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ABSTRACT

In this paper, we evaluate and improve the generalization performance for rein-
forcement learning (RL) agents on the set of “controllable” states, where good
policies exist on these states to achieve the goal. An RL agent that generally
masters a task should reach its goal starting from any controllable state of the
environment instead of memorizing a small set of trajectories. To practically eval-
uate this type of generalization, we propose relay evaluation, which starts the
test agent from the middle of other independently well-trained stranger agents’
trajectories. With extensive experimental evaluation, we show the prevalence of
generalization failure on controllable states from stranger agents. For example,
in the Humanoid environment, we observed that a well-trained Proximal Policy
Optimization (PPO) agent, with only 3.9% failure rate during regular testing, failed
on 81.6% of the states generated by well-trained stranger PPO agents. To improve
"relay generalization," we propose a novel method called Self-Trajectory Augmen-
tation (STA), which will reset the environment to the agent’s old states according to
the Q function during training. After applying STA to the Soft Actor Critic’s (SAC)
training procedure, we reduced the failure rate of SAC under relay-evaluation by
more than three times in most settings without impacting agent performance and
increasing the needed number of environment interactions. Our code is available at
https://github.com/lan-lc/STA.

1 INTRODUCTION

Generalization is critical for deploying reinforcement learning (RL) agents into real-world applica-
tions. A well-trained RL agent that can achieve high rewards under restricted settings may not be
able to handle the enormous state space and complex environment variations in the real world. There
are many different aspects regarding the generalization of RL agents.

While many existing works study RL generalization under environment variations between training
and testing Kirk et al. (2021), in this paper, we study the generalization problem in a simple and fixed
environment under an often overlooked notion of generalization — a well-generalized agent that
masters a task should be able to start from any “controllable” state in this environment and still reach
the goal. For example, a self-driving system may need to take over the control from humans (or other
AIs trained for different goals such as speed, gas-efficient, or comfortable) in the middle of driving
and must continue to drive the car safely. We can make little assumptions about what states the cars
are at when the take-over happens, and the self-driving agent must learn to drive generally. Although
this problem may look ostensibly easy for simple MDPs (e.g., a 2-D maze), most real RL agents are
trained by trajectories generated by its policy, and it is hard to guarantee the behavior of an agent on
all “controllable” states. Roughly speaking, in the setting of robotics (e.g., Mujoco environments),
we can define a state as controllable if there exists at least one policy that can lead to a high reward
trajectory or reach the goal from this state. Unfortunately, most ordinary evaluation procedures of RL
nowadays do not take this into consideration, and the agents are often evaluated from a fixed starting
point with a very small amount of perturbation (Todorov et al., 2012; Brockman et al., 2016). In fact,
finding these controllable states themselves for evaluation is difficult.
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(a) States from ordinary evaluation (b) Relay-evaluation for SAC1 (c) Relay-evaluation for our STA1

Figure 1: t-SNE of states from trajectories of 6 Humanoid agents. (a) The states of 6 agents are almost
non-overlapping even for the ones trained by the same algorithm; (b) SAC1 agent in (a) performs
badly on controllable states from other stranger agents, indicating that it may not learn to control the
robot generally; (c) our STA agent performs uniformly well when starting from the same set of states.

The first contribution of this work is to propose relay-evaluation, a proxy to evaluate agent general-
ization performance on controllable states in a fixed environment. Relay-evaluation involves running
an agent from the middle states of other independently trained agents’ high-reward trajectories. This
is similar to running a relay race with another stranger agent, where the stranger agent controls
the robot first, and the test agent takes the reins of the robot later. It naturally finds a diverse set of
controllable states for the test agents because the sampled states come from high reward trajectories
of well-trained agents. The stranger agents can be trained using a variety of RL algorithms, not
limited to the one used for the test agent.

Our extensive experiments on 160 agents trained in four environments using four algorithms show
that many representative RL algorithms have unexpectedly high failure rates under relay-evaluation.
For example, in the Humanoid environment, Proximal Policy Optimization (PPO) agents and Soft
Actor Critic (SAC) agents have average failure rates of 81.6% and 38.0% under relay-evaluation
even when the stranger agents have trained with the same algorithms (different random seeds), which
is surprisingly high compared to the original failure rates (PPO: 3.9%, SAC: 0.92%). The failure
of the agents under this setting shows that they may not genuinely understand the dynamics of the
environments and learn general concepts like balancing the robot to avoid failing, but rather memorize
a small set of actions specifically for a limited number of states it encountered. In Figure 1a, we
illustrate the t-SNE for states in trajectories of 6 agents trained with 3 algorithms and observe that
even trained with the same algorithm, the states generated by different agents are quite distinctive.
Figure 1b shows that the SAC1 agent only has a low failure rate on its own states, which is the dots
colored blue in Figure 1a.

Our second contribution is to propose a novel training method called Self-Trajectory Augmentation
(STA) that can significantly improve agents’ generalization without significantly increasing training
costs. We first conduct a motivative experiment to augment the initial state set of an agent during
training by the states generated by a set of pretrained stranger agents, and we find that as we increase
the number of stranger agents, the relay-evaluation of the agent improves significantly. However,
pretraining additional models is time-consuming and may be impractical in complex environments.
Therefore, we propose a novel method called Self-Trajectory Augmentation (STA), where we
randomly set the agent to start from its old trajectories. Since the distribution of visited states often
varies during training, reviewing an agent’s old trajectories can be beneficial for generalization. After
applying STA to the standard SAC training procedure, the failure rates of SAC agents are reduced
by more than three times in most settings without sacrificing agent performance under ordinary
evaluation, and it has minimal impact on convergence speed. In Figure 1c, our STA agent is uniformly
successful on most states from 6 stranger agents.

2 RELAY EVALUATION

In this section, we first introduce the definition of relay-evaluation in Sec.2.1. Then we conduct
extensive experiments to evaluate the relay-generalization of representative RL algorithms in Sec.2.3.

2



Published as a conference paper at ICLR 2023

2.1 NOTATIONS

Single-player environments of RL are normally formalized as a Markov decision process (MDP). It
can be defined by a tuple M = ⟨S,A,T, R, d0⟩, where S is the state space, A is the action space,
T(st+1|st, at) : S ×A× S 7→ R is the transition function that indicates the probability of reaching
state st+1 after playing action at on state st; R(st, at) : S × A 7→ R is the reward function, and
d0(s0) is the distribution of the initial state s0. With d0, we can define the initial state set S0 as
∀s ∈ S0 ⇔ d0(s) > 0. We define an agent’s policy as π(s) which simply outputs the best action. For
each π(s), we define its the trajectories distribution as T π. Note that, a trajectory τ ∼ T π is a list
of tuple [(s0, a0, r0, s1), (s1, a1, r1, s2), . . . , (sT−1, aT−1, rT−1, sT )], where s0 ∈ S0 and for each
tuple T(st+1|st, at) > 0 and R(st, at) = rt. We named the return of a trajectory τ as the sum of all
the rewards of a trajectory

∑T−1
i=0 ri, where T is the length of the trajectory and ri is the reward of

playing ai at si.

2.2 PROBLEM DEFINITION

The goal of relay-evaluation is to evaluate test agent πtest performance on any “controllable” state in
the state space S. Here, we define “controllable” state as:

Definition 2.1 (Controllable states) A state s ∈ S is controllable if there exists a trajectory τ =
{. . . , (st = s, at, rt, st+1), . . . } where s is one of its states st, and the trajectory has a high return∑T−1

i=0 ri and t <= T − L. Here T is the length of the trajectory, L is the number of steps the agent
runs after state s. It is used to ensure it is possible to play L time steps starting from s without being
terminated by the environment.

Particularly, we focus on the case of catastrophic failures when starting with these controllable states.
In our setting of continuous control environments, we define catastrophic failure as the environment
being terminated by the simulator (e.g., the agent completely falls down), but one can also define
catastrophic failure as getting an extremely low return. Conceptually, controllable states are those
“decent” states where catastrophic failures should not happen. We only evaluate the test agent on
controllable states since there may not exist a high return policy for a random state since some states
are unrecoverable.

To find controllable states, we propose to use independently well-trained agents (which we refer to as
“stranger” agents) that can generate high return trajectories. Therefore, in the relay-evaluation, we
evaluate a test agent πtest with the controllable states on the trajectories of another agent πgen. We
first use πgen to generate M trajectories and select η ×M of them with top returns, where η ∈ [0, 1].
We then sample states st, t ∈ {1, 2, . . . , T − L} from those high return trajectories and regard those
states to be controllable. If the test agent can continue playing for L time steps without failing
from a state st, then we say that the test agent passes the relay-evaluation on this state st. After
testing πtest on all the controllable states generated by πgen, we can then compute the failure rate and
average return. Note that we focus on the failure rates in most of the tables since it’s surprising
that most agents encounter unexpected high failure rates under relay-evaluation, while the average
return is also reported in some cases to reflect the average performance. For a test agent, we conduct
relay-evaluation on multiple generating agents, including agents independently trained by the same
or different algorithms, as detailed below.

2.3 RESULTS OF RELAY-EVALUATION ON EXISTING ALGORITHMS

Experiment setup. We conduct our experiments in four Mujoco environments in OpenAI Gym:
Humanoid-v3, Walker2d-v3, Hopper-v3, and Ant-v3 with the standard setting of 1,000 steps. We do
not include HalfCheetah-v3 since the simulator does not terminate even when the robot has already
fallen over, so there is no standard way to determine catastrophic failures. We first select three
popular algorithms, including Soft Actor-Critic (SAC) (Haarnoja et al., 2018), Twin Delayed DDPG
(TD3) (Fujimoto et al., 2018), Proximal Policy Optimization (PPO) (Schulman et al., 2017), as well
as two robust training methods aiming to improve agent performance under perturbed observations,
SA-PPO and ATLA-PPO (Zhang et al., 2020; 2021). Note that the robustness of SA-PPO and
ATLA-PPO agents are not aligned with the generalization setting in our paper, but they are included
to see if there exists a connection between robustness and generalization. All the agents have a
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Table 1: Failure rates (%) of relay-evaluation using states generated by stranger agents trained with 4
algorithms, reported in the 4 rows for each environment. The “Reference” column shows the failure
rate of the stranger agents, serving as the baseline failure rate for these controllable states. Although
SAC agents achieve the lowest failure rate, they are still quite high compared to the reference in many
environments. TD3 and PPO sometimes have over 90% generalization failure rates.

Environment
Stranger

Algorithm Reference (%) Test Agent Algorithm (Failure Rate %)

SAC TD3 PPO SA/ATLA PPO

Humanoid

SAC 0.92 ± 1.78 38.0 ± 33.9 83.9 ± 17.6 83.9 ± 16.5 65.1 ± 31.8
TD3 0.62 ± 1.34 33.6 ± 28.5 60.5 ± 30.1 78.4 ± 20.0 67.5 ± 29.9
PPO 3.91 ± 4.91 48.8 ± 30.1 77.8 ± 24.3 81.6 ± 19.1 63.2 ± 30.9

SA-PPO 0.12 ± 0.48 83.8 ± 18.0 96.2 ± 5.66 92.9 ± 11.9 77.0 ± 26.4

Walker2d

SAC 0.78 ± 2.49 26.9 ± 23.5 35.9 ± 28.5 87.0 ± 11.4 88.9 ± 11.7
TD3 0.31 ± 0.68 22.7 ± 21.7 36.9 ± 28.1 84.3 ± 14.0 87.0 ± 12.8
PPO 0.00 ± 0.00 14.5 ± 12.9 25.0 ± 20.0 70.1 ± 21.0 75.1 ± 19.3

ATLA-PPO 0.64 ± 3.20 19.9 ± 18.1 29.4 ± 24.0 71.1 ± 21.7 76.2 ± 20.0

Hopper

SAC 0.37 ± 0.87 32.6 ± 36.0 44.1 ± 21.1 62.1 ± 19.8 40.8 ± 30.4
TD3 0.53 ± 1.36 31.9 ± 36.5 19.8 ± 22.1 70.2 ± 17.6 43.8 ± 28.9
PPO 0.85 ± 2.57 23.8 ± 33.5 34.5 ± 18.0 56.5 ± 20.7 36.8 ± 29.6

ATLA-PPO 0.01 ± 0.02 30.6 ± 35.0 31.4 ± 20.8 64.1 ± 18.4 39.5 ± 31.6

Ant

SAC 0.63 ± 0.85 2.70 ± 1.98 8.98 ± 9.96 4.00 ± 2.68 3.79 ± 3.09
TD3 1.11 ± 1.43 2.90 ± 2.66 10.0 ± 11.6 3.98 ± 2.13 4.25 ± 3.61
PPO 1.03 ± 1.25 2.62 ± 1.92 9.95 ± 8.44 3.52 ± 2.07 3.45 ± 3.23

ATLA-PPO 1.26 ± 1.75 2.32 ± 1.67 7.58 ± 5.31 3.13 ± 1.96 3.76 ± 3.57

decent average return under the ordinary evaluation which samples the initial state s0 according to
distribution d0. We independently train N = 10 agents for each algorithm in each environment.
Every agent takes turns being the test agent and the stranger agent of other agents. For each agent
πgen, we first generate M = 200 trajectories and keep the top 100 trajectories that have a higher
return. For each high-return trajectory, we sample K = 5 states for other agents to test.

Generalization Results of Existing Algorithms. For each agent, we conduct relay-evaluation
using the trajectories generated by all the other agents as stranger agents, trained by either the same or
different algorithms. To investigate the failure rate of test agents trained by Algorithm A when testing
the trajectories of stranger agents trained by Algorithm B, we report the average failure rate for each
A-B pair in Table 1. Each row in Table 1 shows the results of stranger agents trained by a certain
algorithm B. The “Reference” column shows the failure rates of the stranger agents starting from
their own controllable state, which is very low. This indicates that these states are indeed controllable.
For the remaining columns, we show the failure rates of relay-evaluation, and clearly, we observe
that all the agents have significantly higher failure rates than the reference failure rates. For example,
in Humanoid, SAC agents have a 38% of failure rate on other SAC agents’ trajectories and even
higher failure rates when the stranger agent is trained by PPO or SA-PPO. In general, SAC agents
have the lowest failure rate across all environments. This is probably due to the entropy term added
to their goal function, which promotes exploration. However, according to our experiments, their
state distribution still collapses into a small set of successful trajectories (Figure 1a) and can not
handle other agents’ successful trajectories properly. SA-PPO and ATLA-PPO are robustly-trained
agents that perform well under perturbations on state observations. This is reflected in its smaller
failure rate on Humanoid and Hopper. However, they perform badly when taking the reins from other
agents, showing relay generation is quite different from adversarial robustness since we care about
all controllable states instead of slightly perturbed states. Additionally, we observe that Ant-v3 is
relatively easy because the robot has four legs, which is easier to keep the robot from falling. The
hardest environment is Humanoid-v3 since it has the most complicated robot to balance. The failure
rate of TD3 even reaches 96.2% on SA-PPO’s trajectories.

Why do agents fail? To investigate why the agents perform poorly on relay evaluation, we visualize
the state distribution generated by different agents. We select the best two Humanoid agents of SAC,
TD3, and PPO with the highest average return from the same agents used in Table 1. We generate 200
trajectories for each agent and sample 5, 000 states from them. We then use t-SNE (Van der Maaten
& Hinton, 2008) to reduce the dimension of all the states into 2D and visualize them in Fig. 1a. We
color each dot according to which agent generate the states. For example, the best and the second
best SAC agent’ states are colored red and blue. We can see that the states of the six agents are well
separated, which means that their distributions are very different, even when trained with the same
algorithms. The results hold the same in all the environments. This observation suggests that the state
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Table 2: Detecting agent failure by calculating Q(s, π(s)). The numbers under the “Failure States”
and “Success States” columns show the results of states that the SAC test agents have failed or
succeeded on. The “Reference Return” (“SAC Return”) shows the average returns of the stranger
agents (test agents, respectively). Q is consistently lower on failure states.

Environment
Stranger

Algorithm
Failure States Success States

Reference Return SAC Return Q(s, π(s)) Reference Return SAC Return Q(s, π(s))

Humanoid

SAC 2829± 143 319± 294 103± 136 2743± 96 2733± 104 305± 182
TD3 2698± 114 388± 306 145± 144 2688± 115 2746± 110 261± 166
PPO 2939± 179 302± 233 81± 109 2822± 171 2734± 110 270± 191

SA-PPO 3428± 175 226± 127 50± 59 3288± 92 2758± 118 140± 161

Walker2d

SAC 3139± 292 386± 368 298± 135 2979± 213 2834± 257 394± 112
TD3 3118± 350 404± 362 316± 133 2974± 365 2835± 259 411± 109
PPO 2558± 250 312± 354 236± 109 2504± 247 2739± 236 334± 106

ATLA-PPO 2673± 375 275± 301 195± 117 2511± 321 2721± 236 318± 114

Hopper

SAC 1872± 66 1032± 488 337± 47 1872± 62 1872± 69 355± 29
TD3 1850± 95 801± 668 331± 55 1835± 96 1873± 72 355± 34
PPO 1819± 78 1055± 506 329± 39 1808± 79 1854± 71 344± 31

ATLA-PPO 1889± 96 924± 558 330± 52 1870± 107 1867± 72 352± 36

distribution generated by different agents is quite different, with almost no overlap. Therefore all the
other agents’ trajectories are out-of-distribution for a particular agent.

How do the agents fail? We directly observe how the agents control the robot in Mujoco to
understand how the agents fail and the implications of passing the relay-evaluation. Fig. 2 shows the
snapshots of some different SAC agents. We observe that the agents normally maintain the balance
of the upper part of the robot by fixing it to a special posture. However, different agents’ postures are
different, and they use different ways to keep the balance. Therefore, when an agent takes over the
control from another agent, it needs to correct the posture to its own. This indicates that if an agent
can pass the relay-evaluation, it generally knows how to correct the robot without losing balance,
even if the starting posture is unseen.

Figure 2: Different SAC agents running
with different postures in Humanoid.

Can the agents detect that it is going to fail? Out-of-
distribution (OOD) detection has long been an important
question in both RL and supervised learning, and we hope
to identify the states where the agents may fail using value
functions. We conduct this experiment on SAC since it
has the best performance in most of the settings. Since
SAC itself does not include a state value function, we use
Q(s, π(s)) to serve as its evaluation of a given state, where
Q and π are its action-value function and its policy. The
results shown in Table 2 are separated into two parts. The
“Failure States” part shows the results of states that the
test SAC agents failed on, and the states that the test SAC
agent passed is shown in “Success States”. The “Reference
Return” and “SAC Ret” columns show the average return
of the stranger agent and the test SAC agent on the states
for extra L = 500 steps. The “SAC Q” shows the output
Q(s, π(s)). We can see that the Q(s, π(s)) of the failure
states is lower than the success states. We also notice that
when the SAC agents succeed, they can perform almost
as well as the stranger agents. However, the prediction Q(s, π(s)) of the success state is way lower
than the prediction Q(s, π(s)) on its own states: Humanoid: 590± 21, Walker2d: 522± 73, Hopper:
363± 20, and Ant: 480± 24. This indicates that the Q function Q(s, π(s)) gives some indications
about OOD and failing states. We will use this information to design our algorithms.

3 IMPROVING THE GENERALIZATION TO OTHER AGENTS TRAJECTORIES

In this section, we aim to improve the relay-generalization of the existing algorithms. We first
investigate a naive method in Section 3.1. Next, based on the investigation, we proposed our Self-
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Trajectory Augmentation (STA) in Section 3.2. Finally, we conduct the experiments to evaluate both
methods in Section 3.3.

3.1 A NAIVE METHOD: LEVERAGING PRETRAINED AGENTS’ TRAJECTORIES

To improve relay-generalization, a naive way is to let the agent “see” at least some of the trajectories
generated by other agents during training. One straightforward solution is to add the other agents’
tuples (st, at, rt, st+1) into the replay buffer as training data. However, most RL algorithms are not
able to handle out-of-distribution actions except offline RL (Levine et al., 2020). Therefore, our
naive method lets the agent “see” other agents’ trajectories by letting the agent have chances to start
playing from the controllable states of some pretrained agents during training. Before training, we
first pretrain additional Na agents. Next, we use states of those agents’ top ηnaive = 0.75 trajectories
as controllable states Sηnaive

pretrain. During training, whenever the agent starts to generate a new trajectory,
besides generating a new trajectory normally, it has p0 probability to uniformly sample a state
spretrain from Sηnaive

pretrain as the initial state of this new trajectory. Starting from spretrain, once the agent
successfully plays Lr steps, we will consider it knows how to play from spretrain and let the agent start
a new trajectory. Our naive method is similar to training in an augmented environment that has a
more diverse initial set state. Therefore, we do not need to modify the training algorithm.

3.2 SELF-TRAJECTORY AUGMENTATION (STA)

Algorithm 1 Our STA algorithm

1: Variable: Q, π, SSTA, D
2: Parameter: p0, Lr, d0
3: for each iteration do
4: x∼ U (0, 1)
5: if x > p0 then
6: s0 ∼ d0
7: τ = gen_trajectory(s0, Lmax)
8: else
9: s0 = select_state(SSTA)

10: τ = gen_trajectory(s0, Lr)
11: for s in τ do
12: D = D ∪ {s}
13: if is_qualified(s) then
14: SSTA = SSTA ∪ {s}
15: train Q, π with D

Although the naive method can improve the generalization
of the agents (Section 3.3), training additional agents is
too time-consuming. Hence, we propose Self-Trajectory
Augmentation (STA), which only uses the states of the
agent’s own historical trajectories to augment the initial
set. The framework STA algorithm is shown in Alg. 1. For
the variables, Q, π are the agent’s action value and policy
that need to be trained; D is the replay buffer to store the
training data; SSTA is the set that stores the historical states
during training; d0 is the original initial state distribution.
At each iteration, with probability 1 − p0 (line 5-7) we
generate the trajectory as usual, which means sampling s0
from d0 and letting the agent plays for Lmax steps (e.g.,
in Mujoco, Lmax = 1, 000). Otherwise, with probabil-
ity p0 (line 9-10), we select a state form SSTA and let the
agent plays for Lr steps. Since the failures usually happen
early after taking over from another trajectory, we found
a small Lr ≪ Lmax is sufficient for improving relay gen-
eralization. After generating the trajectory, we will store
the trajectory into the replay buffer (line 12) and store the
qualified state (line 13) into SSTA (line 14).

Definition of qualified state (Alg. 1 line 13) Ideally, a state s is qualified if it is controllable.
However, during training, we cannot simply use the return of the trajectory to define if its middle
states are controllable. This is mainly due to the exploration during training – the agent may play
pretty well at the beginning but ends up having a low return because the algorithm tries to explore a
bad action. In this case, we still want to include the beginning states into SSTA. Hence, we use the
sum of the next λ = 50 rewards as the scoring function score(st) =

∑t+λ−1
i=t ri to measure whether

a state is controllable. If a state’s score is among the top ηSTA ratio of the states generated in the
latest epoch Slatest, the state will be added into SSTA. For convenience, we maintain a threshold ω
so that ηSTA ratio of the states in Slatest has a higher score than ω. Finally, we define the function
is_qualified(s) in line 13 as if score(s) > ω. Note that if the rewards of the environment are sparse,
one might consider other scoring functions.

Select a state from SSTA (Alg. 1 line 9). We select a state from SSTA with two steps. First, we
random sample Nc states that score(s) × γ ≥ ωmax form SSTA as candidates, where ωmax is the
largest ω encountered during training. Although we only add states with score(s) > ω into SSTA,
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Table 3: The failure rates (%) of the naive baseline with different numbers Na of pretrained agents.
Training with the states from more pre-trained agents lead to better relay-evaluation performance.

Environment
Stranger

Algorithm
Test Algorithm (Failure Rate %)

SAC NaiveNa=1 NaiveNa=2 NaiveNa=4 NaiveNa=8 NaiveNa=16

Humanoid

SAC 38.0 ± 33.9 55.7 ± 16.9 41.5 ± 19.7 24.0 ± 14.7 11.4 ± 7.21 13.2 ± 6.84
TD3 33.6 ± 28.5 40.0 ± 13.9 22.9 ± 11.5 15.0 ± 7.96 7.29 ± 2.79 7.81 ± 4.76
PPO 48.8 ± 30.1 59.3 ± 13.9 41.5 ± 12.5 30.6 ± 12.0 24.8 ± 3.89 25.0 ± 3.36

SA-PPO 83.8 ± 18.0 90.8 ± 4.31 78.8 ± 5.83 71.9 ± 11.8 59.9 ± 9.60 58.1 ± 8.32

Walker2d

SAC 26.9 ± 23.5 28.6 ± 6.53 20.0 ± 14.6 8.95 ± 5.99 8.14 ± 5.89 6.10 ± 2.34
TD3 22.7 ± 21.7 21.0 ± 6.46 17.2 ± 11.3 7.71 ± 4.31 4.71 ± 3.64 3.43 ± 1.52
PPO 14.5 ± 12.9 14.0 ± 5.83 10.1 ± 10.7 3.48 ± 1.66 3.05 ± 2.14 1.95 ± 1.35

ATLA-PPO 19.9 ± 18.1 19.3 ± 4.70 12.0 ± 9.00 5.46 ± 3.59 3.83 ± 2.24 3.36 ± 1.94

Hopper

SAC 32.6 ± 36.0 19.8 ± 15.34 10.2 ± 6.23 8.64 ± 5.50 4.01 ± 3.76 4.35 ± 4.73
TD3 31.9 ± 36.5 19.1 ± 19.51 5.10 ± 4.26 11.5 ± 7.75 5.00 ± 4.51 3.76 ± 5.74
PPO 23.8 ± 33.5 17.3 ± 15.77 8.57 ± 7.30 6.38 ± 4.13 2.81 ± 2.93 3.14 ± 4.57

ATLA-PPO 30.6 ± 35.0 22.6 ± 22.65 5.31 ± 3.47 9.66 ± 7.71 6.46 ± 5.77 3.67 ± 3.31

as the agent becomes stronger, ω will also increase. Some of the states in SSTA will be considered
uncontrollable since their score are too low. Hence, we use a ratio γ >= 1 to avoid low-score states
(< ωmax/γ) being our candidates. For the second step, among the candidates, we want to select a
state with which the current agent is unfamiliar. Based on the results in Table 2, we use Q(s, π(s))
to predict which state is harder for the current agent. That is, we select the state with the lowest
Q(s, π(s)) from the candidates as the new initial state (line 9).

3.3 EXPERIMENTAL RESULTS

In this section, we evaluate the agents trained by our methods under the same settings and strange
agents we used in Table 1. Since SAC performs best in Table 1, we only apply our methods based on it.
In the following paragraphs, we first show that the naive method can improve the relay-generalization
of SAC. Next, we show that our STA can also improve the SAC agent without slowing the training
process. Moreover, STA is two times better than the naive method on the hardest controllable states.

The naive method. In this experiment, we evaluate whether using pretrained models can improve
the relay-generalization of an agent. For the experimental settings: we add the controllable states in
the top ηnaive = 0.75 ratio of each pretrain agent’s trajectories into the starting set; we use Lr = 100
and p0 ≈ 0.9 to increase the sampling frequency of the starting set. The results of using different
numbers Na of pretrained agents are shown in Table 3. Although the pretrained agent is trained by
SAC, we observe that the failure rates on all kinds of algorithms decrease as more pretrained agents
are included in Sηnaive

pretrain. This indicates that the method can successfully improve relay generalization.
However, in Humanoid, the performance has converged when Na = 8. We think it is because
Humanoid is so complex that adding more agents still cannot cover all the playing styles. Hence, the
failure rates do not keep dropping after Na ≥ 8. We also notice that when only using 1 pretrained
agent (Na = 1), the failure rate surprisingly increased in the Humanoid environment; this might
be because the agent will overfit the only pretrain agent’s trajectories. Additional results like using
different Lr = {50, 100, 200, 500} are shown in the Appendix.

Self-Trajectory Augmentation (STA). In this experiment, we compare the base SAC, our naive
baseline with 16 pretrained agents, and our STA method with tuned parameters (see Appendix). Note
that the environment step number of training each agent is all three million. Therefore, the training
time of STA will be almost 17 times faster than the naive method.

The comparison of both the average return and failure rate are shown in Table 4. We first show
the performance under ordinary evaluation (s0 ∼ d0) of each environment (“ordinary” rows).
The results show that both the naive method and STA have almost equal or even higher ordinary
performances, although agents are trained under augmented MDP, which is different from the original
MDP. Moreover, the failure rates of STA in the ordinary setting are also lower than SAC in all the
environments, which means that the STA agents are more robust. Next, we show the relay-evaluation
results on different stranger algorithms. According to the rest of the rows (except the “ordinary”
row) in Table 4, we notice that STA has three times lower failure rates compared to SAC in most
of the settings. In addition, since we only sample Nc = 5 candidates, the training time is almost
the same as SAC. Hence, we claim that we achieve a better relay-generalization than SAC without
losing the ordinary performance and the converging speed. We also compare the results between STA
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Table 4: The returns and the failure rates of SAC, our naive baseline, and STA under relay-evaluation.
Since all the agents are trained with three million environment interactions, training an STA agent is
15.9 times faster than a NaiveNa=16 agent. The “ordinary” rows show that STA will not decrease
the regular performance. The rows except “ordinary” show that STA can achieve significantly
lower failure rates under relay-evaluation compared to SAC and achieve performance similar to
NaiveNa=16.

Environment
Stranger

Algorithm
SAC NaiveNa=16 (ours) STA (ours)

Return Failure Rate Return Failure Rate Return Failure Rate

Humanoid

ordinary 5650± 238 0.62 ± 0.79 % 5695± 159 2.65 ± 2.52 % 5899 ± 346 0.45 ± 0.61 %
SAC 2004± 1193 38.0 ± 33.9 % 2591± 841 13.2 ± 33.8 % 2815± 622 5.77 ± 23.3 %
TD3 2242± 1071 33.6 ± 28.5 % 2731± 621 7.81 ± 26.8 % 2862± 504 3.76 ± 19.0 %
PPO 1675± 1266 48.8 ± 30.1 % 2266± 1120 25.0 ± 43.3 % 2692± 793 9.95 ± 29.9 %

SA-PPO 671± 996 83.8 ± 18.0 % 1382± 1343 58.1 ± 49.3 % 2312± 1198 25.2 ± 43.4 %

Walker2d

ordinary 5717± 445 0.16 ± 0.52 % 5986 ± 77 0.00 ± 0.00 % 5736± 422 0.00 ± 0.00 %
SAC 2286± 1138 26.9 ± 23.5 % 2931± 658 5.38 ± 22.5 % 2784± 725 7.33 ± 26.0 %
TD3 2326± 1078 22.7 ± 21.7 % 2965± 537 3.71 ± 18.9 % 2822± 632 5.48 ± 22.7 %
PPO 2464± 884 14.5 ± 12.9 % 2931± 336 1.19 ± 10.8 % 2798± 473 2.57 ± 15.8 %

ATLA-PPO 2314± 1007 19.9 ± 18.1 % 2888± 449 2.33 ± 15.0 % 2782± 488 2.83 ± 16.5 %

Hopper

ordinary 3662± 137 5.75 ± 8.85 % 3609± 60 0.34 ± 0.89 % 3686 ± 58 0.42 ± 0.77 %
SAC 1777± 390 32.6 ± 36.0 % 1846± 148 2.59 ± 15.8 % 1818± 323 9.80 ± 29.7 %
TD3 1654± 594 31.9 ± 36.5 % 1838± 265 3.05 ± 17.1 % 1790± 428 13.8 ± 34.5 %
PPO 1790± 337 23.8 ± 33.5 % 1832± 140 2.62 ± 15.9 % 1829± 245 8.52 ± 27.9 %

ATLA-PPO 1711± 491 30.6 ± 35.0 % 1824± 257 4.69 ± 21.1 % 1841± 276 10.2 ± 30.3 %

Table 5: Failure rates (%) of STA with different Nc, where Nc is the number of starting candidate
states we consider before starting a trajectory. State with the lowest Q(s, π(s)) is chosen among the
Nc candidates to start the agent. A larger Nc produces better performance with negligible cost.

Environment
Stranger

Algorithm
Test Algorithm (Failure Rate %)

SAC NaiveNa=16 STANc=1 STANc=2 STANc=5

Humanoid

SAC 38.0 ± 33.9 13.2 ± 6.84 19.7 ± 18.1 8.52 ± 5.74 5.77 ± 3.06
TD3 33.6 ± 28.5 7.81 ± 4.76 9.29 ± 7.94 3.48 ± 2.89 3.76 ± 4.49
PPO 48.8 ± 30.1 25.0 ± 3.36 26.1 ± 10.6 15.7 ± 5.25 9.95 ± 5.38

SA-PPO 83.8 ± 18.0 58.1 ± 8.32 64.2 ± 8.57 48.5 ± 7.44 25.2 ± 6.47

Walker2d

SAC 26.9 ± 23.5 5.38 ± 3.58 20.1 ± 12.2 16.6 ± 9.47 9.62 ± 3.72
TD3 22.7 ± 21.7 3.71 ± 2.48 16.3 ± 10.3 13.1 ± 6.16 10.0 ± 5.81
PPO 14.5 ± 12.9 1.19 ± 0.86 12.1 ± 9.35 8.95 ± 6.09 5.90 ± 2.64

ATLA-PPO 19.9 ± 18.1 2.33 ± 0.99 15.8 ± 9.78 10.4 ± 7.28 7.67 ± 3.90

Hopper

SAC 32.6 ± 36.0 2.59 ± 2.41 13.61 ± 10.2 19.8 ± 16.0 14.1 ± 8.12
TD3 31.9 ± 36.5 3.05 ± 5.03 22.1 ± 21.0 20.9 ± 17.3 17.6 ± 12.3
PPO 23.8 ± 33.5 2.62 ± 2.95 12.6 ± 14.3 18.1 ± 18.1 12.8 ± 12.5

ATLA-PPO 30.6 ± 35.0 4.69 ± 4.01 24.2 ± 20.5 23.5 ± 21.8 21.2 ± 16.0

and the naive method. We find out that our method has a better performance in harder environments.
For example, STA has only 25.2% failure rate on the Humanoid SA-PPO. However, in the easiest
environment, Hopper, the naive method with Na = 16 pretrained agents has a twice lower rate than
STA. We suggest it is because Hopper has the simplest robot that only has one lag. Hence, we suggest
that most of the hoping styles have a similar version in the 16 pretrained agents. Therefore, the naive
method can easily play on other agents’ trajectories.

Besides showing the best performance of STA, we also conduct some ablation studies. First, we
directly observe how STA takes over the control of other agents. Same as SAC agents, we notice
that STA agents also run with one kind of posture. Even when the STA starts from other agents’
posture, it will change it into its own and keep running. We consider this a good thing. For example,
if a test agent is faster than the stranger agent, we will want the test agent to run in its own way,
which is faster. We also conduct an experiment on different numbers of candidates Nc to show the
importance of starting the trajectories from the states that has a lower Q(s, π(s)). The results are
shown in Table 5. We first look at the column where Nc = 1. It shows the results of simply randomly
selecting a state from the initial set as we did in the naive method. Compared to SAC, Nc = 1 is
only slightly better. However, as we use a larger Nc, the result becomes comparable to the naive
method, especially on Humanoid. We also notice that different Nc have little effect on Hopper. This
is because there is only a small Q(s, π(s)) difference between the familiar states and the unfamiliar
state according to Table 2. Hence, we should consider other methods in Hopper.
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4 RELATED WORK
Many methods have been designed to evaluate the generalization of an RL agent (Kirk et al., 2021).
They can be categorized by which part of the RL environment are different between training and
testing, including (1) the environment, (2) the observation emission function, (3) the transition
function, (4) the reward function, and (5) the initial state set. For (1), researchers studied training
and testing in totally different environments (Cobbe et al. (2019), and Dennis et al. (2020)). For
(2), researchers change the surface of the objects in the environment (Tobin et al., 2017; Zhang
et al., 2018b; Zhao et al., 2019; James et al., 2019). For (3), researchers change the parameter
of the transition function like the gravity strength or the weight of the ball, or add an external
force to the agent. (Packer et al., 2018; Pinto et al., 2017) For the (4), researchers (Mishra et al.,
2018; Dosovitskiy et al., 2017; Chevalier-Boisvert et al., 2019; Lynch & Sermanet, 2021) normally
want to see if the agent can adapt quickly from one task to another with the general knowledge
learned in the first task. Finally, the last category (5), which only selects different initial states in
the same environment (Portelas et al., 2019; Peng et al., 2018; Kaplanis et al., 2018) is where our
relay-generalization belongs. In one of the most related previous work, Zhang et al. (2018a) only
train on limited states in the initial set d0 and test on the other states in the initial set d0. Their results
show that if a PPO agent only trains on less than 5 states, it will be hard to avoid failing on other
states in the initial set d0. In addition, our relay-generalization belongs to Out-of-Distribution (OOD)
generalization, where training and testing states are sampled from different distributions (See Figure
1a and Figure 3). To the best of our knowledge, the notion of controllable states and relay evaluation
has not been discussed in the literature.

Beyond the generalization of RL, many other RL domains are related to our works. First, in
hierarchical reinforcement learning, Pateria et al. (2021); Brochu et al. (2010); Nachum et al. (2018)
train multiple agents with different small missions and let them complete a task together by taking
turns. However, in such a scenario, the agents are trained together. Therefore, they are familiar with
previous agents’ trajectories. Second, both our naive method and the offline RL (Levine et al., 2020;
Kumar et al., 2020; Ostrovski et al., 2021) leverage the trajectories of other agents. Third, population-
based training (Jaderberg et al., 2017; Derek & Isola, 2021) can be a potential way to generate
controllable states and increase relay-generalization. Finally, the adversarial robustness of agents has
been studied in the context of state, observation, and reward perturbations (Huang et al., 2017; Ilahi
et al., 2021; Zhang et al., 2020; 2021; Ding et al., 2022; Lan et al., 2022). However, these studies
focus on the performance of agents under imperceptible adversarial perturbations. On the other hand,
the states of other stranger agents can be very different from the agent’s trajectory distribution. In
addition, our work shows that robust agents (SA/ATLA PPO) are still bad at generalization, which is
similar to some of the previous results (Korkmaz, 2021).

Revisiting observed states strategy (or local access protocol (Yin et al., 2021)) is used in our STA
algorithm. This strategy has been used in many RL algorithms. Ecoffet et al. (2019) surpasses the
state-of-the-art on on hard-exploration games by revisiting promising states in history. Tavakoli et al.
(2020) shows that revisiting states on high return trajectories can improve PPO on a sparse-reward
task. After our publication, Yin et al. (2023) proposed revisiting the historical states that the agent is
uncertain. Different from these works, our STA algorithm uses the Q function to select states that the
agent used to be good at and now is not confident with.

5 CONCLUSION

We propose relay-evaluation, a proxy to evaluate RL agents’ generalization performance on con-
trollable states in a fixed environment. Relay-evaluation involves running an agent from the middle
states of other independently-trained agents’ high-reward trajectories. Extensive studies under the
MuJoCo environment demonstrate that many representative RL algorithms have unexpectedly high
failure rates under relay-evaluation, indicating a significant limitation of existing RL methods. To
overcome this challenge, we propose a novel method called Self-Trajectory Augmentation (STA),
which improves the generalization of existing RL agents without impacting ordinary performance.
This paper opens up a new research direction in RL, and there are several limitations to be addressed
in the future. For instance, how to find unexplored controllable states more effectively and how to
“certify” that an agent can work (or at least won’t fail) on all controllable states are interesting future
challenges. More importantly, how to develop better algorithms to improve relay generalization is
still an open problem.
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A DETAILS FOR EXPERIMENTAL SETUP

For SAC and TD3, we follow the implementation of OpenAI Spinning Up (Achiam, 2018), which
uses networks of size (256, 256) with relu units and 3 million environment interactions. For PPO,
we follow the implementation of Engstrom et al., 2019 since its PPO performance is higher than
OpenAI Spinning Up. The total number of environmental interactions is one million. For SA-PPO
and ATLA-PPO, we follow the implementation in (Zhang et al., 2021). SA-PPO and ATLA-PPO are
representative algorithms in terms of observation robustness. That is, the agent can function normally
even if a small adversarial perturbation is added to the observation. We include this kind of robust
agent to show that our problem is different from the normal adversarial robustness problem in RL.
For the humanoid environment, the SA-PPO algorithm we used is the SGLD algorithm. For other
environments, we use ATLA-PPO.

For the naive method, both the pretrained agents and the agent follow the implementation of SAC
of OpenAI Spinning Up. Hence, training a naive method with Na agents requires Na + 1 times of
training time. The default parameter settings are: ηnavie = 0.75 since we want to include harder states;
p0 ≈ 0.9, Lr = 100 since we want to sample more initial states form Sηnaive

pretrain.

For the STA method, we also follow the implementation of SAC of OpenAI Spinning Up. Since
the candidate number Nc we use is less than 10, the training time is almost the same as training a
SAC agent. The default parameter settings are: ηSTA = 0.75 since we want to include harder states as
we did in the naive method; p0 ≈ 0.9, Lr = 100 since we want to sample more initial states form
SSTA; λ = 50 < Lr since we want to include the states in the trajectories that starts from states in
SSTA. For the STA parameters used in Table 4, we set the number of candidates Nc = 5; we set the
qualifying ratio γ = 1.0 in Humanoid and γ = 1.6 in Walker2d and Hopper.

B EXPERIMENTS OF OUR NAIVE METHOD WITH DIFFERENT PLAYING
LENGTHS

In this section, we show the results of our naive method with different limitations of the extra steps of
the trajectories starting from starting set.

The results are shown in Table 6. According to the table, the failure rate will increase when Lr is
too small or too large. Since Lr = 100 has the lowest failure rate in almost all settings, we will use
Lr = 100 as the default in other experiments.

Table 6: The results of the naive method with different time step limitation Lr.

Environment
Stranger

Algorithm
Test Algorithm (Failure Rate %)

SAC NaiveLr=50 NaiveLr=100 NaiveLr=200 NaiveLr=500

Humanoid

SAC 38.0 ± 33.9 30.4 ± 34.9 13.2 ± 6.84 14.3 ± 6.00 14.76 ± 5.08
TD3 33.6 ± 28.5 25.7 ± 37.3 7.81 ± 4.76 10.6 ± 3.74 11.76 ± 6.61
PPO 48.8 ± 30.1 40.6 ± 30.0 25.0 ± 3.36 25.0 ± 5.04 28.36 ± 7.31

SA-PPO 83.8 ± 18.0 69.7 ± 15.7 58.1 ± 8.32 61.8 ± 12.2 65.43 ± 10.8

Walker2d

SAC 26.9 ± 23.5 6.10 ± 2.34 5.38 ± 3.58 4.48 ± 3.15 6.52 ± 2.87
TD3 22.7 ± 21.7 3.43 ± 1.52 3.71 ± 2.48 3.14 ± 1.80 3.48 ± 2.20
PPO 14.5 ± 12.9 1.95 ± 1.35 1.19 ± 0.86 1.81 ± 1.06 2.81 ± 1.97

ATLA 19.9 ± 18.1 3.36 ± 1.94 2.33 ± 0.99 2.88 ± 1.24 3.78 ± 2.24

Hopper

SAC 32.6 ± 36.0 4.35 ± 4.73 2.59 ± 2.41 7.96 ± 5.68 7.82 ± 6.54
TD3 31.9 ± 36.5 3.76 ± 5.74 3.05 ± 5.03 5.19 ± 4.37 6.52 ± 9.11
PPO 23.8 ± 33.5 3.14 ± 4.57 2.62 ± 2.95 5.86 ± 5.15 3.71 ± 6.79

ATLA 30.6 ± 35.0 3.67 ± 3.31 4.69 ± 4.01 6.05 ± 3.88 5.85 ± 7.50
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C EXPERIMENTS OF STA WITH DIFFERENT CANDIDATE CRITERIA

In this section, we evaluate the performance of using different γ. In STA, we use ωmax/γ to serve as
the criteria to be the threshold of being one of the Nc candidates. Only states with score ωmax/γ in
SSTA can be the candidate of the initial state s0. If γ is larger, then states with lower scores can also
be the candidates.

The results different γ with Nc = 5 are shown in Table 7. According to the results, the best γ of each
environment is different. For example, in Humanoid, it is important to only samples the states that
have higher scores as candidates (small γ).

Table 7: The results of STA with different γ. When γ is larger, the states with lower scores can also
be the candidates of being the initial state of a trajectory during training STA.

Environment
Stranger

Algorithm
Test Algorithm (Failure Rate %)

SAC Naive γ = 1.0 γ = 1.1 γ = 1.3 γ = 1.6

Humanoid

SAC 38.0 ± 33.9 13.2 ± 6.84 5.77 ± 3.06 4.44 ± 5.34 8.36 ± 5.62 9.10 ± 5.55
TD3 33.6 ± 28.5 7.81 ± 4.76 3.76 ± 4.49 2.24 ± 2.67 6.05 ± 4.30 3.62 ± 3.56
PPO 48.8 ± 30.1 25.0 ± 3.36 9.95 ± 5.38 12.0 ± 6.33 15.8 ± 5.20 12.4 ± 5.61

SA-PPO 83.8 ± 18.0 58.1 ± 8.32 25.2 ± 6.47 33.2 ± 15.2 48.5 ± 11.4 43.6 ± 6.97

Walker2d

SAC 26.9 ± 23.5 5.38 ± 3.58 9.62 ± 3.72 11.5 ± 6.92 6.52 ± 3.92 7.33 ± 4.62
TD3 22.7 ± 21.7 3.71 ± 2.48 10.0 ± 5.81 11.5 ± 7.70 6.38 ± 5.76 5.48 ± 3.35
PPO 14.5 ± 12.9 1.19 ± 0.86 5.90 ± 2.64 7.00 ± 4.10 5.24 ± 4.69 2.57 ± 3.25

ATLA 19.9 ± 18.1 2.33 ± 0.99 7.67 ± 3.90 8.17 ± 5.16 7.49 ± 5.27 2.83 ± 2.04

Hopper

SAC 32.6 ± 36.0 2.59 ± 2.41 14.1 ± 8.12 23.6 ± 15.1 23.2 ± 10.6 9.80 ± 4.51
TD3 31.9 ± 36.5 3.05 ± 5.03 17.6 ± 12.3 18.3 ± 19.2 28.5 ± 19.5 13.8 ± 8.20
PPO 23.8 ± 33.5 2.62 ± 2.95 12.8 ± 12.5 20.2 ± 16.3 21.2 ± 12.6 8.52 ± 6.04

ATLA 30.6 ± 35.0 4.69 ± 4.01 21.2 ± 16.0 21.0 ± 17.2 28.9 ± 18.7 10.2 ± 9.48

D INFINITY REPLAY BUFFER

In this section, we show that our STA method is better than using an unlimited-size of replay buffer.
The original replay buffer size is one million. The maximum size of an unlimited-size of replay buffer
is three million since we only have three million environment interactions. The results are shown in
Table 8. According to the results, SAC with an infinite replay buffer still has poor performance on
relay evaluation compared to our method. Moreover, the average return under ordinary evaluation is
lower than the normal SAC, while our method is greater or equal to the normal SAC.

Table 8: SAC with infinity replay buffer during training.

Environment
Stranger

Algorithm
Test Algorithm (Failure Rate %)

SAC NaiveNa=16 STA SACreplay_buffer=∞

Humanoid

SAC 38.0 ± 33.9 13.2 ± 6.84 5.77 ± 23.3 34.07 ± 10.12
TD3 33.6 ± 28.5 7.81 ± 4.76 3.76 ± 19.0 24.00 ± 15.67
PPO 48.8 ± 30.1 25.0 ± 3.36 9.95 ± 29.9 43.39 ± 12.31

SA-PPO 83.8 ± 18.0 58.1 ± 8.32 25.2 ± 43.4 80.10 ± 8.43

Walker2d

SAC 26.9 ± 23.5 5.38 ± 3.58 7.33 ± 26.0 41.33 ± 26.87
TD3 22.7 ± 21.7 3.71 ± 2.48 5.48 ± 22.7 38.19 ± 27.21
PPO 14.5 ± 12.9 1.19 ± 0.86 2.57 ± 15.8 24.57 ± 23.94

ATLA-PPO 19.9 ± 18.1 2.33 ± 0.99 2.83 ± 16.5 28.47 ± 25.46
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E USING AVERAGE REWARD AS SCORING FUNCTION

In this section, we show the STA result of using the average score score(st) =
∑T−1

i=t ri/(T − t)

instead of using the reward sum of next λ steps score(st) =
∑t+λ−1

i=t ri. In STA, the scoring function
is a quick way to estimate if a state is controllable. We only add the states that have high enough
scores into the SSTA. According to the results, using the average reward can also reduce the failure rate
compared to the original SAC. However, its failure rate is still higher than using our score function
(column STA), which uses the sum of the reward of the next λ step.

Table 9: The experiment of STA that use average rewards score(st) =
∑T−1

i=t ri/(T − t) as the score
function to estimate if a state in SSTA is controllable.

Environment
Stranger

Algorithm
Test Algorithm (Failure Rate %)

SAC NaiveNa=16 STA STAaverage reward

Humanoid

SAC 38.0 ± 33.9 13.2 ± 6.84 5.77 ± 23.3 8.36 ± 3.52
TD3 33.6 ± 28.5 7.81 ± 4.76 3.76 ± 19.0 4.86 ± 2.30
PPO 48.8 ± 30.1 25.0 ± 3.36 9.95 ± 29.9 11.85 ± 4.72

SA-PPO 83.8 ± 18.0 58.1 ± 8.32 25.2 ± 43.4 44.29 ± 11.14

F THE FAILURE DEFINITION OF MUJOCO

In Mujoco, by default, most of the environments will terminate the simulation when the agent is
unhealthy. Normally, unhealthy means the robot has fallen over. By doing so, the agent can start a
new trajectory without wasting more time on the "unhealthy" trajectory. Each environment has its
own way of detecting unhealthy.

The Humanoid environment requires the z-position (height) of the robot need to be in a predefined
range.

The Ant and Walker2d environment define the robot as unhealthy if any of the following happens:

• Any of the state space values is no longer finite.
• The height of the walker is not in a predefined range.
• The absolute value of the angle is not in a predefined range.

The Hopper environment defines the robot as unhealthy if any of the following happens:

• An element of observation[1:] is not in a predefined range.
• The height of the walker is not in a predefined range.
• The absolute value of the angle is not in a predefined range.

Please see more details at https://www.gymlibrary.dev/environments/mujoco/.
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G DEFINE FAILURE WITH RETURNS

In this section, we define the failure of relay-evaluation according to the reward sum of the next
L = 500 steps instead of using the failure defined by Mujoco. The first column shows the failure rate
using the failure definition of the Mujoco. For the remaining columns, we allow the agent to keep
playing even if the current state is "failed," according to Mujoco. In the end, we define a trajectory
as a failure trajectory according to its return. For example, for the second column, we define a
trajectory as failed when its return is lower than 500. Note that the average return of SAC should be
2828. According to the results, no matter using which kind of definition of failure, SAC still has an
unacceptable failure rate, especially on the SA-PPO. This shows that the termination criteria in the
MuJoCo environments are not too strict and most of the terminated trajectories have no chance to get
a high score.

Table 10: Conducting relay-evaluation with different definitions of failure. The column SACMujoco
uses the failure defined by the environment. The columns SAC<thr define a trajectory is failed if the
return value is smaller than the threshold thr. Note that the expected return value is greater than 2800.

Environment
Stranger

Algorithm
Test Algorithm (Failure Rate %)

SACMujoco SAC<500 SAC<1000 SAC<1500

Humanoid

SAC 38.0 ± 33.9 30.56 ± 11.11 32.28 ± 11.12 32.54 ± 10.95
TD3 33.6 ± 28.5 21.55 ± 5.77 23.93 ± 5.67 24.09 ± 5.76
PPO 48.8 ± 30.1 42.42 ± 10.02 44.93 ± 10.41 45.33 ± 10.48

SA-PPO 83.8 ± 18.0 81.83 ± 9.29 82.82 ± 9.03 82.98 ± 9.04

H STATE DISTRIBUTION OF AN STA AGENT’S OLD TRAJECTORIES

In this section, we plot the historical states of an STA agent with the states we showed in Fig 1a. As
the figure shows, although the distribution of historical states of the STA agent is more diverse than
the distribution of other agents’ states, there are still many areas that it does not cover. Hence, this
suggests that the STA agents have a better performance on relay evaluation due to being more general.

Figure 3: State distribution of an STA agent’s SSTA. SSTA stores the likely controllable states that
the agent generated during training. We use t-SNE to visualize those states along with the states
generated by the other six agents used in Fig.1a.
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I EVALUATING SAC WITH DIFFERENT L IN RELAY-EVALUATION

In this section, we conduct relay-evaluations with different L. We select SAC as our test agent. Our
result is shown in Table 11. The results show that most of the failures happened in the first 100 steps
after the test agent took over the control. The results also show that for some of the cases, even if the
agent does not fail for 100 steps, it may still fail in the next 400 steps.

Table 11: Evaluating SAC with different L in relay-evaluation, where L is the extra steps that the test
agent needs to complete without failing.

Environment
Stranger

Algorithm
Test Algorithm (Failure Rate %)

SACL=500 SACL=200 SACL=100 SACL=50

Humanoid

SAC 38.0 ± 33.9 32.32 ± 11.08 30.69 ± 10.92 21.12 ± 7.25
TD3 33.6 ± 28.5 23.97 ± 5.71 21.71 ± 6.22 11.19 ± 6.09
PPO 48.8 ± 30.1 45.06 ± 10.59 42.50 ± 10.26 28.84 ± 7.81

SA-PPO 83.8 ± 18.0 82.90 ± 9.03 82.02 ± 9.05 73.77 ± 9.60

J GENERATING CONTROLLABLE STATES WITH DIFFERENT
HYPERPARAMETERS

In this section, our goal is to generate more controllable states to test our agents by training with
different hyperparameters. We first train 40 SAC agents with random hyperparameters and use the
top 10 agents to serve as stranger agents.

The hyperparameters that we will randomly choices are: the learning rate of the policy π, the learning
rate of the Q function, the batch size, the network structure, the training frequency, and the α in the
SAC goal function.

The results are shown in Table 12. According to Table 12, we observe that the states generated by
random hyperparameters are easier for other agents to pass the relay-evaluation, especially when
evaluating SAC and TD3 agents. A potential reason is that some of these hyperparameters lead to
worse policies and generate slower trajectories, and it’s easier for the target agent to take over from
those slower states.

Table 12: We generate controllable states by training SAC with random hyperparameters, including
learning rates, network sizes, and batch size.

Environment
Stranger

Algorithm
Test Agent Algorithm (Failure Rate %)

SAC TD3 PPO SA-PPO/ATLA

Humanoid

SAC 38.0 ± 33.9 83.9 ± 17.6 83.9 ± 16.5 65.1 ± 31.8
TD3 33.6 ± 28.5 60.5 ± 30.1 78.4 ± 20.0 67.5 ± 29.9
PPO 48.8 ± 30.1 77.8 ± 24.3 81.6 ± 19.1 63.2 ± 30.9

SA-PPO 83.8 ± 18.0 96.2 ± 5.66 92.9 ± 11.9 77.0 ± 26.4
SAC-Random-Hyperparameters 16.6 ± 37.2 55.8 ± 49.6 79.5 ± 40.3 65.0 ± 47.6

K THE ORDINARY RETURN OF THE TEST AGENTS IN TABLE 1

This section shows the average returns of the agents we used in Table 1.

Table 13: The avg return of the test agents we used in Table 1.
Environment SAC TD3 PPO SA/ATLA PPO

Humanoid 5645.73 ± 233.54 5011.30 ± 1515.59 5173.36 ± 236.10 6614.09 ± 340.69
Walker2d 5715.64 ± 446.39 5588.48 ± 701.70 4184.67 ± 897.59 3636.84 ± 1140.55
Hopper 3667.81 ± 143.62 3520.63 ± 177.80 5384.12 ± 144.40 4587.02 ± 271.10

Ant 6155.81 ± 176.08 6007.45 ± 770.93 3148.41 ± 404.15 2721.81 ± 900.34
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