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Abstract001

This paper quantifies the "embodiment gap" be-002
tween disembodied language models and em-003
bodied agricultural knowledge communication004
through mixed-methods analysis with 78 farm-005
ers. Our key contributions include: (1) the006
Embodied Knowledge Representation Frame-007
work (EKRF), a novel computational architec-008
ture with specialized lexical mapping that in-009
corporates embodied linguistic patterns from010
five identified domains of agricultural expertise;011
(2) the Embodied Prompt Engineering Protocol012
(EPEP), which reduced the embodiment gap by013
47.3% through systematic linguistic scaffolding014
techniques; and (3) the Embodied Knowledge015
Representation Index (EKRI), a new metric for016
evaluating embodied knowledge representation017
in language models. Implementation results018
show substantial improvements across agricul-019
tural domains, with particularly strong gains in020
tool usage discourse (58.7%) and soil assess-021
ment terminology (67% reduction in embodi-022
ment gap). This research advances both theoret-023
ical understanding of embodied cognition in AI024
and practical methodologies to enhance LLM025
performance in domains requiring embodied026
expertise.027

1 Introduction028

Large Language Models (LLMs) have demon-029

strated remarkable capabilities in generating text030

across diverse domains, but their learning re-031

mains fundamentally disembodied—derived en-032

tirely from textual representations without direct033

sensory experience or physical interaction with the034

world. This limitation raises significant questions035

about how LLMs represent domains of knowledge036

that are deeply rooted in embodied experience and037

tacit expertise.038

Agriculture represents an ideal domain for inves-039

tigating these questions, as farming knowledge en-040

compasses multiple dimensions of embodied exper-041
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Bridging the Embodiment Gap

Figure 1: Visualization of the embodiment gap between
farmers’ knowledge (left) and LLM knowledge (right).
The farmer’s linguistic expression is grounded in di-
rect physical experience, resulting in rich sensory de-
scriptions and embodied metaphors. In contrast, LLM
knowledge is derived solely from text without sensori-
motor grounding, leading to more abstract, feature-poor
descriptions. Our EKRF and EPEP frameworks help
bridge this gap by enhancing LLM outputs with embod-
ied linguistic features.

tise that must be communicated linguistically: sen- 042

sory assessment (soil texture evaluation described 043

through specialized haptic vocabulary), procedural 044

knowledge embedded in physical movements (tool 045

usage techniques communicated through sequen- 046

tial linguistic structures), and contextual awareness 047

developed through repeated physical interactions 048

with specific environments (weather prediction ar- 049

ticulated through complex conditional statements). 050

Previous research has examined how farmers 051

communicate their expertise (Ingram, 2008) and 052

how agricultural knowledge is documented in the 053

technical literature (Lindblom et al., 2017). How- 054

ever, little attention has been paid to the specific 055

challenges of representing embodied agricultural 056

knowledge in computational systems, particularly 057

LLMs. 058
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Farmer’s Embodied Knowledge LLM’s Disembodied Knowledge
Knowledge Source: Knowledge Source:
Direct physical experience with soil, plants, and
tools through years of practice.

Processing text about agriculture without any
physical experience.

Example Description: Example Description:
“The soil has this crumbly feel between your fin-
gers that feels like chocolate cake. There’s a
sweet earthiness when you smell it. If it sticks to
tools like cement, you’re working it too wet.”

“Good quality soil has a crumbly texture known
as good tilth. It should hold together when
squeezed but then break apart. The soil should be
dark in color, indicating organic matter content.”

Figure 2: The embodiment gap: farmers develop knowledge through direct physical experience while LLMs learn
solely from text. This creates linguistic differences in sensory richness, metaphorical grounding, conditional
structures, and experiential framing

1.1 Novel Contributions059

We make two significant contributions to the field:060

1. Embodied Knowledge Representation Frame-061

work (EKRF) : We introduce a comprehensive062

computational architecture that bridges the gap be-063

tween sensory experience and linguistic represen-064

tation. The EKRF includes:065

• Sensory-Linguistic Mapping Function that066

mathematically projects from sensory feature067

space to linguistic token space068

• Contextual Adaptation Module that modulates069

token probabilities based on environmental070

context vectors071

• Tacit Knowledge Extraction Pipeline with spe-072

cialized components for identifying and pro-073

cessing embodied knowledge markers in text074

This framework provides both theoretical075

grounding and practical implementation for enhanc-076

ing LLMs’ ability to represent embodied knowl-077

edge linguistically.078

2. Embodied Prompt Engineering Proto-079

col (EPEP) We develop a structured method-080

ology to elicit embodied knowledge from exist-081

ing LLMs through specialized prompt engineering082

techniques:083

• Sensory Scaffolding: Decomposing and hier-084

archically reconstructing sensory experiences085

in prompts using a weighted template system086

• Procedural Anchoring: Grounding abstract087

knowledge in concrete physical sequences088

through a formal grammar-based approach089

• Contextual Variation Injection: Systemati- 090

cally introducing environmental variations us- 091

ing directed acyclic graphs 092

3. Multi-faceted Evaluation Framework We 093

develop a comprehensive evaluation approach that 094

combines the Embodied Knowledge Representa- 095

tion Index (EKRI)—a specialized metric for assess- 096

ing embodied knowledge components—with estab- 097

lished NLP metrics including BLEU, ROUGE, ME- 098

TEOR, linguistic feature analysis, and BERTScore. 099

This dual evaluation strategy enables both targeted 100

assessment of embodied knowledge representation 101

and standardized comparison with existing lan- 102

guage generation systems. 103

These contributions provide both theoretical 104

foundations and practical methodologies for ad- 105

dressing the linguistic challenges of representing 106

embodied knowledge in language models. To pro- 107

mote reproducibility and facilitate future re- 108

search in this area, we will release all code, data, 109

and trained models with this paper The four 110

figures in this paper illustrate key aspects of our 111

research: Figure 1 visualizes the conceptual gap 112

between embodied farmer knowledge and disem- 113

bodied LLM knowledge; Figure 2 (table format) 114

presents concrete examples highlighting linguistic 115

differences in sensory richness and metaphorical 116

grounding; Figure 3 demonstrates the dual archi- 117

tectural and prompting approaches of EKRF and 118

EPEP; and Figure 4 provides a detailed compari- 119

son of enhanced versus standard LLM outputs with 120

annotated embodied features. 121

2 Related Work 122

2.1 Embodied Cognition and Language 123

Barsalou’s (Barsalou, 2008) theory of grounded 124

cognition proposes that language comprehension 125
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involves partial simulations of sensory and motor126

experiences associated with concepts. More re-127

cent work has extended these findings to compu-128

tational linguistics. (Davis and Yee, 2021) devel-129

oped a neural theory of simulation semantics that130

models language comprehension as sensorimotor131

simulation. (Xiang et al., 2023) further proposed132

embodied simulation as a foundation for language133

model knowledge representation, arguing that cur-134

rent LLMs lack the grounding mechanisms present135

in human cognition.136

2.2 Agricultural Knowledge Systems137

Agricultural knowledge encompasses multiple138

knowledge types: explicit technical knowledge,139

tacit procedural knowledge, and contextual ecologi-140

cal knowledge (Morgan and Murdoch, 2000; Zhang141

et al., 2025). The communication of agricultural142

knowledge presents unique challenges. Ingram143

(Ingram, 2008) analyzed knowledge exchange be-144

tween agronomists and farmers, highlighting the145

complexities of translating between scientific and146

experiential knowledge. Carolan (Carolan, 2020)147

further observed that contemporary agricultural148

communication increasingly mediates embodied149

knowledge through technological interfaces, rais-150

ing questions about how such knowledge can be151

effectively represented in digital forms.152

2.3 LLMs and Knowledge Representation153

Limited research has explored LLMs’ capacity to154

represent embodied knowledge. (Xu et al., 2024)155

found that language models struggle with physical156

reasoning tasks that require understanding of object157

affordances.158

In the agricultural domain specifically, Ra-159

manathan et al. (Jewitt et al., 2021; Tzachor160

et al., 2023) explored multimodal sensory integra-161

tion frameworks for linguistic representation of162

physical experiences related to crop assessment.163

Evaluating embodied knowledge representation164

presents unique challenges that standard NLP met-165

rics may not fully capture. Traditional metrics like166

BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),167

and METEOR (Banerjee and Lavie, 2005) assess168

surface-level and semantic similarity between gen-169

erated text and references but may not specifically170

target embodied aspects of knowledge. However,171

as noted by Bisk et al. (Bisk et al., 2020), evaluat-172

ing physical commonsense and embodied knowl-173

edge in language models remains an open chal-174

lenge. Our work builds on these foundations to175

specifically examine the representation of embod- 176

ied agricultural knowledge in LLM, introducing 177

new methods to measure these representational 178

gaps and practical frameworks to address them. 179

3 Methodology 180

We implemented a three-phase data collection pro- 181

cess with ethical oversight: (1) Knowledge Elicita- 182

tion from 78 farmers (22 organic, 18 conventional, 183

16 livestock, 12 vineyard, 10 indigenous; mean 184

experience=17.3 years, SD=9.7) who provided ver- 185

bal and written descriptions of five agricultural 186

tasks—soil assessment, plant disease identification, 187

tool usage, seed planting, and weather prediction. 188

All data was anonymized; (2) LLM Content Gen- 189

eration using GPT-4, Claude 3, and PaLM 2 with 190

three prompt variations (basic, detailed, and few- 191

shot), generating 225 total outputs (3 models × 5 192

tasks × 3 prompt types × 5 outputs) using licensed 193

API access; and (3) Comparative Analysis through 194

blind ratings by agricultural specialists (n=12), task 195

performance studies with novice gardeners (n=35), 196

and computational linguistic analysis comparing 197

features between farmer and LLM-generated con- 198

tent. 199

3.1 Evaluation Framework 200

We developed a comprehensive evaluation ap- 201

proach combining specialized embodied knowl- 202

edge assessment with established NLP metrics: 203

3.1.1 Embodied Knowledge Representation 204

Index (EKRI) 205

The EKRI development involved qualitative analy- 206

sis of agricultural texts, consultation with 14 agri- 207

cultural educators and cognitive linguists, two pilot 208

studies (n = 25, n = 32), and validation against es- 209

tablished embodied cognition measures (r = 0.76 210

with Action-Based Language Assessment). 211

The final EKRI evaluates five dimensions: Sen- 212

sory Richness (α = 0.86), measuring density and 213

diversity of cross-modal sensory vocabulary; Pro- 214

cedural Specificity (α = 0.83), assessing preci- 215

sion of action descriptions and temporal sequenc- 216

ing; Contextual Adaptation (α = 0.79), evalu- 217

ating environmental contingencies and adaptation 218

triggers; Tacit Knowledge Indicators (α = 0.81), 219

identifying markers of experiential learning; and 220

Metaphorical Grounding (α = 0.85), measuring 221

use of concrete physical metaphors. 222

Each component was scored on a 1-10 scale by 223

three raters with high inter-rater reliability (Krip- 224
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pendorff’s α = 0.84, 95% CI [0.81, 0.87]). Exter-225

nal validators not familiar with research hypotheses226

conducted 20% of ratings to control for bias. EKRI227

validation showed strong correlations with expert228

performance ratings (r = 0.72, p < 0.001), task229

completion success (r = 0.68, p < 0.001), and ex-230

isting linguistic embodiment measures (r = 0.76,231

p < 0.001).232

3.1.2 Established NLP Metrics233

To enable comparison with broader NLP litera-234

ture and address potential methodological concerns235

about using only a custom metric, we additionally236

employed established evaluation methodologies:237

1. BLEU, ROUGE, and METEOR: We ap-238

plied standard natural language generation met-239

rics to compare LLM outputs with expert-written240

descriptions: BLEU-4 (Papineni et al., 2002):241

Precision-focused metric measuring n-gram over-242

lap, ROUGE-L (Lin, 2004): Recall-oriented met-243

ric focused on longest common subsequence, ME-244

TEOR (Banerjee and Lavie, 2005): Metric incor-245

porating stemming, synonymy, and word order.246

2. BERTScore: We calculated contextual seman-247

tic similarity between generated content and refer-248

ence texts using BERTScore (Zhang et al., 2020),249

which has been demonstrated to correlate well with250

human judgments of quality.251

The multi-metric evaluation approach used in252

this study addresses potential concerns about circu-253

larity in measuring embodied knowledge. While254

EKRI was derived from analyzing differences be-255

tween farmer and LLM descriptions, the consis-256

tent improvements observed across established257

NLP metrics (BLEU-4, ROUGE-L, METEOR,258

BERTScore) provide independent validation that259

our frameworks enhance output quality beyond sim-260

ply matching pre-defined linguistic patterns. Fur-261

thermore, the strong correlation between EKRI im-262

provements and practical task outcomes (r = 0.73,263

p < .001) demonstrates that our metric captures264

aspects of embodied knowledge that translate to265

real-world performance, not merely surface-level266

linguistic features.267

3.2 Methodology of Frameworks268

3.2.1 Embodied Knowledge Representation269

Framework (EKRF)270

We implemented the EKRF as a comprehensive271

computational architecture with key components:272

Sensory-Linguistic Mapping Function (SLMF): 273

The SLMF projects from sensory feature space to 274

linguistic token space: 275

ϕ(s) = softmax(W2 ·ReLU(W1s+b1)+b2) (1) 276

where s ∈ Rd is a vector representation of sen- 277

sory features, W1 ∈ Rh×d and W2 ∈ Rv×h are 278

learnable weight matrices, b1 ∈ Rh and b2 ∈ Rv 279

are bias vectors, h is the hidden dimension size, 280

d is the sensory feature dimension, and v is the 281

vocabulary size. The function ϕ maps sensory fea- 282

tures to a probability distribution over vocabulary 283

tokens. 284

For implementation, sensory feature vectors 285

were constructed from: Annotated corpus of sen- 286

sory descriptions (12,500 examples), ratings by 287

sensory experts (n=7) on 5-dimensional sensory 288

scales and embeddings derived from multimodal 289

sensory datasets. Training used Adam optimizer 290

with learning rate 5e-5, batch size 32, for 15 epochs 291

on 4 NVIDIA A100 GPUs. 292

Practical example: When a farmer describes 293

soil as having “good tilth,” the SLMF would map 294

this abstract concept to concrete sensory features 295

including granular structure (visual), crumbliness 296

(tactile), earthy aroma (olfactory), and moisture 297

level (tactile). These sensory mappings are then 298

used to generate more embodied language. 299

For instance, given input describing soil quality 300

in abstract terms, the system transforms it to: 301

“The soil should have good structure” 302
SLMF−−−→ “When you squeeze the soil 303

gently, it should crumble into small, 304

rounded clumps—almost like chocolate 305

cake crumbs—rather than forming a 306

solid mass or falling apart completely. 307

It should leave a slight earthy stain on 308

your palm that brushes off easily.” 309

Contextual Adaptation Module (CAM): The 310

CAM modulates token probabilities based on envi- 311

ronmental context through an attention mechanism: 312

α(ht, e) =
exp(hTt Wee)∑E

j=1 exp(h
T
t Weej)

(2) 313

where ht ∈ Rh is the hidden state at time step 314

t, e ∈ Rc is the environmental context vector, 315

We ∈ Rh×c is a learnable projection matrix, E 316

is the number of possible environmental contexts 317

4



Standard LLM Output Enhanced Output

Embodied Knowledge Representation Framework (EKRF)

Sensory-Linguistic MappingContextual AdaptationTacit Knowledge Extraction

Token Distribution Modulation

Embodied Prompt Engineering Protocol (EPEP)
Sensory Scaffolding Procedural Anchoring Contextual Variation

Standard: “Check soil
texture. Sandy feels
gritty; clay forms rib-
bons.”

Prompt: “Explain how
to assess soil quality.”

Enhanced: “Soil
should crumble like
chocolate cake, with a
sweet earthy aroma.”

EPEP Prompt: “De-
scribe soil assessment
with tactile sensations
and adaptations.”

Figure 3: Our dual approach bridges the embodiment gap in agricultural language: EKRF enhances LLM outputs
through architectural modifications, while EPEP transforms prompts to elicit embodied responses without modifying
the underlying model.

considered, and α(ht, e) represents the attention318

weights that determine the importance of each en-319

vironmental context.320

Practical example: The CAM adapts descrip-321

tions based on contextual factors like soil type, cli-322

mate, and season. For instance, when discussing323

seed planting:324

Base: “Plant seeds at appropriate depth”325

Sandy soil: “Plant 30% deeper than326

usual, as looser structure and faster327

drainage causes quicker drying.”328

Clay soil: “Plant slightly shallower with329

wider depression to prevent waterlog-330

ging.”331

Tacit Knowledge Extraction Pipeline (TKEP):332

We developed specialized components for identify-333

ing and processing embodied knowledge markers334

in text. For example, the Embodied Metaphor Clas-335

sifier identifies and extends metaphors that commu-336

nicate physical knowledge:337

Example:338

Original: “The soil structure should al-339

low for proper drainage.”340

TKEP: “Soil should be like a good341

sponge—holding moisture without wa-342

terlogging. After rain, it should feel343

damp not soggy, with small air pockets 344

throughout.” 345

The TKEP implementation included a custom 346

NER model for identifying embodied knowledge 347

markers (F1=0.83), a metaphor detection system 348

trained on agricultural texts (precision=0.79, re- 349

call=0.81), a conditional rule extraction module 350

using dependency parsing, and an integration layer 351

connecting to LLM decoding process. 352

For proprietary models (GPT-4, Claude 3, PaLM 353

2), we used an API-based implementation with 354

pre-processing of queries through our EKRF com- 355

ponents, post-processing of generated text using 356

the TKEP, and re-ranking of candidates based on 357

embodiment scores. Open source models allowed 358

direct integration into the transformer architecture 359

by adding SLMF as an additional layer before fi- 360

nal language modeling head, incorporating CAM 361

within the attention mechanism, and integrating 362

TKEP into the decoding process. 363

3.2.2 Embodied Prompt Engineering Protocol 364

(EPEP) 365

The EPEP is a structured methodology with four 366

components that transform standard prompts into 367

ones that elicit more embodied knowledge from 368

existing LLMs: 369
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Standard LLM Output EKRF/EPEP Enhanced Output
To assess soil quality, examine the texture with a ribbon
test. Moistened soil will feel gritty (sandy) or form ribbons
(loamy/clay). Check color - darker soils generally indicate
higher organic matter.

When assessing soil, feel it carefully - good loam
should crumble gently not clump or fall apart. It
feels like chocolate cake crumbs with pleasant resistance.
If it leaves a slight earthy residue easily brushed off, that’s
good. The soil has a sweet, mushroom-like aroma, not
sour, and makes a soft whisper not a gritty scratch. If too
wet, it feels slick and sticks like cement - wait until drier.

Feature Standard Enhanced
Sensory terms 4 (visual, texture) 18 (touch, smell, sound, visual)
Metaphors None 5 (chocolate cake, cement, etc.)
Conditionals None 2 (residue and moisture)
Epistemic 1 (generally) 2 (should, appropriate certainty)

Figure 4: Comparison of standard vs. EKRF/EPEP enhanced soil assessment outputs, highlighting embodied
knowledge features: sensory terms (blue), metaphors (purple), conditionals (green), and epistemic markers (orange).

1. Sensory Scaffolding (SS): Sensory scaffold-370

ing decomposes and reconstructs sensory experi-371

ences in prompts. The formal implementation is:372

SS(T ) = γ1Tbase +
D∑
i=1

γiTi(di) (3)373

where Tbase is the base template prompt, di rep-374

resents the i-th sensory domain (e.g., visual, tactile,375

olfactory), Ti is a template function that generates376

prompting text for sensory domain i, D is the total377

number of sensory domains considered, and γi are378

weighting coefficients determining the importance379

of each sensory domain (with
∑D+1

i=1 γi = 1).380

Practical example:381

Standard: “Explain how to identify pow-382

dery mildew.”383

Sensory: “Explain how to identify pow-384

dery mildew: appearance (color, tex-385

ture, pattern), tactile qualities, smell, and386

changes across lighting conditions and387

growth stages.”388

2. Procedural Anchoring (PA): Procedural an-389

choring grounds knowledge in physical sequences390

and concrete actions through a specialized gram-391

mar.392

Example transformation:393

Standard: “How to use a hoe effec-394

tively?”395

Procedural: “Describe using a hoe effec-396

tively: (1) body position, (2) hand posi-397

tions/grip pressure, (3) tool angles, (4)398

sensations indicating correct technique,399

(5) adjustments for resistance, (6) com-400

mon mistakes and their physical feed-401

back.”402

3. Contextual Variation Injection (CVI): CVI 403

systematically introduces environmental variations 404

to prompt adaptations: 405

Example application: 406

Base: “Explain when to harvest toma- 407

toes.” 408

CVI: “Explain when to harvest tomatoes, 409

adapting for: (a) hot/dry vs. cool/humid 410

climates; (b) after rain vs. drought; (c) 411

cherry vs. beefsteak varieties; (d) dis- 412

eased vs. healthy plants; (e) immediate 413

use vs. storage/processing.” 414

The complete EPEP pipeline applies these com- 415

ponents sequentially: 416

EPEP (q, d) = CV I(PA(SS(q)), d, conf(q, d))
(4) 417

where q is the original query, d represents the 418

domain-specific knowledge (agricultural domain in 419

our case), and conf(q, d) is a confidence function 420

that determines the appropriate level of contextual 421

variation based on the query and domain. 422

3.2.3 Main Experiments 423

The experimental design included: 424

1. Baseline Assessment: Evaluated all three 425

LLMs on agricultural tasks without enhance- 426

ment 427

2. EKRF Evaluation: Implemented EKRF ex- 428

tensions to each LLM architecture 429

3. EPEP Evaluation: Applied optimized 430

prompting techniques without model modi- 431

fication 432

4. Combined Approach: Tested EKRF+EPEP 433

integration 434
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Table 1: EKRI Scores Across Experimental Conditions
and Agricultural Domains

Approach Soil Disease Tool Seed Weather

Farmer (Ref.) 8.7 8.2 7.9 7.4 7.8
Baseline LLM 5.3 4.8 3.6 5.1 4.5
EKRF 7.5 7.0 5.7 6.8 6.3
EPEP 7.2 6.7 5.9 6.5 6.2
Combined 8.0 7.5 6.5 7.1 6.8

Table 2: Key Linguistic Features in Farmer vs. LLM
Descriptions

Feature Farmer LLM Sig.

Sensory terms/100 words 8.7 2.8 < .001
Haptic adj. diversity 27.4 9.8 < .001
1st-person markers/desc. 7.8 0.3 < .001
If-then w/ sensory cues 6.4 2.3 < .001
Embodied metaphors 7.3 2.5 < .001
Domain hedging devices 9.2 3.6 < .001

Each experiment was conducted across all five435

agricultural domains with 25 task variations per436

domain.437

4 Results438

4.1 Quantitative Analysis of the Embodiment439

Gap440

The EKRI scores revealed significant differences441

between farmer and LLM descriptions across all442

five domains of agricultural expertise (Table 1).443

The largest gaps appeared in domains requiring444

fine motor skills (tool usage) and multisensory in-445

tegration (soil assessment). The smallest gap was446

in seed planting, which has been more thoroughly447

documented in agricultural literature with specific448

measurements.449

4.2 Corpus Linguistic Analysis of Embodied450

Agricultural Knowledge451

To systematically analyze the linguistic patterns as-452

sociated with embodied agricultural knowledge, we453

performed a comprehensive corpus analysis com-454

paring farmer descriptions with LLM-generated455

content. A representative excerpt from this analy-456

sis is shown in Table 2. Our linguistic analysis re-457

vealed that farmer descriptions demonstrate signifi-458

cantly higher use of domain-specific sensory terms459

and employ much more diverse haptic vocabulary.460

Furthermore, farmers’ descriptions showed sophis-461

ticated patterns of experiential framing through462

first-person markers and deictic expressions an-463

chored in physical space.464

Table 3: Key Results from Ablation Study (EKRI
Scores)

Configuration Soil Tool

Full Framework 8.0 6.5
- SLMF 6.3 4.8
- Sensory Scaffolding 6.6 5.7
- Procedural Anchoring 7.3 5.0

Perhaps most striking was the metaphorical 465

language analysis, which revealed that farmers 466

employed 189% more embodied metaphors with 467

source domains in physical experience. Consider 468

these comparative examples: 469

Farmer: “Soil has this crumbly feel be- 470

tween fingers – breaks apart in rounded 471

pieces like chocolate cake. Sweet earth- 472

iness when you smell it, slight stain on 473

palm but brushes off. If it sticks to tools 474

like cement, it’s too wet.” 475

LLM: “Good soil has crumbly tex- 476

ture (good tilth). Holds together when 477

squeezed then breaks apart. Dark color 478

indicates organic matter. Assess texture, 479

color, structure, and organisms.” 480

4.3 Ablation Study 481

We quantified component contributions through 482

ablation testing (Table 3). Removing the Sensory- 483

Linguistic Mapping Function caused the largest 484

performance drop (-1.8 EKRI points average), con- 485

firming its critical role. The Contextual Adapta- 486

tion Module contributed moderately (+0.9 points), 487

while other components showed domain-specific 488

utility—Sensory Scaffolding for soil assessment 489

(+1.4 points) and Procedural Anchoring for tool 490

usage (+1.5 points). The full framework demon- 491

strated synergistic effects, outperforming individ- 492

ual components by 0.4 points on average. 493

4.4 EKRF Implementation Results 494

We implemented the Embodied Knowledge Rep- 495

resentation Framework as a modular extension to 496

three existing LLM architectures. Implementation 497

results demonstrated significant improvements in 498

embodied knowledge representation (Table 4). 499

The most substantial improvements came from 500

the Sensory-Linguistic Mapping Layer, which 501

alone accounted for approximately 60% of the over- 502

all enhancement. Particularly notable was the im- 503

provement in soil assessment descriptions, where 504
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Table 4: EKRI Scores Across LLM Architectures and
Approaches

Model Baseline EKRF EPEP Combined

GPT-4 5.3 7.6 7.2 8.1
Claude 3 5.1 7.4 7.0 7.9
PaLM 2 4.7 7.1 6.6 7.5

Table 5: Standard NLP Metrics Across Experimental
Approaches

Metric Baseline EKRF EPEP Combined

BLEU-4 0.32 0.47 0.45 0.51
ROUGE-L 0.41 0.58 0.55 0.61
METEOR 0.38 0.53 0.50 0.56
BERTScore 0.78 0.86 0.84 0.89

the integration of haptic data with linguistic repre-505

sentations reduced the embodiment gap by 67%.506

Assessment using standard NLP metrics also507

showed significant improvements with EKRF im-508

plementation (Table 5).509

5 Discussion and Conclusion510

5.1 The Nature of the Embodiment Gap511

Our results demonstrate a substantial and consistent512

gap between how farmers represent embodied agri-513

cultural knowledge linguistically and how LLMs514

conceptualize the same domains. This gap appears515

to be fundamental rather than merely an issue of516

content coverage, as even the most advanced LLMs517

with extensive agricultural training data showed518

similar limitations.519

The embodiment gap is shown in the following520

linguistic areas:521

1. Sensory-Lexical Grounding: LLMs lack the522

sensorimotor foundations that ground human523

conceptual understanding of physical tasks.524

This is evident in the reduced sensory lexical525

specificity and haptic vocabulary diversity in526

LLM descriptions.527

2. Contextual Adaptation Linguistics: Farm-528

ing requires constant adaptation to changing529

environmental conditions, which farmers ex-530

press through complex conditional structures531

and deictic expressions anchored in physi-532

cal space. LLMs struggle to represent this533

dynamic, responsive aspect of agricultural534

knowledge linguistically.535

5.2 Limitations and Future Work 536

While our frameworks demonstrate significant im- 537

provements in embodied knowledge representation, 538

several limitations should be acknowledged: 539

First, our evaluation relies primarily on linguis- 540

tic features as proxies for embodied knowledge. 541

Although we validated EKRI against task per- 542

formance outcomes, future work should incorpo- 543

rate more direct measures of embodied knowledge 544

transfer, such as motion capture during task perfor- 545

mance or sensor-based assessment of agricultural 546

techniques learned from different instruction types. 547

Second, the enhancement approaches demonstrated 548

variable effectiveness across domains, with tool us- 549

age descriptions remaining challenging (58.3% im- 550

provement but still the largest remaining gap). This 551

suggests that certain highly kinesthetic knowledge 552

domains may require multimodal approaches be- 553

yond purely linguistic enhancement. Future work 554

could explore augmenting text with visual demon- 555

strations, haptic feedback, or interactive simula- 556

tions. Finally, our study focused specifically on 557

agricultural knowledge, and while we hypothesize 558

that our findings would generalize to other domains 559

of embodied expertise (e.g., crafts, culinary arts, 560

medicine), this remains to be empirically validated. 561

5.3 Conclusion 562

This study provides the first comprehensive investi- 563

gation of how LLMs represent embodied agricul- 564

tural knowledge compared to the lived expertise 565

of practicing farmers. We quantify a significant 566

and consistent “embodiment gap” across multiple 567

domains of agricultural knowledge, with the largest 568

disparities in areas requiring sensory integration, 569

physical technique, and contextual adaptation. 570

Beyond merely identifying this gap, we devel- 571

oped and validated two novel frameworks to ad- 572

dress it: the Embodied Knowledge Representation 573

Framework (EKRF) and the Embodied Prompt En- 574

gineering Protocol (EPEP). Each of these frame- 575

works demonstrated substantial improvements in 576

how LLMs represent embodied knowledge, with 577

domain-specific strengths. 578

Our findings suggest that the embodiment gap is 579

not unique to agricultural knowledge but represents 580

a fundamental challenge in AI systems attempting 581

to represent domains requiring physical experience. 582
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