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ABSTRACT

We showcase important features of the dynamics of the Stochastic Gradient Descent
(SGD) in the training of neural networks. We present empirical observations that
commonly used large step sizes (i) lead the iterates to jump from one side of a
valley to the other causing loss stabilization, and (ii) this stabilization induces
a hidden stochastic dynamics that biases it implicitly toward simple predictors.
Furthermore, we show empirically that the longer large step sizes keep SGD high
in the loss landscape valleys, the better the implicit regularization can operate and
find sparse representations. Notably, no explicit regularization is used so that the
regularization effect comes solely from the SGD dynamics influenced by the step
size schedule. Therefore, these observations unveil how, through the step size
schedules, both gradient and noise drive together the SGD dynamics through the
loss landscape of neural networks. We justify these findings theoretically through
the study of simple neural network models as well as qualitative arguments inspired
from stochastic processes. Finally, this analysis allows to shed a new light on some
common practice and observed phenomena when training deep networks.

1 INTRODUCTION

Deep neural networks have accomplished remarkable achievements on a wide variety of tasks. Yet,
the understanding of their remarkable effectiveness remains incomplete. From an optimization
perspective, stochastic training procedures challenge many insights drawn from convex models.
E.g., large step-size schedules used in practice lead to unexpected patterns of stabilizations and
sudden drops in the training loss, see e.g. He et al. (2016). From a generalization perspective,
overparametrized deep nets generalize well while fitting perfectly the data and without any explicit
regularizers (Zhang et al., 2017). This suggests that optimization and generalization are tightly
intertwined: neural networks find solutions that generalize well thanks to the optimization procedure
used to train them. This property, known as implicit bias or algorithmic regularization, has been
studied recently both for regression (Li et al., 2018; Woodworth et al., 2020) and classification (Soudry
et al., 2018; Lyu and Li, 2020; Chizat and Bach, 2020). However, for all these theoretical results,
it is also shown that typical timescales needed to enter the beneficial feature learning regimes are
prohibitively long (Woodworth et al., 2020; Moroshko et al., 2020).

In this paper, we aim at staying closer to the experimental practice and consider the SGD schedules
from the ResNet paper (He et al., 2016) where the large step size is first kept constant and then
decayed, potentially multiple times. We illustrate this behavior in Fig. 1 where we reproduce a
minimal setting without data augmentation or momentum, and with only one step size decrease. We
draw attention to two key observations regarding the large step-size phase: (a) quickly after the start
of training, the loss remains approximately constant on average and (b) despite no progress on the
training loss, running this phase for longer leads to better generalization. We refer to such large
step-size phase as loss stabilization. The better generalization hints at some hidden dynamics in the
parameter space not captured by the loss curves in Fig. 1. Our main contribution is to unveil the
hidden dynamics behind this phase: loss stabilization helps to amplify the noise of SGD that drives
the network towards a solution with sparser features (see Appendix, Figure 7 for a 2D-visualization).

1.1 OUR CONTRIBUTIONS

The effective dynamics behind loss stabilization. We characterize two main components of the
SGD dynamics with large step sizes: (i) a fast movement determined by the bouncing directions
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Figure 1: A typical training dynamics for a ResNet-18 trained on CIFAR-10. We use weight
decay but no momentum or data augmentation for this experiment. We see a substantial difference
in generalization (as large as 12% vs. 35% test error) depending on the step size η and its schedule.
When the training loss stabilizes, there is a hidden progress occurring which we aim to characterize.

causing loss stabilization, (ii) a slow dynamics driven by the combination of the gradient and the
multiplicative noise—which is non-vanishing due to the loss stabilization.

SDE model and sparse feature learning. We model the effective slow dynamics during loss
stabilization by a stochastic differential equation (SDE) whose multiplicative noise is related to the
neural tangent kernel features, and validate this modeling experimentally. Building on the existing
theory on diagonal linear networks, which shows that this noise structure leads to sparse predictors,
we conjecture a similar “sparsifying” effect on the features of more complex architectures. We
experimentally confirm this on neural networks of increasing complexity.

Insights from our understanding. We draw a clear general picture: the hidden optimization
dynamics induced by large step sizes and loss stabilization enable the transition to a sparse feature
learning regime. We argue that after a short initial phase of training, SGD first identifies sparse
features of the training data and eventually fits the data when the step size is decreased. Finally,
we discuss informally how many deep learning regularization methods (weight decay, BatchNorm,
SAM) may also fit into the same picture.

1.2 RELATED WORK

He et al. (2016) popularized the piecewise constant step-size schedule which often exhibits a clear
loss stabilization pattern. However, they did not provide any explanations for such training dynamics
and its implicit regularization effect. Non-monotonic patterns of the training loss have been explored
in recent works. However, the loss stabilization regime we consider is different (i) from the catapult
mechanism (Lewkowycz et al., 2020) where the training loss shows only one spike at the start of
training and then monotonically converges without stabilization, and (ii) from the edge of stability
regime of full-batch GD (Cohen et al., 2021) where the training loss shows many regular spikes after
some point in training but again without stabilization.

Past works conjectured that large step sizes induce the minimization of some hidden complexity
measures related to flatness of minima (Keskar et al., 2016; Smith and Le, 2018). Notably, Xing
et al. (2018) point out that SGD moves through the loss landscape bouncing between the walls of a
valley where the role of the step size is to guide the noisy iterates of SGD towards a flatter minimum.
However, many typically used flatness definitions are questionable for this purpose since (1) they are
not invariant under reparametrizations that lead to an equivalent neural network (Dinh et al., 2017),
and (2) even for naturally trained networks, full-batch gradient descent with large step sizes (unlike
SGD) can lead to flat solutions which are not well-generalizing (Kaur et al., 2022). Note that it is
possible to bridge the gap between GD and SGD by using explicit regularization as in Geiping et al.
(2022). We instead focus on the implicit regularization of SGD which remains the most practical
approach for training deep networks.

The importance of large step sizes has been investigated with diverse motivations. However, we
believe that existing approaches do not sufficiently capture the hidden stochastic dynamics behind the
loss stabilization phenomenon observed for deep networks. Attempts to explain it on strongly convex
models (Nakkiran, 2020; Wu et al., 2021; Beugnot et al., 2022) are inherently incomplete since it
is a phenomenon related to the existence of many zero solutions with very different generalization
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properties. Li et al. (2019b) analyzed the role of loss stabilization for a synthetic distribution
containing different patterns, but it is not clear how this analysis can be extended to general problems.
Works based on stability analysis characterize the properties of the minimum that SGD or GD can
potentially converge depending on the step size (Wu et al., 2018; Mulayoff et al., 2021; Ma and Ying,
2021; Nacson et al., 2022). However, these approaches do not capture the entire training dynamics
such as the large step size phase that we consider where SGD converges only after the step size is
decayed. SGD with label noise has been studied because of its beneficial regularization effect and its
resemblance to SGD’s standard noise. Its implicit bias has been first characterized by Blanc et al.
(2020) and extended by Li et al. (2022). However, their analysis only holds in the final phase of the
training, close to a zero-loss manifold. Our work instead is closer in spirit to Pillaud-Vivien et al.
(2022) where the label noise dynamics is analyzed in the central phase of the training, i.e., when the
training loss is still substantially above zero.

2 THE EFFECTIVE DYNAMICS OF SGD WITH LARGE STEP-SIZE: SPARSE
FEATURE LEARNING

In this section, we show that large step sizes lead the loss to stabilize by making SGD bounce above
a valley. We then unveil the effective dynamics induced by this loss stabilization. To clarify our
exposition we showcase our results for the mean square error but other losses like the cross-entropy
carry the same key properties in terms of the noise covariance (Wojtowytsch, 2021b, Lemma 2.14).
We consider a generic parameterized family of prediction functionsH := {x→ hθ(x), θ ∈ Rp}, a
setting which encompasses neural networks. In this case, the training loss on input/output samples
(xi, yi)1≤i≤n ∈ Rd × R reads

L(θ) := 1

2n

n∑
i=1

(hθ(xi)− yi)
2
. (1)

We consider the overparameterized setting, i.e. p ≫ n, hence, there shall exists many parameters
θ∗ that lead to zero loss, i.e., perfectly interpolate the dataset. Therefore, the question of which
interpolator the algorithm converges to is of paramount importance in terms of generalization. We
focus on the SGD recursion with step size η > 0, initialized at θ0 ∈ Rp: for all t ∈ N,

θt+1 = θt − η(hθt(xit)− yit)∇θhθt(xit), (2)

where it ∼ U (J1, nK) is the uniform distribution over the sample indexes. In the following, note that
SGD with mini batches of size B > 1 would lead to similar analysis but with η/B instead of η.

2.1 BACKGROUND: SGD IS GD WITH SPECIFIC LABEL NOISE

To emphasize the combined roles of gradient and noise, we highlight the connection between the
SGD dynamics and that of full-batch GD plus a specific label noise. Such manner of reformulating
the dynamics has already been used in previous works attempting to understand the specificity of the
SGD noise (HaoChen et al., 2021; Ziyin et al., 2022). We formalize it in the following proposition.
Proposition 1. Let (θt)t≥0 follow the SGD dynamics Eq.(2) with sampling function (it)t≥0. Let
1i=it be indicator function, define for t ≥ 0, the random vector ξt ∈ Rn such that for all i ∈ J1, nK,

[ξt]i := (hθt(xi)− yi)(1− n1i=it). (3)

Then (θt)t≥0 follows the full-batch gradient dynamics on L with label noise (ξt)t≥0, that is

θt+1 = θt −
η

n

n∑
i=1

(hθt(xi)− yti)∇θhθt(xi), (4)

where we define the random labels yt := y + ξt. Furthermore, ξt is a mean zero random vector with
variance such that 1

n(n−1)E ∥ξt∥
2
= 2L(θt).

This reformulation shows two crucial aspects of the SGD noise: (i) the noisy part at state θ always
belongs to the linear space spanned by {∇θhθ(x1), . . . ,∇θhθ(xn)}, and (ii) it scales as the training
loss. Concerning (ii), we highlight in the following section that the loss can stabilize because of large
step sizes which makes the effective scale of label noise constant. These features are of paramount
importance when modelling the effective dynamics that take place during loss stabilization.
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2.2 THE EFFECTIVE DYNAMICS BEHIND LOSS STABILIZATION

On loss stabilization. For generic quadratic costs, e.g., F (β) := ∥Xβ − y∥2, gradient descent
with step size η is convergent for η < 2/λmax, divergent for η > 2/λmax and converges to a
bouncing 2-periodic dynamics for η = 2/λmax, where λmax is the largest eigenvalue of the Hessian.
However, the practitioner is not likely to hit perfectly this unstable step size and, almost surely, the
dynamics shall either converge or diverge. Yet, non-quadratic costs bring to this picture a particular
complexity: it has been shown that, even for non-convex toy models, there exist an open interval
of step sizes for which the gradient descent neither converge nor diverge (Ma et al., 2022; Chen
and Bruna, 2022). As we are interested in SGD, we complement this result by presenting a toy
example in which loss stabilization occurs almost surely in the case of stochastic updates. Indeed,
consider a regression problem with quadratic parameterization on one-dimensional data inputs xi’s,
coming from a distribution ρ̂, and outputs generated by the linear model yi = xiθ

2
∗. The loss writes

F (θ) := 1
4Eρ̂

(
y − xθ2

)2
, and the SGD iterates with step size η > 0 follow, for any t ∈ N,

θt+1 = θt + η θt xit

(
yit − xitθ

2
t

)
where xit ∼ ρ̂. (5)

For the sake of concreteness and clarity, suppose that θ∗ = 1 and supp(ρ̂) = [a, b], we have the
following proposition (a more general result can be found in Proposition 3 of the Appendix).

Proposition 2. For any η ∈ (a−2, 1.25 · b−2) and initialization θ0 ∈ (0, 1), for t > 0,

δ1 < F (θt) < δ2 almost surely, and (6)
∃T > 0,∀k > T, θt+2k < 1 < θt+2k+1 almost surely. (7)

where δ1, δ2, T > 0 are constant given in the Appendix.

The proposition is divided in two parts: if the step size is large enough, Eq.(6) the loss stabilizes in
between level sets δ1 and δ2 and Eq.(7) shows that after some initial phase, the iterates bounce from
one side of the loss valley to the other one. Note that despite the stochasticity of the procedure, the
results hold almost surely.

The effective dynamics. As observed in the prototypical SGD training dynamics of Fig. 1 and
proved in the non-convex toy model of Proposition 2, large step sizes lead the loss to stabilize around
some level set. To further understand the effect of this loss stabilization in parameter space, we shall
assume perfect stabilization. Then, from Proposition 1, we conjecture the following behaviour

During loss stabilization, SGD is well modelled by GD with constant label noise.

Label noise dynamics have been studied recently (Blanc et al., 2020; Damian et al., 2021; Li et al.,
2022) thanks to their connection with Stochastic Differential Equations (SDEs). To properly write
a SDE model, the drift should match the gradient descent and the noise should have the correct
covariance structure (Li et al., 2019a; Wojtowytsch, 2021a). Proposition 1 implies that the noise at
state θ is spanned by the gradient vectors {∇θhθ(x1), . . . ,∇θhθ(xn)} and has a constant intensity
corresponding to the loss stabilization at a level δ > 0. Hence, we propose the following SDE model

dθt = −∇θL(θt)dt+
√
ηδ ϕθt(X)⊤dBt, (8)

where (Bt)t≥0 is a standard Brownian motion in Rn and ϕθ(X) := [∇θhθ(xi)
⊤]ni=1 ∈ Rn×p

referred to as the Neural Tangent Kernel (NTK) feature matrix (Jacot et al., 2018). This SDE can
be seen as the effective slow dynamics that drives the iterates while they bounce rapidly in some
directions at the level set δ (fast dynamics). It highlights the combination of the deterministic part of
the full-batch gradient and the noise induced by SGD at level set δ which depends on the step size
of SGD. We confirm the validity of this SDE modeling empirically in Sec. C showing that the SDE
captures the dynamics of large step size SGD even for non-linear networks. In the next section, we
leverage the SDE (8) to understand the implicit bias of such learning dynamics.

2.3 SPARSE FEATURE LEARNING

In this section, we give insights on the effective dynamics given by Eq.(8). We begin with a simple
model of diagonal linear networks that showcase a sparsity inducing dynamics and further disclose
our general message about the overall implicit bias promoted by the effective dynamics.
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2.3.1 A WARM-UP: DIAGONAL LINEAR NETWORKS

An appealing example of simple non-linear networks that help in forging an intuition for more
complicated architectures is diagonal linear networks (Vaskevicius et al., 2019; Woodworth et al.,
2020; HaoChen et al., 2021; Pesme et al., 2021). They are two-layer linear networks with only
diagonal connections: the prediction function writes hu,v(x) = ⟨u, v ⊙ x⟩ = ⟨u ⊙ v, x⟩ where ⊙
denotes elementwise multiplication. Even though the loss is convex in the associated linear predictor
β := u⊙ v ∈ Rd, it is not in (u, v), hence the training of such simple models already exhibit a rich
non-convex dynamics. In this case,∇uhu,v(x) = v ⊙ x, and the SDE model Eq.(8) writes

dut = −
1

n

[
X⊤(X(ut ⊙ vt)− y)

]
⊙ vt dt+

√
ηδ vt ⊙

[
X⊤dBt

]
, (9)

where (Bt)t≥0 is a standard Brownian motion in Rn. Equations are symmetric for (vt)t≥0.

What is the behaviour of this effective dynamics? Pillaud-Vivien et al. (2022) answered this
question by analyzing a similar stochastic dynamics and unveiled the sparse nature of the resulting
solutions. Indeed, under sparse recovery assumptions, denoting β∗ the sparsest linear predictor that
interpolates the data, it is shown that the associated linear predictor βt = ut ⊙ vt: (i) converges
exponentially fast to zero outside of the support of β∗ (ii) is with high probability in a O(√ηδ)
neighborhood of β∗ in its support after a time O(δ−1).

Overall conclusion on the model. During a first phase, SGD with large step sizes η decreases the
training loss until stabilization at some level set δ > 0. During this loss stabilization, an effective
noise-driven dynamics takes place. It shrinks the coordinates outside of the support of the sparsest
signal and oscillates in parameter space at level O(√ηδ) on its support. Hence, decreasing later
the step size leads to perfect recovery of the sparsest predictor. This behaviour is illustrated in our
experiments in Figure 2.

2.3.2 THE SPARSE FEATURE LEARNING CONJECTURE FOR MORE GENERAL MODELS

Results for diagonal linear nets recalled in the previous paragraph show that the noisy dynamics (9)
induce a sparsity bias. As emphasized in HaoChen et al. (2021), this effect is largely due to the
multiplicative structure of the noise v ⊙ [X⊤dBt] that, in this case, has a shrinking effect on the
coordinates (because of the coordinate-wise multiplication with v). In the general case, we see,
thanks to Eq.(8), that the same multiplicative structure of the noise still happens but this time with
respect to the NTK feature matrix ϕθ(X). Hence, this suggests that similarly to the diagonal linear
network case, the implicit bias of the noise can lead to a shrinkage effect applied to ϕθ(X) which
depends on the noise intensity δ and the step size of SGD. Indeed, an interesting property of Brownian
motion is that, for v ∈ Rp, ⟨v,Bt⟩ = ∥v∥2Wt, where the equality is valid in law and (Wt)t≥0 is
a one-dimensional Brownian motion. Hence, the process Eq.(8) is equivalent to a process whose
i-th coordinate is driven by a noise proportional to ∥ϕi∥dW i

t , where ϕi is the i-th column of ϕθ(X)
and (W i

t )t≥0 is a one dimensional Brownian motion. This SDE structure, similar to the geometric
Brownian motion, is expected to induce the shrinkage of each multiplicative factor (Oksendal, 2013,
Section 5.1), i.e., in our case (∥∇θh(xi)∥)ni=1. Thus, we conjecture:

The noise part of Eq.(8) seeks to minimize the ℓ2-norm of the columns of ϕθ(X).

Note that the fitting part of the dynamics prevents the NTK feature matrix to collapse totally to zero,
but as soon as they are not needed to fit the signal, columns can be reduced to zero. Remarkably,
from a stability perspective, Blanc et al. (2020) showed a similar bias: locally around a minimum, the
SGD dynamics implicitly tries to minimize the Frobenius norm ∥ϕθ(X)∥F =

∑n
i=1 ∥∇θhθ(xi)∥2.

We provide below a specification of this implicit bias for different architectures:

• Diagonal linear networks: For hu,v(x) = ⟨u ⊙ v, x⟩, we have ∇u,vhu,v(x) = [v ⊙ x, u ⊙ x].
Thus, for a generic data matrix X , minimizing the norm of each column of ϕu,v(X) amounts to
put the maximum of zero coordinates and hence to minimize ∥u⊙ v∥0.

• ReLU networks: We take the prototypical one hidden layer to exhibit the sparsification effect. Let
ha,W (x) = ⟨a, σ(Wx)⟩, then ∇aha,W (x) = σ(Wx) and ∇wj

ha,W (x) = ajx1⟨wj ,x⟩>0. Note
that the ℓ2-norm of the column corresponding to the neuron is reduced when it is activated at a
minimal number of training points, hence the implicit bias enables the learning of sparse data-active
features. Finally, when some directions are needed to fit the data, similarly activated neurons align
to fit, allowing the rank of ϕθ(X) to be also a good proxy for this feature sparsity.
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Figure 2: Diagonal linear networks. We observe loss stabilization, better generalization for longer
schedules, minimization of the rank of ϕθ(X) and sparsity of the predictor u⊙ v.

Overall, fully understanding theoretically the structural implications of the implicit bias described
above remains an exciting avenue for future work. We show next that the conjectured sparsity is
indeed observed empirically for a variety of models, as well as that the rank reduction of ϕθ(X) can
be used as a good proxy of the hidden progress of the loss stabilization phase. This is confirmed both
for SGD and its SDE modeling (the latter we show in App. C).

3 EMPIRICAL EVIDENCE OF SPARSE FEATURE LEARNING DRIVEN BY SGD

Here we present empirical resultsfor neural networks of increasing complexity: from diagonal linear
networks to deep residual networks on CIFAR-10 and CIFAR-100. We make the following common
observations for all these networks trained using SGD schedules with large step sizes:

(O1) Loss stabilization: training loss stabilizes around a high level set until step size is decayed,

(O2) Generalization benefit: longer loss stabilization leads to better generalization,

(O3) Sparse feature learning: longer loss stabilization leads to sparser features.

Importantly, we use no explicit regularization in our experiments so that the training dynamics is
driven purely by SGD and the step size schedule. Additionally, in some cases, we cannot find a single
large step size that would lead to loss stabilization. In such cases, whenever explicitly mentioned, we
use a warmup step size schedule—i.e., increasing step sizes according to some schedule—to make
sure that the training loss stabilizes around some level set. Such warmup schedules are commonly
used in practice (He et al., 2016; Devlin et al., 2018). Warmup is often motivated purely from the
optimization perspective as a way to accelerate training (Agarwal et al., 2021) but we suggest that,
more importantly, it is also a way to amplify the regularization effect of the SGD noise which is
proportional to the step size.

Measuring sparse feature learning. Our main insight is that the NTK feature matrix is significantly
simplified in the loss stabilization phase, and that the rank of ϕθ(X) (i.e., the sparsity of its singular
values) is a good proxy to track this dynamics. We compute it over iterations for each model (except
deep networks where it is not feasible) by using a fixed threshold on the singular values of ϕθ(X)
normalized by the largest singular value. In this way, we ensure that the difference in the rank that we
detect is not simply due to a different scales of ϕθ(X). Moreover, we always compute ϕθ(X) on the
number of fresh samples equal to the number of parameters |θ| to make sure that rank deficiency is
not coming from n≪ |θ| which is the case in the overparametrized settings we consider.

Furthermore, we also want to track a more direct and interpretable notion of feature sparsity. This
motivates us to count the average number of distinct (i.e., counting a group of highly correlated
activations as one), non-zero activations at some layer over the training set which we refer to as
the feature sparsity coefficient. We count a pair of activations i and j as highly correlated if their
Pearson’s correlation coefficient is at least 0.95. Unlike rank(ϕθ(X)), the feature sparsity coefficient
scales to deep networks and has an easy-to-grasp meaning.

3.1 SPARSE FEATURE LEARNING IN DIAGONAL LINEAR NETWORKS

Setup. The inputs x1, . . . , xn with n = 80 are sampled fromN (0, Id) where Id is an identity matrix
with d = 200, and the outputs are generated as yi = ⟨β∗, xi⟩ where β∗ ∈ Rd is r = 20 sparse. We
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Figure 4: Two-layer ReLU networks for 1D regression. We observe loss stabilization, simplifica-
tion of the model trained with a longer schedule, lower rank of ϕθ(X), and much sparser features.

consider four different SGD runs (started from ui = 0.1, vi = 0 for each i): one with a small step
size and three other with initial large step size decayed after 10%, 30%, 50% iterations, respectively.

Observations. We show the results in Fig. 2 and note that (O1)–(O3) hold even in this simple model
trained with vanilla SGD without any explicit regularization or layer normalization schemes. We
observe that the training loss stabilizes around 10−1.5, the test loss improves for longer schedules,
both rank(ϕθ(X)) and ∥u⊙ v∥0 decrease during the loss stabilization phase leading to a sparse final
predictor. While the training loss has seemingly converged to 10−1.5, a hidden dynamics suggested
by Eq.(9) occurs which slowly drifts the iterates to a sparse solution. This implicit sparsification
explains the dependence of the final test loss on the time when the large step size is decayed, similarly
to what has been observed for deep networks in Fig. 1. Interestingly, we also note that SGD with
large step-size schedules encounters saddle points after we decay the step size (see the training loss
curves in Fig. 2) which resembles the saddle-to-saddle regime described in Jacot et al. (2021) which
does not occur in the large-initialization lazy training regime.

winit

wflow

w?

Training loss over a 2D subspace

GD

SGD

10−6

10−4

10−2

100

Figure 3: GD and SGD take
different trajectories.

SGD and GD have different implicit biases. Since we observe
from Fig. 2 that for loss stabilization, stochasticity alone does not suf-
fice and large step sizes are necessary, one may wonder if conversely
only large step sizes can be sufficient to have a sparsifying effect.
Even if special instances can be found for which large step sizes are
sufficient (such as for non-centered input features as in Nacson et al.
(2022)), we answer this negatively showing that gradient descent
in general does not go to the sparsest solution as demonstrated in
Fig. 10 in the Appendix. Moreover, in Fig. 3, we visualize the dif-
ference in trajectory between the two methods taken with large step
sizes over a 2D subspace spanned by w⋆−winit and wflow −winit,
where w⋆ is the ground truth, wflow is the result of gradient flow, and winit is the initialization. This
example provides an important intuition that loss stabilization alone is not sufficient for sparsification
and that the role of noise described earlier is crucial.

3.2 SPARSE FEATURE LEARNING IN SIMPLE RELU NETWORKS

Two-layer ReLU network in 1D. We consider the one-dimensional regression task from Blanc et al.
(2020) with 12 points, where label noise SGD has been shown to learn a simple model. We show
that similar results can be achieved with large-step-size SGD via loss stabilization. We train a ReLU
network with 100 neurons with SGD with a linear warmup (otherwise, we were unable to achieve
approximate loss stabilization), directly followed by a step-size decay. The two plots correspond to
a warmup/decay transition at 2% and 50% of iterations, respectively. The results shown in Fig. 4
confirm that (O1)–(O3) hold: the training loss stabilizes around 10−0.5, the predictor becomes much
simpler and is expected to generalize better, and both rank(ϕθ(X)) and the feature sparsity coefficient
substantially decrease during the loss stabilization phase. For this one-dimensional task, we can
directly observe the final predictor which is sparse in terms of the number of distinct ReLU kinks as
captured by the feature sparsity coefficient and the rank of the NTK feature matrix. Interestingly, we
also observed overregularization for even larger step sizes when we cannot fit all the training points
(see Fig. 11 in Appendix). This phenomenon clearly illustrates how the capacity control is induced
by the optimization algorithm: the function class over which we optimize depends on the step size
schedule. Additionally, Fig. 12 in Appendix shows the evolution of the predictor over iterations. The
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Figure 5: Three-layer ReLU networks in a teacher-student setup. We observe loss stabilization,
lower rank of the NTK feature matrix and lower feature sparsity coefficient on both hidden layers.

ResNet-18 on CIFAR-10, no explicit regularization
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ResNet-18 on CIFAR-10, state-of-the-art setting
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Figure 6: ResNet-18 trained on CIFAR-10. Both without explicit regularization and in the state-
of-the-art setting, the training loss stabilizes, the test loss noticeably depends on the length of the
schedule, and the feature sparsity coefficient is minimized over iterations.

general picture is confirmed: first the model is simplified during the loss stabilization phase and only
then fits the training data.

Deeper ReLU networks. We use a teacher-student setup with a random three-layer teacher ReLU
network having 2 neurons on each hidden layer. The student network is overparametrized with 10
neurons on each layer and is trained on 50 examples. Such teacher-student setup is useful since we
know that the student network can implement the ground truth function but might not find it due to
the small sample size. We train models using SGD with a medium constant step size and a large step
size with warmup decayed after 10%, 30%, 50% iterations, respectively. The results shown in Fig. 5
confirm that (O1)–(O3) hold: the training loss stabilizes around 10−1.5, the test loss is smaller for
longer schedules, and both rank(ϕθ(X)) and the feature sparsity coefficient substantially decrease
during the loss stabilization phase. All methods have the same value of the training loss (10−3) after
104 iterations but different generalization. Moreover, we see that the feature sparsity coefficient
decreases on each layer which makes this metric a promising one to consider for deeper networks.

3.3 SPARSE FEATURE LEARNING IN DEEP RELU NETWORKS

Setup. We consider here an image classification task and train a ResNet-18 and ResNet-34 on
CIFAR-10 and CIFAR-100 using SGD with batch size 256 and different step size schedules. We use
an exponentially increasing warmup schedule with exponent 1.05 to stabilize the training loss. We
cannot measure the rank of ϕ(X) here since this matrix is too large (≈ 50 000× 20 000 000) so we
measure only the feature sparsity coefficient taken at two layers: at the end of super-block 3 (i.e., in
the middle of the network) and super-block 4 (i.e., right before global average pooling at the end of
the network) of ResNets. We test two settings: a basic setting without explicit regularizers and a
state-of-the-art setting with weight decay, momentum, and standard augmentations.
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Observations. The results on CIFAR-10 shown in Fig. 6 confirm that our main findings still hold
also in this setting: the training loss stabilizes either slightly below 10−1 or above 10−1, the test
error is becoming progressively better for longer schedules, as well as the feature sparsity coefficient.
Small step sizes lead to bad generalization, especially without explicit regularization: 35% test error
compared to 15% for large step sizes. This poor performance confirms that it is crucial to leverage the
implicit bias of large step sizes. The difference in the feature sparsity coefficient is also substantial
with the final model having 70% instead of 24% at block 4 without explicit regularization. The
observations are similar for the state-of-the-art setting as well where even with explicit regularization,
we still see a noticeable difference in generalization and feature sparsity depending on the step size
and schedule. We further note that feature sparsity coefficient is gradually minimized over iterations
in this case (similarly to Figures 2, 4, 5) while without explicit regularization we observe a different
pattern: a very quick drop down to almost zero at the very first epoch and then a gradual increase.

We show the results with similar findings on CIFAR-100 in Fig. 15 in Appendix. Additionally,
Fig. 14 illustrates that for small step sizes, the early and middle layers stay very close to their random
initialization which indicates the absence of feature learning similarly to what is suggested by the
neuron movement plot in Fig. 9 in the Appendix for two-layer network in a teacher-student setup.

4 INSIGHTS FROM OUR UNDERSTANDING OF THE TRAINING DYNAMICS

Here we provide an extended discussion on the implications of our theoretical and empirical findings.

The multiple stages of the SGD training dynamics. As analyzed and shown empirically, the training
dynamics we considered can be split onto three distinct phases: (i) an initial phase of reducing the
loss down to some level where stabilization can occur, (ii) a loss stabilization phase where noise
and gradient directions combine to find architecture-dependent sparse representations of the data,
(iii) a final phase when the step size is decreased to fit the training data. This typology allows to
clearly disentangle the effect of the stabilization phase (ii) which relies on the implicit bias of SGD to
simplify the model. Note that phases (ii) and (iii) can be repeated a few times until final convergence
(He et al., 2016). Moreover, in some training schedules, (ii) does not explicitly occur, and the effect
of loss stabilization (ii) and data fitting (iii) can occur simultaneously (Nakkiran et al., 2019).

From lazy training to feature learning. Similar sparse implicit biases have been shown for
regression with infinitely small initialization (Boursier et al., 2022) and for classification (Chizat and
Bach, 2020; Lyu and Li, 2020). However, both approaches are not practical from the computational
point of view since (i) the origin is a saddle point for regression leading to the vanishing gradient
problem (especially, for deep networks), and (ii) max-margin bias for classification is only expected
to happen in the asymptotic phase (Moroshko et al., 2020). On the contrary, large step sizes enable to
initialize far from the origin, while allowing to efficiently transition from a regime close to the lazy
NTK regime (Jacot et al., 2018) to the rich feature learning regime.

Common patterns in the existing techniques. Tuning the step size to obtain loss stabilization can
be difficult. To prevent early divergence caused by too large step sizes, we sometimes had to rely
on an increasing step size schedule (known as warmup). Interpreting such schedules as a tool to
favor implicit regularization provides a new explanation to their success and popularity. Additionally,
normalization schemes like batch normalization or weight decay, beyond carrying their own implicit
or explicit regularization properties, can be analyzed from a similar lens: they allow to use larger step
sizes that boost further the implicit bias effect of SGD while preventing divergence (Bjorck et al.,
2018; Zhang et al., 2018). Note also that we derived our analysis with batch size equal to one for
the sake of clarity, but an arbitrary batch size B would simply be equivalent to replacing γ ← γ/B.
Similarly to the consequence of large step sizes, preferring smaller batch sizes (Keskar et al., 2016)
while avoiding divergence seem key to benefit from the implicit bias of SGD. Finally, the effect of
large step sizes or small batches is often connected to measures of flatness of the loss surface via
stability analysis (Wu et al., 2018) and some methods like the Hessian regularization (Damian et al.,
2021) or SAM (Foret et al., 2021) explicitly optimize it. Such methods resemble the implicit bias of
SGD with loss stabilization implied by the label noise equation (Eq.(8)) where matrix ϕθ(X) is the
key component of the Hessian. However, an important practical difference is that the regularization
strength in these methods is explicit and decoupled from the step size schedule which may be harder
to properly tune since it is simultaneously responsible for optimization and generalization.
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APPENDIX

In Section A, we show Proposition 1 on the equivalence between SGD and GD with added noise. In
Section B, we provide the proof that loss stabilization occurs as written in Proposition 2. In Section
C, we show experimentally that the proposed SDE model matches well the SDE dynamics. Finally,
we present additional experiments in Section D.

Figure 7: Three-dimensional visualisation of the SGD dynamics in a non-convex loss landscape. The
SGD dynamics (blue points) is bouncing side-to-side to the bottom of the valley (the dotted green
line). A slow movement occurs pushing the iterates in the direction given by the green arrows.

To begin this appendix, we provide in Figure 7 a toy visualization in which we showcase a typical
SGD dynamics when loss stabilization occurs. We run SGD on the diagonal linear network with one
sample in two dimensions (n = 1, d = 2) adding label noise of the shape given by equation Eq.(9),
with balanced layers u = v. The blue points corresponds to iterates of the dynamics (that are linked
with the orange dotted lines). The green line corresponds to the global minimum of the loss, what
can be called the “bottom of the valley”. This hopefully will serve the reader forge a visual intuition
on (i) the bouncing dynamics side-to-side to the bottom of the valley (in green), and (ii) the slow
stochastic movement (in the direction of the green arrows).

A SGD AND LABEL NOISE GD

For the sake of clarity we recall below the statement of the Proposition 1 which we prove in this
section.
Proposition 1. Let (θt)t≥0 follow the SGD dynamics Eq.(2) with sampling function (it)t≥0. Let
1i=it be indicator function, define for t ≥ 0, the random vector ξt ∈ Rn such that for all i ∈ J1, nK,

[ξt]i := (hθt(xi)− yi)(1− n1i=it). (10)
Then (θt)t≥0 follows the full-batch gradient dynamics on L with label noise (ξt)t≥0, that is

θt+1 = θt −
η

n

n∑
i=1

(hθt(xi)− yti)∇θhθt(xi), (11)

where we define the random labels yt := y + ξt. Furthermore, ξt is a mean zero random vector with
variance such that 1

n(n−1)E ∥ξt∥
2
= 2L(θt).

Proof. Note that
n∑

i=1

(hθt(xi)− yti)∇θhθt(xi) =

n∑
i=1

(hθt(xi)− yi − [ξt]i)∇θhθt(xi). (12)
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Using [ξt]i := (hθt(xi)− yi)(1− n1i=it),

=
1

n

n∑
i=1

(hθt(xi)− yi − (hθt(xi)− yi)(1− n1i=it))∇θhθt(xi), (13)

=

n∑
i=1

1i=it(hθt(xi)− yi)∇θhθt(xi) = (hθt(xit)− yit)∇θhθt(xit). (14)

which is exactly the stochastic gradient wrt to sample (xit , yit).

Now we prove the latter part of the proposition regarding the scale of the noise. Recall that, for
all i ⩽ n, we have [ξt]i = (hθt(xi) − yi)(1 − n1i=it), where it ∼ U (J1, nK). Now taking the
expectation,

E[ξt]i = E [(hθt(xi)− yi)(1− n1i=it)] = (hθt(xi)− yi)(1− nE [1i=it ]) = 0, (15)

as E [1i=it ] = 1/n. Coming to the variance,

E ∥ξt∥2 = E

[
n∑

i=1

[ξt]i
2

]
=

n∑
i=1

E[ξt]i2 (16)

=

n∑
i=1

(hθt(xi)− yi)
2E

[
(1− n1i=it)

2
]

(17)

=

n∑
i=1

(hθt(xi)− yi)
2E

[
(1− 2n1i=it + n21i=it)

]
(18)

=

n∑
i=1

(hθt(xi)− yi)
2(1− 2 + n) (19)

= (n− 1)

n∑
i=1

(hθt(xi)− yi)
2 = 2n(n− 1)L(θt),− (20)

and this concludes the proof of the proposition.

B QUADRATIC PARAMETERIZATION IN ONE DIMENSION

Again, for the Appendix to be self-contained, we recall the setup of the Proposition 2 on loss
stabilization. We consider a regression problem with quadratic parameterization on one-dimensional
data inputs xi’s, coming from a distribution ρ̂, and outputs generated by the linear model yi = xiθ

2
∗.

The loss writes F (θ) := 1
4Eρ̂

(
y − xθ2

)2
, and the SGD iterates with step size η > 0 follow, for any

t ∈ N,

θt+1 = θt + η θt xit

(
yit − xitθ

2
t

)
where xit ∼ ρ̂. (21)

We rewrite the proposition here.

Proposition 3. (Extended version of Proposition 2) Assume ∃ xmin, xmax > 0 such that supp(ρ̂) ⊂
[xmin, xmax]. Then for any η ∈ ((θ∗xmin)

−2, 1.25(θ∗xmax)
−2), any initialization in θ0 ∈ (0, θ∗),

for t ∈ N, we have almost surely

F (θt) ∈
(
ϵ2o θ

2
∗, 0.17 θ

2
∗
)
. (22)

where ϵo = min
{
(η(θ∗xmin)

2 − 1)/3, 0.02
}

. Also, almost surely, there exists t, k > 0 such that
θt+2k ∈ (0.65 θ∗, (1− ϵo) θ∗) and θt+2k+1 ∈ ((1 + ϵo) θ∗, 1.162 θ∗).

Proof. Consider SGD recursion Eq.(21) and note that y = xθ2∗.

θt+1 = θt + η θt x(xθ
2
∗ − xθ2t ) (23)

θt+1 = θt + η θt x
2 (θ2∗ − θ2t ) (24)
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For the clarity of exposition, we consider the rescaled recursion of the original SGD recursion.

θt+1/θ∗ = θt/θ∗ + η θ2∗ x2 θt/θ∗
(
1− (θt/θ∗)

2
)
, (25)

and, by making the benign change θt ← θt/θ∗, we focus on the stochastic recursion instead,

θt+1 = θt + γθt(1− θ2t ), (26)

where γ ∼ ρ̂γ the pushforward of ρ̂ under the application z → η θ2∗ z
2. Let Γ := supp(ρ̂γ), the

support of the distribution of γ. From the range of η, it can be verified that Γ ⊆ (1, 1.25). Now the
proof of the theorem follows from Lemma 5.

Lemma 4 (Bounded Region). Consider the recursion Eq.(26), for Γ ⊆ (1, 1.25) and 0 < θ0 < 1,
then for all t > 0, θt ∈ (0, 1.162).

Proof. Consider a single step of Eq.(26), for some γ ∈ (1, 1.25),

θ+ = θ + γθ(1− θ2)

The aim is to show that θ+ stays in the interval (0, 1.162). In order to show this, we do a casewise
analysis.

For θ ∈ (0, 1]: Since 0 < θ ≤ 1, we have θ+ ≥ θ > 0. To prove the bound above, consider the
following quantity,

θmax = max
γ∈(1,1.25)

max
θ∈(0,1]

θ + γθ(1− θ2) (27)

Say hγ(θ) = θ + γθ(1− θ2), note that h′
γ(θ) = 1 + γ − 3γθ2 and h′′

γ(θ) = −6γθ < 0. Hence, for

any γ in our domain, the maximum is attained at θγ = 1√
3

√
1
γ + 1 and hγ(θγ) =

2(1+γ)3/2

3
√
3γ

.

max
γ∈(1,1.25)

max
θ∈(0,1]

θ + γθ(1− θ2) = max
γ∈(.5,1.25)

2(1 + γ)3/2

3
√
3γ

(28)

It can be verified that 2(1+γ)3/2

3
√
3γ

is increasing with gamma in the interval (1, 1.25). Hence,

max
γ∈(1,1.25)

2(1 + γ)3/2

3
√
3γ

≤ 2(1 + γ)3/2

3
√
3γ

∣∣∣∣
γ=1.25

< 1.162 (29)

Combining them, we get,
θ+ ≤ max

γ∈(0,1.25)
max
θ∈(0,1]

θ + γθ(1− θ2) < 1.162 (30)

For θ ∈ (1, 1.162): Since θ > 1, we have, θ+ < θ < 1.162. For lower bound, note that for θ+ to be
less than 0, we need 1 + γ − γθ2 < 0. But for γ ∈ (1, 1.25) and θ ∈ (1, 1.162),

γ(θ2 − 1) < 1.25((1.162)2 − 1) < 1. (31)
Hence, it never goes below 0.

Lemma 5. Consider the recursion Eq.(26) with Γ ⊆ (1, 1.25) and θ0 initialized uniformly in (0, 1).
Then, there exists ϵ0 > 0, such that for all ϵ < ϵ0 there exists t > 0 such that for any k > 0,

θt+2k ∈ (0.65, 1− ϵ) and θt+2k+1 ∈ (1 + ϵ, 1.162) (32)
almost surely.

Proof. Define γmin > 1 as the infimum of the support Γ. Let ϵo = min{(γmin−1)/3, 0.02}. Note that
ϵ0 > 0 as γmin > 1. Now for any 0 < ϵ < ϵo, we have γmin(2− ϵ)(1− ϵ) > 2.

Divide the interval (0,1.162) into 4 regions, I0 = (0, 0.65], I1 = (0.65, 1 − ϵ), I2 = [1 − ϵ, 1),
I3 = (1, 1.162). The strategy of the proof is that the iterates will eventually end up in I1 and that
once it ends up in I1, it comes back to I1 in 2 steps.

Let θ0 be initialized uniformly random in (0, 1). Consider the sequence (θt)t≥0 generated by

θt+1 = hγt
(θt) := θt + γtθt(1− θ2t ) where γt ∼ ρ̂γ . (33)

We prove the following facts (P1)-(P4):
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(P1) There exists t ≥ 0 such that the θt ∈ I1 ∪ I2 ∪ I3.

(P2) Let θt ∈ I3, then θt+1 ∈ I1 ∪ I2.

(P3) Let θt ∈ I2, there exists k > 0 such that for k′ < k, θt+2k′ ∈ I2 and θt+2k ∈ I1.

(P4) When θt ∈ I1, then for all k ≥ 0, θt+2k ∈ I1 and θt+2k+1 ∈ (1 + ϵ, 1.162).

Proof of (P1)-(P4): Let t ∈ N, note first that the event {θt = 1} = ∪k⩽t{θk = 1|θk−1 ̸= 1} and
hence a finite union of zero measure sets. Hence {θt = 1} is a zero measure set and therefore we do
not consider it below. For any other sequence, from the above four properties, we can conclude that
the lemma holds.

Proof of P1: Assume that until time t > 0, the iterates are all in I0, then we have

θt = θt−1(1 + γ(1− θ2t−1)) ≥ θt−1(2− θ2t−1) > 1.5 θt−1 > 1.5t θ0 (34)

Hence, the sequence eventually exits I0. We know that it will stay bounded from Lemma 4, hence it
will end up in I1 ∪ I2 ∪ I3.

Proof of P2: For any θt ∈ (1, 1.162), 1 < γ < 1.25, since hγ(.) is decreasing in (1,1.162), we have
hγ(1.162) < hγ(θt) < hγ(1). Also hγ(θ) is linear in gamma with negative coefficient for θ > 1.
Hence it decreases as γ increases. Using this,

.652 = h1.25(1.162) < hγ(1.162) < hγ(θt) < hγ(1) = 1. (35)

Hence, θt+1 ∈ I1 ∪ I2.

Proof of P3: The proof of this follows from Lemma 7.

Proof of P4: The proof of this follows from Lemma 10.

Lemma 6. For any θ ∈ I1 ∪ I2 and any a, b ∈ Γ, ha(hb(θ)) ∈ I1 ∪ I2,

hγmax(hγmax(θ)) ≤ ha(hb(θ)) ≤ hγmin(hγmin(θ)). (36)

Proof. For any γ ∈ Γ, recall

hγ(θ) = θ + γθ(1− θ2) = 1 + (1− θ)(γθ(1 + θ)− 1). (37)

Note that for θ ∈ I1 ∪ I2, θ(1 + θ) > 1, Hence γθ(1 + θ) > 1. This gives us that hγ(θ) > 1. Now
we will track where θ ∈ I1 ∪ I2 can end up after two stochastic gradient steps.

• For any b ∈ Γ, as θ ∈ I1 ∪ I2, we have

hγmax
(θ) ≥ hb(θ) ≥ hγmin

(θ) > 1,

note hγmax
(θ) ≥ hb(θ) ≥ hγmin

(θ) holds since θ < 1.
• Now for any a ∈ Γ and x > 1, ha(x) is a decreasing function in x. Hence

ha(hγmax
(θ)) ≤ ha(hb(θ)) ≤ ha(hγmin

(θ)).

Using γmin ≤ a, ha(hγmin(θ)) ≤ hγmin(hγmin(θ)), Similarly using γmax > a, we have,
hγmax(hγmax(θ)) ≤ ha(hγmax(θ)). Combining them we get,

hγmax
(hγmax

(θ)) ≤ ha(hb(θ)) ≤ hγmin
(hγmin

(θ)). (38)

Similar argument can extend it to,

h1.25(h1.25(θ)) < ha(hb(θ)) < h1(h1(θ)). (39)

Lemma 7. Let θt ∈ I2, there exists k > 0 such that θt+2k ∈ I1.
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Proof. For any γ ∈ Γ, let θ+ = hγ(θ), then we have

hγ(hγ(θ))− θ = hγ(θ+)− θ = γθ(1− θ2) + γθ+(1− θ2+). (40)

Furthermore,

θ+ = θ + γθ(1− θ2) = θ(1 + γ(1− θ2)), (41)

1 + θ+ = 1 + θ + γθ(1− θ2) = (1 + θ)(1 + γθ(1− θ)), (42)

1− θ+ = 1− θ − γθ(1− θ2) = (1− θ)(1− γθ(1 + θ)). (43)

And multiplying the above three terms and adding θ(1− θ2), we get,

θ+(1− θ2+) + θ(1− θ2) = θ(1− θ2){1 +
[
(1 + γ(1− θ2))(1 + γθ(1− θ))(1− γθ(1 + θ))

]︸ ︷︷ ︸
P (θ)

}

(44)

For θ ∈ I2, using γmin(2− ϵ)(1− ϵ) > 2, we have the inequalities

(1 + γ(1− θ2))(1 + γθ(1− θ)) > 1, (45)
(1− γθ(1 + θ)) < 1− γmin(2− ϵ)(1− ϵ) < −1, (46)

P (θ) < −1. (47)

Hence,

hγ(hγ(θ))− θ = γ(1− θ2)(1 + P (θ)) < 0. (48)

Therefore, for [1− ϵ, 1), for any γ ∈ Γ, hγ(hγ(θ)) < θ. Hence for any two stochastic gradient step
with a, b ∈ Γ, from Eq.(36), θt+2 = ha(hb(θt)) ≤ hγmin(hγmin(θt)) < θt. From any point in I2, we
have |θt+2 − 1| > |θt − 1|, for any a, b ∈ Γ. Intutively this means that in two gradient steps the
iterates move further away from 1 until it eventually leaves the interval I2 as the sequence {θt+2k}k≥0

is strictly decreasing with no limit point in I2. From Lemma 9 , we know that in two steps the iterates
will never leave I1 ∪ I2. Hence they will eventually end up in I1 leaving I2.

Property 8. Define gγ(θ) := hγ(hγ(θ)) for the sake of brevity. The followings properties hold for
θ ∈ I1 ∪ I2, γ ∈ Γ and θγ the root of h

′

γ(θ):

Q1 gγ(θ) ≥ gγ(θγ).

Q2 The function gγ(.) is decreasing in [0.65, θγ) and increasing in (θγ , 1].

Proof. Note h
′

γ(θ) = 1 + γ − γ3θ2 has at most one root θγ ∈ (0, 1). Note that for all γ ∈ Γ,
θγ ∈ I1 ∪ I2. For any γ, g

′

γ(θ) = h
′

γ(hγ(θ))h
′

γ(θ). For any θ ∈ I1 ∪ I2, we have, hγ(θ) >

1 =⇒ h
′

γ(hγ(θ)) < 0. Therefore, g
′

γ(θ) has only one root in I1 ∪ I2. Since θγ ∈ I1 ∪ I2, note
g

′′

γ (θγ) = h
′

γ(hγ(θγ))h
′′

γ (θγ) > 0. Therefore, gγ(.) attains its minimum at θγ and this shows the
desired properties.

Lemma 9. For any θ ∈ I1 ∪ I2 and any a, b ∈ Γ, ha(hb(θ)) ∈ I1 ∪ I2.

Proof. Lower Bound: From Eq.(39), we know

h1.25(h1.25(θ)) < ha(hb(θ)) (49)

We know that from property Q1 that gγ(θ) ≥ gγ(θγ). Hence

g1.25(θ1.25) < g1.25(θ) < ha(hb(θ)) (50)

It can be quickly checked that .65 < g1.25(θ1.25). Hence the lower bound holds.

Upper Bound: From Eq.(39), we know

ha(hb(θ)) < h1(h1(θ)) (51)

We know that from property Q2 that g1(θ) ≤ max{g1(1), g1(0.65)}. It can be easily verified that
g1(0.65) < 0.98. Hence g1(θ) < 1.
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Lemma 10. For any θ ∈ I1 and any a, b ∈ Γ, ha(hb(θ)) ∈ I1 and ha(θ) ∈ (1 + ϵ, 1.162).

Proof. The lower bound in Lemma 9 holds here. For the upper bound, from and Eq.(36),

ha(hb(θ)) ≤ hγmin
(hγmin

(θ)). (52)

Using property Q2,

hγmin
(hγmin

(θ)) ≤ max{gγmin
(1− ϵ), gγmin

(0.65)} (53)

From Eq.(48), gγmin(1 − ϵ) < 1 − ϵ. From Eq.(39), gγmin(0.65) < g1(0.65) < 0.98 < 1 − ϵ. In
I1, the function ha(.) first increases reaches maximum and decreases. Hence for θ ∈ I1, ha(θ) ≥
min{ha(0.65), ha(1− ϵ)} .

ha(1− ϵ) ≥ 1− ϵ+ a(1− (1− ϵ)2)(1− ϵ), (54)

= 1− ϵ+ a(2ϵ− ϵ2)(1− ϵ), (55)

≥ 1− ϵ+ γmin(2ϵ− ϵ2)(1− ϵ), (56)
= 1 + ϵ+ ϵ (γmin(2− ϵ)(1− ϵ)− 2) > 1 + ϵ. (57)

Also ha(0.65) > h1(0.65) > 1.02 > 1+ϵ, therefore ha(θ) > 1+ϵ and this completes the proof.

C EMPIRICAL VALIDATION OF THE SDE MODELING

In this section, we experimentally check the validity of the SDE modeling of SGD in Eq.(8) in terms
of the key metrics: training loss, test loss, rank of the NTK feature matrix, and feature sparsity.

SDE discretization. Let γt be the SDE discretization step size, ηt the step size of the corresponding
SGD that we aim to validate, δt the noise intensity level, and Zt ∼ N (0, In). Then we discretize the
SDE from Eq.(8) as follows:

θt+1 = θt − γt∇θL(θt) +
√
γt
√
ηtδt ϕθt(X)⊤Zt. (58)

To approximate continuous time, we use a small discretization step size γt := ηt/10 and run
the discretization for 10× longer than the corresponding SGD run. We use ηt := ηSGD

⌊t/10⌋ and
δt := c · L(θSGD

⌊t/10⌋) where c is a constant that we select for each setting separately to match the
training dynamics of the corresponding SGD run. In addition, we also evaluate a discretization of
gradient flow (i.e., Eq.(58) without the noise term) which helps to draw conclusions about the role of
the noise term.

Experimental results. We present the discretization results in Fig. 8 for all models considered in the
paper except deep networks for which computing the NTK matrix ϕθt on each iteration of the SDE
discretization is too costly. In all cases, the dynamics of the SDE discretization qualitatively matches
the dynamics of the corresponding SGD run. In particular, we observe similar levels of decrease in
the rank of the NTK matrix and feature sparsity coefficient. We note that the match between SDE
and SGD curves is not expected to be precise due to the inherent randomness of the process. Finally,
we observe that gradient flow discretization exhibits no rank minimization or feature sparsity which
suggests that the presence of the noise (either from the original SGD or its SDE discretization) plays
a key role in learning sparse features.
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Diagonal linear networks
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Two-layer ReLU networks on 1D regression
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Two-layer ReLU networks in a teacher-student setup
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Figure 8: Empirical validation of the SDE modeling. In all cases, the dynamics of the SDE
discretization qualitatively matches the dynamics of the corresponding SGD run. Moreover, gradient
flow discretization exhibits no rank minimization or feature sparsity which suggests that the presence
of the noise plays a key role in learning sparse features.
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D ADDITIONAL EXPERIMENTAL RESULTS

This section of the appendix presents additional experiments complementing the ones presented in
the main text.
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wi randomly initialized

wi after training
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wi randomly initialized
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Figure 9: Only for a large step size, the neurons wi

cluster along the teacher neurons w⋆
i leading to a

model that uses a sparse set of features.

Illustration of neuron dynamics. We illus-
trate the change of neurons during training
of two-layer ReLU networks in the teacher-
student setup of Chizat et al. (2019) (see Fig. 1
therein) using a large initialization scale for
which small step sizes of GD or SGD lead to
lazy training. We postpone the illustration of
(O1)–(O3) to Fig. 13 in Appendix as our inter-
est is on showing neuron dynamics (Fig. 9). We
see that for SGD with a small step size, the neu-
rons wi stay close to their initialization, while
for a large step size, there is a clear clustering
of directions wi along the teacher directions
w⋆

i . The overall picture is very similar to Fig. 1 of Chizat et al. (2019) where the same feature
learning effect is achieved via gradient flow from a small initialization which is, however, much
more computationally expensive due to the saddle point at zero. Finally, we note that the clustering
phenomenon of neurons wi motivates the removal of highly correlated activations in the feature
sparsity coefficient: although the corresponding activations are often non-zero, many of them in fact
implement the same feature and thus should be counted only once.

Further results. We give a short overview of additional figures referred to in the main text. More
details can be found in the captions.

• Figure 10 shows that even if loss stabilization occurs in diagonal linear networks, the implicit
bias towards sparsity is largely weaker than that of SGD and generalization is poor.

• Figures 11 and 12 demonstrate that the implicit bias resulting from high-loss stabilization
makes the neural nets learn first a simple model then eventually fits the data.

• Figure 13 presents the sparsifying effect corresponding to the neurons’ movements exhibited
in Figure 9.

• Figure 14 showcases the features learning induced by large step sizes for different layers of
ResNets-18 when trained on CIFAR-10.

• Figure 15 exhibits the feature sparsity in ResNets architecture on CIFAR-100 without any
regularization (plain SGD) and in the state-of-the-art setup.
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Figure 10: Diagonal linear networks. Loss stabilization also occurs for full-batch gradient descent
but does not lead to a similar level of sparsity as SGD and also does not improve the test loss.
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Figure 11: Two-layer ReLU networks for 1D regression. Unlike for Fig. 4, here we use a larger
warmup coefficient (500× vs. 400×) which leads to overregularization such that the 50%-schedule
run fails to fit all the training points and gets stuck at a too high value of the training loss (≈ 10−0.5).
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Figure 12: Two-layer ReLU networks for 1D regression. Illustration of the resulting models from
Fig. 4 over training iterations. We can see that first the model is simplified and only then it fits the
training data.
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Figure 13: Two-layer ReLU networks in a teacher-student setup. Loss stabilization for two-layer
ReLU nets in the teacher-student setup with input dimension d = 2. We observe loss stabilization,
better test loss for longer schedules and sparser features due to simplification of ϕ(X).

Early layer
Initial Small η Large η

Middle layer
Initial Small η Large η

Last layer
Initial Small η Large η

Figure 14: Visualization on four sets of convolutional filters taken from different layers of ResNets-
18 trained on CIFAR-10 with small vs. large step size η (the 50% decay schedule). For small step
sizes, the early and middle layers stay very close to randomly initialized ones which indicates the
absence of feature learning.
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ResNet-34 on CIFAR-100, no explicit regularization
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= 0.01 = 0.75, warmup, decay at 10% = 0.75, warmup, decay at 30% = 0.75, warmup, decay at 50%

ResNet-34 on CIFAR-100, state-of-the-art setting
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Figure 15: ResNet-34 trained on CIFAR-100. Both without explicit regularization and in the
state-of-the-art setting, the training loss stabilizes, the test loss significantly depends on the length of
the schedule, and feature sparsity is minimized over iterations. However, differently from the plots
on CIFAR-10, here without explicit regularization we observe oscillating behavior after the step size
decay (although at a very low level between 10−4 and 10−2).
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