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Abstract

The perception and interpretation of speech001
emotion are highly subjective, resulting in in-002
consistent labels from human annotators. Typ-003
ically, only data with majority-agreed labels004
are used to train emotion classifiers, which re-005
sults in the exclusion of data without majority-006
agreed labels and poses challenges to the007
model’s generalisation ability when ambiguous008
emotional expressions are encountered in test.009
To handle ambiguous emotional speech, three010
methods are studied in this paper. First, an ap-011
proach based on evidence theory is introduced012
to quantify the uncertainty in emotion class013
prediction and detect utterances with ambigu-014
ous emotions as out-of-domain samples using015
the uncertainty score. Second, to obtain fine-016
grained distinctions among ambiguous emo-017
tions, we propose re-framing emotion classifi-018
cation as a distribution estimation task, where019
every individual label is taken into account in020
training, not just the majority opinion. Finally,021
we extend the evidential uncertainty measure022
for classification to quantify the uncertainty in023
emotion distribution estimation. Experimen-024
tal results on the IEMOCAP and CREMA-D025
datasets show that our method produces effec-026
tive emotion representations with a reliable un-027
certainty measure1.028

1 Introduction029

The inherent subjectivity of human emotion per-030

ception introduces complexity in annotating speech031

emotion recognition (SER) datasets. Multiple anno-032

tators are often involved in labelling each utterance033

and the majority-agreed (MA) class is usually used034

as the ground truth (Busso et al., 2008; Cao et al.,035

2014). Utterances that have no majority-agreed036

(NMA) labels (i.e., with tied votes) are typically037

excluded during emotion classifier training (Kim038

et al., 2013; Poria et al., 2017; Yang et al., 2021),039

1Code will be available upon acceptance.

which may result in out-of-domain (OOD) issues 040

in practical applications. 041

To handle ambiguous emotional data, a naive 042

approach is to aggregate them into an extra OOD 043

class in emotion classification (Wu et al., 2023). 044

However, since such utterances contain a blend of 045

different emotions, the model needs to classify the 046

more complex and diverse NMA emotional expres- 047

sions into one OOD class while distinguishing the 048

rest of the data into their MA emotional classes. 049

In this paper, we first investigate if an emo- 050

tion classifier is able to respond “I don’t know” 051

for the ambiguous emotional data. An evidential 052

deep learning (EDL) approach (Sensoy et al., 2018) 053

based on Dempster–Shafer belief theory (Demp- 054

ster, 1968) is adapted to quantify the uncertainty 055

in emotion classification. When a SER classifier 056

trained on MA data encounters an NMA utterance 057

during the test, the model should identify it as an 058

OOD sample by providing a high uncertainty score, 059

indicating its uncertainty about the specific emo- 060

tion classes to which the NMA utterance may be- 061

long to. Assuming the probability assignment over 062

the emotion classes as a multinomial distribution, 063

this method places a Dirichlet distribution over the 064

multinomial distributions to model their probabil- 065

ities as second-order probabilities. The concen- 066

tration parameters of the Dirichlet distribution for 067

uncertainty estimation are predicted by a neural 068

network model. 069

Consider the example shown in Fig. 1 with the 070

annotations assigned to three utterances. For in- 071

stance, in utterance (a), eight annotators interpret 072

the speaker as angry while one interprets it as frus- 073

trated. Since the majority emotion classes are “an- 074

gry” for both utterances (a) and (b), they will be 075

assigned to the same ground-truth label “angry” in 076

the aforementioned classification system, which 077

implies that they convey the same emotional con- 078

tent and is evidently unsuitable. On the contrary, 079

utterance (c), though being an NMA utterance, is 080
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Figure 1: The bar chart shows the number of labels as-
signed by annotators to the emotion class “angry” (Ang),
“frustrated” (Fru), and “neutral” (Neu) in an example.

more likely to share similar emotional content with081

utterance (b). To obtain more comprehensive rep-082

resentations of emotional content, we propose rep-083

resenting emotion as a distribution and re-framing084

emotion recognition as a density estimation prob-085

lem rather than a classification problem. The ob-086

jective is to estimate the underlying emotion dis-087

tribution given observed human annotations. In088

this approach, the system is trained to maximise089

the marginal likelihood of observing all human an-090

notations from a multinomial distribution under091

the Dirichlet prior. The EDL approach is then092

generalised to quantify the uncertainty in distri-093

bution estimation. Multiple evaluation metrics are094

adopted to evaluate the proposed system in terms095

of majority prediction, uncertainty measure, and096

distribution estimation. Rather than simply saying097

“I don’t know”, the proposed system demonstrates098

the ability to estimate the emotion distributions of099

the NMA utterances and also offer a reliable un-100

certainty measure for the distribution estimation.101

102

The rest of the paper is organised as follows. Sec-103

tion 2 summarises related work. Sections 3 and 4104

introduces the proposed approach of uncertainty105

quantification and distribution estimation. Evalua-106

tion metrics and experimental setup are presented107

in Sections 5 and 6 respectively. Experimental108

results are shown in Section 7, followed by the109

conclusions.110

2 Related work111

Human annotators often interpret the emotion of112

the same utterance differently due to their personal113

experiences and cultural backgrounds (Busso et al.,114

2008; Cowen and Keltner, 2017; Sethu et al., 2019).115

Instead of using the MA annotation as the ground116

truth label, some research suggests treating SER as117

a multi-label task (Mower et al., 2010; Zadeh et al.,118

2018; Chochlakis et al., 2023) where all emotion119

classes assigned by any annotator are considered120

as correct classes and the ground truth label is pre- 121

sented as a multi-hot vector. The SER model is 122

trained to predict the presence of each emotion 123

class for each utterance. An issue with this ap- 124

proach is that it ignores the differences in strengths 125

of different emotion classes. 126

An alternative approach uses “soft labels” as the 127

proxy of ground truth defined as the relative fre- 128

quency of occurrence of each emotion class (Fayek 129

et al., 2016; Han et al., 2017; Kim and Kim, 2018). 130

The Kullback–Leibler (KL) divergence or distance 131

metrics between the soft labels and model predic- 132

tions are used to train the model. However, soft 133

labels, being maximum likelihood estimates (MLE) 134

of the underlying distribution based on observed 135

samples, might not provide an accurate approxima- 136

tion to the unknown distribution when the number 137

of observations (annotations) is limited. 138

So far, the calibration of SER models has not 139

been extensively studied. In this study, we intro- 140

duce a novel approach for SER combining Demp- 141

ster–Shafer belief theory (Dempster, 1968) and ev- 142

idential deep learning (Sensoy et al., 2018), which 143

provides not only better emotion content estimation 144

but also a reliable measure of the model’s predic- 145

tion confidence. 146

3 Detecting NMA as OOD 147

3.1 Limitation of modelling class probabilities 148

with the softmax activation function 149

A neural network model classifier transforms the 150

continuous logits at the output layer into class prob- 151

abilities by a softmax function. The model predic- 152

tion can thus be interpreted as a categorical distribu- 153

tion with the discrete class probabilities associated 154

with the model outputs. The model is then opti- 155

mised by maximising the categorical likelihood of 156

the correct class, known as the cross-entropy loss. 157

However, the softmax activation function is 158

known to have a tendency to inflate the probabil- 159

ity of the predicted class due to the exponentia- 160

tion applied to transform the logits, resulting in 161

unreliable uncertainty estimations (Gal and Ghahra- 162

mani, 2016; Guo et al., 2017). Furthermore, cross- 163

entropy is essentially MLE, a frequentist technique 164

lacking the capability to infer the variance of the 165

predictive distribution. In this section, evidential 166

deep learning (EDL) (Sensoy et al., 2018) is in- 167

troduced to estimate the model uncertainty which 168

places a second-order probability over the categori- 169

cal distribution. 170
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3.2 Quantify emotion classification171

uncertainty by evidential deep learning172

Consider an emotion class label as a one-hot vector173

y where yk is one if the emotion belongs to class174

k else zero. y is sampled from a categorical distri-175

bution η where each component ηk corresponds to176

the probability of sampling a label from class k:177

y ∼ P(y|η) = Cat(η) = ηykk . (1)178

Assume the categorical distribution is sampled179

from a Dirichlet distribution:180

η ∼ p(η|α) = Dir(η|α) =
1

B(α)

K∏
k=1

ηαk−1
k

(2)181

where B(·) is the Beta function, αk is the hyper-182

parameter of the Dirichlet distribution and α0 =183 ∑K
k=1 αk is the Dirichlet strength. The output of a184

standard neural network classifier is a probability185

assignment over the possible classes and the Dirich-186

let distribution represents the density of each such187

probability assignment, hence modelling second-188

order probabilities and uncertainty.189

Subjective logic (Jsang, 2018) establishes a con-190

nection between the Dirichlet distribution and the191

belief representation in Dempster–Shafer belief the-192

ory (Dempster, 1968), also known as evidence the-193

ory. Consider K classes each associated with a194

belief mass bk and an overall uncertainty mass u,195

which satisfies u+
∑K

k=1 bk = 1. The belief mass196

assignment corresponds to the Dirichlet hyperpa-197

rameter αk: bk = (αk − 1)/α0, where ek = αk−1198

is usually termed evidence (Sensoy et al., 2018).199

The overall uncertainty can then be computed as:200

u =
K

α0
. (3)201

A neural network fΛ can be trained to predict202

Dir(η(i)|α(i)) for a given sample x(i) where Λ is203

the model parameters. The network is similar to204

standard neural networks for classification except205

that the softmax output layer is replaced with a206

ReLU activation layer to assure non-negative out-207

puts, which is taken as the evidence vector for the208

predicted Dirichlet distribution: fΛ(x(i)) = e(i).209

The concentration parameter of the Dirichlet distri-210

bution can be calculated as α(i) = fΛ(x
(i)) + 1.211

Given Dir(η(i)|α(i)), the estimated probability of212

class k can be calculated by:213

E[η(i)k ] =
α
(i)
k

α0
(i)

. (4)214

3.2.1 Training 215

For brevity, superscript i is omitted in this sec- 216

tion. Given one-hot label y and predicted Dirichlet 217

Dir(η|α), the network can be trained by maximis- 218

ing the marginal likelihood of sampling y given the 219

Dirichlet prior. Since the Dirichlet distribution is 220

the conjugate prior of the categorical distribution, 221

the marginal likelihood is tractable: 222

P(y|α) =

∫
P(y|η)p(η|α)dη

=

∫ ∏
k

ηykk
1

B(α)

∏
k

ηαk−1
k

=
B(α+ y)

B(α)
=

∏K
k=1 α

yk
k

α0

∑K
k=1 yk

.

(5) 223

It is equivalent to training the model by minimising 224

the negative log marginal likelihood: 225

LNLL =
K∑
k=1

yk(log(α0)− log(αk)). (6) 226

Following (Sensoy et al., 2018), a regularisation 227

term is added to penalise the misleading evidence: 228

LR = KL(Dir(η|α̃)||Dir(η|1)), (7) 229

where Dir(η|1) denotes a Dirichlet distribution 230

with zero total evidence and α̃ = y+ (1− y)⊙α 231

is the Dirichlet parameters after removal of the 232

non-misleading evidence from predicted α. This 233

penalty explicitly enforces the total evidence to 234

shrink to zero for a sample if it cannot be correctly 235

classified. The overall loss is L = LNLL + λLR 236

where λ is the regularisation coefficient. 237

4 Emotion distribution estimation 238

In order to obtain a fine-grained emotion repre- 239

sentation, we then describe emotion by a distri- 240

bution rather than a single class label. Consider 241

an input utterance x(i) associated with Mi labels 242

from human annotators {y(i)
m }Mi

m=1 where ym = 243

[ym1, . . . , ymK ] is a one-hot vector. Instead of rep- 244

resenting the emotional content by the majority 245

vote class, we propose estimating the underlying 246

emotion distribution η based on the observations 247

{y(i)
m }Mi

m=1. The emotion classification problem is 248

thus re-framed as a distribution estimation problem. 249

In contrast to the “soft label” method in Section 2 250

which approximates the emotion distribution of 251

each x(i) solely based on D(i) = {y(i)
m }Mi

m=1 by 252
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MLE and trains the model to learn this proxy in a253

supervised manner, the proposed approach meta-254

learns a distribution estimator fΛ across all data255

points Dmeta = {D(i)}Ni=1 where N is the number256

of utterances in training. This uses the knowledge257

about the emotion expression and annotation vari-258

ability across different utterances.259

For brevity, superscript i is omitted thereafter.260

Assume {ym}Mm=1 are samples drawn from a multi-261

nomial distribution. Let ŷ =
∑M

m=1 ym represent262

the counts of each emotion class:263

{ym}Mm=1 ∼ P(y|η) = Mult(η,M) (8)264

Mult(η,M) =
Γ(M + 1)∏K
k=1 Γ(ŷk + 1)

ηŷkk . (9)265

The categorical distribution in Eqn. (1) is the spe-266

cial case when M = 1.267

The network is trained by maximising the268

marginal likelihood of sampling {ym}Mm=1 given269

the predicted Dirichlet prior Dir(η|α):270

P({ym}Mm=1|α) =

∫
P({ym}Mm=1|η)p(η|α)dη271

=
Γ(M + 1)∏K
k=1 Γ(ŷk + 1)

∏K
k=1 α

ŷk
k

α0

∑K
k=1 ŷk

. (10)272

The multinomial coefficient is independent of α,273

we thus verify that LNLL in Eqn. (11) can be gener-274

alised to the distribution estimation framework by275

replacing one-hot majority label y with ŷ:276

LNLL∗
=

K∑
k=1

ŷk(log(α0)− log(αk)). (11)277

The regulariser in Eqn. (7) is then modified as:278

LR1 = KL(Dir(η|α̂)||Dir(η|1)) (12)279

where α̂ = ȳ+(1−ȳ)⊙α and ȳ = 1
M

∑M
m=1 ym280

is the soft label. An alternative regulariser is pro-281

posed in order to explicitly regularise the predicted282

multinomial distribution:283

LR2 = KL(ȳ||E[η]). (13)284

Hence, we have extend the EDL method described285

in Section 3.2 for classification to quantify the un-286

certainty in distribution estimation, with the orig-287

inal method (Sensoy et al., 2018) being a special288

case when M = 1 and ŷ becomes the one-hot ma-289

jority label y. In addition, it’s worth noting that the290

proposed approach does not require a fixed number291

of annotators for every utterance and can easily292

generalise to a large number of annotators (i.e., for293

crowd-sourced datasets).294

5 Evaluation metrics 295

The proposed method is evaluated in terms of ma- 296

jority prediction, uncertainty estimation, OOD de- 297

tection, and distribution estimation. 298

Majority prediction. Majority prediction for 299

MA utterances is evaluated by classification accu- 300

racy (ACC) and unweighted average recall (UAR) 301

which is the sum of class-wise accuracy divided by 302

the number of classes. 303

Uncertainty estimation. Model calibra- 304

tion is evaluated by expected calibration error 305

(ECE) (Naeini et al., 2015) and maximum calibra- 306

tion error (MCE) (Naeini et al., 2015). ECE mea- 307

sures model calibration by computing the differ- 308

ence in expectation between confidence and accu- 309

racy. Predictions are partitioned into Q bins equally 310

spaced in the [0,1] range and ECE can be computed 311

as follows: 312

ECE =

Q∑
q=1

|Bq|
n

|Acc(Bq)− Conf(Bq)| . (14) 313

MCE is a variation of ECE which measures the 314

largest calibration gap: 315

MCE = max
q∈{1,...,Q}

|Acc(Bq)− Conf(Bq)| . (15) 316

OOD detection. The area under the receiver 317

operating characteristic (AUROC) and the area un- 318

der the precision-recall curve (AUPRC) are used to 319

evaluate the performance of OOD detection. The 320

estimated uncertainty is used as a decision thresh- 321

old for both AUROC and AUPRC. The baseline is 322

50% for AUROC and is the fraction of positives 323

for AUPRC. NMA utterances are set as the positive 324

class to detect. 325

Distribution estimation. Emotion distribution 326

estimation performance is measured by the nega- 327

tive log-likelihood (NLL) of sampling human anno- 328

tations from the predicted multinomial distribution. 329

6 Experimental setup 330

6.1 Baselines 331

The proposed EDL-based method is compared to 332

baselines including a deterministic classification 333

network with softmax activation trained by the 334

cross-entropy loss between the majority vote la- 335

bel and model predictions (MLE), a Monte-Carlo 336

dropout (Gal and Ghahramani, 2016) model with 337

a dropout rate of 0.5 (MCDP) which is forwarded 338

100 times to obtain 100 samples during inference, 339
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an ensemble (Lakshminarayanan et al., 2017) of 10340

models with the same structure trained by bagging341

(Ensemble), and a MLE model with NMA as an342

extra class (MLE+). An additional baseline is de-343

signed for distribution estimation: a deterministic344

model with softmax activation trained by minimis-345

ing KL divergence between the soft label ȳ and346

predictions as defined in Eqn. (13) (MLE*), which347

is an extension of the MLE system from one-hot348

majority vote labels to soft labels.349

The system described in Section 3.2 is denoted350

as “EDL”. “EDL*(R1)” and “EDL*(R2)” refer351

to the systems proposed in in Section 4 using regu-352

larisation terms defined in Eqn. (12) and Eqn. (13)353

respectively. Uncertainty estimation of EDL mod-354

els are computed by Eqn. (3) while max probability355

is used as confidence measure for other methods.356

6.2 Datasets357

Two publicly available datasets are used in the ex-358

periments: IEMOCAP (Busso et al., 2008) and359

CREMA-D (Cao et al., 2014).360

The IEMOCAP corpus is one of the most widely361

used SER datasets. It consists of 10,039 English362

utterances from 5 dyadic conversational sessions.363

Each utterance is evaluated by a minimum of three364

human annotators for 10 emotion categories, result-365

ing in an average of 3.42 labels per utterance. Only366

16.1% of utterances have an all-annotators-agreed367

emotion label. The emotion distribution is repre-368

sented using a five-dimensional categorical distri-369

bution, including happy (merged with excited), sad,370

neutral, angry, and others. The “others” category371

includes all emotions not covered in the previous372

four categories, primarily dominated by frustration,373

which accounts for over 92% of this category. After374

the grouping, 1429 (14.2%) utterances don’t have375

a majority agreed emotion class label.376

The CREMA-D corpus contains 7,442 English377

utterances from 91 actors with a variety of back-378

grounds. Actors spoke from a selection of 12 sen-379

tences using one of six different emotions (anger,380

disgust, fear, happy, neutral and sad). The dataset381

is annotated by crowd-sourcing. Participants rated382

the emotion based on the combined audiovisual383

presentation, the video alone, and the audio alone.384

Ratings based on audio alone are used in this work.385

95% of the clips have more than 7 ratings and ut-386

terances have 9.21 ratings on average. 644 (8.7%)387

utterances don’t have a majority agreed emotion388

class label.389

Both datasets are divided into an MA subset and390

an NMA subset. Except for MLE+, all other meth- 391

ods are trained on MA data only. For MLE+, NMA 392

is split into 75% train and 25% test. The NMA 393

(train) data is included in MLE+ training. There- 394

fore, OOD detection is evaluated only on NMA 395

(test) data for MLE+ while on the whole NMA sub- 396

set for all other methods. All other methods are 397

also evaluated on the NMA (test) subset for com- 398

parison. For IEMOCAP, unless otherwise stated, 399

models are trained on MA data from Sessions 1-4 400

and MA data from Session 5 is held out as the MA 401

test set. For the CREMA-D dataset, the MA subset 402

is split into train, validation, test in the ratio 70 : 403

15 : 15 following prior work (Ristea and Ionescu, 404

2021). 405

6.3 Model structure 406

The backbone structure used in this paper follows 407

an upstream-downstream paradigm (Bommasani 408

et al., 2021). The upstream model uses the uni- 409

versal speech model (USM) (Zhang et al., 2023) 410

with 300M parameters which contains a CNN- 411

based feature extractor and 12 Conformer (Gulati 412

et al., 2020) encoder blocks of dimension 1024 413

with 8 attention heads. The USM is pre-trained 414

by BEST-RQ (Chiu et al., 2022) which uses a 415

BERT-style training task for the audio input to pre- 416

dict masked speech features. The structure of the 417

downstream model follows SUPERB (Yang et al., 418

2021), a benchmark for evaluating pre-trained up- 419

stream models, which performs utterance-level 420

mean-pooling followed by a fully-connected layer. 421

The pre-trained upstream USM model is frozen. 422

The downstream model computes the weighted 423

sum of the hidden states extracted from each layer 424

of the upstream model. 425

6.4 Implementation details 426

The model is implemented using Pax2. The batch 427

size is set to 256, The coefficient λ is set to 0.8 for 428

IEMOCAP and 0.2 for CREMA-D. The Adafactor 429

optimiser and Noam learning rate scheduler are 430

used with 200 warm up steps and a peak learning 431

rate of 8.84×10−4. Since the CREMA-D dataset 432

is extremely imbalanced (i.e., neutral accounts for 433

over 50%), a balanced sampler is applied during 434

training which makes sure samples in each training 435

batch are roughly balanced. The model is trained 436

for 20k steps which takes ∼ 5 hours on 8 TPU v4s. 437

2https://github.com/google/paxml
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Classify MA Detect NMA (all) Detect NMA (test)
ACC ↑ UAR ↑ ECE ↓ MCE ↓ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

MLE+ 0.447 0.438 0.303 0.383 / / 0.461 0.139
MLE 0.582 0.577 0.206 0.239 0.550 0.471 0.549 0.177

MCDP 0.584 0.572 0.128 0.184 0.566 0.491 0.568 0.203
Ensemble 0.593 0.595 0.439 0.594 0.567 0.491 0.563 0.192

EDL 0.611 0.596 0.103 0.145 0.610 0.530 0.620 0.227

Table 1: Results of quantifying uncertainty in emotion classification on the IEMOCAP dataset. The baseline for
AUPRC is 0.433 for the entire NMA set and 0.160 for the NMA test subset. The best value in each column is
indicated in bold, and the second-best value is underlined.

Classify MA Detect NMA (all) Detect NMA (test)
ACC ↑ UAR ↑ ECE ↓ MCE ↓ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

MLE+ 0.568 0.540 0.216 0.476 / / 0.552 0.156
MLE 0.714 0.672 0.150 0.156 0.578 0.467 0.571 0.179

MCDP 0.717 0.687 0.102 0.109 0.619 0.481 0.614 0.201
Ensemble 0.731 0.674 0.362 0.496 0.598 0.481 0.605 0.198

EDL 0.711 0.714 0.057 0.080 0.645 0.506 0.657 0.234

Table 2: Results of quantifying uncertainty in emotion classification on the CREMA-D dataset. The baseline for
AUPRC is 0.387 for the entire NMA set and 0.097 for the NMA test subset.

Model # Param ACC (%)

Wav2vec 2.0 large
(Baevski et al., 2020)

317M 65.64

Data2vec large
(Baevski et al., 2022)

314M 66.31

HuBERT large
(Hsu et al., 2021)

317M 67.62

WavLM large
(Chen et al., 2022)

317M 70.62

USM-300M
(Zhang et al., 2023)

290M 71.06

Table 3: Four-way classification results IEMOCAP fol-
lowing the SUPERB-ER benchmark setup.

7 Results438

The USM-based backbone structure is first evalu-439

ated following the setup of the emotion recogni-440

tion3 task of the SUPERB benchmark (Yang et al.,441

2021). As shown in Table 3, the backbone structure442

outperforms state-of-the-art methods4.443

3SUPERB-ER setup: four-way emotion classification
(happy, sad, angry, neutral) on IEMOCAP dataset with leave-
one-session-out five-fold cross validation.

4https://superbbenchmark.org/leaderboard
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Figure 2: Confusion matrix of the MLE+ system on
IEMOCAP and CREMA-D.

7.1 Emotion classification uncertainty 444

The proposed EDL-based method is compared to 445

baselines in Table 1 and 2 on the IEMOCAP and 446

CREMA-D dataset respectively. First, the pro- 447

posed method demonstrates comparable classifi- 448

cation performance to the baselines, suggesting 449

that the extension for uncertainty estimation does 450

not undermine the model’s capabilities. In addi- 451

tion, the proposed method offers superior model 452

calibration, as evidenced by the lowest values of 453

ECE and MCE. It also outperforms the baselines 454

in effectively identifying NMA as OOD samples. 455

7.1.1 Including NMA as an additional 456

category degrades the performance 457

The MLE+ results reveal that the addition of the 458

NMA class has a detrimental impact on the clas- 459
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Figure 3: The change of accuracy with respect to the
uncertainty threshold for EDL-based methods on IEMO-
CAP and CREMA-D.

sification performance of the original emotional460

classes. Figure 2 shows the confusion matrix of461

the MLE+ model. NMA itself is challenging to462

predict possibly because it essentially contains a463

mix of different emotion content. Grouping these464

utterances into one class can confuse the model,465

particularly for the classes neutral, sad, frustrated,466

and disgust.467

7.1.2 Reject option for accuracy468

Figure 3 shows the change of accuracy when sam-469

ples with uncertainty larger than a threshold are470

excluded. The model tends to provide more accu-471

rate predictions when it is more confident about its472

prediction, which demonstrates the effectiveness of473

uncertainty prediction.474

7.2 Emotion distribution estimation475

The result of distribution-based methods on clas-476

sification of MA data are shown in Table 4. Com-477

pared to the classification-based methods in Table 1478

and Table 2, it can be seen that distribution-based479

IEMOCAP
ACC UAR ECE MCE

MLE* 0.564 0.562 0.151 0.279
EDL*(R1) 0.623 0.612 0.081 0.208
EDL*(R2) 0.624 0.616 0.025 0.201

CREMA-D
ACC UAR ECE MCE

MLE* 0.693 0.621 0.109 0.115
EDL*(R1) 0.740 0.694 0.029 0.095
EDL*(R2) 0.718 0.722 0.084 0.107

Table 4: Performance of distribution-based methods on
MA data.

NLLMA ↓ NLLNMA (all) ↓

MLE 1.310 1.924
MCDP 0.972 1.266

Ensemble 2.572 2.055
EDL 0.958 1.019

MLE* 0.941 1.137
EDL*(R1) 0.861 0.951
EDL*(R2) 0.833 0.953

Table 5: Distribution estimation results on IEMOCAP.

NLLMA ↓ NLLNMA (all) ↓

MLE 1.532 2.054
MCDP 0.965 1.292

Ensemble 2.285 2.089
EDL 0.757 1.021

MLE* 0.648 0.774
EDL*(R1) 0.614 0.722
EDL*(R2) 0.606 0.698

Table 6: Distribution estimation results on CREMA-D.

methods do not reduce the performance of emotion 480

classification and model calibration on MA data. 481

The proposed EDL* methods are compared to 482

the baselines in terms of the negative log likeli- 483

hood of sampling target labels from the predicted 484

emotion distribution. Results on IEMOCAP and 485

CREMA-D are shown in Table 5 and Table 6. 486

EDL* methods produce improved distribution esti- 487

mation, achieving smaller NLL values on both MA 488

and NMA data. Among the two EDL* methods em- 489

ploying different regularisation terms, EDL* with 490

R2 (defined in Eqn. (13)), which directly applies 491

regularisation to the predicted distribution, exhibits 492

better distribution estimation without sacrificing 493

the calibration capability of the model. 494

7.2.1 Reject option for NLL 495

A reject option is then evaluated for NLL instead of 496

accuracy to examine the model calibration. For a 497

well-calibrated model, a decrease in the NLL value, 498

which is associated with improved distribution esti- 499

mation, is expected when the model becomes more 500

confident. Figure 4 visualises the change of NLL 501

for MA data and NMA data when uncertainty in- 502

creases. For MA, the type of data that has been 503

seen by the models during training, most methods 504

can successfully reject uncertain samples except 505

for MLE and Ensemble, as shown by an increase 506
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Figure 4: Reject option for NLL on IEMOCAP. Results
on CREMA-D show similar trend which can be found
in Appendix B.

in NLL values when the uncertainty threshold in-507

creases. However, for NMA data which the model508

hasn’t seen in training, only the EDL* methods ex-509

hibit the ability to demonstrate an increasing trend510

in NLL values.511

The proficiency of the proposed EDL* methods512

in estimating the emotion distribution and provid-513

ing reliable confidence predictions, demonstrate514

the method’s capacity to estimate both aleatoric515

uncertainty (Matthies, 2007; Der Kiureghian and516

Ditlevsen, 2009), arising from data complexity (i.e.,517

the ambiguity of emotion expression), and epis-518

temic uncertainty, which corresponds to the amount519

of uncommitted belief in subjective logic (Jsang,520

2018).521

7.2.2 Case study522

Emotion distributions estimated by different meth-523

ods are visualised against the label distributions for524

two representative examples in Figure 5. In general,525

distribution-based methods show superior perfor-526

mance in distribution estimation than classification-527

based methods. In the case of an utterance (a)528

which receives two “angry” labels and two “frus-529

trated” labels, the proposed EDL* methods stands530

out by effectively capturing the tie between the531

emotions, whereas the predictions of classification-532

based methods tend to be predominantly skewed533

towards “frustrated”. As for utterance (b), where534

both “disgust” and “neutral” receive four votes,535

along with two votes for “angry” and one for “fear”,536

the emotion distributions predicted by the EDL*537

methods also show a similar pattern. Additional538

examples can be found in Appendix C and Ap-539
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MLE
MCDP
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Oth

(a) Utterance “Ses04M_impro02_F024”
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EDL*(R1)
EDL*(R2)

Label
Hap
Ang
Neu
Sad
Dis
Fea

(b) Utterance “1084_TSI_ANG_XX”

Figure 5: Visualisation of emotion distribution for case
study. Utterance (a) is selected from IEMOCAP. Utter-
ance (b) is selected from CREMA-D.

pendix D. 540

8 Conclusion 541

This work re-examines the emotion classification 542

problem, starting with an exploration of ways to 543

handle data with ambiguous emotions. We first 544

adopt evidence theory to allow the emotion clas- 545

sifier to output “I don’t know” when it encoun- 546

ters utterances with ambiguous emotion. The 547

model is trained to predict the hyperparameters 548

of a Dirichlet distribution, which represents the 549

second-order probability of the probability assign- 550

ment over emotion classes. In order to capture 551

more fine-grained emotion differences, the emotion 552

classification problem is transformed into emotion 553

distribution estimation where each annotation is 554

taken into account rather than only the majority 555

opinion. The EDL-based uncertainty measure is 556

extended to quantify uncertainty in emotion distri- 557

bution estimation. Results on the IEMOCAP and 558

CREMA-D datasets show that given an utterance 559

with ambiguous emotion which the model hasn’t 560

seen during training, the proposed approach is able 561

to estimate its emotion distribution rather than just 562

returning “I don’t know”. 563
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Ethics Statement564

In this work, all human annotations used for train-565

ing were taken from existing publicly available cor-566

pora. No new human annotations were collected.567

In subjective tasks like emotion recognition,568

there is usually no single “correct” answer. The569

conventional approach of imposing a single ground570

truth through majority voting may overlook valu-571

able nuances within each annotator’s evaluation572

and the disagreements between them, potentially573

resulting in the under-representation of minority574

views. This study, instead of exclusively relying575

on the majority vote, integrates emotion annota-576

tions from all annotators for each utterance during577

model training. It is hoped that this work could con-578

tribute to a more inclusive representation of human579

opinions.580

Limitations581

The proposed approach requires the raw labels from582

different human annotators for each sentence to583

be provided by the datasets. Although validated584

only for emotion recognition, the proposed method585

could also be applied to other tasks with disagree-586

ments in subjective annotations, which will be in-587

vestigated in future work.588
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A Alternative activation functions 736

As described in Section 3.2, ReLU is used as the 737

output activation function to make sure the evi- 738

dence is non-negative. This section investigates the 739

use of softplus and exponential as alternative activa- 740

tion functions. As shown in Table 7, using exponen- 741

tial function tends to result in less effective model 742

calibration. As shown by the empirical cumulative 743

distribution function (ECDF) of uncertainty and 744

entropy in Figure 8, exponential activation leads to 745

smaller uncertainty and entropy, which echos the 746

statement in Section 3.1 that exponential activation 747

tends to inflate the probability of the correct class.
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Figure 6: Illustration of the activation functions.
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Figure 7: Reject option for accuracy for EDL methods
with different activation functions.
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Classify MA Detect NMA (all) Detect NMA (test)
IEMOCAP ACC UAR ECE MCE AUROC AUPRC AUROC AUPRC

EDL (ReLU) 0.611 0.596 0.103 0.145 0.610 0.530 0.620 0.227
EDL (Softplus) 0.608 0.574 0.035 0.173 0.617 0.534 0.639 0.251

EDL (Exponential) 0.588 0.601 0.167 0.230 0.593 0.502 0.619 0.225

Classify MA Detect NMA (all) Detect NMA (test)
CREMA-D ACC UAR ECE MCE AUROC AUPRC AUROC AUPRC

EDL (ReLU) 0.701 0.714 0.057 0.080 0.645 0.506 0.657 0.234
EDL (Softplus) 0.692 0.696 0.113 0.309 0.640 0.506 0.633 0.230

EDL (Exponential) 0.723 0.602 0.277 0.277 0.623 0.495 0.626 0.197

Table 7: Comparison of EDL methods with different activation functions on IEMOCAP and CREMA-D.
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Figure 8: Empirical CDF of uncertainty (left) and en-
tropy (right) on IEMOCAP for EDL method with differ-
ent activation functions.
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Figure 9: Empirical CDF of uncertainty (left) and en-
tropy (right) on CREMA-D for EDL method with dif-
ferent activation functions.

B Reject option for NLL on CREMA-D749

This section shows the reject option for NLL on750

CREMA-D dataset. Similar to the findings in Sec-751

tion 7.2.1, most methods are effective for rejecting752

uncertain samples in the MA data, while only the753

EDL* methods are successful for NMA.754
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Figure 10: Reject option for NLL on MA data of
CREMA-D.
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Figure 11: Reject option for NLL on NMA data of
CREMA-D.

C More visualised examples on 755

IEMOCAP 756

This section shows more examples on IEMOCAP. 757

EDL* methods show better estimation of emotion 758
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Figure 12: Case study on IEMOCAP.

D More visualised examples on760

CREMA-D761

This section shows more examples on CREMA-D.762

As can be seen, EDL* methods can better approx-763

imate the distribution of emotional content of an764

utterance.765
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Figure 13: Case study on CREMA-D.

12


	Introduction
	Related work
	Detecting NMA as OOD
	Limitation of modelling class probabilities with the softmax activation function
	Quantify emotion classification uncertainty by evidential deep learning
	Training


	Emotion distribution estimation
	Evaluation metrics
	Experimental setup
	Baselines
	Datasets
	Model structure
	Implementation details

	Results
	Emotion classification uncertainty
	Including NMA as an additional category degrades the performance
	Reject option for accuracy

	Emotion distribution estimation
	Reject option for NLL
	Case study


	Conclusion
	Alternative activation functions
	Reject option for NLL on CREMA-D
	More visualised examples on IEMOCAP
	More visualised examples on CREMA-D

