.

2. Preliminaries and Problem Formulation
Markov Decision Process. A Markov Decision Process
(MDP) serves as the standard framework for formulating RL.
An MDP can be represented by a tupleM = (S,A, P, r, γ),
where S and A denote the state and action spaces, respec-
tively, P : S × A → ∆(S)1 denotes the transition kernel,
and we denote the probability vector under (s, a)-pair by
P a
s , r : S ×A → [0, 1] is the deterministic reward function,

and γ ∈ [0, 1] is the discount factor. At the t-th step, the

1∆(·) denotes the probability simplex defined on the space.

agent selects an action at at state st, transitions to the next
state st+1 according to the transition probability P at

st , and
receives a reward r(st, at).

A stationary policy π : S → ∆(A) maps each state to
a probability distribution over A, and π(a|s) gives the
probability of selecting action a at state s. The perfor-
mance of the agent following a policy is measured by the
expected cumulative reward, defined as the value func-
tion V π

P of policy π with transition kernel P : V π
P (s) ≜

EP

[∑∞
t=0 γ

tr(st, at)
∣∣∣s0 = s, π

]
, for all s ∈ S. Alter-

natively, the cumulative reward can also be characterized
by the Q-function Qπ

P for all (s, a) ∈ S × A defined as

Qπ
P (s,a)≜EP

[∑∞
t=0γ

tr(st,at)
∣∣∣s0 = s, a0 = a, π

]
.

The goal of an MDP is to learn the optimal policy π∗:

π∗ ≜ argmax
π∈Π

V π
P (s),∀s ∈ S,

which exists and can be restricted to the set of deterministic
policies (Puterman, 2014). The optimal value functions are
V ∗
P ≜ maxπ V

π
P = V π∗

P and Q∗
P ≜ maxπ Q

π
P = Qπ∗

P .

Robust Markov Decision Process (RMDP). Robust RL
aims to optimize the performance under the worst case,
when the environment is uncertain, and it is generally for-
mulated as a robust MDP. The transition kernel in a robust
MDP is not fixed but lies in an uncertainty set P . In this pa-
per, we focus on (s, a)-rectangular uncertainty sets (Nilim
& El Ghaoui, 2004; Iyengar, 2005). Given a nominal kernel
P0, the uncertainty set P is defined as P ≜ ⊗(s,a)∈S×APa

s ,
where Pa

s = {P a
s ∈ ∆(S) : D(P a

s , (P0)
a
s) ≤ Γa

s}. Here,
D(·, ·) is a distance metric between two probability distribu-
tions, and Γa

s is the radius of the uncertainty set, measuring
the level of environmental uncertainty.

The robust value function and robust Q-function of a policy
in a RMDP measure the worst-case performance over all
transition kernels in the uncertainty set:

V π
P (s) ≜ min

P∈P
V π
P (s), Qπ

P(s, a) ≜ min
P∈P

Qπ
P (s, a). (1)

Then, the goal in the RMDP problem is to find the optimal
robust policy π∗ that maximizes V π

P : π∗ ≜ argmaxπ V
π
P .

Similarly, we denote V π∗

P and Qπ∗

P by V ∗
P and Q∗

P .

The robust value function Qπ
P (and the optimal robust value

function Q∗
P , respectively) is the unique fixed point of the ro-

bust Bellman operator Tπ (and the optimal robust Bellman
operator T, respectively) (Iyengar, 2005)2:

TπQ(s, a) = r(s, a) + γσPa
s

(∑
a∈A

π(a|·)Q(·, a)

)
, (2)

TQ(s, a) = r(s, a) + γσPa
s
(max
a∈A

Q(·, a)), (3)

2σP(V ) = minp∈P pV is the support function of V over P .
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2.1. Problem Formulation

The goal of zero-shot multi-domain transfer RL is to
optimize the performance under a target MDP M0 =
(S,A, P0, r, γ), from which no data is available. Instead,
there are K related source domainsMk = (S,A, Pk, r, γ),
generating much more data. For simplicity, we consider the
case of identical reward. The only assumption is that, there
exists an upper bound Γ ≥ D(P0, Pk),∀k, that is known
by the learner. This assumption is reasonable, as such infor-
mation is essential to achieve performance guarantee. And
even if in the worst-case, we can set Γ = 1 (in total vari-
ation) to construct an (overly) conservative proxy, which
yet still avoids decisions with severe consequences in target
domain, preferred in transfer learning settings.

In this work, we consider a more challenging setting of
distributed, decentralized transfer learning with partial in-
formation sharing. Specifically, we consider a framework
in which a central server or global agent collects and ag-
gregates partial information (instead of all raw data) from
multiple source domains and distributes updated results back
to these domains. Each source domain then performs local
learning independently based on the received updates and
subsequently returns refined outcomes to the global agent.

A key aspect of this framework is its privacy-preserving
nature. The underlying environments or raw data from
the local domains are not directly shared with the central
learner. Instead, only aggregated or processed results are
exchanged, safeguarding the confidentiality of local data.
Additionally, there is no direct communication between
local domains, further ensuring data isolation and reducing
the risk of information leakage.

This setting is both practical and relevant to many real-
world applications where data privacy is a critical concern.
For example, in a ride-sharing platform like Uber, each
vehicle and its operational environment can be treated as
an independent source domain. A central server may aim
to optimize a global dispatching or pricing policy for a
new target region, such as a city where the platform is
expanding. However, individual vehicles interact with their
local environments independently and share only processed
insights—such as aggregated trip statistics or anonymized
performance metrics—with the server. This TL framework
hence ensures effective policy transfer while maintaining
the privacy of individual vehicle data.

3. Related Work
We briefly discuss the most commonly used transfer learning
approaches (see Appendix A for additional discussions).

Domain Randomization: Domain randomization (DR) is
widely used to reduce the Sim-to-Real Gap, by training

agents on randomized versions of the simulated domain
(Tobin et al., 2017; Vuong et al., 2019; Mehta et al., 2020;
Tiboni et al., 2023; Tommasi, 2023). By introducing de-
grees of variability in domain properties such as physics,
or object appearances, the agent aims to optimize the ex-
pected performance under a uniform distribution over these
environments. DR is expected to enhance the robustness
and generalizability of the learned policy so that it performs
well when deployed in the target domain. Although DR has
proven effective in many tasks (Shakerimov et al., 2023;
Niu et al., 2021; Slaoui et al., 2019; Jiang et al., 2023), it has
limitations when the domain shift is large or the target en-
vironment is significantly different from the simulated one,
in which case the randomized environments do not provide
enough information for the target domain. Furthermore, DR
generally lacks theoretical guarantees and justifications for
the performance in the target domain, except under some
strict assumptions about the structures of the underlying
MDPs (Chen et al., 2021; Jiang et al., 2022).

Multi-task Learning: Multi-task learning (MTL) is another
method that aims to leverage knowledge from multiple re-
lated tasks to improve learning efficiency and generalization.
Specifically, MTL aims to optimize a finite set of tasks si-
multaneously or to obtain a Pareto stationary point (Yang
et al., 2020; Wilson et al., 2007; Vithayathil Varghese &
Mahmoud, 2020; Teh et al., 2017). When the target domain
shares common properties with these source tasks, this in-
formation will be maintained during the optimization of all
source tasks and transferred. However, similar to DR, MTL
also suffers from insufficient theoretical justification, requir-
ing assumptions on the common representations of tasks.
Moreover, MTL cannot avoid negative transfer, where some
source tasks can be relatively distinct from the target task,
thus slow down transfer learning. Also, solving an MTL
problem can be difficult, due to the differences among the
tasks known as the gradient conflict (Wang et al., 2024f).

Representation Learning for Multitask RL: Represen-
tation learning aims to extract the shared structure across
multiple tasks, and utilize such a structure to reduce sam-
ple complexity in downstream tasks with similar features
(Teh et al., 2017; Sodhani et al., 2021; Arulkumaran et al.,
2022). Cheng et al. (2022); Agarwal et al. (2023); Sam
et al. (2024) investigated multitask representation learning
in an online RL setting, where the agent interacts with mul-
tiple source tasks to extract a common latent structure. Ish-
faq et al. (2024) proposed Multitask Offline Representation
Learning (MORL), which adopt the principle of pessimism
and learn a shared representation from offline datasets across
multiple tasks modeled by low-rank MDPs. However, these
methods rely on the assumption that all tasks share a low-
rank latent structure and that a common representation can
be learned and reused, which may not hold in practical
zero-shot transfer scenarios with large domain shifts.
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4. Pessimism Principle for Transfer Learning
4.1. Major Barriers in Prior TL Methods

Before developing our pessimism principle for transfer
learning, we first identify two fundamental limitations in
existing TL methods: (1) the lack of a clear connection
between the optimization proxy and the target domain
performance, and (2) the inability to identify and exclude
source information that may cause negative transfer.

As discussed, most existing TL approaches optimize a prox-
imal objective function f(π) and deploy its optimal policy
in the target domain. However, there are limited guarantees
regarding the relationship between the proxy f(π) and the
target domain value function V π

P0
, except under some strong

assumptions (e.g., (Chen et al., 2021)). Consequently, it is
unclear whether the optimal policy for f(π) will also per-
form well under P0, leaving uncertainty in its performance.
Furthermore, when multiple source domains are available,
existing methods struggle to distinguish domains that are
more dissimilar to the target, often treating all domains
equally. This inability to prioritize relevant sources can lead
to negative transfer, where the knowledge transferred from
additional source domains hurt the performance of the target
domain instead of improving it.

As an example, in DR, the objective proxy is typically the
average performance Eω∼Unif(Ω)[V

π
Pω

] over an index set
Ω. As mentioned, this proxy often fails to accurately re-
flect the target domain’s performance in general settings.
It may overestimate the target performance, resulting in
an overly optimistic policy. Deploying such a policy in
the target domain can lead to suboptimal or even harmful
outcomes. Additionally, the uniform distribution used in
domain randomization cannot effectively exclude harmful
source domains, increasing the risk of negative transfer.

4.2. Pessimism Principle for Transfer Learning

Identifying these two limitations of prior works, we aim to
develop a more informative proxy that satisfies the following
objectives: (1). It establishes concrete connections to the
target domain performance, ensuring that optimizing the
proxy guarantees the target performance. (2). It ensures
the resulting policy remains conservative, thereby avoiding
undesired decisions and their associated consequences.

To achieve this, we propose the pessimism principle frame-
work, where we construct a conservative proxy f(π) ≤
V π
P0
, ∀π, then we transfer its optimal policy πf =

argmaxπ f(π). By optimizing this conservative proxy, we
guarantee an optimized lower bound on the target domain
performance, ensuring strong performance while mitigat-
ing potential negative outcomes. We then characterize its
effectiveness as follows (proof deferred to Appendix 4.1).

Lemma 4.1. (Effectiveness of Pessimism for Transfer Learn-
ing) Denote the level of pessimism of proxy f(π) by

ζπ ≜ V π
P0
− f(π) ≥ 0.

Then, the transferred policy πf ≜ argmaxπ f(π) has the
following sub-optimality gap under the target environment:

V π∗

P0
− V

πf

P0
≤ ∥ζ∥ ≜ max

π
ζπ. (4)

The result demonstrates that optimizing a pessimistic proxy
guarantees the target domain performance in the worst-case
scenario, thereby avoiding undesired decisions—a feat that
is unattainable with prior transfer learning methods. More
importantly, the result establishes a monotonic dependence
between the sub-optimality gap and the level of pessimism:
as the level of pessimism ∥ζπ∥ decreases, the transferred
policy achieves smaller performance gap. This observation
highlights a key advantage of the pessimism principle: an
automatic improvement from an enhanced proxy. As long
as the proxy remains conservative, a higher proxy value
directly translates into better performance, eliminating the
risk of overestimation as with previous methods.

Remark 4.2. As detailed in the methods presented later,
∥ζπ∥ can be controlled via the construction of local un-
certainty sets. Consequently, the suboptimality gap can
be bounded in terms of domain similarities, which is rea-
sonable and subject to the problem nature. Moreover, if
additional information becomes available (e.g., a small set
of target domain data or allowance of explorations), the
radii of the uncertainty sets constructed can be tightened,
leading to improved transfer performance.

In the following, we develop a robust RL based framework
to provide concrete answers for the critical questions:

How can we construct effective conservative proxies for
pessimistic transfer, and how can we further improve the

effectiveness by enhancing proxy values?

4.3. A Robust RL Based Pessimism Principle

Robust RL is inherently pessimistic when tackling envi-
ronment uncertainty. Specifically, when the environment
of interest lies within the defined uncertainty set, the ro-
bust value function naturally provides a conservative lower
bound on performance. This property inspires our studies
of robust RL in transfer learning, as constructing an uncer-
tainty set that includes the target domain is not challenging,
and thus we can obtain a conservative proxy. Generally,
the learner has some prior knowledge about the domain
similarities to motivate transfer learning, and such similar-
ities are usually captured in terms of the source and target
domain kernels. For instance, a common characterization
is the distance/divergence between the source and target
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kernels, e.g., (Qu et al., 2024). Based on this information,
an uncertainty set can be constructed to include the target
domain kernel, and result in its robust value function as a
conservative proxy.

In the case of multi-domain transfer, we similarly assume
that the distance between any source domain Pk, k > 0
and the target domain P0 is upper bounded by a known Γ:
D(P0, Pk) ≤ Γ 3.
Remark 4.3. Generally, such knowledge can be obtained
through domain experts, or estimated from a small amount
of target data. Moreover, our method remains applicable
even without prior knowledge, by setting Γ to a known up-
per bound on distributional distance (e.g., total variation
between any two distributions is at most 1). While this
yields an over-conservative proxy, it still helps prevent sig-
nificant drops when no similarity information is available -
a guarantee that DR methods do not offer.

For each source domain Pk, we can construct a local uncer-
tainty set as Pk =

⊗
s,a(Pk)

a
s , with

(Pk)
a
s = {q ∈ ∆(S) : D(q, (Pk)

a
s) ≤ Γa

s},

where Γa
s ≥ Γ. In this way, P0 ∈ Pk and each ro-

bust value function is a conservative proxy: V π
Pk
≤

V π
P0
,∀k ∈ K,∀π. It is then of great importance to uti-

lize these local uncertainty sets and robust value functions
to construct conservative proxies with high value, to en-
able effective transfer learning. Several potential straight-
forward constructions are as follows: (1). Robust DR:

V̄ π ≜
∑K

k=1 V π
Pk

K ; (2). Proximal robust DR: V π
P̄ , where

(P̄)as =
{
q ∈ ∆(S) : D

(
q, P̄ a

s =
∑

k(Pk)
a
s

K

)
≤ Γa

s

}
; (3).

Maximal robust value function: maxk V
π
Pk

; (4). Robust
value function of the intersected uncertainty set ∩k(Pk)

a
s .

It can be shown that all of these proxies are conservative
estimations of V π

P0
, however, none of these proxies can be

efficiently solved in a distributed setting. Specifically, (ro-
bust) DR is generally intractable and is approximated by a
proximal DR objective (Jin et al., 2022). Meanwhile, solv-
ing other proxies may require sharing local source domain
models or data, which is often impractical or undesirable in
a distributed setting. Therefore, we propose two conserva-
tive proxies based on robust RL, and show that they can be
efficiently optimized under the distributed setting.
Remark 4.4. Note that in certain cases, such as when the
prior knowledge used to constructed the uncertainty set is
inaccurate, our method may lead to conservative solutions
that could be outperformed by DR. Nonetheless, our main
contribution is to provide robust performance across all
scenarios. Considering the inherent necessaries of conser-
vativeness of robust transfer learning, such a guarantee is

3We assume a universal bound Γ for simplicity, but our methods
can be directly extended to the case with different similarities Γk.

particularly valuable in safety-critical or high-stakes appli-
cations.

5. Averaged Operator Based Proxy
As discussed, while robust RL-based conservative proxies
are straightforward to construct, it is crucial to develop ones
that can be efficiently optimized in a distributed setting,
where each source domain avoids sharing its underlying
MDPs or raw data. Constructing proxies that rely on the un-
derlying environments, as discussed earlier, may be imprac-
tical due to data privacy concerns in distributed frameworks.

Inspired by distributed and federated learning (Wang et al.,
2024a), we propose an operator-based proxy that enables the
design of distributed algorithms where each local domain
shares only updated Q-tables instead of raw data. Specifi-
cally, we introduce an averaged operator-based proxy, which
extends the design of vanilla federated learning to our pes-
simism transfer learning framework.

5.1. Averaged Operator Based proxy

By definition (2), we denote the robust Bellman operators
for the k-th source domain by Tπ

k . Based on these, we
construct an averaged operator and our conservative proxy.

Lemma 5.1. Define the averaged robust Bellman operator
as Tπ

AOQ(s, a) = 1
K

∑K
k=1 T

π
kQ(s, a). Then, Tπ

AO has a
unique fixed point Qπ

AO.

We use its fixed point to construct a conservative proxy,
named the averaged operator based proxy for any given pol-
icy π: V π

AO(s) ≜
∑

a∈A π(a|s)Qπ
AO(s, a). We first show

this proxy is indeed conservative.

Theorem 5.2. (Pessimism of the proxy) The averaged oper-
ator based proxy is conservative: V π

AO ≤ V π
P0
,∀π.

The result indicates that the averaged operator based proxy
effectively adopts the pessimism principle and provide a
lower bound for the target domain performance.

Remark 5.3. The construction of the proxy is not an direct
extension of DR or multi-task RL. As mentioned, the DR
method optimizes V π

P̄
under the averaged environment P̄ =∑K

k=1 Pk

K . In the robust setting, its direct extension becomes
V π
P̄ , the proximal robust DR proxy in Section 4.3. Due to

the non-linearity of robust value functions w.r.t. the nominal
kernel, V π

P̄
does not coincide with the fixed point of the

averaged robust Bellman operator, as in the non-robust
case. However, we can show that our averaged operator
based proxy is more effective than the robust DR.

We further provide the following result, indicating that for
the two most commonly used distance measures, V π

AO is
more effective than proximal robust DR.

5



Pessimism Principle can Be Effective: Towards a Framework for Zero-Shot Transfer Reinforcement Learning

Proposition 5.4. If uncertainty sets are defined through
total variation or Wasserstein distance4, then V π

P̄ ≤ V π
AO.

Remark 5.5. Notice that according to the proof of Propo-
sition 5.4, the result holds provided that σPa

s
−

1
K

∑K
k=1 σ(P)as

(V ) ≤ 0. In Addition, for lp-norm, the
support function has a duality: σ(V ) = maxα{PVα +
f(Γ, Vα)} for some function f (Clavier et al., 2024). Thus
σPa

s
− 1

K

∑K
k=1 σ(P)as

(V ) = maxα{P̄ Vα + f(Γ, Vα)} −
1
K

∑K
k=1 maxα{PkVα + f(Γ, Vα)} ≤ 0, and the similar

result still holds.

The result shows that for the most widely used distance
measures, the averaged operator based proxy is less conser-
vative than the proximal robust DR, hence is more effective
and is more likely to result in a better policy, due to the
monotonic improvement property. It is then of interest to
design a concrete algorithm to optimize it, i.e., to obtain the
policy πAO ≜ argmaxπ V

π
AO.

5.2. Efficient and Distributed Algorithm Design

Although Tπ
AO is a contraction and V π

AO can be estimated
exponentially fast, it can be impractical to estimate and
compare V π

AO over all policies to find the AO-optimal pol-
icy πAO = argmaxπ V

π
AO. To efficiently optimize it, we

construct an averaged optimal Bellman operator as follows,
and develop fundamental characterizations for it and πAO.

Theorem 5.6. Recall Tk being the optimal robust Bellman
operator for the k-th source domain as Equation (3). Define
the averaged optimal Bellman operator as

TAOQ(s, a) ≜
1

K

K∑
k=1

TkQ(s, a). (5)

Then: (1). TAO is a contraction and has a unique fixed
point QAO; (2). Let π∗(s) ≜ argmaxa∈A QAO(s, a), then
π∗ = argmaxπ V

π
AO.

The results imply that the optimal policy πAO can be ob-
tained from the unique fixed point of the averaged optimal
Bellman operator, hence it suffices to learn QAO by recur-
sively applying TAO. More importantly, due to the average
structure over every source domain, the global learner does
not require knowledge of each source domain, but only the
update from each source domain, and hence can be trained
in a distributed and efficient scheme. Specifically, each lo-
cal source domain maintains a local Q-table to capture its
Bellman operator, and sends the updated table to the global
learner. After an average aggregation over all domains, a
global Q-table is then sent back to each local domain.

In practice, the exact source domains may be unknown, but
extensive samples from them are available, as the source

4See Appendix D.3 for definitions.

domains are more free to explore. We hence assume that
each local source domain can obtain an unbiased estimate of
its robust Bellman operator: for any vector Q, an unbiased
estimate T̂kQ is available to each local agent. This is a
mild assumption, as there are different ways to construct
an unbiased estimator of the robust Bellman operator, e.g.,
(Wang et al., 2023c; Kumar et al., 2023b; Yang et al., 2023;
Liu et al., 2022). We also note that due to the linear structure
of TAO, its unbiased estimation can be directly constructed

as the average of all local estimations as T̂AO =
∑K

k=1 T̂k

K .

On the other hand, to further avoid extensive communica-
tion, the frequency of aggregation can be reduced. Specifi-
cally, we update the local estimation of each source domain
individually for E steps, and then aggregate all the domains
once. Such a learning scheme is also used in federated or
distributed learning, e.g., (Wang et al., 2024a; Jin et al.,
2022; Wang et al., 2024c; Woo et al., 2023).

We then present our Averaged Operator based multi-domain
transfer (MDTL-Avg) algorithm as follows. The algorithm
consists of two parts: local update to the local optimum, and
global aggregation. Each local agent updates its own Q table
with its data, and after E steps, a global aggregation unifies
all local Q tables. The convergence proof can be similarly
decomposed in to the local (controlled by the local Bellman
operator) and the global parts (controlled by aggregation).
As mentioned, our algorithm does not require the knowledge

Algorithm 1 MDTL-Avg and MDTL-Max Algorithms
1: Initialization: 0 ≤ Qk ≤ 1

1−γ ,∀k = 1, ...,K
2: for t = 0, ..., T − 1 do
3: for k = 1, ...,K do
4: Qk(s, a) ← (1 − λ)Qk(s, a) + λT̂k(Qk)(s, a),

∀(s, a) ∈ S ×A /Local Update/
5: end for
6: if t ≡ 0(mod E) then
7: for s ∈ S, a ∈ A do
8: For MDTL-Avg:
9: Q(s, a)← 1

K

∑K
k=1 Qk(s, a)

10: For MDTL-Max:
11: Q(s, a)←Max-Aggregation of {Qk(s, a)}
12: Qk(s, a)← Q(s, a),∀k /Synchronize/
13: end for
14: end if
15: end for

of each source domain, but only an unbiased estimator of
the updated Q-table, which is more applicable under large-
scale environments and better preserve privacy. Moreover,
we reduce the aggregation frequency by E times, greatly
enhancing the communication efficiency.

We then develop the convergence analysis of Algorithm 1.

Theorem 5.7. Let E − 1 ≤ min 1
λ{

γ
1−γ ,

1
K }, and λ =

6
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4 log2(TK)
T (1−γ) . Run Algorithm 1 for T steps. If E[T̂k] = Tk,

then it holds that∥∥∥∥∥E
[
QAO−

∑K
k=1 Qk

K

]∥∥∥∥∥≤Õ
(

1

TK
+
(E−1)Γ

T

)
. (6)

As the result shows, our algorithm enjoys a partial linear
speedup, implying the efficiency of our algorithm for multi-
domain transfer. The second term measures the trade-off be-
tween the convergence rate and communication cost, which
is also observed in federated learning (FL) with heteroge-
neous environments (Wang et al., 2024a;c). We note that
the convergence rate of our stochastic algorithm still en-
joys a partial linear speedup, which matches the minimax
optimal robust up to polylog factors (Vershynin, 2018). It
hence illustrates the efficiency of our algorithm, in terms of
convergence rate and communication cost.

Our algorithm design and convergence result thus provide
the first effective, efficient multi-domain transfer method
with a conservative lower-bound guarantee.

6. Avoiding Negative Transfer: the Minimal
Pessimism Principle

While our averaged operator-based method provides a con-
servative yet effective proxy for target domain performance,
it remains vulnerable to a key challenge in multi-domain
transfer: negative transfer. Similar to existing TL methods,
the averaged operator-based proxy treats all source domains
equally and cannot identify or down-weight the less relevant
ones. Inspired by recent advances in personalized FL (Ari-
vazhagan et al., 2019; Fallah et al., 2020; Deng et al., 2020;
Tan et al., 2022), the global learner should assign higher
weights to source domains that are more similar to the tar-
get domain. However, identifying these similar domains
without additional information remains challenging.

Our pessimism principle offers a solution to this problem.
As shown in Lemma 4.1, a less conservative proxy leads to
a better-performing policy. Intuitively, more distinct source
domains yield smaller robust value functions, allowing us
to assign higher weights to domains with higher robust val-
ues to prioritize the more relevant ones. A straightforward
proxy would be maxk∈K V π

Pk
, which uses the maximum

robust value function as the proxy. However, this approach
may not be computationally efficient in a distributed setting.
In this section, we propose a refined proxy that addresses
these limitations, achieving both higher effectiveness and
computational efficiency.

We define the minimal pessimism operator
and the optimal minimal pessimism operator
as Tπ

MPQ(s, a) ≜ maxk∈K Tπ
kQ(s, a), and

TMPQ(s, a) ≜ maxk∈K TkQ(s, a), based on which

we define and characterize the minimal pessimism proxy.

Theorem 6.1. The following results hold:

(1) Both Tπ
MP and TMP are γ-contractions, and have

unique fixed points, Qπ
MP and QMP, respectively.

(2) For any policy π, let V π
MP(s) =∑

a∈A π(a|s)Qπ
MP(s, a), then V π

Pk
≤ V π

MP ≤ V π
P0

.
Moreover, V π

AO ≤ V π
MP.

(3) Let π∗(s) = argmaxa∈A QMP(s, a), then QMP =
Qπ∗

MP and π∗ = argmaxπ Q
π
MP.

Similar to the previous section, our construction is based on
a minimal pessimism principle operator, which is shown to
be a contraction and admits a unique fixed point. Moreover,
our results imply that the proxy constructed is conservative,
and more importantly, it is better than the robust value func-
tion of any source domain and the averaged operator based
proxy. This hence avoids negative transfer by ruling out
the more conservative source domains. As discussed, this
less conservative proxy can result in a better estimate and is
more likely to yield a better transferred policy.

The third result implies a practical approach to optimize
Qπ

MP, through obtaining the fixed point QMP of the optimal
operator TMP. As it is a contraction, recursively applying it
will converge to Qπ

MP. Similarly, considering the partial in-
formation from each source domain, we design a distributed
algorithm to achieve the fixed point as Algorithm 1.

Notably, in MDTL-Max as Algorithm 1, the aggregation is
obtained through some function Max-Aggregation. When
each local Bellman operator is exact, i.e., T̂k = Tk, we sim-
ply set Max-Aggregation of {Qk}Kk=1 to be maxk{Qk},
and the resulting algorithm will converge to QMP (see The-
orem E.2). However, when each local operator is stochas-
tic, such an aggregation may result in biased estimation of
TMP. Specifically, even if T̂k are unbiased estimations, the
straightforward application of the maximum function results
in a biased estimation: E[maxk∈K Qk] ̸= maxk∈K E[Qk].

To address this issue, it is essential to design an alterna-
tive maximal aggregation scheme that ensures convergence
despite the presence of estimation errors. We propose an ag-
gregation strategy to overcome this challenge. Specifically,
we adopt the multi-level Monte-Carlo method (Blanchet &
Glynn, 2015; Blanchet et al., 2019; Wang & Wang, 2022) to
construct an operator M̂MLMC of the maximal aggregation
based on estimated local operators. We defer the detailed
construction to Appendix E.1.

Lemma 6.2. E[M̂MLMC({Qk}Kk=1)] = maxk∈K E[Qk].

We hence constructed an unbiased estimation of the global
minimal pessimism operator, which can then be adopted to
implement MDTL-Max as Algorithm 1.

Remark 6.3. The MLMC module for MDTL-Max will in-
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crease the sample/computation complexity, which can be
viewed as the price of improving effectiveness. Never-
theless, it can be reduced along two potential directions:
One is to control the level number through techniques like
threshold-MLMC (Wang et al., 2024g). Although it results
in a biased estimation, the bias can be controlled and hence
still implies convergence (see Appendix B.4). Another one
is to relax the uncertainty set constraint. For example,
for total variation, the relaxation results in the solution
P0V − ΓSpan(V ) ≤ σ(V ) (Kumar et al., 2023a), which
is much easier to compute and remains conservative. Re-
ducing the aggregation frequency is an alternative way to
reduce the computational cost, but also introduces a trade-
off in the convergence rate, as we will show in the following
results.

We can then incorporate such a multi-level Monte-Carlo
construction into Algorithm 1 as an unbiased update step.
We further characterize its convergence.
Theorem 6.4. Let E − 1 ≤ min 1

λ{
γ

1−γ ,
1
K }, λ =

4 log2(TK)
T (1−γ) , and adopt MLMC-Max-Aggregation. Then after

T steps,∥∥∥∥E [QMP −max
k∈K

Qk

]∥∥∥∥ ≤ Õ( 1

TK
+
(E − 1)Γ

T

)
. (7)

The result implies the convergence of our algorithm in a
more practical setting. More importantly, our algorithm
converges to a more effective proxy than the averaged one,
which potentially results in a better transferred policy due
to our pessimism principle. Also, our algorithm enjoys a
nearly optimal convergence rate, similar to Algorithm 1.

7. Additional Discussion
In the previous sections, we demonstrated that our pes-
simism principle-based framework offers two key advan-
tages: (1) it guarantees a well-performing lower bound on
the target domain performance, avoiding severe undesired
outcomes, and (2) it establishes a monotonic relationship
between the pessimism level and transfer effectiveness, al-
lowing us to improve transfer performance and mitigate
negative transfer. In this section, we highlight two addi-
tional advantages: improved robustness and scalability.

Robustness. By optimizing a conservative estimation of
the target domain’s performance, our framework inherently
enhances the robustness of the transferred policy: it ensures
that the policy performs well even under model uncertainties
within the target domain, such as non-stationary parameters.
We show the following result to justify its robustness:
Proposition 7.1. There exists some connected uncertainty
set P̃ such that P0 ∈ P̃ , and V π

P0
≥ V π

P̃ ≥ V π
MP ≥ V π

AO.

This result implies that the proxies we construct are also

conservative bounds for the robust value function with re-
spect to some uncertainty set around P0. As a result, the
transferred policy is guaranteed to perform well despite po-
tential uncertainties in the target domain, thereby enhancing
its generalizability against continuous perturbations of the
environment. Specifically, the policy will also perform ef-
fectively in environments similar to P0. We further validate
this robustness numerically in our experiments.

Scalability. Our proposed algorithms are scalable, enabling
effective transfer in large-scale problems. Firstly, our al-
gorithms can be implemented in a model-free manner to
enhance computational and memory efficiency. In particular,
any model-free algorithm for robust RL can be integrated
into the local update step in Algorithm 1. To demonstrate
this, we design a model-free variant of Algorithm 1 in Ap-
pendix G, accompanied by a convergence guarantee:

Theorem 7.2. (Informal) Denote the output of the algo-
rithms with suitable step sizes λ and total steps T by QT .
Let ∆T := QAO −QT and ∆T := QMP −QT for MDTL-
Avg and MDTL-Max, respectively. With probability at least
1− δ, we have

∥∆T ∥ ≤ Õ

(
(E − 1)Γ

T (1− γ)3
+

log SATK
δ

(1− γ)3
√
TK

)
. (8)

Notably, while previous methods, such as DR, lack con-
crete algorithms, our approach is both effective and scalable,
offering a significant advantage.

Secondly, our method is not restricted to tabular setting, and
can be integrated with function approximation or policy gra-
dient. For example, when combine function approximation
for robust RL (Zhou et al., 2023) or robust policy gradi-
ent (Wang & Zou, 2022), the global step becomes parameter
aggregation as in (Jin et al., 2022).

8. Experimental Results
In this section, we aim to verify the effectiveness of our
pessimism principle, and its ability to avoid negative transfer.
More details and additional experiments results are provided
in Appendix B.

8.1. Effectiveness of Pessimism Principle for Transfer
Learning

We develop our simulation on the recycling robot problem
(Sutton & Barto, 2018; Wang et al., 2023c). In this problem,
a mobile robot powered by a rechargeable battery is tasked
with collecting empty soda cans. The robot operates with
two battery levels: low and high. It has two possible actions:
(1) search for empty cans; (2) remain stationary and wait
for someone to bring it a can. When the robot’s battery is
low (high), it has a probability of α(β) of finding an empty

8
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can and maintaining its current battery level, receiving some
high reward. If the robot searches but does not find any,
it will deplete its battery completely and receive a large
penalty. If the robot chooses to wait, it will remain at the
same battery level and receive a relatively small reward.

In our experiments, we first compare our methods with
the non-robust corresponding methods, including proximal
non-robust DR and maximal aggregation algorithm (see
Algorithm 2). We run 5 trials with different random seeds
for each method and report means and standard deviations
of values over training steps in Figure 1. We use a constant
step size = 0.1, and total training steps T = 5000. We set
the target environment as α = β = 0.1, pre-specified radius
of the uncertainty set R = 0.8. Then, we randomly generate
K = 7 distinct source domains with αk, βk ∈ [0.85, 0.9]
to construct the uncertainty set. Other parameters E = 1,
and γ = 0.95. As the results show in Figure 1-left, both of
the non-robust baselines achieve a low reward in the target
domain, as they are overly optimistic and decide to search
under both battery levels, whereas our pessimism principle
methods tend to wait conservatively, avoiding undesired
decisions and severe consequences.

Figure 1. Recycling Robot Problem

To illustrate the robustness and generalizability of our meth-
ods against target model uncertainty, we evaluate the robust
value functions of the learned policies against an uncertainty
set centered at the target domain, which represents the worst-
case performance under the model uncertainty. Figure 1-
right shows that both of our pessimistic methods outperform
the non-robust baseline, indicating that our approach can
maintain a high performance, even with uncertainty or per-
turbations in the target domain. We also conduct an ablation
study to compare the robust value functions under different
target domain uncertainty levels in Appendix B.1, to further
illustrate the enhanced robustness of our approaches.

In summary, our method outperforms non-robust baselines,
achieving a 195.03% performance improvement in the tar-
get domain and maintaining a 15.95% improvement even
under uncertainty. The experiment results hence verify that
pessimism principle is more effective, especially when the
source domains are relatively distinct from the target do-
main, or when model uncertainty exists in the target domain.

8.2. Experiments on Negative Transfer

We further tested our MDTL-Avg and MDTL-Max algo-
rithms on FrozenLake Gym environments, aiming to vali-

date whether MDTL-Max can effectively mitigate negative
transfer. The FrozenLake Gym environment provides an
explicitly known transition kernel. This allows us to pre-
cisely control the distance between source domains and the
target domain, thereby offering more rigorous and inter-
pretable results. In this example, we manually perturb the
agent using total variation distances from the default model:
D = [0.01, 0.02, 0.3]. The source domain with D = 0.3
is intentionally designed to represent a domain that dif-
fers significantly to the target, potentially causing negative
transfer. For each algorithm, we run experiments across 10
random seeds. For each seed, the policy is evaluated over
10 independent episodes to compute the average return. As
shown in Figure 2, MDTL-Max effectively leverages the
most informative source domain, and hence avoids negative
transfer.

Figure 2. Negative Transfer under FrozenLake Gym environment

9. Conclusion
In this paper, we studied zero-shot transfer reinforcement
learning and identified two critical limitations of existing
methods: the lack of guarantees for the safety and per-
formance of transferred policies and the inability to miti-
gate negative transfer when multiple source domains are
involved. To overcome these challenges, we incorporate
a pessimism principle into TL to conservatively estimate
the target domain’s performance, and mitigate risk of un-
desired decisions. Our framework establishes a monotonic
dependence between the level of pessimism and target per-
formance, effectively addressing the two identified issues by
constructing less conservative estimations. We proposed and
analyzed two types of conservative estimations, rigorously
characterizing their effectiveness, and developed distributed,
convergent algorithms to optimize them. These methods are
well-suited for distributed transfer learning settings, offering
performance guarantees and privacy protection. Our frame-
work represents a foundational step toward zero-shot trans-
fer RL with theoretical performance guarantees, providing
a robust and practical solution for real-world applications.
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A. Additional Related Works
Imitation Learning and Policy Distillation: Imitation learning (IL) and policy distillation are extensively explored TL
techniques that enable an agent to learn from demonstrations or from simpler policies. In IL, an agent mimics expert
behavior through supervised learning, often using behavioral cloning or inverse RL (Hua et al., 2021; Desai et al., 2020;
Kim et al., 2023; Zare et al., 2024). Policy distillation transfers knowledge from a teacher policy to a student policy by
matching the teacher’s action distribution (Rusu et al., 2015; Yim et al., 2017; Yin & Pan, 2017; Traoré et al., 2019b;a). The
success of these approaches, however, rely on the assumption that the source domain’s expert or teacher policy is highly
aligned with the target domain, which may not always be the case.

Contextual Reinforcement Learning: In contextual reinforcement learning (cRL), the transition dynamics are assumed
to be governed by an underlying context (Hallak et al., 2015; Modi et al., 2018). This context can represent physical
properties—such as wind conditions (Koppejan & Whiteson, 2009) or the length of a pole in a balancing task (Seo et al.,
2020; Kaddour et al., 2020; Benjamins et al., 2022)—or more abstract features that characterize environment dynamics
(Biedenkapp et al., 2020). Kirk et al. (2023b) identify cRL as particularly relevant for studying zero-shot generalization
in RL agents. The cRL framework allows for a systematic and principled analysis of how agents adapt to environmental
changes by explicitly defining inter- and extrapolation distributions. Following the evaluation protocol introduced by Kirk
et al. (2023b), Benjamins et al. (2022) examined the generalization capabilities of various model-free RL agents on a
benchmark that incorporates different physical properties as context information. Their approach assumed a naive utilization
of context by directly concatenating it with observations. In contrast, Beukman et al. (2024) proposed a hypernetwork-based
method to enable adaptable RL agents. However, these approaches still fail to address the fundamental challenges discussed
earlier.

Federated Learning: FL is a decentralized RL approach that aims to optimize the overall performance of K agents (McMa-
han et al., 2017). In this setting, each agent performs local updates based on its own environment and periodically
communicates with a central server to aggregate the local models, without sharing raw trajectories with each other. While
FL has been extensively studied (Jin et al., 2022; Wang et al., 2024c; Woo et al., 2023; Khodadadian et al., 2022; Wang et al.,
2024a), existing work focuses on optimizing the average performance across local environments, rather than addressing the
more challenging problem of multi-domain transfer. A fundamental challenge in applying FL to transfer learning lies in the
nature of update rules: standard FL methods rely on linear updates (non-robust operators), whereas our proposed methods
involve non-linear robust updates account for uncertainties.

Robust RL: Robust RL (Iyengar, 2005; Nilim & El Ghaoui, 2004) or DRO formulation (Wiesemann et al., 2014; He et al.,
2020) offer a pessimism principle and a robust framework for addressing environmental uncertainty, which optimizes the
worst-case performance within an uncertainty set of environments and can offer a theoretically sound lower bound on target
domain performance when the target domain lies within this set. However, its application in transfer learning has been
under explored, as robust RL often exhibits excessive pessimism, resulting in overly conservative policies for the target
domain. Recent advances have extensively studied robust RL as a standalone problem (Wang & Zou, 2021; 2022; Wang
et al., 2023b; Badrinath & Kalathil, 2021; Dong et al., 2022; Lu et al., 2024; Liu & Xu, 2024; Yang et al., 2021; Xu et al.,
2023; Panaganti & Kalathil, 2022; Shi et al., 2023; Wang et al., 2024b; Panaganti et al., 2022; Yang et al., 2022; Liu et al.,
2023; Wang et al., 2024d;e; Zhang et al., 2025; Sun et al., 2024), but its integration into transfer learning remains largely
untapped. Leveraging robust RL principles in transfer learning offers an opportunity to develop methods that are not only
theoretically grounded but also resilient to uncertainties in target domains. This proposal seeks to explore research directions
that harness the strengths of robust RL to create more effective, efficient, and reliable transfer learning frameworks.

B. Details on Experiments and Additional Experiments
All experiments are conducted on a MacBook Pro configured with an Apple M3 Pro chip, featuring a 11-core CPU and
18GB of unified memory, running macOS Sequoia 15.2. The experiments are performed using Python 3.12 in a Conda
environment. Major libraries used include NumPy 2.2.1.

The baseline algorithms we compared are presented as follows. Here, T̂k is some unbiased estimation of the non-robust
Bellman operator T(Q) = rk + PkQ.
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Algorithm 2 Proximal Non-Robust DR and Non-Robust MDTL-Max Algorithms
1: Initialization: 0 ≤ Qk ≤ 1

1−γ ,∀k = 1, ...,K
2: for t = 0, ..., T − 1 do
3: for k = 1, ...,K do
4: Vk(s)← maxa∈A Qk(s, a),∀s ∈ S
5: Qk(s, a)← (1− λ)Qk(s, a) + λT̂k(Qk)(s, a), ∀(s, a) ∈ S ×A /Local Update/
6: end for
7: if t ≡ 0(mod E) then
8: for s ∈ S, a ∈ A do
9: For Proximal DR:

10: Q(s, a)← 1
K

∑K
k=1 Qk(s, a)

11: For Maximal Aggregation:
12: Q(s, a)←Max-Aggregation of {Qk(s, a)}
13: Qk(s, a)← Q(s, a),∀k /Synchronize/
14: end for
15: end if
16: end for

B.1. Ablation Study: experiments on different target domain uncertainty levels

To further evaluate the robustness of our methods, we conduct an ablation study analyzing the impact of different levels
of uncertainty. In this experiment, we systematically vary the test uncertainty set radius Rtest and measure the optimal
performance in the worst case over these uncertainty sets for the learned policies. Four different methods (MDTL-Avg,
MDTL-Max, Non-robust DR, and Non-robust MDTL-Max) are evaluated across five levels of uncertainty, defined by the
uncertainty set radius {0.01, 0.03, 0.05, 0.07, 0.1}. All testing experiments are conducted for 3 times. We also provide an
optimal policy as a benchmark, which is trained on the target domain using non-robust vanilla value iteration (Sutton &
Barto, 2018). The means and standard deviations of robust values of each method are reported over training time steps.

Let’s conclude the ablation study before further analyzing the figures and tables: our ablation study provides empirical
evidence that our robust learning methods effectively mitigate the impact of target domain uncertainty. Specifically, our
approach achieves at least 15.95% and at most 151.36% performance dominance over non-robust baselines in the target
domain under model uncertainty. Compared to the optimal policy, our method achieves at least 81.32% and at most 90.66%
of the optimal performance under model uncertainty. These findings validate our pessimism principle, demonstrating its
effectiveness in handling domain shifts and model uncertainty.

Method Rtest = 0.01 Rtest = 0.03 Rtest = 0.05 Rtest = 0.07 Rtest = 0.1
MDTL-Avg 134.45 101.91 82.05 68.67 55.17
MDTL-Max 134.45 101.91 82.05 68.67 55.17
Non-robust DR 53.49 52.06 50.70 49.41 47.58
Non-robust MDTL-Max 53.49 52.06 50.70 49.41 47.58
Non-robust Single-learn Nominal 148.30 115.48 95.35 81.71 67.84

Table 1. Robot: Values of 5 Methods under Different Target Domain Uncertainty Levels

Table 1 provides a numerical comparison of the 4 methods across different uncertainty levels. Our methods consistently
outperform non-robust baselines across all uncertainty levels.
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Figure 3. Robot: Values of MDTL-Avg under Different Uncertainty Levels

Figure 3 shows the evolution of the robust value function for the MDTL-Avg method as the uncertainty level increases. The
results indicate that when the target domain uncertainty is low (Rtest = 0.01), the learned policy achieves high rewards.
However, as the uncertainty radius increases, the value function decreases, illustrating the inherent difficulty in handling a
more uncertain environment. Despite this, our method still maintains a significantly higher value compared to non-robust
baselines, confirming its adaptability to uncertainty.

Figure 4. Robot: Values of MDTL-Max under Different Uncertainty Levels

Figure 4 presents the results for the MDTL-Max method, demonstrating a similar trend. While performance declines as
uncertainty increases, the robust approach still consistently outperforms the non-robust baselines. Notably, both robust
methods maintain high robustness under uncertainty, reinforcing the effectiveness of our pessimism principle.

B.2. Experiments on the HPC Cluster Management Problem

We also validate our methods in an HPC cluster management problem. Each time a new task is submitted, the HPC cluster
manager must decide whether to allocate it immediately or enqueue it for later processing. The HPC cluster operates in one
of three states: normal, overloaded, or fully occupied, depending on the number of active tasks. Under normal conditions,
allocating a task has a probability p of transitioning to the overloaded state while yielding a large reward. When the cluster
is overloaded, allocating a task has a probability q of pushing the system into the fully occupied state, where only a small
reward is received. In the fully occupied state, all new tasks are automatically enqueued, and no further rewards are obtained.

In our experiments, we set the target environment parameters to p = q = 0.9. To model distinct domains, we randomly
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generate K = 7 source environments with pk, qk ∈ [0.1, 0.15], while keeping all other parameters the same as in the above
recycling robot problem. Specifically, we conduct 5 trials for each method using different random seeds, with a fixed step
size of 0.1, a total of 5000 training steps, a pre-defined uncertainty set radius of R = 0.8, E = 1, and γ = 0.95. The results,
presented in Figure 5, where our pessimistic methods consistently outperform the non-robust baselines in target domains,
both with and without model uncertainty. In summary, our method outperforms non-robust baselines, achieving a 183.28%
performance improvement in the target domain and maintaining a 11.05% improvement even under uncertainty. This further
confirms the effectiveness of our approach.

Figure 5. HPC Cluster Management Problem

Our ablation study highlights the substantial advantage of our approaches in handling different levels of uncertainty in
target domain. Across different levels of model uncertainty, our method consistently outperforms the non-robust baselines.
Specifically, our approach demonstrates a minimum improvement of 11.05% and a maximum of 141.29% over the best-
performing non-robust baseline in the target domain under model uncertainty. Moreover, when compared to the optimal
policy, our method retains at least 77.52% and at most 88.49% of the optimal performance under varying uncertainty levels.
These results further reinforce the effectiveness of our approach.

Method Rtest = 0.01 Rtest = 0.03 Rtest = 0.05 Rtest = 0.07 Rtest = 0.1
MDTL-Avg 224.09 169.85 136.75 114.45 91.95
MDTL-Max 224.09 169.85 136.75 114.45 91.95
Non-robust DR 92.87 90.44 88.12 85.92 82.80
Non-robust MDTL-Max 92.87 90.44 88.12 85.92 82.80
Optimal policy 253.25 198.42 164.75 141.89 118.62

Table 2. HPC: Values of 5 Methods under Different Uncertainty Levels

Table 2 presents a quantitative comparison of the four methods under varying levels of uncertainty. Our approach consistently
surpasses the non-robust baselines across all uncertainty settings.
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Figure 6. HPC: Values of MDTL-Avg under Different Uncertainty Levels

Figure 6 illustrates how the robust value function of the MDTL-Avg method evolves with increasing uncertainty levels. The
results show that when target domain uncertainty is minimal (Rtest = 0.01), the learned policy attains high rewards. As the
uncertainty radius expands, the value function declines, reflecting the growing challenge of navigating a more uncertain
environment. Nevertheless, our approach consistently outperforms non-robust baselines, demonstrating its resilience in
adapting to uncertainty.

Figure 7. HPC: Values of MDTL-Max under Different Uncertainty Levels

Figure 7 depicts the performance of the MDTL-Max method, revealing a similar pattern. Although the value function
decreases as uncertainty grows, the robust approach consistently surpasses non-robust baselines. Notably, both robust
methods exhibit strong resilience to uncertainty, further validating the effectiveness of our pessimism-driven strategy.

B.3. Experiments on Dynamic Vehicle Routing Problem

We further implemented our proposed method in a real-world problem: DVRP (Jia et al., 2025), to further validate the
proposed method. DVRP extends the classic vehicle routing problem by incorporating dynamic elements such as real-
time customer requests, and environmental uncertainty, making it more representative of practical logistics and mobility
applications. In our experiments, we consider multiple objectives that reflect both operational efficiency and service quality.
Specifically, we aim to minimize overall routing cost, enhance route smoothness by reducing unnecessary detours and zigzag
patterns, and improve stability by minimizing abrupt changes in planned routes caused by re-routing in highly dynamic
environments. These objectives are crucial in real-world deployments where balancing efficiency and robustness is essential.
More details about the DVRP problem setting can be found in (Jia et al., 2025). The implementations of our proposed
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methods, MDTL-Avg and MDTL-Max, as well as the baseline algorithm Non-robust DR, are based on (Jia et al., 2025).
The baseline Non-robust Single-learn is also adapted from (Jia et al., 2025).

Method Route Distance ↓ Route Smoothness ↑ Route Stability ↑
MDTL-Avg (ours) 4.01± 0.3 51.76± 1.96 0.63± 0.08
MDTL-Max (ours) 4.01± 0.27 52.46± 1.45 0.68± 0.07
Non-robust DR 4.53± 0.52 50.32± 1.35 0.55± 0.08
Non-robust Single-learn 5.20± 0.58 50.70± 0.54 0.40± 0.03

Table 3. DVRP: Results of 4 Methods. ↓: smaller is better. ↑: larger is better

Table 2 presents the performance of four methods evaluated on DVRP. Our proposed approaches, MDTL-Avg and MDTL-
Max, consistently outperform the baselines across all considered objectives. In terms of Route Distance, both MDTL-Avg
and MDTL-Max achieve the lowest average values (4.01), indicating high efficiency in minimizing total travel cost.
Regarding Route Smoothness, MDTL-Max achieves the best performance (52.46), suggesting it can effectively reduce
unnecessary detours and zigzag behaviors in dynamic environments. Finally, Route Stability, which measures the resilience
of planned routes under dynamic re-routing, is significantly higher in both of our methods, with MDTL-Max achieving the
highest score of 0.68, demonstrating its robustness to environmental changes.

B.4. Experiments on Biased Aggregation

The unbiased assumption made in MDTL-Max is to facilitate the convergence analysis. Nevertheless, our convergence
results can still be extended to the case that the existing bias can be controlled, e.g., the bias introduced by the max
aggregation can be controlled through techniques like threshold-MLMC (Wang et al., 2024g). On the other hand, even if
there is bias, as long as the expected proxy is still pessimistic, our transfer learning framework and pessimism guarantees
still hold. This indicates that our methods are robust to the bias.

To illustrate this, we develop an experiment on Cartpole to show the effect of bias. As shown in Figure 8, even if there is
bias, our proxy is still conservative and our pessimism framework outperforms the baseline, and are hence robust.

Figure 8. Effect of Aggregation Bias for MDTL-Max

B.5. Additional Experiments on Negative Transfer

We further tested our MDTL-Avg and MDTL-Max algorithms on two additional environments, aiming to validate whether
MDTL-Max can effectively mitigate negative transfer. For the CartPole Gym environment, we treat the default environment
as the target domain and introduce Gaussian perturbations to the pole length in three source domains, with variances of 0.01,
0.02, and 0.03, respectively. For the recycling robot problem, we set most of the source domains with α ∈ (0, 0.1) and
β ∈ (0, 0.1), in which the optimal policy should be waiting. We add another source domain with α = β = 0.9, in which the
optimal policy should be searching. As shown in Figure 9 and 10, MDTL-Max effectively leverages the most informative
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source domain, and hence avoids negative transfer.

Figure 9. Effect of Negative Transfer under CartPole Gym environment

Figure 10. Effect of Negative Transfer under Recycling Robot

B.6. Comparison to Related Robust RL Approaches

Note that our methods are based on distributionally robust RL, where our uncertainty set is constructed to account for
the potential distributional shift. We thus compare our proposed methods with other related robust RL approaches. We
numerically verify that our methods enjoy both convergence and performance guarantees, and present the results under the
recycling robot environment, where we use adversarial action-robust RL (Tessler et al., 2019) and distributionally robust
RL (Panaganti & Kalathil, 2022) as baselines.

As shown in Table 4, although adversarial robust and distributionally robust RL outperforms non-robust methods, their
performance remain significantly inferior to ours.
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Method Rtest = 0.01 Rtest = 0.03 Rtest = 0.05 Rtest = 0.07 Rtest = 0.1
MDTL-Avg (ours) 134.45 101.91 82.05 68.67 55.17
MDTL-Max (ours) 134.45 101.91 82.05 68.67 55.17
Adversarial Robust RL 61.06 58.10 55.39 52.92 49.58
Distributionally Robust RL 53.86 53.12 52.41 51.71 50.70

Table 4. Robot: Robustness comparison of 4 Methods under Different Target Domain Uncertainty Levels

C. Theoretical Proof for Lemma 4.1
Proof. Denote the optimal policy of f by πf . Note that

V π∗

P0
− V

πf

P0

= V π∗

P0
− f(π∗) + f(π∗)− f(πf )︸ ︷︷ ︸

≤0,as πf=argmaxπ f(π)

+ f(πf )− V
πf

P0︸ ︷︷ ︸
≤0, as f(π)≤V π

P0

≤ V π∗

P0
− f(π∗). (9)

D. Theoretical Proofs for Averaged Operator Based Transfer
In this section, we provide the proofs of the theoretical results for the averaged operator based transfer method.

D.1. Proof of Lemma 5.1

Recall that the robust and optimal robust Bellman operators for agent k are defined as

Tπ
kQ(s, a) = r(s, a) + γσ(Pk)as

(V ), (10)

where V (s) =
∑

a∈A π(a|s)Q(s, a). Since Tπ
k is a γ-contraction for any k ∈ K, then for some Q1 and Q2 we have

∥Tπ
AOQ1 −Tπ

AOQ2∥ ≤
1

K

K∑
k=1

∥Tπ
kQ1 −Tπ

kQ2∥ ≤ γ∥Q1 −Q2∥. (11)

Hence Tπ
AO is also a γ-contraction and has a unique fixed point Qπ

AO, which completes the proof.

D.2. Proof of Theorem 5.2

In order to verify that V π
AO is a lower bound on V π

P0
we proceed as follows. Let V π

AO(s) =
∑

a∈A π(a|s)Qπ
AO(s, a), since

P0 ∈ Pk, we have

Qπ
AO(s, a)−Qπ

P0
(s, a) =

γ

K

K∑
k=1

σ(Pk)as
(V π

AO)− γ(P0)
a
sV

π
P0

= γ

(
1

K

∑
k

σ(Pk)as
(V π

AO)− (P0)
a
sV

π
AO

)
+ γ(P0)

a
s(V

π
AO − V π

P0
)

≤ 0 + γ(P0)
a
s(V

π
AO − V π

P0
). (12)

Consequently,

V π
AO(s)− V π

P0
(s) =

∑
a∈A

π(a|s)Qπ
AO(s, a)−

∑
a∈A

π(a|s)Qπ
P0
(s, a)

=
∑
a∈A

π(a|s)(Qπ
AO(s, a)−Qπ

P0
(s, a))

≤ γ(Pπ
0 )s(V

π
AO − V π

P0
), (13)
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where (Pπ
0 )s is the s-entry transition kernel induced by π under P0. Let P0 = ((Pπ

0 )s1 , ..., (P
π
0 )s|S|)

⊤ be a transition
matrix, and consider entry-wise relation, we have

V π
AO − V π

P0
≤ γP0(V

π
AO − V π

P0
), (14)

and hence

(I − γP0)(V
π
AO − V π

P0
) ≤ 0. (15)

Note that (I − γP0)
−1 = I + γP0 + γ2P2

0 + . . . exists and has all positive entries, we thus obtain

V π
AO − V π

P0
≤ ((I − γP0))

−10 = 0, (16)

which completes the proof.

D.3. Proof of Proposition 5.4

For two distribution p, q ∈ ∆(S), total variation is defined as D(p, q) = 1
2∥p− q∥1, and Wasserstein distance is defined as

D(p, q) = infµ∈Γ(p,q)(E(X,Y )∼µ[(X − Y )t])
1
t , where Γ(p, q) is the set of all couplings of p, q.

We have

Qπ
P̄(s, a)−Qπ

AO(s, a) (17)

= γσP̄a
s
(V π

P̄ )− γ
1

K

K∑
k=1

σ(Pk)as
(V π

AO) (18)

=
γ

K

K∑
k=1

(σP̄a
s
(V π

P̄ )− σ(Pk)as
(V π

AO)) (19)

=
γ

K

K∑
k=1

(σP̄a
s
(V π

P̄ )− σ(Pk)as
(V π

P̄ ) + σ(Pk)as
(V π

P̄ )− σ(Pk)as
(V π

AO)). (20)

For any vector v and total variation distance, it holds that

σP̄a
s
(v)− 1

K

K∑
k=1

σ(Pk)as
(v) = max

α
{P̄ vα − ΓSp(vα)} −

1

K

K∑
k=1

max
α
{PkVα − ΓSp(vα)}

≤ max
α
{P̄ vα − ΓSp(vα)} −

1

K
max
α

{
K∑

k=1

P kvα − ΓSp(vα)

}
= 0; (21)

Similarly, for Wasserstein distance, it holds that

σP̄a
s
(v)− 1

K

K∑
k=1

σ(Pk)as
(v) = sup

λ≥0
{−λΓl +

∑
s∈S

P̄ (s) inf
y∈S

(v(y) + λd(s, y)l)}

− 1

K

∑
k

sup
λ≥0
{−λΓl +

∑
s∈S

Pk(s) inf
y∈S

(v(y) + λd(s, y)l)}

≤ sup
λ≥0
{−λΓl +

∑
s∈S

P̄ (s) inf
y∈S

(v(y) + λd(s, y)l)}

− sup
λ≥0
{−λΓl +

∑
s∈S

P̄ (s) inf
y∈S

(v(y) + λd(s, y)l)}

= 0. (22)

The remaining proof follows similarly as Theorem 5.2.
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D.4. Proof of Theorem 5.6

The contraction property of TAO follows similarly as Lemma 5.1.

For policy π∗(s) ≜ argmaxa∈A QAO(s, a), we have

Tπ∗
AOQAO(s, a) = r(s, a) +

γ

K

K∑
k=1

σ(Pk)as
max
a∈A

QAO(s, a) = TAOQAO(s, a) = QAO(s, a). (23)

Hence QAO(s, a) is also the unique fixed point of Tπ∗
AO, moreover, V π∗

AO = VAO.

For any k ∈ K, denote the worst-case kernel of VAO in Pk by P ′
k, i.e.,

σ(Pk)as
(VAO) = (P ′

k)
a
sVAO, ∀(s, a) ∈ S ×A. (24)

Since VAO = maxa∈A QAO(s, a), it holds that

V π
AO(s)− VAO(s) ≤

∑
a∈A

π(a|s) (Qπ
AO(s, a)−QAO(s, a))

=
∑
a∈A

π(a|s) γ
K

K∑
k=1

(σ(Pk)as
(V π

AO)− σ(Pk)as
(VAO))

≤
∑
a∈A

π(a|s) γ
K

K∑
k=1

((P ′
k)

a
sV

π
AO − (P ′

k)
a
sVAO). (25)

Let k̃ = argmaxk∈K
∑

a∈A π(a|s)γ(P ′
k)

a
s(V

π
MP − VMP) and P̃s =

∑
a∈A π(a|s)γ(P ′

k̃
)as , we obtain

V π
AO(s)− VAO(s) ≤

∑
a∈A

π(a|s) γ
K

K∑
k=1

((P ′
k)

a
sV

π
AO − (P ′

k)
a
sVAO)

≜ γP̃s(V
π
AO − VAO), (26)

and hence by noting that (I − γP̃ )−1 has all positive entries we have

(I − γP̃ )(V π
AO − VAO) ≤ 0, (27)

which implies that maxπ V
π
AO ≤ VAO. On the other hand, since V π∗

AO = VAO and maxπ V
π
AO ≥ V π∗

AO, together with the
upper bound it follows that maxπ V

π
AO = VAO. Note that VAO(s) = maxa∈A QAO(s, a), hence argmaxπ V

π
AO = π∗,

which completes the proof.

D.5. Proof of Theorem D.1

We first show the convergence of Algorithm 1 with the accurate operator to illustrate the efficiency of our algorithm design.

Theorem D.1. Let E − 1 ≤ min 1
λ{

γ
1−γ ,

1
K }, and λ = 4 log2(TK)

T (1−γ) . If T̂k = Tk, it holds that∥∥∥∥∥QAO −
∑K

k=1 Qk

K

∥∥∥∥∥ ≤ Õ
(

1

TK
+

(E − 1)Γ

T

)
. (28)

In this proof, we first assume that E − 1 ≤ 1−γ
4γλ and λ ≤ 1

E to establish the general convergence rate, which is independent
of K. Then we prove that carefully selected E and λ can balance each term in the convergence rate to achieve partial linear
speedup.

Denote Q̄t+1 and Qt+1
k the values of Q̄ and Qk at iteration t+ 1. Since T̂k = Tk, we have

Q̄t+1 =
1

K

K∑
k=1

Qt+1
k

=
1

K

K∑
k=1

((1− λ)Qt
k + λ(r + γσPk

(V t
k ))), (29)
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where V t
k (s) = maxa∈A Qt

k(s, a). We also denote the value function associate with QAO by VAO = maxa∈A QAO(s, a).
We define the iteration error as ∆t+1 := QAO − Q̄t+1, additionally, ∆0 := QAO −Q0. The iteration error then takes the
following form:

∆t+1 = QAO − Q̄t+1

=
1

K

K∑
k=1

(QAO − ((1− λ)Qt
k + λ(r + γσPk

(V t
k ))))

=
1

K

K∑
k=1

((1− λ)(QAO −Qt
k) + λ(QAO − r − γσPk

(V t
k ))

= (1− λ)∆t +
γλ

K

K∑
k=1

(σPk
(VAO)− σPk

(V t
k ))

= (1− λ)t+1∆0 + γλ

t∑
i=0

(1− λ)t−i 1

K

K∑
k=1

(σPk
(VAO)− σPk

(V i
k )). (30)

By taking the l∞-norm on both sides, we obtain

∥∥∆t+1
∥∥ ≤ (1− λ)t+1

∥∥∆0
∥∥+ ∥∥∥∥∥γλ

t∑
i=0

(1− λ)t−i 1

K

K∑
k=1

(σPk
(VAO)− σPk

(V i
k ))

∥∥∥∥∥ . (31)

Since 0 ≤ Q0 ≤ 1
1−γ , the first term in (30) can be bounded as

(1− λ)t+1
∥∥∆0

∥∥ ≤ (1− λ)t+1 1

1− γ
. (32)

To bound the second term in (30), we divide the summation into two parts. Define the most recent aggregation step of t as
χ(t) := t− (t mod E). Then for any βE ≤ t ≤ T , we have

t∑
i=0

(1−λ)t−iλγ

∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO)−σPk

(V i
k ))

∥∥∥∥∥
=

χ(t)−βE∑
i=0

(1−λ)t−iλγ

∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO)−σPk

(V i
k ))

∥∥∥∥∥+
t∑

i=χ(t)−βE+1

(1−λ)t−iλγ

∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO)−σPk

(V i
k ))

∥∥∥∥∥
≤ γ

1−γ
(1− λ)t−χ(t)+βE+

t∑
i=χ(t)−βE+1

(1−λ)t−iλγ

∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO)−σPk

(V i
k ))

∥∥∥∥∥ . (33)

Before proceeding with the proof, we introduce the following lemma to bound the second term in (33). The proof of this
lemma can be found in Appendix D.6. We define ∆t

k := QAO −Qt
k the local iteration error of agent k. We also define

σ̄(Pk)as
(v) := 1

K

∑K
k σ(Pk)as

(v) for any vector v.

Lemma D.2. If t mod E = 0, then
∥∥∥ 1
K

∑K
k=1(σPk

(VAO)− σPk
(V t

k ))
∥∥∥ ≤ ∥∆t∥. Otherwise,∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO) − σPk

(V t
k ))

∥∥∥∥∥ ≤ ∥∥∥∆χ(t)
∥∥∥+ 2λ

1

K

K∑
k=1

t−1∑
t′=χ(t)

∥∥∥∆t′

k

∥∥∥
+ γλ

t− 1− χ(t)

K

K∑
k=1

max
(s,a)∈S×A

∣∣σ(Pk)as
(VAO)− σ̄(Pk)as

(VAO)
∣∣ , (34)

where we use the convention that
∑χ(t)−1

t′=χ(t)

∥∥∆k
t′

∥∥ = 0.
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Then by Lemma D.2, (33) yields

t∑
i=χ(t)−βE+1

(1− λ)t−iλγ

∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO)− σPk

(V i
k ))

∥∥∥∥∥
≤

t∑
i=χ(i)−βE+1

(1− λ)t−iλγ

∥∥∥∆χ(i)
∥∥∥+ 2λ

1

K

K∑
k=1

i−1∑
j=χ(t)

∥∥∥∆j
k

∥∥∥
+γλ

t− 1− χ(i)

K

K∑
k=1

max
(s,a)∈S×A

∣∣σ(Pk)as
(VAO)− σ̄(Pk)as

(VAO)
∣∣)

≤
t∑

i=χ(i)−βE+1

(1− λ)t−iλγ

∥∥∥∆χ(i)
∥∥∥+ 2λ

1

K

K∑
k=1

i−1∑
j=χ(t)

∥∥∥∆j
k

∥∥∥+ γλΓ
E − 1

1− γ

 . (35)

Furthermore, the local iteration error
∥∥∥∆j

k

∥∥∥ can be bounded using the following lemma. The proof of this lemma can be
found in Appendix D.7.

Lemma D.3. If λ ≤ 1
E , then for any t ∈ [0, T − 1] and k ∈ K, ∥∆t

k∥ ≤
∥∥∆χ(t)

∥∥+ 3γ
1−γλ(E − 1)Γ.

Then by Lemma D.3, we have

t∑
i=χ(i)−βE+1

(1− λ)t−iλγ2λ
1

K

K∑
k=1

i−1∑
j=χ(t)

∥∥∥∆j
k

∥∥∥
≤ 2λ2γ

t∑
i=χ(t)−βE+1

(1− λ)t−i
i−1∑

j=χ(i)

(∥∥∥∆χ(i)
∥∥∥+ 3

γ

1− γ
λ(E − 1)Γ

)

≤ 2λγ(E − 1) max
χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ 6γ2λ2

1− γ
(E − 1)2Γ. (36)

By combining both bounds (35) and (36), we obtain

t∑
i=χ(t)−βE+1

(1− λ)t−iλγ

∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO)− σPk

(V i
k ))

∥∥∥∥∥
≤ γ max

χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ 2λγ(E − 1) max

χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ 6γ2λ2

1− γ
(E − 1)2Γ

+

t∑
i=χ(t)−βE+1

(1− λ)t−iλγ(
γλ

1− γ
(E − 1)Γ)

= γ(1 + 2λ(E − 1)) max
χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ γ2

1− γ
(6λ2(E − 1)2 + λ(E − 1))Γ. (37)

Plugging the bound (37) into (33) then yields

t∑
i=0

(1− λ)t−iλγ

∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO)− σPk

(V i
k ))

∥∥∥∥∥
≤ γ

1− γ
(1− λ)t−χ(t)+βE + γ(1 + 2λ(E − 1)) max

χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥

+
γ2

1− γ
(6λ2(E − 1)2 + λ(E − 1))Γ. (38)
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Consequently, the iteration error
∥∥∆t+1

∥∥ can be bounded using (32) and (38) for all rounds t ∈ [0, T − 1]:∥∥∆t+1
∥∥ ≤ (1− λ)t+1 1

1− γ
+

γ

1− γ
(1− λ)t−χ(t)+βE

+ γ(1 + 2λ(E − 1)) max
χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ γ2

1− γ
(6λ2(E − 1)2 + λ(E − 1))Γ

≤ γ(1 + 2λ(E − 1)) max
χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ 2

1− γ
(1− λ)βE

+
γ2

1− γ
(6λ2(E − 1)2 + λ(E − 1))Γ. (39)

Let ρ := 2
1−γ (1− λ)βE + γ2

1−γ (6λ
2(E − 1)2 + λ(E − 1))Γ, then with the assumption λ ≤ 1−γ

4γ(E−1) , (39) can be written as∥∥∆t+1
∥∥ ≤ 1 + γ

2
max

χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ ρ. (40)

Unrolling the above recursion L times with LβE ≤ t ≤ T − 1, we obtain∥∥∆t+1
∥∥ ≤ (

1 + γ

2
)L max

χ(t)−LβE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ L−1∑

i=0

(
1 + γ

2
)iρ

≤ (
1 + γ

2
)L

1

1− γ
+

2

1− γ
ρ. (41)

By choosing β = ⌊ 1E
√

(1−γ)T
2λ ⌋, L = ⌈

√
λT
1−γ ⌉ and t+ 1 = T , (41) yields

∥∥∆T
∥∥ ≤ 1

1− γ
(
1 + γ

2
)

√
λT
1−γ +

2

1− γ

(
2

1− γ
(1− λ)βE +

γ2

1− γ
(6λ2(E − 1)2 + λ(E − 1))Γ

)
≤ 1

1− γ
exp{−1

2

√
(1− γ)λT}+ 4

(1− γ)2
exp{−

√
(1− γ)λT}

+
2γ2

(1− γ)2
(6λ2(E − 1)2 + λ(E − 1))Γ

≤ 4

(1− γ)2
exp{−1

2

√
(1− γ)λT}+ 2γ2

(1− γ)2
(6λ2(E − 1)2 + λ(E − 1))Γ. (42)

(42) reveals the effect of E and λ on the convergence rate. Although E > 1 slows down the convergence, we can set
(E − 1) ≤ min 1

λ{
γ

1−γ ,
1
K }, and λ = 4 log2(TK)

T (1−γ) to bring partial linear speedup with respect to the number of agents K.
Then (39) becomes ∥∥∆T

∥∥ ≤ Õ( 1

TK
+

(E − 1)Γ

T

)
(43)

for T ≥ E, which completes the proof.

D.6. Proof of Lemma D.2

When t mod E = 0, i.e., t is an aggregation step, Qt
k = Qt

k′ and the associate value functions V t
k = V t

k′ for any k and
k′ ∈ K. We denote V̄ t = 1

K

∑K
k=1 V

t
k , then we have

1

K

K∑
k=1

(σ(Pk)as
(VAO)− σ(Pk)as

(V t
k )) ≤

1

K

K∑
k=1

σ̄(Pk)as
(VAO − V̄ t)

≤ 1

K

K∑
k=1

∥∥VAO − V̄ t
∥∥

≤
∥∥QAO − Q̄t

∥∥
=
∥∥∆t

∥∥ . (44)
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For general t, we have

∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO)− σPk

(V t
k ))

∥∥∥∥∥ =

∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO)− σPk

(V
χ(t)
k ) + σPk

(V
χ(t)
k )− σPk

(V t
k ))

∥∥∥∥∥
≤

∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO)− σPk

(V
χ(t)
k ))

∥∥∥∥∥+
∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(V

χ(t)
k )− σPk

(V t
k ))

∥∥∥∥∥
≤
∥∥∥∆χ(t)

∥∥∥+ ∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(V

χ(t)
k )− σPk

(V t
k ))

∥∥∥∥∥
≤
∥∥∥∆χ(t)

∥∥∥+ 1

K

K∑
k=1

∥∥∥V χ(t)
k − V t

k

∥∥∥ . (45)

For any state s, we have

V t
k (s)− V

χ(t)
k (s) = Qt

k(s, a
t
k(s))−Q

χ(t)
k (s, a

χ(t)
k (s))

(a)

≤ Qt
k(s, a

t
k(s))−Q

χ(t)
k (s, atk(s))

= Qt
k(s, a

t
k(s))−Qt−1

k (s, atk(s)) +Qt−1
k (s, atk(s))−Qt−2

k (s, atk(s))

+ · · ·+Q
χ(t)+1
k (s, atk(s))−Q

χ(t)
k (s, atk(s)). (46)

where atk(s) = argmaxa∈A Qt
k(s, a) and inequality (a) holds because Q

χ(t)
k (s, atk(s)) ≤ Q

χ(t)
k (s, a

χ(t)
k (s)).

For each t′ such that χ(t) ≤ t′ ≤ t, it holds that,

Qt′+1
k (s, atk(s))−Qt′

k (s, a
t
k(s)) = (1− λ)Qt′

k (s, a
t
k(s)) + λ(r(s, atk(s)) + γσ

(Pk)
at
k
(s)

s

(V t′

k ))−Qt′

k (s, a
t
k(s))

(a)
= −λQt′

k (s, a
t
k(s)) + λ(QAO(s, a

t
k(s))− r(s, atk(s))− γσ̄

(Pk)
at
k
(s)

s

(VAO)

+ r(s, atk(s)) + γσ
(Pk)

at
k
(s)

s

(V t′

k ))

≤ 2λ
∥∥∥∆t′

k

∥∥∥+ γλ(σ
(Pk)

at
k
(s)

s

(VAO)− σ̄
(Pk)

at
k
(s)

s

(VAO)), (47)

where equality (a) follows from the average optimal Bellman equation. Thus,

V t
k (s)− V

χ(t)
k (s) ≤

t−1∑
t′=χ(t)

(Qt′+1
k (s, atk(s))−Qt′

k (s, a
t
k(s)))

= 2λ

t−1∑
t′=χ(t)

∥∥∥∆t′

k

∥∥∥+ γλ(t− 1− χ(t))(σ
(Pk)

at
k
(s)

s

(VAO)− σ̄
(Pk)

at
k
(s)

s

(VAO)). (48)

Similarly, we have

V t
k (s)− V

χ(t)
k (s) ≥

t−1∑
t′=χ(t)

(Qt′+1
k (s, a

χ(t)
k (s))−Qt′

k (s, a
χ(t)
k (s)))

≥ −2λ
t−1∑

t′=χ(t)

∥∥∥∆t′

k

∥∥∥+ γλ(t− 1− χ(t))(σ
(Pk)

at
k
(s)

s

(VAO)− σ̄
(Pk)

at
k
(s)

s

(VAO)). (49)
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By plugging the bounds in (48) and in (49) back into (45), we obtain∥∥∥∥∥ 1

K

K∑
k=1

(σPk
(VAO)− σPk

(V t
k ))

∥∥∥∥∥ ≤ ∥∥∆χ(t)

∥∥+ 1

K

K∑
k=1

∥∥∥V χ(t)
k − V t

k

∥∥∥
≤
∥∥∆χ(t)

∥∥+ 2λ
1

K

K∑
k=1

t−1∑
t′=χ(t)

∥∆t′

k ∥

+ γλ(t− 1− χ(t))
1

K

K∑
k=1

max
s,a∈S×A

|σ(Pk)as
(VAO)− σ̄(Pk)as

(VAO)|. (50)

This hence completes the proof.

D.7. Proof of Lemma D.3

When t mod E = 0, then ∆t
k = ∆χ(t). When t mod E ̸= 0, we have

Qt
k = (1− λ)Qt−1

k + λ(r + γσPk
(V t−1

k ))

= (1− λ)Qt−1
k + λ(QAO − r − γσ̄Pk

(VAO) + r + γσPk
(V t−1

k )). (51)

Thus

∆t
k = (1− λ)∆t−1

k + λγ(σ̄Pk
(VAO)− σPk

(V t−1
k ))

= (1− λ)∆t−1
k + λγ(σ̄Pk

(VAO)− σPk
(VAO) + σPk

(VAO)− σPk
(V t−1

k ))

= (1− λ)t−χ(t)∆χ(i) + γλ

t−1∑
t′=χ(t)

(1− λ)t−t′−1(σ̄Pk
(VAO)− σPk

(VAO))

+ γλ

t−1∑
t′=χ(t)

(1− λ)t−t′−1(σPk
(VAO)− σPk

(V k
j )). (52)

For any state-action pair (s, a) ∈ S ×A,∣∣∣(1− λ)t−χ(t)∆χ(t)(s, a)
∣∣∣ ≤ (1− λ)t−χ(t)

∥∥∥∆χ(t)
∥∥∥ . (53)

Note that

γλ
t−1∑

t′=χ(t)

(1− λ)t−t′−1(σ̄Pk
(VAO)− σPk

(VAO)) ≤
γ

1− γ
λ

t−1∑
t′=χ(t)

(1− λ)t−t′−1Γ

≤ γ

1− γ
λ(E − 1)Γ, (54)

for all (s, a) ∈ S ×A, t ∈ [0, T − 1] and k ∈ K. In addition, we have∥∥∥∥∥∥γλ
t−1∑

t′=χ(t)

(1− λ)t−t′−1(σPk
(VAO)− σPk

(V t′

k ))

∥∥∥∥∥∥ ≤ γλ

t−1∑
t′=χ(t)

(1− λ)t−t′−1
∥∥∥∆t′

k

∥∥∥ . (55)

By combining the bounds in (53), (54), and (55), we obtain

∥∥∆t
k

∥∥ ≤ (1− λ)t−χ(t)
∥∥∥∆χ(t)

∥∥∥+ γ

1− γ
λ(E − 1)Γ + γλ

t−1∑
t′=χ(t)

(1− λ)t−t′−1
∥∥∥∆t′

k

∥∥∥
≤ (1− (1− γ)λ)t−χ(t)

∥∥∥∆χ(t)
∥∥∥+ (1 + γλ)t−χ(t)(

γ

1− γ
λ(E − 1)Γ), (56)
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where the last inequality can be shown via inducting on t− χ(t) ∈ {0, · · · , E − 1}. When λ ≤ 1
E ,

(1 + γλ)t−χ(t) ≤ (1 + λ)E ≤ (1 + 1/E)E ≤ e ≤ 3. (57)

Hence ∥∥∆t
k

∥∥ ≤ ∥∥∥∆χ(t)
∥∥∥+ 3

γ

1− γ
λ(E − 1)Γ, (58)

which completes the proof.

D.8. Proof of Theorem 5.7

Since E[T̂k] = Tk and T̂AO =
∑K

k=1 T̂k

K , it follows that E[T̂AO] =
∑K

k=1 E[T̂k]

K = TAO. Then by replacing Tk and TAO

with their expectation versions, the proof follows naturally as that in Theorem D.1, and is thus omitted.

E. Theoretical Proofs for Minimal Pessimism Principle
In this section, we provide the construction and proofs of the theoretical results for the minimal pessimism principle.

E.1. Multi-level Monte Carlo Operator Construction

We first generate N according to a geometric distribution with parameter Ψ ∈ (0, 1). Then, we generate 2N+1 unbiased
estimator T̂i

k, i = 1, ..., 2N+1. We divide these estimators into two groups: estimators with odd indices, and estimators with
even indices. We then individually calculate the maximal aggregation using the even-index estimators, odd-index ones, all
of the estimators, and the first one:

T̂EQ = max
k,i
{T̂i

kQ, i = 2, 4, ..., 2N+1}, (59)

T̂OQ = max
k,i
{T̂i

kQ, i = 1, 3, ..., 2N+1 − 1}, (60)

T̂AQ = max
k,i
{T̂i

kQ, i = 1, 2, ..., 2N+1}, (61)

T̂1Q = max
k
{T̂1

k}. (62)

The multi-level estimator is then constructed as

T̂MLMCQ ≜ T̂1Q+
∆(Q)

pN
, (63)

where pN = Ψ(1−Ψ)N and

∆(Q) ≜ T̂AQ− T̂OQ+ T̂EQ

2
. (64)

E.2. Proof of Theorem 6.1

We first introduce some useful inequalities to extend the results in averaged operator based transfer to the max-aggregation
version.

Lemma E.1. For any vector sequences {Xk} and {Yk} with k ∈ K, it holds that

1) maxk∈K Xk −maxk∈K Yk ≤ maxk∈K(Xk − Yk),

2) ∥maxk∈K Xk −maxk∈K Yk∥ ≤ maxk∈K ∥Xk − Yk∥,

3) maxk∈K ∥Xk −maxk∈K Xk∥ ≤ 2maxk∈K ∥Xk∥.
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The proof of this lemma can be found in Appendix E.3.

Since Tπ
k is a γ-contraction for any k ∈ K, then for some Q1 and Q2, by Lemma E.1 we have

∥Tπ
MPQ1 −Tπ

MPQ2∥ = ∥max
k∈K

Tπ
kQ1 −max

k∈K
Tπ

kQ2∥

≤ max
k∈K
∥Tπ

kQ1 −Tπ
kQ2∥

≤ γ∥Q1 −Q2∥. (65)

Hence Tπ
MP is also a γ-contraction and has a unique fixed point Qπ

MP. The claim for TMP can be similarly derived.

In order to verify that V π
MP is a lower bound on V π

P0
we proceed as follows. Let V π

MP =
∑

a∈A π(a|s)Qπ
MP(s, a), since

P0 ∈ Pk, we have

Qπ
MP(s, a)−Qπ

P0
(s, a) = γ

(
max
k∈K

σ(Pk)as
(V π

MP)− (P0)
a
sV

π
MP

)
+ γ(P0)

a
s(V

π
MP − V π

P0
)

≤ 0 + γ(P0)
a
s(V

π
MP − V π

P0
). (66)

Consequently,

V π
MP(s)− V π

P0
(s) =

∑
a∈A

π(a|s)Qπ
MP(s, a)−

∑
a∈A

π(a|s)Qπ
P0
(s, a)

=
∑
a∈A

π(a|s)(Qπ
MP(s, a)−Qπ

P0
(s, a))

≤ γ(Pπ
0 )s(V

π
MP − V π

P0
), (67)

where (Pπ
0 )s is the s-entry transition kernel induced by π under P0. Let P0 = ((Pπ

0 )s1 , ..., (P
π
0 )s|S|)

⊤ be a transition
matrix, and consider entry-wise relation, we have

V π
MP − V π

P0
≤ γP0(V

π
MP − V π

P0
), (68)

and hence

(I − γP0)(V
π
MP − V π

P0
) ≤ 0. (69)

Note that (I − γP0)
−1 = I + γP0 + γ2P2

0 + . . . exists and has all positive entries, we thus obtain

V π
MP − V π

P0
≤ ((I − γP0))

−10 = 0. (70)

The claim V π
Pk
≤ V π

MP can be derived similarly.

For policy π∗(s) ≜ argmaxa∈A QMP(s, a), we have

Tπ∗
MPQMP(s, a) = r(s, a) + γmax

k∈K
(σ(Pk)as

max
a∈A

QMP(s, a)) = TMPQMP(s, a) = QMP(s, a). (71)

Hence QMP(s, a) is also the unique fixed point of Tπ∗
MP, moreover, V π∗

MP = VMP.

For any k ∈ K, denote the worst-case kernel of VMP in Pk by P ′
k, i.e.,

σ(Pk)as
(VMP) = (P ′

k)
a
sVMP, ∀(s, a) ∈ S ×A. (72)
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Since VMP = maxa∈A QMP(s, a), by Lemma E.1 it holds that

V π
MP(s)− VMP(s) ≤

∑
a∈A

π(a|s) (Qπ
MP(s, a)−QMP(s, a))

=
∑
a∈A

π(a|s)γ
(
max
k∈K

σ(Pk)as
(V π

MP)−max
k∈K

σ(Pk)as
(VMP)

)
≤
∑
a∈A

π(a|s)γ
(
max
k∈K

((P ′
k)

a
sV

π
MP)−max

k∈K
((P ′

k))
a
sVMP)

)
≤
∑
a∈A

π(a|s)γmax
k∈K

((P ′
k)

a
sV

π
MP − (P ′

k)
a
sVMP)

=
∑
a∈A

π(a|s)γmax
k∈K

((P ′
k)

a
s(V

π
MP − VMP)). (73)

Let P̃s = argmaxk∈K
∑

a∈A π(a|s)γ(P ′
k)

a
s(V

π
MP − VMP), we obtain

V π
MP(s)− VMP(s) ≤ γP̃s(V

π
MP − VMP), (74)

and hence by noting that (I − γP̃ )−1 has all positive entries we have

(I − γP̃ )(V π
MP − VMP) ≤ 0, (75)

which implies that maxπ V
π
MP ≤ VMP. On the other hand, since V π∗

MP = VMP and maxπ V
π
MP ≥ V π∗

MP, together with the
upper bound it follows that maxπ V

π
MP = VMP. Note that VMP(s) = maxa∈A QMP(s, a), hence argmaxπ V

π
MP = π∗,

which completes the proof.

E.3. Proof of Lemma E.1

The proof of the first two statements can be directly derived from reverse triangle inequality and Lipschitz continuity, and is
thus omitted. We now consider the third inequality.

Denote Xi
k the i-th element of Xk, we have

Xi
k −max

k∈K
Xi

k ≤ 0,∀i, (76)

which indicates that Xk −maxk∈K Xk is a vector with non-positive elements. Therefore

max
k∈K
∥Xk −max

k∈K
Xk∥ =max

k∈K
max

i
|Xi

k −max
k∈K

Xi
k|

=max
i

max
k∈K

(max
k∈K

Xi
k −Xi

k)

=max
i

(max
k∈K

Xi
k −min

k∈K
Xi

k). (77)

We also have

max
k∈K
∥Xk∥ = max

k∈K
max

i
|Xi

k| ≥ max
i
|min
k∈K

Xi
k|. (78)

Hence for each i,

max
k∈K

Xi
k −min

k∈K
Xi

k ≤ |max
k∈K

Xi
k|+ |min

k∈K
Xi

k| ≤ 2max
k∈K
∥Xk∥. (79)

By taking the maximum over i, we thus obtain

max
k∈K
∥Xk −max

k∈K
Xk∥ = max

i
(max
k∈K

Xi
k −min

k∈K
Xi

k) ≤ 2max
k∈K
∥Xk∥, (80)

which completes the proof.
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E.4. Proof of Theorem E.2

Theorem E.2. Let E − 1 ≤ min 1
λ{

γ
1−γ ,

1
K }, and λ = 4 log2(TK)

T (1−γ) , we set Max-Aggregation of Qk(s, a) to be

maxk Qk(s, a). If T̂k = Tk, it holds that∥∥∥∥QMP −max
k∈K

Qk

∥∥∥∥ ≤ Õ( 1

TK
+
(E − 1)Γ

T

)
. (81)

In this proof, we follow the same road map with Theorem D.1 based on Lemma E.1. we first assume that E − 1 ≤ 1−γ
4γλ and

λ ≤ 1
E to establish the general convergence rate, which is independent of K. Then we prove that carefully selected E and λ

can balance each term in the convergence rate to achieve partial linear speedup.

Denote Q̂t+1 and Qt+1
k the values of Q̂ and Qk at iteration t+ 1. Since T̂k = Tk, we have

Q̂t+1 = max
k∈K

Qt+1
k

= max
k∈K

((1− λ)Qt
k + λ(r + γσPk

(V t
k ))), (82)

where V t
k (s) = maxa∈A Qt

k(s, a). We also denote the value function associate with QMP by VMP = maxa∈A QMP(s, a).
We define the iteration error as ∆t+1 := QMP − Q̂t+1, additionally, ∆0 := QMP −Q0. The iteration error then takes the
following form:

∆t+1 = QMP − Q̂t+1

= max
k∈K

(QMP − ((1− λ)Qt
k + λ(r + γσPk

(V t
k ))))

= max
k∈K

((1− λ)(QMP −Qt
k) + λ(QMP − r − γσPk

(V t
k ))

= (1− λ)∆t + γλmax
k∈K

(σPk
(VMP)− σPk

(V t
k ))

= (1− λ)t+1∆0 + γλ

t∑
i=0

(1− λ)t−i max
k∈K

(σPk
(VMP)− σPk

(V i
k )). (83)

By taking the l∞-norm on both sides, we obtain∥∥∆t+1
∥∥ ≤ (1− λ)t+1

∥∥∆0
∥∥+ ∥∥∥∥∥γλ

t∑
i=0

(1− λ)t−i max
k∈K

(σPk
(VMP)− σPk

(V i
k ))

∥∥∥∥∥ . (84)

Since 0 ≤ Q0 ≤ 1
1−γ , the first term in (30) can be bounded as

(1− λ)t+1
∥∥∆0

∥∥ ≤ (1− λ)t+1 1

1− γ
. (85)

To bound the second term in (83), we divide the summation into two parts. Define the most recent aggregation step of t as
χ(t) := t− (t mod E). Then for any βE ≤ t ≤ T , we have

t∑
i=0

(1−λ)t−iλγ

∥∥∥∥max
k∈K

(σPk
(VMP)−σPk

(V i
k ))

∥∥∥∥
=

χ(t)−βE∑
i=0

(1−λ)t−iλγ

∥∥∥∥max
k∈K

(σPk
(VMP)−σPk

(V i
k ))

∥∥∥∥+ t∑
i=χ(t)−βE+1

(1−λ)t−iλγ

∥∥∥∥max
k∈K

(σPk
(VMP)−σPk

(V i
k ))

∥∥∥∥
≤ γ

1−γ
(1− λ)t−χ(t)+βE+

t∑
i=χ(t)−βE+1

(1−λ)t−iλγ

∥∥∥∥max
k∈K

(σPk
(VMP)−σPk

(V i
k ))

∥∥∥∥ . (86)

Before proceeding with the proof, we introduce the following lemma to bound the second term in (86). The lemma can
be seen as a variant of Lemma D.2, and the proof can be found in Appendix E.5. We define ∆t

k := QMP −Qt
k the local

iteration error of agent k. We also define σ̂(Pk)as
(v) := maxk∈K σ(Pk)as

(v) for any vector v.
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Lemma E.3. If t mod E = 0, then ∥maxk∈K(σPk
(VMP)− σPk

(V t
k ))∥ ≤ ∥∆t∥. Otherwise,

∥∥∥∥max
k∈K

(σPk
(VMP) − σPk

(V t
k ))

∥∥∥∥ ≤ ∥∥∥∆χ(t)
∥∥∥+ 2λmax

k∈K

t−1∑
t′=χ(t)

∥∥∥∆t′

k

∥∥∥
+ γλ(t− 1− χ(t)) max

(k,s,a)∈K×S×A

∣∣σ(Pk)as
(VMP)− σ̂(Pk)as

(VMP)
∣∣ , (87)

where we use the convention that
∑χ(t)−1

t′=χ(t)

∥∥∆k
t′

∥∥ = 0.

Then by Lemma E.3, (86) yields

t∑
i=χ(t)−βE+1

(1− λ)t−iλγ

∥∥∥∥max
k∈K

(σPk
(VMP)− σPk

(V i
k ))

∥∥∥∥
≤

t∑
i=χ(i)−βE+1

(1− λ)t−iλγ

∥∥∥∆χ(i)
∥∥∥+ 2λmax

k∈K

i−1∑
j=χ(t)

∥∥∥∆j
k

∥∥∥
+γλ(t− 1− χ(i)) max

(k,s,a)∈K×S×A

∣∣σ(Pk)as
(VMP)− σ̂(Pk)as

(VMP)
∣∣)

≤
t∑

i=χ(i)−βE+1

(1− λ)t−iλγ

∥∥∥∆χ(i)
∥∥∥+ 2λmax

k∈K

i−1∑
j=χ(t)

∥∥∥∆j
k

∥∥∥+ γλΓ
E − 1

1− γ

 . (88)

Furthermore, the local iteration error
∥∥∥∆j

k

∥∥∥ can be bounded using the following lemma. This lemma can also be seen as a
variant of Lemma D.3 and the proof of can be found in Appendix E.6.

Lemma E.4. If λ ≤ 1
E , then for any t ∈ [0, T − 1] and k ∈ K, ∥∆t

k∥ ≤
∥∥∆χ(t)

∥∥+ 3γ
1−γλ(E − 1)Γ.

Then by Lemma E.4, we have

t∑
i=χ(i)−βE+1

(1− λ)t−iλγ2λmax
k∈K

i−1∑
j=χ(t)

∥∥∥∆j
k

∥∥∥
≤ 2λ2γ

t∑
i=χ(t)−βE+1

(1− λ)t−i
i−1∑

j=χ(i)

(∥∥∥∆χ(i)
∥∥∥+ 3

γ

1− γ
λ(E − 1)Γ

)

≤ 2λγ(E − 1) max
χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ 6γ2λ2

1− γ
(E − 1)2Γ. (89)

By combining both bounds (88) and (89), we obtain

t∑
i=χ(t)−βE+1

(1− λ)t−iλγ

∥∥∥∥max
k∈K

(σPk
(VMP)− σPk

(V i
k ))

∥∥∥∥
≤ γ max

χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ 2λγ(E − 1) max

χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ 6γ2λ2

1− γ
(E − 1)2Γ

+

t∑
i=χ(t)−βE+1

(1− λ)t−iλγ(
γλ

1− γ
(E − 1)Γ)

= γ(1 + 2λ(E − 1)) max
χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ γ2

1− γ
(6λ2(E − 1)2 + λ(E − 1))Γ. (90)
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Plugging the bound (90) into (86) then yields

t∑
i=0

(1− λ)t−iλγ

∥∥∥∥max
k∈K

(σPk
(VMP)− σPk

(V i
k ))

∥∥∥∥
≤ γ

1− γ
(1− λ)t−χ(t)+βE + γ(1 + 2λ(E − 1)) max

χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥

+
γ2

1− γ
(6λ2(E − 1)2 + λ(E − 1))Γ. (91)

Consequently, the iteration error
∥∥∆t+1

∥∥ can be bounded using (85) and (91) for all rounds t ∈ [0, T − 1]:

∥∥∆t+1
∥∥ ≤ (1− λ)t+1 1

1− γ
+

γ

1− γ
(1− λ)t−χ(t)+βE

+ γ(1 + 2λ(E − 1)) max
χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ γ2

1− γ
(6λ2(E − 1)2 + λ(E − 1))Γ

≤ γ(1 + 2λ(E − 1)) max
χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ 2

1− γ
(1− λ)βE

+
γ2

1− γ
(6λ2(E − 1)2 + λ(E − 1))Γ. (92)

Let ρ := 2
1−γ (1− λ)βE + γ2

1−γ (6λ
2(E − 1)2 + λ(E − 1))Γ, then with the assumption λ ≤ 1−γ

4γ(E−1) , (92) can be written as

∥∥∆t+1
∥∥ ≤ 1 + γ

2
max

χ(t)−βE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ ρ. (93)

Unrolling the above recursion L times with LβE ≤ t ≤ T − 1, we obtain

∥∥∆t+1
∥∥ ≤ (

1 + γ

2
)L max

χ(t)−LβE≤i≤t

∥∥∥∆χ(i)
∥∥∥+ L−1∑

i=0

(
1 + γ

2
)iρ

≤ (
1 + γ

2
)L

1

1− γ
+

2

1− γ
ρ. (94)

By choosing β = ⌊ 1E
√

(1−γ)T
2λ ⌋, L = ⌈

√
λT
1−γ ⌉ and t+ 1 = T , (94) yields

∥∥∆T
∥∥ ≤ 1

1− γ
(
1 + γ

2
)

√
λT
1−γ +

2

1− γ

(
2

1− γ
(1− λ)βE +

γ2

1− γ
(6λ2(E − 1)2 + λ(E − 1))Γ

)
≤ 1

1− γ
exp{−1

2

√
(1− γ)λT}+ 4

(1− γ)2
exp{−

√
(1− γ)λT}

+
2γ2

(1− γ)2
(6λ2(E − 1)2 + λ(E − 1))Γ

≤ 4

(1− γ)2
exp{−1

2

√
(1− γ)λT}+ 2γ2

(1− γ)2
(6λ2(E − 1)2 + λ(E − 1))Γ. (95)

(95) reveals the effect of E and λ on the convergence rate. Although E > 1 slows down the convergence, we can set
(E − 1) ≤ min 1

λ{
γ

1−γ ,
1
K }, and λ = 4 log2(TK)

T (1−γ) to bring partial linear speedup with respect to the number of agents K.
Then (92) becomes

∥∥∆T
∥∥ ≤ Õ( 1

TK
+

(E − 1)Γ

T

)
(96)

for T ≥ E, which completes the proof.
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E.5. Proof of Lemma E.3

When t mod E = 0, i.e., t is an aggregation step, Qt
k = Qt

k′ and the associate value functions V t
k = V t

k′ for any k and
k′ ∈ K. We denote V̂ t = maxk∈K V t

k , then we have

max
k∈K

(σ(Pk)as
(VMP)− σ(Pk)as

(V t
k )) ≤ max

k∈K
(σ(Pk)as

(VMP)− σ(Pk)as
(V̂ t))

≤ max
k∈K

∥∥∥VMP − V̂ t
∥∥∥

≤
∥∥∥QMP − Q̂t

∥∥∥
=
∥∥∆t

∥∥ . (97)

For general t, we have∥∥∥∥max
k∈K

(σPk
(VMP)− σPk

(V t
k ))

∥∥∥∥ =

∥∥∥∥max
k∈K

(σPk
(VMP)− σPk

(V
χ(t)
k ) + σPk

(V
χ(t)
k )− σPk

(V t
k ))

∥∥∥∥
≤
∥∥∥∥max
k∈K

(σPk
(VMP)− σPk

(V
χ(t)
k ))

∥∥∥∥+ ∥∥∥∥max
k∈K

(σPk
(V

χ(t)
k )− σPk

(V t
k ))

∥∥∥∥
≤
∥∥∥∆χ(t)

∥∥∥+ ∥∥∥∥max
k∈K

(σPk
(V

χ(t)
k )− σPk

(V t
k ))

∥∥∥∥
≤
∥∥∥∆χ(t)

∥∥∥+max
k∈K

∥∥∥V χ(t)
k − V t

k

∥∥∥ . (98)

For any state s, we have

V t
k (s)− V

χ(t)
k (s) = Qt

k(s, a
t
k(s))−Q

χ(t)
k (s, a

χ(t)
k (s))

(a)

≤ Qt
k(s, a

t
k(s))−Q

χ(t)
k (s, atk(s))

= Qt
k(s, a

t
k(s))−Qt−1

k (s, atk(s)) +Qt−1
k (s, atk(s))−Qt−2

k (s, atk(s))

+ · · ·+Q
χ(t)+1
k (s, atk(s))−Q

χ(t)
k (s, atk(s)). (99)

where atk(s) = argmaxa∈A Qt
k(s, a) and inequality (a) holds because Q

χ(t)
k (s, atk(s)) ≤ Q

χ(t)
k (s, a

χ(t)
k (s)).

For each t′ such that χ(t) ≤ t′ ≤ t, it holds that,

Qt′+1
k (s, atk(s))−Qt′

k (s, a
t
k(s)) = (1− λ)Qt′

k (s, a
t
k(s)) + λ(r(s, atk(s)) + γσ

(Pk)
at
k
(s)

s

(V t′

k ))−Qt′

k (s, a
t
k(s))

(a)
= −λQt′

k (s, a
t
k(s)) + λ(QMP(s, a

t
k(s))− r(s, atk(s))− γσ̂

(Pk)
at
k
(s)

s

(VMP)

+ r(s, atk(s)) + γσ
(Pk)

at
k
(s)

s

(V t′

k ))

≤ 2λ
∥∥∥∆t′

k

∥∥∥+ γλ(σ
(Pk)

at
k
(s)

s

(VMP)− σ̂
(Pk)

at
k
(s)

s

(VMP)), (100)

where equality (a) follows from the average optimal Bellman equation. Thus,

V t
k (s)− V

χ(t)
k (s) ≤

t−1∑
t′=χ(t)

(Qt′+1
k (s, atk(s))−Qt′

k (s, a
t
k(s)))

= 2λ

t−1∑
t′=χ(t)

∥∥∥∆t′

k

∥∥∥+ γλ(t− 1− χ(t))(σ
(Pk)

at
k
(s)

s

(VMP)− σ̂
(Pk)

at
k
(s)

s

(VMP)). (101)
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Similarly, we have

V t
k (s)− V

χ(t)
k (s) ≥

t−1∑
t′=χ(t)

(Qt′+1
k (s, a

χ(t)
k (s))−Qt′

k (s, a
χ(t)
k (s)))

≥ −2λ
t−1∑

t′=χ(t)

∥∥∥∆t′

k

∥∥∥+ γλ(t− 1− χ(t))(σ
(Pk)

at
k
(s)

s

(VMP)− σ̂
(Pk)

at
k
(s)

s

(VMP)). (102)

By plugging the bounds in (101) and in (102) back into (98), we obtain∥∥∥∥max
k∈K

(σPk
(VMP)− σPk

(V t
k ))

∥∥∥∥ ≤ ∥∥∆χ(t)

∥∥+max
k∈K

∥∥∥V χ(t)
k − V t

k

∥∥∥
≤
∥∥∆χ(t)

∥∥+ 2λmax
k∈K

t−1∑
t′=χ(t)

∥∆t′

k ∥

+ γλ(t− 1− χ(t)) max
k,s,a∈K×S×A

|σ(Pk)as
(VMP)− σ̂(Pk)as

(VMP)|. (103)

This hence completes the proof.

E.6. Proof of Lemma E.4

When t mod E = 0, then ∆t
k = ∆χ(t). When t mod E ̸= 0, we have

Qt
k = (1− λ)Qt−1

k + λ(r + γσPk
(V t−1

k ))

= (1− λ)Qt−1
k + λ(QMP − r − γσ̂Pk

(VMP) + r + γσPk
(V t−1

k )). (104)

Thus

∆t
k = (1− λ)∆t−1

k + λγ(σ̂Pk
(VMP)− σPk

(V t−1
k ))

= (1− λ)∆t−1
k + λγ(σ̂Pk

(VMP)− σPk
(VMP) + σPk

(VMP)− σPk
(V t−1

k ))

= (1− λ)t−χ(t)∆χ(i) + γλ

t−1∑
t′=χ(t)

(1− λ)t−t′−1(σ̂Pk
(VMP)− σPk

(VMP))

+ γλ

t−1∑
t′=χ(t)

(1− λ)t−t′−1(σPk
(VMP)− σPk

(V k
j )). (105)

For any state-action pair (s, a) ∈ S ×A,∣∣∣(1− λ)t−χ(t)∆χ(t)(s, a)
∣∣∣ ≤ (1− λ)t−χ(t)

∥∥∥∆χ(t)
∥∥∥ . (106)

Note that

γλ

t−1∑
t′=χ(t)

(1− λ)t−t′−1(σ̂Pk
(VMP)− σPk

(VMP)) ≤
γ

1− γ
λ

t−1∑
t′=χ(t)

(1− λ)t−t′−1Γ

≤ γ

1− γ
λ(E − 1)Γ, (107)

for all (s, a) ∈ S ×A, t ∈ [0, T − 1] and k ∈ K. In addition, we have∥∥∥∥∥∥γλ
t−1∑

t′=χ(t)

(1− λ)t−t′−1(σPk
(VMP)− σPk

(V t′

k ))

∥∥∥∥∥∥ ≤ γλ

t−1∑
t′=χ(t)

(1− λ)t−t′−1
∥∥∥∆t′

k

∥∥∥ . (108)
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By combining the bounds in (106), (107), and (108), we obtain

∥∥∆t
k

∥∥ ≤ (1− λ)t−χ(t)
∥∥∥∆χ(t)

∥∥∥+ γ

1− γ
λ(E − 1)Γ + γλ

t−1∑
t′=χ(t)

(1− λ)t−t′−1
∥∥∥∆t′

k

∥∥∥
≤ (1− (1− γ)λ)t−χ(t)

∥∥∥∆χ(t)
∥∥∥+ (1 + γλ)t−χ(t)(

γ

1− γ
λ(E − 1)Γ), (109)

where the last inequality can be shown via inducting on t− χ(t) ∈ {0, · · · , E − 1}. When λ ≤ 1
E ,

(1 + γλ)t−χ(t) ≤ (1 + λ)E ≤ (1 + 1/E)E ≤ e ≤ 3. (110)

Hence ∥∥∆t
k

∥∥ ≤ ∥∥∥∆χ(t)
∥∥∥+ 3

γ

1− γ
λ(E − 1)Γ, (111)

which completes the proof.

E.7. Proof of Theorem 6.4

Since E[T̂k] = Tk, by Lemma 6.2 it follows that E[T̂MLMC] = TMP. Then by replacing Tk and TMP with their
expectation versions, the proof follows naturally as that in Theorem E.2, and is thus omitted.
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F. Proof of Proposition 7.1
Proof. We show that ∩Kk Pk satisfies the condition. We denote the robust value function w.r.t. ∩Kk Pk by V π

∩ , then we have
that

V π
∩ − V π

MP = γσπ
∩Pk

(V π
∩ )− γmax

k
σπ
Pk

(V π
MP)

= γσπ
∩Pk

(V π
∩ )− γσπ

∩Pk
(V π

MP) + γσπ
∩Pk

(V π
MP)− γmax

k
σπ
Pk

(V π
MP)

≥ γσπ
∩Pk

(V π
∩ )− γσπ

∩Pk
(V π

MP), (112)

which is due to ∩Pk ⊆ Pk. Thus

V π
∩ − V π

MP ≥ γσπ
∩Pk

(V π
∩ )− γσπ

∩Pk
(V π

MP) ≥ γP′(V π
∩ − V π

MP), (113)

and thus

V π
∩ ≥ V π

MP. (114)

G. Model-Free Algorithm Design and Analysis
We then develop studies for model-free setting. We will focus on lp-norm defined uncertainty set (Kumar et al., 2023b;
Derman et al., 2021):

Ps,a = {Ps,a + q : q ∈ Q},Q =

{
q ∈ RS :

∑
i

q(i) = 0, ∥q∥α ≤ Γs,a

}
, (115)

where Γs,a is small enough so that Ps,a + q ∈ ∆(S), ∀q ∈ Q.

For these uncertainty sets, their robust Bellman operator can be estimated through a model-free estimator. Specifically, for
any p, set

κ(V ) ≜ Rmin
w∈R
∥we− V ∥q, (116)

with q = 1
1− 1

p

. For popular choices of p, the optimization problem in (116) has a closed-form solution, specified in Table 5

(Kumar et al., 2023b). It then holds that

p κ(v)

∞ maxs v(s)−mins v(s)
2

2

√∑
s

(
v(s)−

∑
s v(s)

S

)2
1

∑⌊(S+1)/2⌋
i=1 v(si)−

∑S
i=⌊(S+1)/2⌋ v(si)

Table 5. Penalty term for lp-norm uncertainty set

Lemma G.1. (Theorem 1 in (Kumar et al., 2023b)) Let Ps,a be the uncertainty set defined using the lp-norm. For any
vector V , the following relationship holds:

σPs,a
(V ) = Ps,aV − κs,a(V ), (117)

where κ is defined as in (116).

With these results, we use the model-free estimator V (s′) − Γκ(V ) to estimate the robust Bellman operator and design
model-free MTDL-Avg algorithm. The model-free variant of MDTL-Max can be designed similarly.

We then study its convergence.
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Algorithm 3 Model-Free MDTL-Avg
1: Initialization: Qk ← 0
2: for t = 0, ..., T − 1 do
3: for k = 1, ...,K do
4: for All s do
5: V k(s)← maxa Q

k(s, a)
6: for All a do
7: Take action a and observe the next state s′(s, a)
8: Qk(s, a)← (1− λt)Q

k(s, a) + λt(r(s, a) + γV k(s′(s, a))− γΓκ(V k))
9: Qk(s, a)← max{0, Qk(s, a)}

10: end for
11: end for
12: end for
13: if t ≡ 0(modE) then
14: Q̄(s, a)←

∑
k Qk(s,a)

K ,∀s, a
15: Qk(s, a)← Q̄(s, a),∀s, a, k
16: end if
17: end for

Similarly, define

∆t+1 := Q∗ − Q̄t+1, and ∆0 := Q∗ −Q0, (118)

where we denote Q∗
AO by Q∗.

Lemma G.2 (Error iteration). For any t ≥ 0,

∆t+1 ≤ (1− λ)t+1∆0 + γλ

t∑
i=0

(1− λ)t−i 1

K

K∑
k=1

(σk(V ∗)− σk(V k
i ))

+ γλ

t∑
i=0

(1− λ)t−i 1

K

K∑
k=1

(P kV k
i − P k

i V
k
i ). (119)
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Proof. The update of ∆t+1 is as follows:

∆t+1 = Q∗ − Q̄t+1

=
1

K

K∑
k=1

(Q∗ −Qk
t+1)

≤ 1

K

K∑
k=1

(Q∗ − (1− λ)Qk
t − λ(r + γP k

t V
k
t − γκ(V k

t )))

=
1

K

K∑
k=1

((1− λ)(Q∗ −Qk
t ) + λ(Q∗ − r − γP k

t V
k
t + γκ(V k

t )))

= (1− λ)∆t + γλ
1

K

K∑
k=1

(σk(V ∗)− σk(V k
t ) + σk(V k

t )− γP k
t V

k
t + γκ(V k

t ))

= (1− λ)∆t +
γλ

K

K∑
k=1

(σk(V ∗)− σk(V k
t )) +

γλ

K

K∑
k=1

(P kV k
t − P k

t V
k
t )

= (1− λ)t+1∆0 + γλ

t∑
i=0

(1− λ)t−i 1

K

K∑
k=1

(σk(V ∗)− σk(V k
i ))

+ γλ

t∑
i=0

(1− λ)t−i 1

K

K∑
k=1

(P kV k
i − P k

i V
k
i ).

Lemma G.3. It holds that

0 ≤ Qk
t (s, a) ≤

1

1− γ
, (120)

∥Q∗ −Qk
t ∥ ≤

1

1− γ
, (121)

∥V ∗ − V k
t ∥ ≤

1

1− γ
, ∀ t ≥ 0, and k ∈ [K]. (122)

Proof. Due to the update rule, Qk
t ≥ 0. On the other hand, if Qk

t (s, a) = (1−λt)Q
k
t−1(s, a)+λt(r(s, a)+γV k

t−1(s
′(s, a))−

γΓκ(V k
t−1)), then

Qk
t (s, a) ≤ (1− λt)Q

k
t−1(s, a) + λt(r(s, a) + γV k

t−1(s
′(s, a))) ≤ 1

1− γ
, (123)

which is from introduction assumption on V k
t−1 ≤ 1

1−γ .

(122) then directly follows.

Lemma G.4. If t mod E = 0, then ∥ 1
K

∑K
k=1(σ

k(V ∗)− σk(V k
t ))∥ ≤ ∥∆t∥. Otherwise,

∥ 1
K

K∑
k=1

(σk(V ∗)− σk(V k
t ))∥

≤ ∥∆χ(t)∥+ 4λ
1

K

K∑
k=1

t−1∑
t′=χ(t)

∥∆k
t′∥+ γλ

1

K

K∑
k=1

max
s,a
|

t−1∑
t′=χ(t)

(σk
s,a)t′(V

∗)− σ̄s,a(V
∗)|.

where we use the convention that
∑χ(t)−1

t′=χ(t) ∥∆
k
t′∥ = 0.
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Proof. When t mod E = 0, i.e., i is a synchronization round, Qk
t = Qk′

t for any pair of agents k, k′ ∈ [K]. Hence,

| 1
K

K∑
k=1

(σk
s,a(V

∗)− σk
s,a(V

k
t ))| (124)

= | 1
K

K∑
k=1

(σk
s,a(V

∗)− σk
s,a(V̄t))| (125)

≤ 1

K

K∑
k=1

∥V ∗ − V̄t∥

≤ ∥Q∗ − Q̄t∥
= ∥∆t∥. (126)

For general t, we have

∥ 1
K

K∑
k=1

(σk(V ∗)− σk(V k
t ))∥

= ∥ 1
K

K∑
k=1

(σk(V ∗)− σk(V k
χ(t)) + σk(V k

χ(t))− σk(V k
t ))∥ (127)

≤ ∥ 1
K

K∑
k=1

σk(V ∗)− σk(V k
χ(t))∥+ ∥

1

K

K∑
k=1

(σk(V k
χ(t))− σk(V k

t ))∥

≤ ∥∆χ(t)∥+ ∥
1

K

K∑
k=1

(σk(V k
χ(t))− σk(V k

t ))∥

≤ ∥∆χ(t)∥+
1

K

K∑
k=1

∥V k
χ(t) − V k

t ∥. (128)

For any state s, we have

V k
t (s)− V k

χ(t)(s)

= Qk
t (s, a

k
t (s))−Qk

χ(t)(s, a
k
χ(t)(s)), where akt (s) = argmaxa′Qk

t (s, a
′)

(a)

≤ Qk
t (s, a

k
t (s))−Qk

χ(t)(s, a
k
t (s))

= Qk
t (s, a

k
t (s))−Qk

t−1(s, a
k
t (s)) +Qk

t−1(s, a
k
t (s))−Qk

t−2(s, a
k
t (s))

+ · · ·+Qk
χ(t)+1(s, a

k
t (s))−Qk

χ(t)(s, a
k
t (s)). (129)

where inequality (a) holds because Qk
χ(t)(s, a

k
t (s)) ≤ Qk

χ(t)(s, a
k
χ(t)(s)).

Now consider each t′ such that χ(t) ≤ t′ ≤ t. If Qk
t′+1(s, a

k
t (s)) = 0, then

Qk
t′+1(s, a

k
t (s))−Qk

t′(s, a
k
t (s)) = −Qk

t′(s, a
k
t (s)) ≤ 2λ∥∆k

t′∥.
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On the other hand, if Qk
t′+1(s, a

k
t (s)) ̸= 0, it holds that

Qk
t′+1(s, a

k
t (s))−Qk

t′(s, a
k
t (s))

= (1− λ)Qk
t′(s, a

k
t (s)) + λ(r(s, akt (s)) + γ(P k)s,ak

t (s)
(V k

t′ )− γΓκ(V k
t′ )−Qk

t′(s, a
k
t (s))

= −λQk
t′(s, a

k
t (s)) + λ

(
Q∗(s, akt (s))− r(s, akt (s))− γσ̄s,ak

t (s)
(V ∗) + r(s, akt (s))

+ γ(P k
t )s,ak

t (s)
(V k

t′ )− γΓκ(V k
t′ )
)

= λ∥∆k
t′∥+ λ

(
− γ(σ̄s,ak

t (s)
(V ∗) + γ(σk

s,ak
t (s)

)t′(V
∗)

− γ(σk
s,ak

t (s)
)t′(V

∗) + γ(P k
t )s,ak

t (s)
(V k

t′ )− γΓκ(V k
t′ )
)

≤ 2λ∥∆k
t′∥+ γλ|(σk

s,ak
t (s)

)t′(V
∗)− σ̄s,ak

t (s)
(V ∗)|,

where the last inequality is from the fact that κ is 1-Lipschitz (Kumar et al., 2023b).

Thus,

V k
t (s)− V k

χ(t)(s)

≤
t−1∑

t′=χ(t)

Qk
t′+1(s, a

k
t (s))−Qk

t′(s, a
k
t (s))

≤ 2λ

t−1∑
t′=χ(t)

∥∆k
t′∥+ γλ

t−1∑
t′=χ(t)

|(σk
s,ak

t (s)
)t′(V

∗)− σ̄s,ak
t (s)

(V ∗)|. (130)

Similarly, we have

V k
t (s)− V k

χ(t)(s)

≥ −2λ
t−1∑

t′=χ(t)

∥∆k
t′∥+ γλ

t−1∑
t′=χ(t)

((σk
s,ak

χ(t)
(s))t′(V

∗)− σ̄s,ak
χ(t)

(s)(V
∗)). (131)

Plugging the bounds in (130) and in (131) back into (127), we get

∥ 1
K

K∑
k=1

(σk(V ∗)− σk(V k
t ))∥

≤ ∥∆χ(t)∥+
1

K

K∑
k=1

∥V k
χ(t) − V k

t ∥

≤ ∥∆χ(t)∥+ 2λ
1

K

K∑
k=1

t−1∑
t′=χ(t)

∥∆k
t′∥

+ γλ
1

K

K∑
k=1

max
s,a
|

t−1∑
t′=χ(t)

(σk
s,a)t′(V

∗)− σ̄s,a(V
∗)|.

This hence completes the proof.

Lemma G.5. Choose λ ≤ 1
E .

∥∆k
i ∥ ≤ ∥∆χ(i)∥+

3γ

1− γ
λ(E − 1)Γ +

6γ

1− γ

√
λ log

SATK

δ
. (132)

Proof. When i mod E = 0, then ∆k
i = ∆χ(i).

43



Pessimism Principle can Be Effective: Towards a Framework for Zero-Shot Transfer Reinforcement Learning

When i mod E ̸= 0,

∆k
i

= Q∗ −Qk
i (133)

≤ Q∗ −
(
(1− λ)Qk

i−1 + λ(r + γσk
i−1(V

k
i−1)) (134)

= (1− λ)∆k
i−1 + λ(γσ̄(V ∗)− γσk

i−1(V
k
i−1))

)
(135)

= (1− λ)∆k
i−1 + λγ(σ̄(V ∗)− σk(V k

i−1)) (136)

= (1− λ)∆k
i−1 + λγ(σ̄(V ∗)− σk

i−1(V
∗) + σk

i−1(V
∗)− σk

i−1(V
k
i−1))

= (1− λ)i−χ(i)∆χ(i) + γλ

i−1∑
j=χ(i)

(1− λ)i−j−1(σ̄(V ∗)− σk
j−1(V

∗))

+ γλ

i−1∑
j=χ(i)

(1− λ)i−j−1(σk
j−1(V

∗)− σk
j−1(V

k
j )). (137)

We then bound the term γλ
∑i−1

j=χ(i)(1− λ)i−j−1(σ̄(V ∗)− σk
j−1(V

∗)). Note that

σ̄(V ∗)− σk
j−1(V

∗)

= σ̄(V ∗)− σk(V ∗) + σk(V ∗)− σk
j−1(V

∗)

≤ Γ

1− γ
+ P kV ∗ − P k

j−1V
∗

≤ Γ

1− γ
+

1

1− γ

√
log

SAKT

δ
, (138)

where the last inequality due to Hoeffding’s inequality.

For any state-action pair (s, a),

|(1− λ)i−χ(i)∆χ(i)(s, a)| ≤ (1− λ)i−χ(i)∥∆χ(i)∥. (139)

In addition, we have

∥γλ
i−1∑

j=χ(i)

(1− λ)i−j−1(σk
j−1(V

∗)− σk
j−1(V

k
j ))∥ ≤ γλ

i−1∑
j=χ(i)

(1− λ)i−j−1∥∆k
j ∥. (140)

Combining the bounds in (139), (138), and (140), we get

∥∆k
i ∥

≤ (1− λ)i−χ(i)∥∆χ(i)∥+
γ

1− γ
λ(E − 1)Γ + γλ

i−1∑
j=χ(i)

(1− λ)i−j−1∥∆k
j ∥

+
γ

1− γ

√
λ log

SAKT

δ
. (141)

The remaining proofs similarly follows the one for Lemma D.3.

Theorem G.6 (Convergence). Choose E − 1 ≤ 1−γ
4γλ and λ ≤ 1

E . It holds that

∥∆T ∥ ≤
4

(1− γ)2
exp{−1

2

√
(1− γ)λT}+ 2γ2

(1− γ)2
(6λ2(E − 1)2 + λ(E − 1))Γ.
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Proof. By Lemma G.2,

∥∆t+1∥ ≤ (1− λ)t+1∥∆0∥+ γλ∥
t∑

i=0

(1− λ)t−i 1

K

K∑
k=1

(σk(V ∗)− σk(V k
i ))∥

+ γλ∥
t∑

i=0

(1− λ)t−i 1

K

K∑
k=1

(P kV k
i − P k

i V
k
i )∥.

Since 0 ≤ Q0(s, a) ≤ 1
1−γ , the first term can be bounded as

(1− λ)t+1∥∆0∥ ≤ (1− λ)t+1 1

1− γ
. (142)

To bound the term ∥γλ
∑t

i=0(1− λ)t−i 1
K

∑K
k=1(σ

k(V ∗)− σk(V k
i ))∥, we divide the summation into two parts as follows.

For any βE ≤ t ≤ T , we have

t∑
i=0

(1− λ)t−iλγ∥ 1
K

K∑
k=1

(σk(V ∗)− σk(V k
i ))∥

=

χ(t)−βE∑
i=0

(1− λ)t−iλγ∥ 1
K

K∑
k=1

σk(V ∗)− σk(V k
i ))∥

+

t∑
i=χ(t)−βE+1

(1− λ)t−iλγ∥ 1
K

K∑
k=1

σk(V ∗)− σk(V k
i ))∥

≤ γ

1− γ
(1− λ)t−χ(t)+βE +

t∑
i=χ(t)−βE+1

(1− λ)t−iλγ∥ 1
K

K∑
k=1

σk(V ∗)− σk(V k
i ))∥.

By Lemma G.4,

∥ 1
K

K∑
k=1

(σk(V ∗)− σk(V k
t ))∥

≤ ∥∆χ(t)∥+ 2λ
1

K

K∑
k=1

t−1∑
t′=χ(t)

∥∆k
t′∥+ γλ

1

K

K∑
k=1

max
s,a
|

t−1∑
t′=χ(t)

(σk
s,a)t′(V

∗)− σ̄s,a(V
∗)|,

hence

t∑
i=χ(t)−βE+1

(1− λ)t−iλγ∥ 1
K

K∑
k=1

σk(V ∗)− σk(V k
i ))∥

≤
t∑

i=χ(t)−βE+1

(1− λ)t−iλγ

(
∥∆χ(i)∥+ 2λ

1

K

K∑
k=1

t−1∑
t′=χ(t)

∥∆k
t′∥

+ γλ
1

K

K∑
k=1

max
s,a
|

i−1∑
j=χ(i)

(σk
s,a)j(V

∗)− σ̄s,a(V
∗)|
)

≤
t∑

i=χ(t)−βE+1

(1− λ)t−iλγ

(
∥∆χ(t)∥+ 2λ

1

K

K∑
k=1

t−1∑
t′=χ(t)

∥∆k
t′∥+ γλΓ

E − 1

1− γ
+

1

1− γ

√
(E − 1) log

SAKT

δ

)
.
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By Lemma G.5, we have that

t∑
i=χ(t)−βE+1

(1− λ)t−iλγ2λ
1

K

K∑
k=1

i−1∑
j=χ(i)

∥∆k
j ∥

≤ 2λ2γ

t∑
i=χ(t)−βE+1

(1− λ)t−i 1

K

K∑
k=1

i−1∑
j=χ(i)

(
∥∆χ(j)∥+

3γ

1− γ
λ(E − 1)Γ +

6γ

1− γ

√
λ log

SATK

δ

)

≤ 2λγ(E − 1) max
χ(t)−βE≤i≤t

∥∆χ(i)∥+
6γ2λ2

1− γ
(E − 1)2Γ +

12λ

1− γ
(E − 1)

√
λ log

SATK

δ
.

Similarly, we get the following recursion holds for all rounds T :

∥∆t+1∥

≤ γ(1 + 2λ(E − 1)) max
χ(t)−βE≤i≤t

∥∆χ(i)∥+
2

1− γ
(1− λ)βE +

γ2

1− γ
(6λ2(E − 1)2 + λ(E − 1))Γ

+ C

(
λ
√
E − 1

1− γ
+

λ1.5(E − 1)

1− γ
+

1

1− γ

√
λ

K

)√
log

SATK

δ
.

Similarly, choosing β = ⌊ 1E
√

(1−γ)T
2λ ⌋, L = ⌈

√
λT
1−γ ⌉, t+ 1 = T , we get

∥∆T ∥

≤ 4

(1− γ)2
exp{−1

2

√
(1− γ)λT}+ 2γ2

(1− γ)2
(6λ2(E − 1)2 + λ(E − 1))Γ

+ C ′

(
(E − 1)λ1.5

(1− γ)2
+

√
E − 1λ

(1− γ)2
+

√
λ

(1− γ)2
√
K

)√
log

SATK

δ
.

Corollary G.7. Choose (E − 1) ≤ min 1
λ{

γ
1−γ ,

1
K }, and λ = 4 log2(TK)

T (1−γ) . Let T ≥ E. Then with probability at least 1− δ

it holds that

∥∆T ∥ ≤
C1

(1− γ)2TK
+

C2 log
2(TK)

(1− γ)3
E − 1

T
Γ +

C3

(1− γ)3
log(TK)√

TK

√
log

SATK

δ
.
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