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Abstract

The perception and interpretation of speech
emotion are highly subjective, resulting in in-
consistent labels from human annotators. Typ-
ically, only data with majority-agreed labels
are used to train emotion classifiers, which re-
sults in the exclusion of data without majority-
agreed labels and poses challenges to the
model’s generalisation ability when ambiguous
emotional expressions are encountered in test.
To handle ambiguous emotional speech, three
methods are studied in this paper. First, an ap-
proach based on evidence theory is introduced
to quantify the uncertainty in emotion class
prediction and detect utterances with ambigu-
ous emotions as out-of-domain samples using
the uncertainty score. Second, to obtain fine-
grained distinctions among ambiguous emo-
tions, we propose re-framing emotion classifi-
cation as a distribution estimation task, where
every individual label is taken into account in
training, not just the majority opinion. Finally,
we extend the evidential uncertainty measure
for classification to quantify the uncertainty in
emotion distribution estimation. Experimen-
tal results on the IEMOCAP and CREMA-D
datasets show that our method produces effec-
tive emotion representations with a reliable un-

certainty measure' .

1 Introduction

The inherent subjectivity of human emotion per-
ception introduces complexity in annotating speech
emotion recognition (SER) datasets. Multiple anno-
tators are often involved in labelling each utterance
and the majority-agreed (MA) class is usually used
as the ground truth (Busso et al., 2008; Cao et al.,
2014). Utterances that have no majority-agreed
(NMA) labels (i.e., with tied votes) are typically
excluded during emotion classifier training (Kim
et al., 2013; Poria et al., 2017; Yang et al., 2021),

'Code will be available upon acceptance.

which may result in out-of-domain (OOD) issues
in practical applications.

To handle ambiguous emotional data, a naive
approach is to aggregate them into an extra OOD
class in emotion classification (Wu et al., 2023).
However, since such utterances contain a blend of
different emotions, the model needs to classify the
more complex and diverse NMA emotional expres-
sions into one OOD class while distinguishing the
rest of the data into their MA emotional classes.

In this paper, we first investigate if an emo-
tion classifier is able to respond “I don’t know”
for the ambiguous emotional data. An evidential
deep learning (EDL) approach (Sensoy et al., 2018)
based on Dempster—Shafer belief theory (Demp-
ster, 1968) is adapted to quantify the uncertainty
in emotion classification. When a SER classifier
trained on MA data encounters an NMA utterance
during the test, the model should identify it as an
OOD sample by providing a high uncertainty score,
indicating its uncertainty about the specific emo-
tion classes to which the NMA utterance may be-
long to. Assuming the probability assignment over
the emotion classes as a multinomial distribution,
this method places a Dirichlet distribution over the
multinomial distributions to model their probabil-
ities as second-order probabilities. The concen-
tration parameters of the Dirichlet distribution for
uncertainty estimation are predicted by a neural
network model.

Consider the example shown in Fig. 1 with the
annotations assigned to three utterances. For in-
stance, in utterance (a), eight annotators interpret
the speaker as angry while one interprets it as frus-
trated. Since the majority emotion classes are “an-
gry” for both utterances (a) and (b), they will be
assigned to the same ground-truth label “angry” in
the aforementioned classification system, which
implies that they convey the same emotional con-
tent and is evidently unsuitable. On the contrary,
utterance (c), though being an NMA utterance, is
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Figure 1: The bar chart shows the number of labels as-
signed by annotators to the emotion class “angry” (Ang),
“frustrated” (Fru), and “neutral” (Neu) in an example.

more likely to share similar emotional content with
utterance (b). To obtain more comprehensive rep-
resentations of emotional content, we propose rep-
resenting emotion as a distribution and re-framing
emotion recognition as a density estimation prob-
lem rather than a classification problem. The ob-
jective is to estimate the underlying emotion dis-
tribution given observed human annotations. In
this approach, the system is trained to maximise
the marginal likelihood of observing all human an-
notations from a multinomial distribution under
the Dirichlet prior. The EDL approach is then
generalised to quantify the uncertainty in distri-
bution estimation. Multiple evaluation metrics are
adopted to evaluate the proposed system in terms
of majority prediction, uncertainty measure, and
distribution estimation. Rather than simply saying
“I don’t know”, the proposed system demonstrates
the ability to estimate the emotion distributions of
the NMA utterances and also offer a reliable un-
certainty measure for the distribution estimation.

The rest of the paper is organised as follows. Sec-
tion 2 summarises related work. Sections 3 and 4
introduces the proposed approach of uncertainty
quantification and distribution estimation. Evalua-
tion metrics and experimental setup are presented
in Sections 5 and 6 respectively. Experimental
results are shown in Section 7, followed by the
conclusions.

2 Related work

Human annotators often interpret the emotion of
the same utterance differently due to their personal
experiences and cultural backgrounds (Busso et al.,
2008; Cowen and Keltner, 2017; Sethu et al., 2019).
Instead of using the MA annotation as the ground
truth label, some research suggests treating SER as
a multi-label task (Mower et al., 2010; Zadeh et al.,
2018; Chochlakis et al., 2023) where all emotion
classes assigned by any annotator are considered

as correct classes and the ground truth label is pre-
sented as a multi-hot vector. The SER model is
trained to predict the presence of each emotion
class for each utterance. An issue with this ap-
proach is that it ignores the differences in strengths
of different emotion classes.

An alternative approach uses “soft labels” as the
proxy of ground truth defined as the relative fre-
quency of occurrence of each emotion class (Fayek
et al., 2016; Han et al., 2017; Kim and Kim, 2018).
The Kullback-Leibler (KL) divergence or distance
metrics between the soft labels and model predic-
tions are used to train the model. However, soft
labels, being maximum likelihood estimates (MLE)
of the underlying distribution based on observed
samples, might not provide an accurate approxima-
tion to the unknown distribution when the number
of observations (annotations) is limited.

So far, the calibration of SER models has not
been extensively studied. In this study, we intro-
duce a novel approach for SER combining Demp-
ster—Shafer belief theory (Dempster, 1968) and ev-
idential deep learning (Sensoy et al., 2018), which
provides not only better emotion content estimation
but also a reliable measure of the model’s predic-
tion confidence.

3 Detecting NMA as OOD

3.1 Limitation of modelling class probabilities
with the softmax activation function

A neural network model classifier transforms the
continuous logits at the output layer into class prob-
abilities by a softmax function. The model predic-
tion can thus be interpreted as a categorical distribu-
tion with the discrete class probabilities associated
with the model outputs. The model is then opti-
mised by maximising the categorical likelihood of
the correct class, known as the cross-entropy loss.

However, the softmax activation function is
known to have a tendency to inflate the probabil-
ity of the predicted class due to the exponentia-
tion applied to transform the logits, resulting in
unreliable uncertainty estimations (Gal and Ghahra-
mani, 2016; Guo et al., 2017). Furthermore, cross-
entropy is essentially MLE, a frequentist technique
lacking the capability to infer the variance of the
predictive distribution. In this section, evidential
deep learning (EDL) (Sensoy et al., 2018) is in-
troduced to estimate the model uncertainty which
places a second-order probability over the categori-
cal distribution.



3.2 Quantify emotion classification
uncertainty by evidential deep learning

Consider an emotion class label as a one-hot vector
y where yj is one if the emotion belongs to class
k else zero. y is sampled from a categorical distri-
bution 7 where each component 7, corresponds to
the probability of sampling a label from class k:

Cat(n) = n*. (1)

Assume the categorical distribution is sampled
from a Dirichlet distribution:

y~P(yln) =

n ~ p(nja) = Dir(n|a) =
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where B(-) is the Beta function, «y is the hyper-
parameter of the Dirichlet distribution and oy =
Zszl ay, is the Dirichlet strength. The output of a
standard neural network classifier is a probability
assignment over the possible classes and the Dirich-
let distribution represents the density of each such
probability assignment, hence modelling second-
order probabilities and uncertainty.

Subjective logic (Jsang, 2018) establishes a con-
nection between the Dirichlet distribution and the
belief representation in Dempster—Shafer belief the-
ory (Dempster, 1968), also known as evidence the-
ory. Consider K classes each associated with a
belief mass by and an overall uncertainty mass u,
which satisfies v + Zszl by, = 1. The belief mass
assignment corresponds to the Dirichlet hyperpa-
rameter ay: b = (o — 1)/, where e, = o —1
is usually termed evidence (Sensoy et al., 2018).
The overall uncertainty can then be computed as:

U= —. 3)

ag
A neural network fa can be trained to predict
Dir(n®|a() for a given sample () where A is
the model parameters. The network is similar to
standard neural networks for classification except
that the softmax output layer is replaced with a
ReL.U activation layer to assure non-negative out-
puts, which is taken as the evidence vector for the
predicted Dirichlet distribution: fA () = e®.
The concentration parameter of the Dirichlet distri-
bution can be calculated as o) = fa(x®) + 1
Given Dir(n®|a(?), the estimated probability of

class k can be calculated by:

Elny] = —=. “)

3.2.1 Training

For brevity, superscript ¢ is omitted in this sec-
tion. Given one-hot label y and predicted Dirichlet
Dir(n|a), the network can be trained by maximis-
ing the marginal likelihood of sampling y given the
Dirichlet prior. Since the Dirichlet distribution is
the conjugate prior of the categorical distribution,
the marginal likelihood is tractable:

P(yla) = / P(ylm)p(nla)dn
ock 1
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It is equivalent to training the model by minimising
the negative log marginal likelihood:

Z%m%

Following (Sensoy et al., 2018), a regularisation
term is added to penalise the misleading evidence:

LN = —log(ax)).  (6)

LR = KL(Dir(n|@)|| Dir(n(1)), (D)

where Dir(n|1) denotes a Dirichlet distribution
with zero total evidenceanda =y + (1 —y) O «
is the Dirichlet parameters after removal of the
non-misleading evidence from predicted . This
penalty explicitly enforces the total evidence to
shrink to zero for a sample if it cannot be correctly
classified. The overall loss is £ = LN + AR
where ) is the regularisation coefficient.

4 Emotion distribution estimation

In order to obtain a fine-grained emotion repre-
sentation, we then describe emotion by a distri-
bution rather than a single class label. Consider
an input utterance (%) associated with M; labels
from human annotators {y }M | where y,, =
[Ym1s- - -, Ymi| is a one-hot vector. Instead of rep-
resenting the emotional content by the majority
vote class, we propose estimating the underlying
emotion distribution 77 based on the observations
{y(i) }Mi_ The emotion classification problem is
thus re-framed as a distribution estimation problem.
In contrast to the “soft label” method in Section 2
which approximates the emotion distribution of

each x(*) solely based on D) = {y )} i, by



MLE and trains the model to learn this proxy in a
supervised manner, the proposed approach meta-
learns a distribution estimator fa across all data
points Dyera = {D}Y | where N is the number
of utterances in training. This uses the knowledge
about the emotion expression and annotation vari-
ability across different utterances.

For brevity, superscript ¢ is omitted thereafter.
Assume {y,, }M_, are samples drawn from a multi-
nomial distribution. Let y = 2%21 Y, represent
the counts of each emotion class:

{Ymtm=1 ~P(yln) = Mult(n, M) (8)

Mult(n, M) = —MED o)

I D@ +1) "
The categorical distribution in Eqn. (1) is the spe-
cial case when M = 1.
The network is trained by maximising the
marginal likelihood of sampling {y,,,}}_, given
the predicted Dirichlet prior Dir(n|a):

f«{ym}%;na>=1/€x{ym}%;lnnxnkwdn
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The multinomial coefficient is independent of «,
we thus verify that LN in Eqn. (11) can be gener-

alised to the distribution estimation framework by
replacing one-hot majority label y with y:

(10)

K
LNLL* Zgjk(log(ao) —log(ag)). (1)
k=1

The regulariser in Eqn. (7) is then modified as:
LR = KL (Dix(n|&)|| Dir(n[1))  (12)

where & = g+ (1—g)Oaand y = ﬁ Z%zl Y
is the soft label. An alternative regulariser is pro-
posed in order to explicitly regularise the predicted
multinomial distribution:

LR = KL (y|[Elm).

Hence, we have extend the EDL method described
in Section 3.2 for classification to quantify the un-
certainty in distribution estimation, with the orig-
inal method (Sensoy et al., 2018) being a special
case when M = 1 and 9y becomes the one-hot ma-
jority label y. In addition, it’s worth noting that the
proposed approach does not require a fixed number
of annotators for every utterance and can easily
generalise to a large number of annotators (i.e., for
crowd-sourced datasets).

(13)

5 Evaluation metrics

The proposed method is evaluated in terms of ma-
jority prediction, uncertainty estimation, OOD de-
tection, and distribution estimation.

Majority prediction. Majority prediction for
MA utterances is evaluated by classification accu-
racy (ACC) and unweighted average recall (UAR)
which is the sum of class-wise accuracy divided by
the number of classes.

Uncertainty estimation. Model calibra-
tion is evaluated by expected calibration error
(ECE) (Naeini et al., 2015) and maximum calibra-
tion error (MCE) (Naeini et al., 2015). ECE mea-
sures model calibration by computing the differ-
ence in expectation between confidence and accu-
racy. Predictions are partitioned into Q bins equally
spaced in the [0,1] range and ECE can be computed
as follows:

Q
B
ECE= Y Bl | ace(B,) - Cont(B,)]. (14)
n
g=1

MCE is a variation of ECE which measures the
largest calibration gap:

MCE = max

Acc(B,) — Conf(B,)|. (15
i [Ace(B;) — Conf(B,)|. (15)

OOD detection. The area under the receiver
operating characteristic (AUROC) and the area un-
der the precision-recall curve (AUPRC) are used to
evaluate the performance of OOD detection. The
estimated uncertainty is used as a decision thresh-
old for both AUROC and AUPRC. The baseline is
50% for AUROC and is the fraction of positives
for AUPRC. NMA utterances are set as the positive
class to detect.

Distribution estimation. Emotion distribution
estimation performance is measured by the nega-
tive log-likelihood (NLL) of sampling human anno-
tations from the predicted multinomial distribution.

6 Experimental setup

6.1 Baselines

The proposed EDL-based method is compared to
baselines including a deterministic classification
network with softmax activation trained by the
cross-entropy loss between the majority vote la-
bel and model predictions (MLE), a Monte-Carlo
dropout (Gal and Ghahramani, 2016) model with
a dropout rate of 0.5 (MCDP) which is forwarded
100 times to obtain 100 samples during inference,



an ensemble (Lakshminarayanan et al., 2017) of 10
models with the same structure trained by bagging
(Ensemble), and a MLE model with NMA as an
extra class (MLE+). An additional baseline is de-
signed for distribution estimation: a deterministic
model with softmax activation trained by minimis-
ing KL divergence between the soft label y and
predictions as defined in Eqn. (13) (MLE#*), which
is an extension of the MLE system from one-hot
majority vote labels to soft labels.

The system described in Section 3.2 is denoted
as “EDL”. “EDL*(R1)” and “EDL*(R2)” refer
to the systems proposed in in Section 4 using regu-
larisation terms defined in Eqn. (12) and Eqn. (13)
respectively. Uncertainty estimation of EDL mod-
els are computed by Eqn. (3) while max probability
is used as confidence measure for other methods.

6.2 Datasets

Two publicly available datasets are used in the ex-
periments: IEMOCAP (Busso et al., 2008) and
CREMA-D (Cao et al., 2014).

The IEMOCAP corpus is one of the most widely
used SER datasets. It consists of 10,039 English
utterances from 5 dyadic conversational sessions.
Each utterance is evaluated by a minimum of three
human annotators for 10 emotion categories, result-
ing in an average of 3.42 labels per utterance. Only
16.1% of utterances have an all-annotators-agreed
emotion label. The emotion distribution is repre-
sented using a five-dimensional categorical distri-
bution, including happy (merged with excited), sad,
neutral, angry, and others. The “others” category
includes all emotions not covered in the previous
four categories, primarily dominated by frustration,
which accounts for over 92% of this category. After
the grouping, 1429 (14.2%) utterances don’t have
a majority agreed emotion class label.

The CREMA-D corpus contains 7,442 English
utterances from 91 actors with a variety of back-
grounds. Actors spoke from a selection of 12 sen-
tences using one of six different emotions (anger,
disgust, fear, happy, neutral and sad). The dataset
is annotated by crowd-sourcing. Participants rated
the emotion based on the combined audiovisual
presentation, the video alone, and the audio alone.
Ratings based on audio alone are used in this work.
95% of the clips have more than 7 ratings and ut-
terances have 9.21 ratings on average. 644 (8.7%)
utterances don’t have a majority agreed emotion
class label.

Both datasets are divided into an MA subset and

an NMA subset. Except for MLE+, all other meth-
ods are trained on MA data only. For MLE+, NMA
is split into 75% train and 25% test. The NMA
(train) data is included in MLE+ training. There-
fore, OOD detection is evaluated only on NMA
(test) data for MLE+ while on the whole NMA sub-
set for all other methods. All other methods are
also evaluated on the NMA (test) subset for com-
parison. For IEMOCAP, unless otherwise stated,
models are trained on MA data from Sessions 1-4
and MA data from Session 5 is held out as the MA
test set. For the CREMA-D dataset, the MA subset
is split into train, validation, test in the ratio 70 :
15 : 15 following prior work (Ristea and Ionescu,
2021).

6.3 Model structure

The backbone structure used in this paper follows
an upstream-downstream paradigm (Bommasani
et al., 2021). The upstream model uses the uni-
versal speech model (USM) (Zhang et al., 2023)
with 300M parameters which contains a CNN-
based feature extractor and 12 Conformer (Gulati
et al., 2020) encoder blocks of dimension 1024
with 8 attention heads. The USM is pre-trained
by BEST-RQ (Chiu et al., 2022) which uses a
BERT-style training task for the audio input to pre-
dict masked speech features. The structure of the
downstream model follows SUPERB (Yang et al.,
2021), a benchmark for evaluating pre-trained up-
stream models, which performs utterance-level
mean-pooling followed by a fully-connected layer.
The pre-trained upstream USM model is frozen.
The downstream model computes the weighted
sum of the hidden states extracted from each layer
of the upstream model.

6.4 Implementation details

The model is implemented using Pax?. The batch
size is set to 256, The coefficient A is set to 0.8 for
IEMOCAP and 0.2 for CREMA-D. The Adafactor
optimiser and Noam learning rate scheduler are
used with 200 warm up steps and a peak learning
rate of 8.84x 107, Since the CREMA-D dataset
is extremely imbalanced (i.e., neutral accounts for
over 50%), a balanced sampler is applied during
training which makes sure samples in each training
batch are roughly balanced. The model is trained
for 20k steps which takes ~ 5 hours on 8 TPU v4s.

Zhttps://github.com/google/paxml



Classify MA Detect NMA (all) Detect NMA (test)

ACC1T UAR1T ECE| MCE | | AUROCT AUPRCT | AUROC1T AUPRC*?YT
MLE+ 0.447 0438 0.303 0.383 / / 0.461 0.139
MLE 0.582 0577  0.206 0.239 0.550 0.471 0.549 0.177
MCDP 0.584 0572 0.128  0.184 0.566 0.491 0.568 0.203
Ensemble | 0.593  0.595 0.439 0.594 0.567 0.491 0.563 0.192
EDL 0.611 0.596 0.103 0.145 0.610 0.530 0.620 0.227

Table 1: Results of quantifying uncertainty in emotion classification on the IEMOCAP dataset. The baseline for
AUPRC is 0.433 for the entire NMA set and 0.160 for the NMA test subset. The best value in each column is

indicated in bold, and the second-best value is underlined.

Classify MA Detect NMA (all) Detect NMA (test)

ACCT UAR1T ECE| MCE] | AUROCT AUPRCT | AUROCT AUPRC?T
MLE+ 0.568 0.540 0.216 0.476 / / 0.552 0.156
MLE 0.714  0.672  0.150 0.156 0.578 0.467 0.571 0.179
MCDP 0.717  0.687  0.102 0.109 0.619 0.481 0.614 0.201
Ensemble | 0.731 0.674  0.362 0.496 0.598 0.481 0.605 0.198
EDL 0.711 0.714  0.057 0.080 0.645 0.506 0.657 0.234

Table 2: Results of quantifying uncertainty in emotion classification on the CREMA-D dataset. The baseline for
AUPRC is 0.387 for the entire NMA set and 0.097 for the NMA test subset.

Model #Param ACC (%)
Baits sl 2020) VM 6564
Baoski el 2y MM 6631
sl oty M 6762
(CEZ?;B;[LI,&I;%);) 317M 70.62

USM-300M >00M 106

(Zhang et al., 2023)

Table 3: Four-way classification results [IEMOCAP fol-
lowing the SUPERB-ER benchmark setup.

7 Results

The USM-based backbone structure is first evalu-
ated following the setup of the emotion recogni-
tion® task of the SUPERB benchmark (Yang et al.,
2021). As shown in Table 3, the backbone structure
outperforms state-of-the-art methods”.

3SUPERB-ER setup: four-way emotion classification
(happy, sad, angry, neutral) on IEMOCAP dataset with leave-
one-session-out five-fold cross validation.

“https://superbbenchmark.org/leaderboard

0.1 00 00 02 o1 [0
0.1 00 0.0 00 §0°
- 04
01 00 01 01
=03
02 00 o.omo.z 02

mo.n 01 00 00 01 03 %7
0

0 ¥R 00 00 0.1 0.0 0.1
0.0 0.0 0§ 0.1 0.0 0.1 02
0.1 0.0 0.1 0.0 0.1 03

0.0 0.1 0.1 0.0 0.1 0.3

NMA Oth Sad Neu Ang Hap
NMA Fea Dis Sad Neu Ang Hap

-02
-02

0.1 JO28 00 0.0 1 0.1 01 00 00 00 (XA 02
=01 -0.1

02 01 00 0.1 0.1 0.1 0103 01 01 0103
-00 -00

Hap Ang Neu Sad Oth NMA

(2) IEMOCAP

Hap Ang Neu Sad Dis Fea NMA

(b) CREMA-D

Figure 2: Confusion matrix of the MLE+ system on
IEMOCAP and CREMA-D.

7.1 Emotion classification uncertainty

The proposed EDL-based method is compared to
baselines in Table 1 and 2 on the IEMOCAP and
CREMA-D dataset respectively. First, the pro-
posed method demonstrates comparable classifi-
cation performance to the baselines, suggesting
that the extension for uncertainty estimation does
not undermine the model’s capabilities. In addi-
tion, the proposed method offers superior model
calibration, as evidenced by the lowest values of
ECE and MCE. It also outperforms the baselines
in effectively identifying NMA as OOD samples.

7.1.1 Including NMA as an additional
category degrades the performance

The MLE+ results reveal that the addition of the
NMA class has a detrimental impact on the clas-
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Figure 3: The change of accuracy with respect to the
uncertainty threshold for EDL-based methods on IEMO-
CAP and CREMA-D.

sification performance of the original emotional
classes. Figure 2 shows the confusion matrix of
the MLE+ model. NMA itself is challenging to
predict possibly because it essentially contains a
mix of different emotion content. Grouping these
utterances into one class can confuse the model,
particularly for the classes neutral, sad, frustrated,
and disgust.

7.1.2 Reject option for accuracy

Figure 3 shows the change of accuracy when sam-
ples with uncertainty larger than a threshold are
excluded. The model tends to provide more accu-
rate predictions when it is more confident about its
prediction, which demonstrates the effectiveness of
uncertainty prediction.

7.2 Emotion distribution estimation

The result of distribution-based methods on clas-
sification of MA data are shown in Table 4. Com-
pared to the classification-based methods in Table 1
and Table 2, it can be seen that distribution-based

IEMOCAP
ACC UAR ECE MCE
MLE* 0.564 0562 0.151 0.279
EDL*(R1) | 0.623 0.612 0.081 0.208
EDL*(R2) | 0.624 0.616 0.025 0.201
CREMA-D
ACC UAR ECE MCE
MLE* 0.693 0.621 0.109 0.115
EDL*(R1) | 0.740 0.694 0.029 0.095
EDL*(R2) | 0.718 0.722 0.084 0.107

Table 4: Performance of distribution-based methods on
MA data.

NLLMA \L NLLNMA (all) \l/

MLE 1.310 1.924
MCDP 0.972 1.266
Ensemble 2.572 2.055
EDL 0.958 1.019
MLE* 0.941 1.137
EDL*(R1) 0.861 0.951
EDL*(R2) 0.833 0.953

Table 5: Distribution estimation results on IEMOCAP.

NLLMA \l/ NLLNMA (all) i{

MLE 1.532 2.054
MCDP 0.965 1.292
Ensemble 2.285 2.089
EDL 0.757 1.021
MLE* 0.648 0.774
EDL*(R1) 0.614 0.722
EDL*(R2) 0.606 0.698

Table 6: Distribution estimation results on CREMA-D.

methods do not reduce the performance of emotion
classification and model calibration on MA data.

The proposed EDL* methods are compared to
the baselines in terms of the negative log likeli-
hood of sampling target labels from the predicted
emotion distribution. Results on IEMOCAP and
CREMA-D are shown in Table 5 and Table 6.
EDL* methods produce improved distribution esti-
mation, achieving smaller NLL values on both MA
and NMA data. Among the two EDL* methods em-
ploying different regularisation terms, EDL* with
R2 (defined in Eqn. (13)), which directly applies
regularisation to the predicted distribution, exhibits
better distribution estimation without sacrificing
the calibration capability of the model.

7.2.1 Reject option for NLL

A reject option is then evaluated for NLL instead of
accuracy to examine the model calibration. For a
well-calibrated model, a decrease in the NLL value,
which is associated with improved distribution esti-
mation, is expected when the model becomes more
confident. Figure 4 visualises the change of NLL
for MA data and NMA data when uncertainty in-
creases. For MA, the type of data that has been
seen by the models during training, most methods
can successfully reject uncertain samples except
for MLE and Ensemble, as shown by an increase
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Figure 4: Reject option for NLL on IEMOCAP. Results
on CREMA-D show similar trend which can be found
in Appendix B.

in NLL values when the uncertainty threshold in-
creases. However, for NMA data which the model
hasn’t seen in training, only the EDL* methods ex-
hibit the ability to demonstrate an increasing trend
in NLL values.

The proficiency of the proposed EDL* methods
in estimating the emotion distribution and provid-
ing reliable confidence predictions, demonstrate
the method’s capacity to estimate both aleatoric
uncertainty (Matthies, 2007; Der Kiureghian and
Ditlevsen, 2009), arising from data complexity (i.e.,
the ambiguity of emotion expression), and epis-
temic uncertainty, which corresponds to the amount
of uncommitted belief in subjective logic (Jsang,
2018).

7.2.2 Case study

Emotion distributions estimated by different meth-
ods are visualised against the label distributions for
two representative examples in Figure 5. In general,
distribution-based methods show superior perfor-
mance in distribution estimation than classification-
based methods. In the case of an utterance (a)
which receives two “angry” labels and two “frus-
trated” labels, the proposed EDL* methods stands
out by effectively capturing the tie between the
emotions, whereas the predictions of classification-
based methods tend to be predominantly skewed
towards “frustrated”. As for utterance (b), where
both “disgust” and “neutral” receive four votes,
along with two votes for “angry” and one for “fear”,
the emotion distributions predicted by the EDL*
methods also show a similar pattern. Additional
examples can be found in Appendix C and Ap-

Label
EDL*(R2)
EDL*(R1) Hap
MLE* Ang
Neu
EDL Sad
Ensemble Oth
MCDP
MLE
0.0 0.5 1.0
Density
(a) Utterance “Ses04M_impro02_F024”
Label
EDL*(R2) Hap
EDL*(R1) Ang
MLE* Neu
EDL Sad
Ensemble Dis
MCDP Fea
MLE
0.0 0.5 1.0

Density
(b) Utterance “1084_TSI_ANG_XX”

Figure 5: Visualisation of emotion distribution for case
study. Utterance (a) is selected from IEMOCAP. Utter-
ance (b) is selected from CREMA-D.

pendix D.

8 Conclusion

This work re-examines the emotion classification
problem, starting with an exploration of ways to
handle data with ambiguous emotions. We first
adopt evidence theory to allow the emotion clas-
sifier to output “I don’t know” when it encoun-
ters utterances with ambiguous emotion. The
model is trained to predict the hyperparameters
of a Dirichlet distribution, which represents the
second-order probability of the probability assign-
ment over emotion classes. In order to capture
more fine-grained emotion differences, the emotion
classification problem is transformed into emotion
distribution estimation where each annotation is
taken into account rather than only the majority
opinion. The EDL-based uncertainty measure is
extended to quantify uncertainty in emotion distri-
bution estimation. Results on the IEMOCAP and
CREMA-D datasets show that given an utterance
with ambiguous emotion which the model hasn’t
seen during training, the proposed approach is able
to estimate its emotion distribution rather than just
returning “I don’t know”.



Ethics Statement

In this work, all human annotations used for train-
ing were taken from existing publicly available cor-
pora. No new human annotations were collected.

In subjective tasks like emotion recognition,
there is usually no single “correct” answer. The
conventional approach of imposing a single ground
truth through majority voting may overlook valu-
able nuances within each annotator’s evaluation
and the disagreements between them, potentially
resulting in the under-representation of minority
views. This study, instead of exclusively relying
on the majority vote, integrates emotion annota-
tions from all annotators for each utterance during
model training. It is hoped that this work could con-
tribute to a more inclusive representation of human
opinions.

Limitations

The proposed approach requires the raw labels from
different human annotators for each sentence to
be provided by the datasets. Although validated
only for emotion recognition, the proposed method
could also be applied to other tasks with disagree-
ments in subjective annotations, which will be in-
vestigated in future work.
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A Alternative activation functions

As described in Section 3.2, ReLLU is used as the
output activation function to make sure the evi-
dence is non-negative. This section investigates the
use of softplus and exponential as alternative activa-
tion functions. As shown in Table 7, using exponen-
tial function tends to result in less effective model
calibration. As shown by the empirical cumulative
distribution function (ECDF) of uncertainty and
entropy in Figure 8, exponential activation leads to
smaller uncertainty and entropy, which echos the
statement in Section 3.1 that exponential activation
tends to inflate the probability of the correct class.

— ReLU
61 — Exponential
Softplus

Figure 6: Illustration of the activation functions.
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Figure 7: Reject option for accuracy for EDL methods
with different activation functions.



Classify MA Detect NMA (all) Detect NMA (test)

IEMOCAP ACC UAR ECE MCE | AUROC AUPRC | AUROC AUPRC
EDL (ReLU) 0.611 0.596 0.103 0.145 0.610 0.530 0.620 0.227
EDL (Softplus) 0.608 0.574 0.035 0.173 0.617 0.534 0.639 0.251
EDL (Exponential) | 0.588 0.601 0.167 0.230 0.593 0.502 0.619 0.225

Classify MA Detect NMA (all) Detect NMA (test)

CREMA-D ACC UAR ECE MCE | AUROC AUPRC | AUROC AUPRC
EDL (ReLU) 0.701 0.714 0.057 0.080 0.645 0.506 0.657 0.234
EDL (Softplus) 0.692 0.696 0.113 0.309 0.640 0.506 0.633 0.230
EDL (Exponential) | 0.723 0.602 0.277 0.277 0.623 0.495 0.626 0.197

Table 7: Comparison of EDL methods with different activation functions on [IEMOCAP and CREMA-D.
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Figure 8: Empirical CDF of uncertainty (left) and en-
tropy (right) on IEMOCAP for EDL method with differ-
ent activation functions.

— EDL(ReLU) — EDL(Exp) EDL(Softplus)

1.01 1.0 1

o
[

o
Probability

Probability

<
=)

0.0
0.0

0 1
Entropy
(b) ECDF of entropy

05 10

Uncertainty

(a) ECDF of uncertainty

Figure 9: Empirical CDF of uncertainty (left) and en-
tropy (right) on CREMA-D for EDL method with dif-
ferent activation functions.

B Reject option for NLL on CREMA-D

This section shows the reject option for NLL on
CREMA-D dataset. Similar to the findings in Sec-
tion 7.2.1, most methods are effective for rejecting
uncertain samples in the MA data, while only the
EDL* methods are successful for NMA.
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Figure 10: Reject option for NLL on MA data of
CREMA-D.
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Figure 11: Reject option for NLL on NMA data of
CREMA-D.

C More visualised examples on
IEMOCAP

This section shows more examples on IEMOCAP.
EDL* methods show better estimation of emotion
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Figure 12: Case study on IEMOCAP.

D More visualised examples on
CREMA-D

This section shows more examples on CREMA-D.
As can be seen, EDL* methods can better approx-
imate the distribution of emotional content of an
utterance.
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Figure 13: Case study on CREMA-D.
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