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ABSTRACT

Deep learning has made significant strides in numerous fields, yet its adoption
in healthcare has been slow due to the considerable risks associated with clinical
applications. Explainable models are essential to foster trust and accountabil-
ity. This work examines the trade-off between interpretable techniques for au-
tomating sleep state annotation, a critical step in diagnosing sleep disorders. We
introduce an interpretable approach, NormIntSleep, that produces explana-
tions grounded in clinical guidelines by combining meaningful features with deep
neural network embeddings. Furthermore, we propose the metric AlignmentDT

to quantify domain-grounded interpretability and the resulting utility of expla-
nations. Crucially, NormIntSleep outperforms prior interpretable techniques
with 0.814–0.847 accuracy, 0.787–0.793 F1-score, 0.759–0.788 κ, and the hight-
est AlignmentDT score. NormIntSleep represents a potentially generalizable
interpretable machine learning approach where domain knowledge is essential for
safe and efficient implementation in healthcare.

1 INTRODUCTION

The widespread adoption of electronic health record (EHR) by healthcare providers has led to a surge
in the availability of patient data (Jianxun et al., 2021), paving the way for the development of in-
creasingly capable deep-learning models (Esteva et al., 2019). However, the limited interpretability
of these models hinders their widespread use, as comprehending the rationale behind each classifi-
cation is crucial for mitigating noise and bias (Stiglic et al., 2020). Linear models combined with a
robust feature set can offer a certain level of interpretability (Van Der Donckt et al., 2022). How-
ever, designing suitable features can be challenging, and incorporating complex features may result
in clinically irrelevant interpretations. In this paper, we explore the trade-off between clinical rel-
evance and model performance in the context of human Electroencephalogram (EEG) sleep stage
classification and propose a model that seeks to achieve the ideal balance.

In sleep medicine, there is an urgent need to leverage the capabilities of deep learning to help the 70
million adults suffering from sleep disorders such as sleep apnea, insomnia, and narcolepsy (Holder
& Narula, 2022). Brain activity must first be classified into sleep-wake states such as wake, rapid
eye movement (REM), and non-REM (NREM) sleep to diagnose and treat sleep disorders. The gold
standard for sleep classification involves the manual staging of polysomnogram (PSG) by clinicians.
However, this method is labor intensive, costly, and prone to human error (Zhang et al., 2022).

Deep learning models have been successfully developed for automated sleep state classification tasks
(Lipton, 2016; Perslev et al., 2019; Yang et al., 2021; Dong et al., 2018; Phan et al., 2019; Supratak
et al., 2017; Li et al., 2022; Jia et al., 2020; Qu et al., 2020; Phan et al., 2022). However, these
models lack interpretability and have been slow to be adopted in the clinical setting due to distrust
(Van Der Donckt et al., 2022; Al-Hussaini et al., 2019). In contrast, the American Academy of Sleep
Medicine (AASM) sleep scoring manual guidelines (Berry et al., 2012) classifies sleep based on the
occurrence of discrete, interpretable neuronal events such as eye movements, oscillatory rhythms,
spindles, K-complexes, and slow waves (Berry et al., 2012).

To reconcile the divide between the opaque deep learning models and human-based classification,
a recent study presented a feature-based linear model that showed performance on par with deep
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neural networks (Van Der Donckt et al., 2022). However, its features were not explicitly designed
to align with AASM clinical guidelines. In response, we propose NormIntSleep that effectively
combines clinically relevant explanations with the high sleep state classification accuracy typically
associated with deep learning models. The contributions of this paper are as follows:

• We introduce NormIntSleep, a representation learning framework designed to transform deep
learning embeddings into a domain-grounded interpretable feature space compatible with glass-
box models like decision trees.

• We propose a new metric, AlignmentDT , for quantifying and thus ensuring the model’s align-
ment with domain-specific knowledge through a decision tree.

• Comprehensive evaluation of NormIntSleep is performed using two public sleep classification
datasets, benchmarked against state-of-the-art interpretable and deep learning methods.

• NormIntSleep combined with a decision tree perfectly aligns with clinical domain knowledge,
achieving an AlignmentDT score of 1.0 in contrast to the second best score of 0.44.

• NormIntSleep outperforms other approaches that aim for clinically relevant interpretations.
• Guidelines are provided for adoption of NormIntSleep in other applications.

2 DATA

Table 1: Datasets

Dataset Number of
Subjects

Sampling
Frequency (Hz)

Channel
Names

Annotation
Schema

ISRUC (Khalighi et al., 2016b) 100 200 F3-A2, C3-A2, F4-A1, C4-A1, O1-A2,
O2-A1, ROC-A1, LOC-A2, Chin-EMG AASM

PhysioNet (Kemp et al., 2000) 197 100 EEG Fpz-Cz, EEG Pz-Oz,
EOG horizontal, EMG submental R&K

We evaluated sleep staging interpretability and performance using two public datasets (Table 1):

• The ISRUC-SLEEP Dataset (ISRUC) (Khalighi et al., 2016a) includes PSG recordings of 100
human subjects, some diagnosed with sleep apnea and some on medications.

• The Sleep-EDF Database Expanded (PhysioNet) (Kemp et al., 2000; Goldberger et al., 2000)
comprises 197 human subjects divided into two cohorts, the first in healthy controls and the second
with insomnia receiving a sleep aid medication (temazepam). We combined both cohorts in our
experiments to assess generalization capability. Sleep stages N3 and N4, annotated using the R&K
schema (, JSSR; Rechtschaffen, 1968), were merged into a single N3 class to conform to AASM
standards (Berry et al., 2012; Moser et al., 2009; Danker-hopfe et al., 2009).

3 NORMINTSLEEP METHOD

The objective of NormIntSleep is to offer a modular framework that can be adapted to various
domains, wherein domain knowledge can guide the desired interpretation. We demonstrate the
effectiveness of this approach for automatic sleep state classification.

Table 2 defines the notations used. The input consists of multi-channel physiological signals (EEG,
EOG, EMG) divided into 30 sec segments called epochs. During clinical annotation, the annotator
assigns a sleep stage label to each 30 sec segment by examining the signals. There are five possible
sleep stages: Wake (W), Rapid Eye Movement (REM), Non-REM 1 (N1), N2, and N3. The goal of
NormIntSleep is to predict these sleep stages for each epoch (yi ∈W, N1, N2, N3, REM) based
on the physiological signals (xi ∈ RC×fs·30) while providing a meaningful interpretation.

NormIntSleep architecture is detailed in the following sections and illustrated in Figure 1.

3.1 PRE-TRAINING

NormIntSleep utilizes the PSG recordings, X , to generate an interpretable representation for
deep neural network embeddings. The pre-training algorithm for creating the linear projector is
outlined in Algorithm 1 and depicted in Figure 1a.
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(a) NormIntSleep pre-training

(b) NormIntSleep glass-box model training

(c) DNN used to generate embeddings in NormIntSleep

Figure 1: Architecture of NormIntSleep. (a) The pre-training schema where DNN training and
subsequent embedding generation occurs in parallel to domain feature extraction. The results are
combined to produce the linear projector. (b) The glass-box model is trained using the interpretable
representations of the DNN embeddings generated using the linear projector. (c) The architecture of
the DNN used in NormIntSleep.

Table 2: Notations

Symbol Meaning

N Number of subjects
M Number of epochs
C Number of channels
fs Sampling frequency
Xj ∈ X Input signals for subject j
Yj ∈ Y Sleep stages for subject j
xi ∈ RC×fs·30 Input signals in an epoch
yi ∈ {W, N1, N2, N3, REM} Sleep stage in an epoch
F (xi) ∈ F Interpretable features of epoch xi

E(xi) ∈ E Embeddings of epoch xi

T Linear Projector
R(xi) ∈ FN Interpretable representation of E(xi)
h Glass-box Model

A Deep Neural Network
(DNN) is trained end-
to-end on sleep staging.
The multi-channel EEG,
EOG, and EMG signals
(X ) are used as input.
The CNN consists of
three convolutional lay-
ers, with each layer fol-
lowed by batch normal-
ization, ReLU activa-
tion, and max pooling.
The kernel sizes of the
three layers are 201, 11,
and 11, and the output
channels are 256, 128,
and 64. The CNN out-
put serves as input for a
layer of bi-directional Long Short-Term Memory (LSTM) cells with 256 hidden states. The resulting
512 hidden states constitute the embedding space, E . During model training with cross-entropy loss,
the LSTM output, E(X), connects to a fully-connected layer featuring five outputs corresponding
to the five sleep stages. The network is illustrated in Figure 1c.
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Algorithm 1: NormIntSleep pre-training

Input: training data: {X ,Y}
Output: linear projector: T

1: for {Xj ,Yj} ∈ {X ,Y} do // ** training dataset **//

2: FN(Xj)←
F (Xj)− µF

σF
// ** normalization **//

3: for {xi,yi} ∈ {Xj ,Yj} do // ** train DNN **//

4: E(xj)← Embeddings // ** output of (n-1)-th layer in n-layer DNN **//

5: zi ←W TE(xi)+ b // ** fully-connected layer Layer **//

6: σ(si[c]) =
ezi[c]

5∑
k=1

ezi[k]
// ** softmax **//

7: L(yi, si) = −
5∑
k

yi[k]log(σ(si[k])) // ** loss **//

8: end for
9: end for

10: F (X )← features // ** domain guided features **//

11: µF ← means of F (X ) // ** for each column, i.e. feature **//

12: σF ← standard deviation of F (X ) // ** for each column, i.e. feature **//

13: FN (X )← F (X )− µF

σF
// ** normalization of features **//

14: T ′ ← min
T ′
||E (X )− FN (X )T ′||22 // ** least squares optimization **//

Features F (X), defined in the feature space F , are extracted from the dataset. These features,
selected based on clinical guidelines, are described in detail in Section 3.3. Standardization is used

to normalize the features as follows: FN(X)← F (X)− µF

σF

A linear transformation, T , is learned to map the embedding space to the normalized feature space,
E T−→ FN , using least squares regression. R(X) = E(X) · T defines the interpretable representa-
tions obtained after projecting the embedding, E(X), to the normalized feature space, FN .

Ablation Studies. The two primary components of NormIntSleep that influence its performance
are studied in Appendix D: (1) Normalization scheme alters the distribution of both the feature and
interpretable representations of the embeddings, thereby impacting utility and overall performance.
(2) Method for learning linear projector governs the efficacy of the projection matrix used to map
the embeddings onto the feature space, consequently affecting the performance of the model.

3.2 GLASS-BOX MODEL TRAINING

The procedures for generating interpretable representations from the embeddings, training the glass-
box model, and conducting the inference process to procure both predictions and explanations are
laid out in Algorithm 2. Figure 1b shows a visual representation of this process.

Initially, the embeddings are created using the pre-trained DNN. The linear projection matrix, T , is
subsequently employed to project the embeddings onto the interpretable feature space, resulting in
R(X)← E(X)·T . These representations of the embeddings reside in the normalized interpretable
feature space, FN . Finally, these interpretable representations, along with the hypnogram, are used
to train a glass-box model, h.

During inference, a similar sequence is followed. The embeddings are first generated using the
pre-trained DNN. The linear projection matrix, T , is then applied to project the embeddings onto
the interpretable feature space. The resulting interpretable representations are input into the trained
glass-box model to obtain the predicted sleep stages.
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Algorithm 2: NormIntSleep glass-box model training and inference

Input: training data: {XY}; test data: {X ′}; linear projector: T ; pre-trained DNN with
last layer removed: E

Output: predicted classes and explanations: {Y ′,Z ′}
# Training

1: for Xj ∈ X do // ** training dataset **//

2: E(Xj)← Embeddings
3: R(Xj)← E(Xj) · T // ** interpretable representations of embeddings **//

4: end for
5: Train glass-box model, h, using {R(X ),Y}

# Inference
6: for {X′

j} ∈ {X ′} do // ** test dataset **//

7: E(X′
j)← Embeddings

8: R(X′
j)← E(X′

j) · T // ** interpretable representations of embeddings **//

9: {Y ′
j ,Z

′
j} ← h(R′(X′

j)) // ** Predicted classes and explanations **//

10: end for

3.3 DOMAIN FEATURES

The linear projector in Figure 1a utilized in NormIntSleep learns from a meticulously crafted
feature set named FeatShort, which is derived from domain-specific knowledge. FeatShort consists
of clinically relevant features designed based on AASM manual guidelines (Berry et al., 2012), with
121 features for the ISRUC dataset and 52 for the Physionet dataset, some of which are adapted
from (Al-Hussaini & Mitchell, 2022). FeatShort extracts the following features:

• Complexity, Mobility: Complexity measures the similarity of the signals to a pure sine wave, con-
verging when the frequency is constant. N3 is usually characterized by constant, low-frequency
waves, and REM by complex, high-frequency activity. Mobility represents the mean frequency of
the signal. These features were extracted using AntroPy.

• Rapid eye movements were only extracted for the ISRUC dataset as it requires two EOG chan-
nels. The approaches proposed by Yetton et al. (2016); Agarwal et al. (2005) are used by YASA
(Vallat & Walker, 2021) to extract REM. It is the primary characteristic of the REM sleep stage.

• Delta, Theta, Alpha, Beta band powers: Delta (0.5-4Hz) waves are used to annotate N3, Theta
(4-8Hz) waves are used to classify N1, Alpha (8-12Hz) and Beta (>12Hz) waves distinguish N1
from Wake (Berry et al., 2012). In EMG, these bands help differentiate between Wake and REM.
Power Spectral Density in each band is estimated using Welch’s method (Virtanen et al., 2020).

• Sleep spindles is a defining feature of N2 sleep stage. The method proposed by (Lacourse et al.,
2019) and (Vallat & Walker, 2021) was used to extract spindles.

• Slow waves. The N3 sleep stage is defined by the presence of low-frequency, high-amplitude, and
delta activity called slow waves. Methods by (Carrier et al., 2011), (Massimini et al., 2004), and
(Vallat & Walker, 2021) were used for extraction.

• #-Zero-Crossings represent the number of times the signal oscillates between value extremes. A
high number of crossings indicates high fluctuating activity in the corresponding signal. NREM
slow waves are usually classified based on the frequency at which zero-crossings occur. This
feature was extracted using AntroPy.

• Amplitude is a distinguishing feature in many underlying characteristics used for sleep staging
like K Complexes and Low Amplitude Mixed Frequency (Berry et al., 2012).

• Kurtosis, skewness, variance, mean represent the distribution of epochs and reveal other under-
lying traits. For example, previous work discovered a relation between variance in EEG and delta
waves (Mariani et al., 2011). These features were extracted using SciPy (Virtanen et al., 2020).

In contrast to FeatShort, which contains only clinically relevant features, FeatLong (Van Der Don-
ckt et al., 2022) presents a more exhaustive feature list (Appendix A), utilized alongside glass-box
models without incorporating the NormIntSleep architecture. A goal of this study is to juxtapose
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the efficacy of NormIntSleep in combination with FeatShort against the comprehensive but clin-
ically less meaningful FeatLong. The FeatLong features do not emphasize the clinical guidelines as
proposed in the AASM Manual (Berry et al., 2012), yielding 2488 features for the ISRUC dataset
and 1048 for the Physionet dataset. Through analysis of variance, the topmost 90% significant
features are retained in both FeatShort and FeatLong.

3.4 METRIC FOR DOMAIN-GROUNDED INTERPRETABILITY

NormIntSleep aims to align explanations with domain knowledge. This ensures that the insights
generated are valuable to clinicians, making our findings more actionable. To quantify this alignment
between a decision tree and clinical domain knowledge, we introduce a metric, AlignmentDT

∈ [0, 1]. Nodes predominantly consisting of a single sleep stage (> 95%) are disregarded during
calculation as they do not play a major role in the overall model behavior of the tree and behave
similar to a leaf node. It is defined as follows, with a desired value of 1.0 during perfect alignment:

AlignmentDT =
Number of nodes that align with clinical domain knowledge

Total number of nodes
(1)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The DNN was trained using PyTorch (Paszke et al., 2019) with a batch size of 1000 samples from
a single PSG. Training continued for 50 epochs with a starting learning rate of 10−4, using the
Adam (Kingma & Ba, 2014) optimization method. Glass-box models were trained using scikit-learn
(Pedregosa et al., 2011; Raschka et al., 2020), XGBoost (Chen & Guestrin, 2016), and CatBoost
(Prokhorenkova et al., 2018). Features were extracted using scikit-learn, MNE (Gramfort et al.,
2013), YASA (Vallat & Walker, 2021), and tsflex (Van Der Donckt et al., 2021).

We partitioned data by subjects into a 9:1 training-test split using the same seed for all experiments.
As a result, the same subjects were consistently used for testing in every experiment. Model hy-
perparameters were optimized based on the training data, while the test data was used to obtain
performance metrics. To avoid overfitting and maintain model consistency across datasets, we used
identical model hyperparameters and feature extraction methods for both datasets. Comprehensive
implementation details, including hyperparameters and baselines, are provided in Appendix B.

4.2 BASELINES

We used a variety of existing deep learning models as benchmarks to assess our model:

• U-Time (single-channel) (Perslev et al., 2019): deep learning model based on U-Net architecture.
• DeepSleepNet (single-channel) (Supratak et al., 2017): combines CNN and LSTM.
• CNN: Convolutional Neural Network proposed in (Al-Hussaini et al., 2019).
• TinySleepNet (single-channel) (Supratak & Guo, 2020): CNN and LSTM.
• AttnSleep (single-channel) (Eldele et al., 2021): an attention-based approach.

We also designed and utilized the following deep learning models by either adapting established
methodologies or creating new ones (Implementation details: Appendices B and F):

• U-Time (multi-channel): adapted the U-Time architecture to integrate multiple channels to achieve
state-of-the-art performance. Detailed architecture illustrated in Figure 8 in the Appendix.

• DeepSleepNet (multi-channel): modified the DeepSleepNet architecture to include multiple chan-
nels for improved performance. Detailed architecture can be found in Figure 7 in the Appendix.

• AttentionNet: introduced a deep neural network architecture that consists of convolutional layers
and multi-headed attention. Architecture illustrated in Figure 9 in the Appendix.

• RCNN (DNN): the proposed DNN that serves as the foundation of NormIntSleep (Figure 1c).
• RCNN-MHA: modified the proposed RCNN architecture to include residual connections and

multi-headed attention (MHA). Architecture illustrated in Figure 10 in the Appendix.
• RCNN-SDPA: further modified the proposed RCNN to incorporate residual connections and

scaled dot product attention (SDPA). Architecture illustrated in Figure 11 in the Appendix.
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Table 3: Comparison of interpretable and black box deep learning methods with NormIntSleep.
The best interpretable method using NormIntSleep, the best feature-based method, and the best
black-box methods are bolded.

Model
Accuracy F1 Score (Macro) Cohen’s κ

Physionet ISRUC Physionet ISRUC Physionet ISRUC

In
te

rp
re

ta
bl

e
M

et
ho

ds

SLEEPER-GradientBoostedTrees (Al-Hussaini et al., 2019) 0.807 0.797 0.721 0.756 0.729 0.736
SERF-XGBoost (Al-Hussaini & Mitchell, 2022) 0.823 0.819 0.753 0.789 0.753 0.766
FeatLong (Van Der Donckt et al., 2022)-XGBoost 0.861 0.809 0.810 0.775 0.809 0.752
FeatLong (Van Der Donckt et al., 2022)-CatBoost 0.862 0.811 0.811 0.775 0.810 0.754
FeatLong (Van Der Donckt et al., 2022)-LogisticRegression 0.856 0.800 0.801 0.762 0.801 0.741
FeatShort-XGBoost 0.828 0.791 0.768 0.752 0.764 0.728
NormIntSleep-XGBoost 0.845 0.811 0.787 0.783 0.785 0.755
FeatShort-CatBoost 0.834 0.798 0.776 0.755 0.771 0.737
NormIntSleep-CatBoost 0.847 0.814 0.793 0.787 0.788 0.759
NormIntSleep-LogisticRegression 0.853 0.788 0.797 0.764 0.796 0.723
FeatShort-Decision Tree (Depth 7) 0.758 0.698 0.683 0.591 0.663 0.596
NormIntSleep-Decision Tree (Depth 7) 0.819 0.791 0.751 0.761 0.749 0.728

D
ee

p
L

ea
rn

in
g

U-Time (Perslev et al., 2019) 0.805 0.807 0.743 0.779 0.733 0.751
DeepSleepNet (Supratak et al., 2017) 0.841 0.811 0.788 0.778 0.782 0.754
CNN (Al-Hussaini et al., 2019) 0.851 0.808 0.796 0.778 0.794 0.752
AttnSleep (Eldele et al., 2021) 0.832 0.807 0.772 0.760 0.771 0.749
TinySleepNet (Supratak & Guo, 2020) 0.811 0.796 0.731 0.751 0.739 0.735
U-Time (multi-channel) 0.868 0.849 0.822 0.825 0.820 0.805
DeepSleepNet (multi-channel) 0.867 0.822 0.820 0.803 0.817 0.768
AttentionNet 0.841 0.806 0.781 0.774 0.781 0.750
RCNN (DNN in NormIntSleep) 0.863 0.844 0.817 0.822 0.811 0.799
RCNN-MHA 0.857 0.811 0.811 0.788 0.805 0.757
RCNN-SDPA 0.867 0.790 0.823 0.774 0.818 0.726

For model performance evaluation, we also made use of the following interpretable benchmarks:

• FeatShort and glass-box models: We combined the features outlined in Section 3.3 with glass-box
models, bypassing the use of the NormIntSleep architecture.

• FeatLong (Van Der Donckt et al., 2022) and glass-box models: We paired the features described
in Appendix A with glass-box models.

• SLEEPER (Al-Hussaini et al., 2019): Prototype-based interpretable algorithm for sleep staging.
• SERF (Al-Hussaini & Mitchell, 2022): Interpretable method using embeddings, rules, features.

Metrics. Model performance is compared using Accuracy, Macro F1-Score, and Cohen’s κ.

5 RESULTS

Table 3 compares the sleep classification performance of NormIntSleep with the methods de-
tailed in Section 4.2. The F1-scores for each of the sleep stages are presented in Tables 7 and 6 in
the Appendix. We then evaluate the importance of features critical for sleep state classification from
a clinical perspective and quantify the alignment with domain knowledge using AlignmentDT .
The top performing interpretable, feature-based method was FeatLong-CatBoost with an accuracy
of 0.811–0.862, F1 of 0.775–0.811, and Cohen’s κ of 0.754–0.810. NormIntSleep–CatBoost
demonstrates an accuracy of 0.814–0.847, F1 of 0.787–0.793 and Cohen’s κ of 0.759–0.788. The
top performing black-box deep learning method was U-Time with an accuracy of 0.849–0.868, F1
of 0.822-0.825, and Cohen’s κ of 0.805–0.820. The results demonstrate that NormIntSleep sur-
passes the performance of all other interpretable methods, with the sole exception of the exhaustive
feature list present in FeatLong. Additionally, for the most interpretable glass-box method, Decision
Tree, NormIntSleep Tree improves the accuracy of the corresponding feature-based approach
from 75.8% to 81.9% for the Physionet dataset and 69.8% to 79.1% for the ISRUC dataset, further
demonstrating the efficacy of the NormIntSleep framework. Results for different demographies
and confidence intervals are in Appendices J and I.

5.1 INTERPRETABLE DECISION TREE

NormIntSleep uses clinical AASM guidelines to generate a list of features (FeatShort) that
is used as a representation of the DNN embeddings. Figure 2 is the decision tree generated by
NormIntSleep-DecisionTree showing counts for the entire training set in the PhysioNet dataset.
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Figure 2: NormIntSleep-Decision Tree for PhysioNet. The tree depth has been limited to 4
levels to facilitate examination and provide a clear understanding. The histogram stacks represent
tree nodes, and the pie charts symbolize the leaves. Each node displays the representative feature
value distribution for the five sleep stages, with a marked upward arrow indicating the threshold for
node splitting. This short and pruned decision tree achieves an accuracy of 79.4%, a kappa value of
0.707, and a perfect AlignmentDT score of 1.0.

NormIntSleep-DecisionTree attained an accuracy of approximately 79%. In comparison, Feat-
Short-DecisionTree, which utilizes the features as input to the glass-box models, obtained an accu-
racy of 71% on the same dataset. To judge the interpretability of the decision tree, a practicing sleep
clinician made the following observations of the nodes within the decision tree.

• Node 0 employs beta waves, with frequencies between 8–20 Hz, in EEG, resulting in a signifi-
cantly higher proportion of Wake on the split with a higher absolute value. In clinical practice,
beta waves are dominant during Wake in comparison to the other sleep stage of NREM and REM
(Patel et al., 2021; Estrada et al., 2004).

• Node 1 splits based on the number of EOG crossings, resulting in more Wake on the side with a
higher value. In clinical practice, high EOG activity signifies wakefulness (Ganesan & Jain, 2020)
and eye movements associated with REM (Lin et al., 2019; Barea et al., 2012; Herman et al., 1984;
Boukadoum & Ktonas, 1986).

• Nodes 2 and 3 utilizes high EMG Complexity and Skewness to differentiate Wake from other
sleep stages. In clinical practice, Wake has high EMG activity (both magnitude and variance).
Moreover, EMG variance is also high in N1 relative to N2, N3, and REM, thus explaining the
increased amount of N1 in subsequent nodes.

• Nodes 16 and 17 employ low kurtosis in EEG to classify REM. In clinical practice, REM sleep is
characterized by homogenous EEG (Krauss et al., 2018), resulting in low kurtosis (platykurtic).

• Nodes 24 and 28 use slow waves in an EEG channel to differentiate N3 from N2. In clinical
practice, presence of slow waves are used to classify N3 (Patel et al., 2021; Berry et al., 2012).

The decision tree underscores the effectiveness of NormIntSleep in projecting the embeddings
onto an interpretable feature space with clinical relevance. It demonstrates that the paths taken
during tree traversal (beta waves, EOG crossings, EMG complexity, EEG kurtosis, and amount of
delta waves) mirror clinical decision-making.
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5.2 QUANTIFICATION OF ALIGNMENT WITH DOMAIN KNOWLEDGE

Based on the explanations in Section 5.1 and Figure 2, NormIntSleep achieves an AlignmentDT

(Eq. 1) score of 1.0. Nodes 9 and 10 due to > 95% (explanation: Section 3.4) Wake composition. In
contrast, the FeatLong-DecisionTree (depth = 4) obtains a AlignmentDT score of 0.22, excluding
nodes 9 and 13, as illustrated in Figure 12 of the Appendix. The AlignmentDT score for SERF
based on the tree presented in paper is 0.44. It’s worth noting that SERF leverages features that are
more rooted in clinical guidelines than FeatLong. Hence, NormIntSleep offers explanations that
are substantially better grounded in domain knowledge compared to other interpretable methods.

5.3 FEATURE IMPORTANCE

Figure 3: Most important embedding representa-
tions in NormIntSleep-XGBoost and the in-
fluence on each sleep stage classification accord-
ing to SHAP values

Using SHapley Additive exPlanations (SHAP)
(Lundberg & Lee, 2017), Figure 3 demon-
strates the top five most important dimen-
sions of the interpretable representation of the
NormIntSleep embeddings paired with XG-
Boost and their impact on the five sleep stages.
Figure 6 in the appendix shows the distribution
of SHAP values of the top five interpretable di-
mensions for individual sleep stages. The top
five most important features in Figure 3 were
considerably more critical than the rest, so only
these five features and their implications are explained below:

• The first and fourth most important features emphasize the significance of EOG complexity and
kurtosis in classifying REM, which is consistent with Figure 2, Node 1, and Figure 6(e). EOG
activity is very high during REM (Boukadoum & Ktonas, 1986; Herman et al., 1984).

• The second most important feature underlines the importance of beta waves in classifying Wake
and is consistent with Figure 2, Node 0, and Figure 6(d). Beta waves are dominant during wake-
fulness (Patel et al., 2021; Estrada et al., 2004).

• The third feature indicates the importance of EEG variance in classifying N3. Consistent with
Figure 2, Nodes 0, 24, and 28, high EEG variance is a common attribute of the high amplitude and
low-frequency slow waves (Frauscher et al., 2015), a characteristic of the N3 sleep stage. This is
also consistent with Figure 6(c).

• The fifth feature emphasizes the importance of beta waves in EEG in distinguishing Wake from
N1. Beta waves are dominant during wakefulness (Patel et al., 2021; Estrada et al., 2004) but not
during N1, making them the perfect attribute to differentiate between the two, as highlighted in
Section 5.1, Figure 2, Node 6, and Figure 6(a), 6(d).

The alignment of the SHAP values with clinical guidelines underscores the utility of the explana-
tions provided by NormIntSleep. Moreover, as secondary validation, a practicing clinical sleep
specialist reviewed the interpretations of NormIntSleep. The detailed procedure for adoption of
NormIntSleep in other domains is detailed in Appendix K.

6 DISCUSSION

Interpretability is crucial for the adoption of clinical decision support systems. Complex features
paired with a simple model can provide interpretation. However, those explanations can only
be helpful if the features are clinically meaningful. This study proposed the integrated use of
NormIntSleep with FeatShort, a feature-set grounded in clinical guidelines from the AASM
manual. This combination results in a highly accurate, more clinically interpretable sleep classifi-
cation. In contrast, while comparably accurate at classifying sleep states, FeatLong and SERF falls
short of full compliance with the AASM manual and therefore has limited practical utility for clin-
icians. Through the proposed metric AlignmentDT , we quantify the significantly better alignment
of NormIntSleepwith domain expertise relative to other methods. In conclusion, we demonstrate
that interpretability can be successfully implemented in sleep state classification and is a critical step
towards wider adoption into clinical decision support systems in all of healthcare.
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A FEATURES IN FEATLONG

In this appendix, we delve into the details of the expansive FeatLong feature set, comprising both
time-domain and frequency-domain attributes. These features provide an extensive perspective on
the signal data. However, it is vital to underscore that while these attributes offer a broad under-
standing of the signal’s properties, some of these features are not in accordance with the AASM
Manual. This lack of direct alignment could potentially limit their utility in clinical contexts.

A.1 TIME-DOMAIN FEATURES

Time-domain features primarily capture the statistical characteristics and the unique waveform prop-
erties of the signal within the temporal spectrum:

• Standard Deviation, Interquartile Range, Skewness, Kurtosis: These features are part of the
more concise FeatShort feature set discussed in the main paper, describing the statistical distribu-
tion of the signal epochs.

• Number of zero-crossings: This feature counts the instances where the signal swings between
value extremes, playing a significant role in the categorization of NREM slow waves.

• Hjorth Mobility, Hjorth Complexity: These features align with ’Mobility’ and ’Complexity’
within FeatShort, representing the mean frequency of the signal and its resemblance to a pure sine
wave, respectively.

• Higuchi Fractal Dimension, Petrosian Fractal Dimension, Permutation Entropy, Binned En-
tropy: These intricate features capture complex structures of the signal, including its fractal di-
mension and entropy. However, their absence from the AASM Manual may limit their clinical
applicability.

A.2 FREQUENCY-DOMAIN FEATURES

Frequency-domain features shed light on the spectral properties of the signal:

• Spectral Fourier Statistics, Binned Fourier Entropy: These features capture the spectral as-
pects of the signal, such as the statistical properties and entropy of its Fourier transform. However,
their absence from the AASM Manual may limit their clinical relevance.

• Absolute and Relative Spectral Power in the 0.4-30Hz Band: These measures mirror the Delta,
Theta, Alpha, and Beta band powers in the FeatShort set, facilitating the classification of different
sleep stages.

• Fast Delta + Theta Spectral Power, Alpha / Theta Spectral Power, Delta / Beta Spectral
power, Delta / Sigma Spectral Power, Delta / Theta Spectral Power: These metrics represent
the ratio or aggregate power in specific spectral bands, highlighting the interaction between dif-
ferent frequency components of the signal. While they can provide valuable insights for sleep
staging, they are not explicitly outlined in the AASM Manual.

Through this appendix, we have endeavored to shed light on the extensive FeatLong feature set,
underscoring its depth and range. Nevertheless, we must acknowledge the trade-off between the
comprehensive nature of FeatLong and the clinically oriented FeatShort. This arises due to some
features in FeatLong not directly complying with the AASM Manual, potentially impacting their
clinical relevance. This nuanced distinction between the two feature sets is further explored in the
main body of the paper.
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B IMPLEMENTATION DETAILS

The data was split by patients into training and test set using a 9:1 ratio. The model hyper-parameters
were set using the training set, including those for the glass-box models. All neural networks were
trained using PyTorch 1.0 (Paszke et al., 2019) using ADAM (Kingma & Ba, 2014) as the optimiza-
tion method. A batch size of 1000 epochs was used. The training was performed for 50 epochs.
The learning rate was reduced by a factor of 10, after 30 epochs. A learning rate of 10−4 was used.
Comprehensive descriptions of the deep learning models proposed in this paper can be found in
Appendix F.

Glass-box models were developed using scikit-learn (Pedregosa et al., 2011; Raschka et al., 2020),
XGBoost (Chen & Guestrin, 2016), and CatBoost (Prokhorenkova et al., 2018). Feature extraction
was performed using methods discussed in Section 3.3 of the main manuscript, as well as scikit-
learn (Pedregosa et al., 2011; Raschka et al., 2020), MNE (Gramfort et al., 2013), YASA (Vallat
& Walker, 2021), and tsflex (Van Der Donckt et al., 2021). Features within FeatLong were mainly
extracted using tsflex, as detailed in Appendix A.

Glass-box model hyperparameters:

• NormIntSleep-CatBoost: iterations = 5000, learning rate = 0.01, objective = MultiClass
• FeatShort-CatBoost: iterations = 10000, learning rate = 0.01, objective = MultiClass
• NormIntSleep-XGBoost: tree method = gpu hist, objective = multi:softprob, num round = 30
• FeatShort-XGBoost: tree method = gpu hist, objective = multi:softprob, num round = 200
• Decision Tree: criterion = entropy
• Logistic Regression: tol=1e-5, C=150.0, max iter=4000, penalty=elasticnet, l1 ratio = 0.5
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C VARIATION IN PERFORMANCE WITH DEPTH OF DECISION TREE

The performance comparison of decision trees of various depths are compared in Figure 4 and 5

(a) NormIntSleep & FeatShort Decision Tree
Accuracy vs Depth

(b) NormIntSleep & FeatShort Decision Tree
Macro-F1 vs Depth

Figure 4: The performance variation with depth of tree in NormIntSleep-FeatShort Decision
Tree

(a) NormIntSleep & FeatLong Decision Tree
Accuracy vs Depth

(b) NormIntSleep & FeatLong Decision Tree
Macro-F1 vs Depth

Figure 5: The performance variation with depth of tree in NormIntSleep-FeatLong Decision
Tree

Figure 4 shows that even at a depth of 4 or 6, NormIntSleep reaches excellent performance
metrics. FeatLong requires similar depth for good performance (Figure 5).
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D ABLATION STUDY

The results of the ablation study on the two critical components of NormIntSleep are provided
in Table 5 for the scaling schema and Table 4 for the choice of the projector learning algorithm.
The tables show that the chosen approaches, Standardization and Least Squares, have comparable
performance to the best methods.

Table 4: Effect of Projector Learning Schema

Model Scaling Projector Learning
Accuracy F1 Score (Macro) Cohen’s κ

Physionet ISRUC Physionet ISRUC Physionet ISRUC

NormIntSleep-XGBoost Standardization Cosine Similarity 0.835 0.802 0.774 0.779 0.771 0.744
FeatShort-XGBoost Standardization Cosine Similarity 0.83 0.793 0.77 0.753 0.766 0.731
NormIntSleep-CatBoost Standardization Cosine Similarity 0.839 0.807 0.779 0.783 0.777 0.75
FeatShort-CatBoost Standardization Cosine Similarity 0.834 0.798 0.776 0.755 0.771 0.737
NormIntSleep-LogisticRegression Standardization Cosine Similarity 0.851 0.793 0.792 0.769 0.793 0.73
FeatShort-LogisticRegression Standardization Cosine Similarity 0.758 0.756 0.667 0.704 0.657 0.681
NormIntSleep-XGBoost Standardization Linear Regression 0.841 0.807 0.782 0.78 0.78 0.75
FeatShort-XGBoost Standardization Linear Regression 0.832 0.793 0.771 0.754 0.768 0.731
NormIntSleep-CatBoost Standardization Linear Regression 0.847 0.814 0.793 0.787 0.788 0.759
FeatShort-CatBoost Standardization Linear Regression 0.834 0.798 0.776 0.755 0.771 0.737
NormIntSleep-LogisticRegression Standardization Linear Regression 0.853 0.789 0.797 0.765 0.796 0.724
FeatShort-LogisticRegression Standardization Linear Regression 0.758 0.756 0.667 0.705 0.657 0.681
NormIntSleep-XGBoost Standardization Ridge Regression 0.841 0.803 0.782 0.776 0.78 0.744
FeatShort-XGBoost Standardization Ridge Regression 0.832 0.793 0.771 0.754 0.768 0.731
NormIntSleep-CatBoost Standardization Ridge Regression 0.847 0.814 0.793 0.786 0.789 0.758
FeatShort-CatBoost Standardization Ridge Regression 0.834 0.798 0.776 0.755 0.771 0.737
NormIntSleep-LogisticRegression Standardization Ridge Regression 0.853 0.788 0.797 0.763 0.796 0.723
FeatShort-LogisticRegression Standardization Ridge Regression 0.758 0.756 0.666 0.704 0.657 0.681
NormIntSleep-XGBoost Standardization Least Squares 0.841 0.807 0.782 0.78 0.78 0.75
FeatShort-XGBoost Standardization Least Squares 0.832 0.793 0.771 0.754 0.768 0.731
NormIntSleep-CatBoost Standardization Least Squares 0.847 0.814 0.793 0.787 0.788 0.759
FeatShort-CatBoost Standardization Least Squares 0.834 0.798 0.776 0.755 0.771 0.737
NormIntSleep-LogisticRegression Standardization Least Squares 0.853 0.788 0.797 0.764 0.796 0.723
FeatShort-LogisticRegression Standardization Least Squares 0.758 0.756 0.667 0.704 0.657 0.681

Table 5: Effect of Scaling Schema

Model Scaling Projector Learning
Accuracy F1 Score (Macro) Cohen’s κ

Physionet ISRUC Physionet ISRUC Physionet ISRUC

NormIntSleep-XGBoost Max Absolute Least Squares 0.841 0.806 0.78 0.779 0.779 0.748
FeatShort-XGBoost Max Absolute Least Squares 0.833 0.792 0.772 0.752 0.769 0.729
NormIntSleep-CatBoost Max Absolute Least Squares 0.844 0.81 0.786 0.781 0.783 0.753
FeatShort-CatBoost Max Absolute Least Squares 0.834 0.797 0.775 0.755 0.771 0.736
NormIntSleep-LogisticRegression Max Absolute Least Squares 0.852 0.789 0.795 0.764 0.796 0.724
FeatShort-LogisticRegression Max Absolute Least Squares 0.751 0.741 0.653 0.684 0.646 0.66
NormIntSleep-XGBoost Normalization Least Squares 0.838 0.804 0.776 0.776 0.776 0.745
FeatShort-XGBoost Normalization Least Squares 0.827 0.791 0.765 0.747 0.762 0.728
NormIntSleep-CatBoost Normalization Least Squares 0.843 0.806 0.785 0.774 0.783 0.748
FeatShort-CatBoost Normalization Least Squares 0.831 0.799 0.769 0.753 0.766 0.738
NormIntSleep-LogisticRegression Normalization Least Squares 0.302 0.789 0.093 0.767 0 0.725
FeatShort-LogisticRegression Normalization Least Squares 0.694 0.754 0.578 0.691 0.562 0.677
NormIntSleep-XGBoost Standardization Least Squares 0.841 0.807 0.782 0.78 0.78 0.75
FeatShort-XGBoost Standardization Least Squares 0.832 0.793 0.771 0.754 0.768 0.731
NormIntSleep-CatBoost Standardization Least Squares 0.847 0.814 0.793 0.787 0.788 0.759
FeatShort-CatBoost Standardization Least Squares 0.834 0.798 0.776 0.755 0.771 0.737
NormIntSleep-LogisticRegression Standardization Least Squares 0.853 0.788 0.797 0.764 0.796 0.723
FeatShort-LogisticRegression Standardization Least Squares 0.758 0.756 0.667 0.704 0.657 0.681
NormIntSleep-XGBoost Quantile Least Squares 0.844 0.807 0.786 0.778 0.784 0.749
FeatShort-XGBoost Quantile Least Squares 0.833 0.793 0.773 0.753 0.77 0.731
NormIntSleep-CatBoost Quantile Least Squares 0.847 0.809 0.791 0.781 0.788 0.752
FeatShort-CatBoost Quantile Least Squares 0.834 0.797 0.776 0.755 0.771 0.736
NormIntSleep-LogisticRegression Quantile Least Squares 0.854 0.789 0.798 0.766 0.798 0.724
FeatShort-LogisticRegression Quantile Least Squares 0.793 0.781 0.72 0.734 0.712 0.714
NormIntSleep-XGBoost Robust Least Squares 0.842 0.807 0.78 0.781 0.78 0.75
FeatShort-XGBoost Robust Least Squares 0.833 0.795 0.772 0.755 0.769 0.733
NormIntSleep-CatBoost Robust Least Squares 0.842 0.807 0.784 0.778 0.781 0.749
FeatShort-CatBoost Robust Least Squares 0.834 0.798 0.775 0.755 0.771 0.737
NormIntSleep-LogisticRegression Robust Least Squares 0.302 0.792 0.093 0.769 0 0.728
FeatShort-LogisticRegression Robust Least Squares 0.758 0.757 0.667 0.705 0.657 0.682
NormIntSleep-XGBoost None Least Squares 0.84 0.806 0.781 0.779 0.778 0.748
FeatShort-XGBoost None Least Squares 0.833 0.792 0.772 0.752 0.769 0.729
NormIntSleep-CatBoost None Least Squares 0.844 0.81 0.786 0.781 0.783 0.753
FeatShort-CatBoost None Least Squares 0.834 0.797 0.776 0.755 0.771 0.736
NormIntSleep-LogisticRegression None Least Squares 0.302 0.789 0.093 0.764 0 0.724
FeatShort-LogisticRegression None Least Squares 0.722 0.755 0.607 0.702 0.602 0.679
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E NORMINTSLEEP-XGBOOST FEATURE IMPORTANCE

(a) NREM1 (b) NREM2 (c) NREM3

(d) Wake (e) REM

Figure 6: Five most important features of NormIntSleep-XGBoost during the classification of
(a) NREM1, (b) NREM2, (c) NREM3, (d) Wake, and (e) REM
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F BASELINE DEEP LEARNING MODEL ARCHITECTURE

Figure 7: Multi-channel DeepSleepNet for the ISRUC dataset
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Figure 8: Multi-channel U-Time for the ISRUC dataset
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Figure 9: AttentionNet for the ISRUC dataset
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Figure 10: RCNN-MHA for the ISRUC dataset
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Figure 11: RCNN-SDPA for the ISRUC dataset
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G SLEEP STAGE PERFORMANCE

Table 6: F1 scores for each sleep stage in the Physionet dataset

Model W N1 N2 N3 REM

In
te

rp
re

ta
bl

e
M

et
ho

ds FeatLong (Van Der Donckt et al., 2022)-XGBoost 0.941 0.541 0.881 0.822 0.867
FeatLong (Van Der Donckt et al., 2022)-CatBoost 0.938 0.530 0.884 0.836 0.866
FeatLong (Van Der Donckt et al., 2022)-LogisticRegression 0.930 0.511 0.882 0.833 0.849
FeatShort-XGBoost 0.916 0.437 0.859 0.828 0.801
NormIntSleep-XGBoost 0.922 0.495 0.870 0.824 0.826
FeatShort-CatBoost 0.918 0.445 0.862 0.846 0.808
NormIntSleep-CatBoost 0.921 0.515 0.875 0.826 0.827
NormIntSleep-LogisticRegression 0.932 0.496 0.874 0.846 0.834
FeatShort-Decision Tree (Depth 7) 0.838 0.293 0.815 0.790 0.681
NormIntSleep-Decision Tree (Depth 7) 0.898 0.396 0.858 0.816 0.788

D
ee

p
L

ea
rn

in
g

U-Time (Perslev et al., 2019) 0.909 0.385 0.831 0.763 0.776
DeepSleepNet (Supratak et al., 2017) 0.920 0.495 0.873 0.832 0.820
CNN (Al-Hussaini et al., 2019) 0.938 0.491 0.871 0.843 0.839
AttnSleep (Eldele et al., 2021) 0.921 0.438 0.871 0.848 0.783
TinySleepNet (Supratak & Guo, 2020) 0.906 0.321 0.864 0.838 0.724
U-Time (multi-channel) 0.947 0.579 0.882 0.817 0.885
DeepSleepNet (multi-channel) 0.941 0.560 0.882 0.839 0.879
AttentionNet 0.932 0.447 0.863 0.838 0.824
RCNN (DNN in NormIntSleep) 0.933 0.561 0.888 0.819 0.883
RCNN-MHA 0.937 0.551 0.874 0.821 0.872
RCNN-SDPA 0.943 0.573 0.880 0.830 0.888

Table 7: F1 scores for each sleep stage in the ISRUC dataset

Model W N1 N2 N3 REM

In
te

rp
re

ta
bl

e
M

et
ho

ds FeatLong (Van Der Donckt et al., 2022)-XGBoost 0.864 0.431 0.815 0.900 0.867
FeatLong (Van Der Donckt et al., 2022)-CatBoost 0.874 0.419 0.815 0.902 0.863
FeatLong (Van Der Donckt et al., 2022)-LogisticRegression 0.889 0.412 0.790 0.877 0.841
FeatShort-XGBoost 0.899 0.401 0.781 0.873 0.804
NormIntSleep-XGBoost 0.893 0.499 0.796 0.869 0.857
FeatShort-CatBoost 0.902 0.397 0.794 0.878 0.805
NormIntSleep-CatBoost 0.895 0.507 0.799 0.867 0.861
NormIntSleep-LogisticRegression 0.891 0.501 0.762 0.841 0.832
FeatShort-Decision Tree (Depth 7) 0.838 0.293 0.815 0.790 0.681
NormIntSleep-Decision Tree (Depth 7) 0.872 0.462 0.783 0.833 0.852

D
ee

p
L

ea
rn

in
g

U-Time (Perslev et al., 2019) 0.890 0.451 0.764 0.883 0.785
DeepSleepNet (Supratak et al., 2017) 0.916 0.500 0.796 0.881 0.800
CNN (Al-Hussaini et al., 2019) 0.904 0.459 0.794 0.878 0.855
AttnSleep (Eldele et al., 2021) 0.914 0.418 0.799 0.887 0.783
TinySleepNet (Supratak & Guo, 2020) 0.911 0.372 0.781 0.884 0.740
U-Time (multi-channel) 0.934 0.576 0.827 0.897 0.893
DeepSleepNet (multi-channel) 0.929 0.566 0.795 0.835 0.887
AttentionNet 0.920 0.451 0.779 0.876 0.846
RCNN (DNN in NormIntSleep) 0.923 0.581 0.818 0.890 0.901
RCNN-MHA 0.904 0.505 0.790 0.864 0.879
RCNN-SDPA 0.869 0.461 0.733 0.809 0.834
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H INTERPRETATION OF FEATLONG-DECISION TREE

Figure 12: The FeatLong (Van Der Donckt et al., 2022)-DecisionTree (Depth 4) features just 2
nodes (Nodes 1 and 24) aligned with clinical guidelines, yielding an AlignmentDT score of 0.22.
Nodes 9 and 13 are excluded from the AlignmentDT calculation since they predominantly repre-
sent Wake (> 95%). In contrast, the NormIntSleep-DecisionTree (Depth 4) achieves a perfect
AlignmentDT score of 1.0, with all its nodes in alignment.

I REPRODUCIBILITY

Table 8: Performance metrics obtained from repeated experiments with disjoint test subjects on both
datasets showing average and 95% confidence interval.

PhysioNet Accuracy ISRUC Accuracy PhysioNet F1 Score (Macro) ISRUC F1 Score (Macro) PhysioNet Kappa ISRUC Kappa

RCNN 0.846±0.013 0.826±0.017 0.804±0.017 0.808±0.017 0.788±0.019 0.774±0.024
U-Time 0.818±0.014 0.835±0.010 0.768±0.015 0.815±0.010 0.750±0.021 0.785±0.015
NormIntSleep-CatBoost 0.805±0.023 0.801±0.011 0.753±0.020 0.778±0.013 0.730±0.031 0.739±0.016
NormIntSleep-XGBoost 0.796±0.022 0.799±0.009 0.742±0.021 0.775±0.009 0.717±0.031 0.737±0.013
NormIntSleep-Logistic Regression 0.802±0.023 0.799±0.001 0.747±0.023 0.778±0.008 0.725±0.033 0.736±0.001
FeatLong-CatBoost 0.849±0.014 0.814±0.003 0.803±0.011 0.791±0.013 0.792±0.019 0.756±0.003
FeatLong-XGBoost 0.850±0.012 0.810±0.002 0.803±0.010 0.788±0.009 0.792±0.017 0.751±0.003
FeatLong-Logistic Regression 0.832±0.025 0.794±0.015 0.780±0.023 0.767±0.010 0.768±0.034 0.731±0.019

J RESULTS BY DEMOGRAPHY FOR ISRUC DATASET

Table 9: Performance Variation with Age showing average and 95% confidence interval.

Age Accuracy F1 Score (Macro) Kappa

<35 0.855 ± 0.010 0.822 ± 0.023 0.807 ± 0.016
35-60 0.726 ± 0.184 0.702 ± 0.182 0.644 ± 0.223
61< 0.837 ± 0.038 0.806 ± 0.043 0.785 ± 0.046

These findings suggest our model’s consistent robustness across different genders and age brackets,
albeit with minor deviations for male subjects and those aged between 35-60. Unfortunately, the
PhysioNet dataset does not provide demography-specific data tied to individual files, limiting our
analysis on that front.
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Table 10: Performance Variation with Sex showing average and 95% confidence interval.

Sex Accuracy F1 Score (Macro) Kappa

Male 0.782 ± 0.123 0.755 ± 0.122 0.717 ± 0.150
Female 0.84 ± 0.032 0.808 ± 0.035 0.786 ± 0.046

Table 11: Annotation Distribution with Age.

Age W N1 N2 N3 R

0− 35 0.216 0.085 0.343 0.227 0.129
35− 60 0.173 0.134 0.313 0.232 0.148
61 < 0.306 0.137 0.266 0.145 0.146

Table 12: Annotation Distribution with Sex.

Sex W N1 N2 N3 R

Male 0.243 0.112 0.292 0.231 0.123
Female 0.224 0.119 0.327 0.174 0.155

K ADOPTION PROCESS IN OTHER DOMAINS

1. Identify and list features based on domain knowledge similar to Section 3.3. This requires
domain expertise.

2. Determine methods to extract the selected features from the training data. This step equires
an extensive research of prior work on feature extraction.

3. Normalize the extracted features.
4. Design an end-to-end deep-learning model that has a fully-connected final layer for classi-

fication.
5. Remove the final fully-connected layer connecting the neural network’s last embeddings to

output nodes.
6. Retrieve embeddings from the training data.
7. Use the embeddings from Step 6 and the normalized domain-grounded feature space de-

fined in Step 3 to learn a linear projector matrix to transform embeddings into the domain-
grounded feature space.

8. Apply the linear projector on the embeddings to obtain interpretable representations for
training data.

9. Finally, utilize these interpretable representations to train a glass-box model.
10. For inference, first the interpretable representations are obtained using the linear projector

to project the embedding output from the trained deep learning model to the interpretable
feature space. Then these features are used as input to the trained glass-box model.

11. Use a decision tree as the glass-box model to evaluate domain-grounded interpretability
using AlignmentDT .

These processes are further detailed in Figure 1 as well as Algorithms 1 and 2.
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