Structured Handwritten Input for Dementia Classification
by
Gerardo Flores
A.B., Harvard College (2011)

Submitted to the Department of Electrical Engineering and Computer Science in Partial
Fulfillment of the Requirements for the Degree of

Master of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2024

(©) 2024 Gerardo Flores. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,
distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored By: Gerardo Flores
Department of Electrical Engineering and Computer Science
August 9, 2024

Certified By: Randall Davis
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted By: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee for Graduate Students

Structured Handwritten Input for Dementia Classification
by

Gerardo Flores

Submitted to the Department of Electrical Engineering and Computer Science
on August 9, 2024, in partial fulfillment of the
requirements for the degree of
Master of Science

Abstract

We explore the use of deep learning to score the Digit Symbol Substitution Test (DSST),
a paper-and-pencil behavioral test useful in diagnosing Alzheimer’s. We train a model
to classify Alzheimer’s based on the subject’s responses to any one of the 108 queries in
the test. We then combine predictions across the test to produce a new classifier that is
considerably stronger. We also make an exensive search of architectures and optimization
techniques that have proved useful in other settings. The ultimate result is a very strong

classifier, with AUC for a response to a single question of 86% and for an overall patient of
97.25%.

Acknowledgments

I extend my deepest gratitude to my advisors, Prof. Randall Davis and Dr. Dana Penney,
for their invaluable guidance and encouragement throughout this thesis. I am also thankful
to the study participants and their families, whose courage underscores the importance of
this research. Lastly, my heartfelt appreciation goes to my parents and friends for their

unwavering support and belief in my abilities.

Chapter 1

Introduction

Alzheimer’s disease is the most common form of dementia, but remains difficult to diagnose
it early and therefore to treat it before it progresses. The Symbol Digit Substitution Test
(SDST) was created as a simple and sensitive instrument to evaluate cognitive decline, but
requires a lot of clinical judgment. Using a dataset of digitized pen strokes from SDST
subjects with known diagnoses, we explore supervised machine classification of Alzheimer’s
disease.

The past fifteen years of advances in deep learning have created a range of new tools for
processing complex sequence data, and we evaluate a range of architectural and optimization
options, as well as the use of pretraining to boost performance. Overall, we find their
performance against a baseline of linear models to be encouraging.

We begin with a review of the state of Alzheimer’s disease, and its diagnosis.

1.1 Costs

The success of nutrition improvements and allopathic medicine have allowed more people to
live long enough to experience dementia, and raised its impact and public salience (McK-
eown et al. 2020). Estimates of prevalence now run to 7 million americans (Alzheimer’s
Association 2024), and it is the seventh leading cause of death globally (Vollset 2024) and
forecast to rise to 4th in the next twenty five years. One caregive describes her mother-in-

law’s experience:

[She] wakes to find that she has aged 50 years overnight, that her parents have

disappeared, that she doesn’t know the woman in the mirror, nor the people who
claim to be her husband and children, and has never seen the series of rooms
and furnishings that everyone around her claims insistently is her home.(Gillies

2011)

Financially, the total cost of caring for Alzheimer’s patients in the US was estimated to
be in the range of $200 to $450 billion depending on how informal care is valued (Nandi
et al. 2024).

1.2 Diagnosis

As the understanding of mental illness progressed in the late 19th and early 20th centuries,
varieties of early onset dementia began to be more thoroughly classified. Alzheimer’s,
which is by an order of magnitude the most common of them, was first clinically described
in 1906 following an autopsy of a 51 year-old patient’s brain, and came to be understood as
presenile (early onset) dementia (Keuck 2018). Alzheimer himself noted that his patients
condition was accompanied by what he labeled ”amnestic writing disorder” (Maurer, Volk,
and Gerbaldo 1997), but autopsy was the only universally accepted test of Alzheimer’s for
about a century after his work.

Today, CMS reimburses a $3,000 PET scan to look for amyloid plaques, and blood
tests are beginning to enter the market, but blood and cerebrospinal fluid tests are still
considered highly unreliable. Diagnosing cognitive impairment, and particularly dementia,
is currently quite difficult to do given the desire of medicine to have a high confidence,
objective, chemical or radiological assessment. However, lack of obvious biomarkers or
simple structural changes has made this quite difficult. Today, there are PET scans available
to detect Tau protein plaques in the brain (believed to be implicated in Alzheimer’s), but
due to the short half-life of the radio tags, they cost $20,000 per administration. Other
options like blood or even cerebrospinal fluid levels of these proteins are not conclusive. An
estimated 90% of Alzheimer’s patients do not have these assessments. In any case, the final
assessment is still done face to face by a trained clinician (Knopman and Hershey 2023).

The most used and studied instrument of cognitive decline today is the Mini-Mental
State Examination (MMSE), which typically takes 7-10 minutes to administer. For Demen-

tia, it’s estimated to have about 90% sensitivity and specificity. A briefer instrument like

the Clock Drawing Test (CDT), which can take under a minute, is not quite as good, more
like .85 / .85. However, performance for MCI is considerably poorer. For MMSE, it’s more
like .5 and .75, respectively, and for CDT, more like .65 / .65 (Patnode CD 2019).

The attributes of Alzheimer’s are in some ways most specific early on. In particular,
early Alzheimer’s patients show marked short-term memory decline before they show other
classic deficits in cognitive processing. This suggests that a Digit Symbol Substitution
Test, which focuses on memory, can be more productive than other very short methods,
like the clock drawing test (Kumar A 2022). It’s already been known for a few decades that
DSST can measure both cognitive deficits and recall issues, and can be used to discriminate

between Alzheimer’s and Parkinsons (Demakis et al. 2001).

Screening is valuable because it opens treatment avenues, but also simply intrinsically

to confront the fear of the unknown.

Most of what we forget is not a failure of character, a symptom of disease, or
even a reasonable cause for fear—places most of us tend to go when memory
fails us. We feel worried, embarrassed, or plain scared every time we forget
something we believe we should remember, or would have remembered, back
when we were younger. We hold on to the assumption that memory will weaken

with age, betray us, and eventually leave us.(Genova 2021)

1.3 Alzheimer’s Treatment

For a century, evidence on disease-modifying clinical responses to Alheimer’s has been
weak. In the past few years, a few medications have finally been approved to slow the
disease course, but only for very mild cases. This makes early detection and treatment

more important than ever.(Belder, Schott, and Fox 2023)

However, diagnosis is still based on specialist clinician interactions (Knopman and Her-
shey 2023). These interactions are enormously expensive and also rate-limiting. Any tools
that enable general practitioners to diagnose the disease earlier and more routinely would

be of enormous value.

1.4 Alzheimer’s Handwriting

Since Alois Alzheimer’s ”amnestic writing disorder” (Maurer, Volk, and Gerbaldo 1997),
it has been known that there are changes in handwriting that accompany Alzheimer’s.
However, unlike Parkinson’s distinctive micrographia, these signs of Alzheimer’s require a
great deal of specialized experience. A meta analysis of studies of handwriting shows that
longer delays between strokes, in particular, are indicative (Werner et al. 2006), but most
simple features like size and average velocity appear to vary by setting (Fernandes et al.
2023).

A compelling avenue would be to take the rich input data available from filling out
forms on an ipad to predict the classification. If this can be brought to parity with a
trained specialist, it can significantly improve the diagnostic capability of a typical general
practitioner or gerontologist, who lacks the neuropsychological training and indeed the time
to administer the exam. On an engineering level, this requires modeling techniques which

can use rich data sources with relatively little hand-tuning.

1.5 Deep Learning

The past fifteen years have seen a revolution in statistical learning through the exploration
of massively overparameterized models. It had been understood for a few millenia that par-
simonious models tended to generalize better, a point described in the context of regression
by the use of information criteria (Akaike 1974). It more recently came to be understood
that once the number of parameters began to exceed the number of data points, the qual-
ity of out of sample generalization began to increase again (Belkin et al. 2019). However,
fitting large models has traditionally been quite difficult, because they have tended to be
non-convex, and analytically intractable.

A few major developments combined to change this. First of all, the continued speedup
of processing, and particularly the reuse in machine learning of hardware parallelism tools
first developed for graphics, vastly sped up processing of matrix math. Second of all, auto-
matic differentiation (Wengert 1964) reached a maturity where practical libraries became
widely available and useful. This, coupled with a willingness to use simpler if less efficient
first order methods based directly on the gradient (Richardson 1911), vastly reduced the

implementation difficulty of gradient descent methods, which are among the few practical

10

tools that work in extremely high dimensional optimization. Third, there was a realization
that model architecture and training procedures should be designed to reduce the noise of
individual gradient estimates by applying huge numbers of updates to each parameter. This
takes the form of both parameter sharing, in architectures like CNNs LeCun et al. 1989, and
various techniques to get more updates from the same data, including data augmentation
and next-step pretraining.

Overall, there is a wide range of new architectural options as well as optimization tech-
niques for accelerating Richardson Iteration / Gradient Descent. We evaluate them exten-
sively to produce a good classifier for this particular dataset, and also to provide a guide

for future work.

1.6 Objectives

This thesis aims to explore deep learning architectures and optimization methods to classify
Alzheimer’s disease based on handwriting data from the digit symbol substitution test. In
particular, the decomposition of the overall test into 108 questions and answers allows more
efficient use of the data to fit large models, and the combination of 108 separate predictions
makes for more accurate overall classification. However, the pen strokes in each answer still

form a complex sequence of data, and a range of technical approaches is explored.

11

12

Chapter 2

Related Work

2.1 Handwriting

The measurement of cognitive deterioration by examining writing is well established. How-
ever, there are obstacles to routine use, including the time taken to evaluate the results,
and the difficulty of standardizing interpretation (Moetesum et al. 2022). In recent years,
emphasis in the field has moved from what (Moetesum et al. 2022) terms visual to procedu-
ral analysis, emphasizing additional information such as pressure and time to completion.
In most state of the art applications, these sequences are post-processed (in narrow tem-
poral windows) to acquire information about dynamics, and dynamics are then aggregated
through summary statistics.

More recent work has used advanced DSP techniques, including cepstral analysis (Nolazco-
Flores et al. 2021). However, cepstral analysis is based on assuming that each impulse within
the writing has the same shape, so this may boil down to laplacian edge detection in the
log spectrum. There has also been work with fractional derivatives (Mucha et al. 2023).
However, sequence modeling has still not substantially taken off (Ayaz et al. 2023).

In the specific context of cognitive impairments, (Prange and Sonntag 2022) claims
roughly 85% specificity /sensitivity from using a grab bag of 176 handwriting features culled
from the literature, without specifically tailoring for what is being drawn in the test. This
is promising, but since hand-implementing 176 features correctly can be daunting, suggests
that a deep-learning based approach may be more powerful and more maintainable.

Another prominent recent example has been (D’Alessandro et al. 2023), which studies

velocity alone, and decomposes velocity timeseries for a single connected pen stroke into a

13

sum of individual accelerations, each with an offset log-normal shape, which is unimodal,
and skewed to the right. They claim to achieve accuracy in the region of about 75% in

classification.

2.2 DSST

The attributes of Alzheimer’s are in some ways most specific early on. In particular, early
Alzheimer’s patients show marked short-term memory decline before they show other classic
deficits in cognitive processing. This suggests that a Digit Symbol Substitution Test, which
focuses on memory, can be more productive than other very short methods, like the clock
drawing test (Kumar A 2022). It’s already been known for a few decades that DSST can
measure both cognitive deficits and recall issues, and can be used to discriminate between
Alzheimer’s and Parkinsons (Demakis et al. 2001), and it is arguably the most commonly

used neuropsychological assessment tool (Jaeger 2018).

Of particular interest have been studies in the past couple of years using the Digit
Symbol Substitution Test. For example, (Campitelli et al. 2023) implements the DSST on
a digital platform, and finds that (# right in 2 minutes) has correlation of about .6 with
the longer and more costly Repeatable Battery for the Assessment of Neuropsychological

Status.

Similarly, (Williamson et al. 2022) modifies the DSST to match images of medications
with days of the week in order to try to reduce reliance on familiarity with neuropsycho-
logical evaluation, and administers it online, and finds that (# correct in 2 minutes) has

about .4 correlation with the MMSE.

In addition, (Lesoil et al. 2023) similarly implements DSST on a digital platform and

finds (#correct in 2 minutes) to have correlation with .7 with the MMSE.

Moreover, (Andersen et al. 2021) studied time taken to think and write in different
segments of the test, and whether changes during administration were predictive of MMSE
(statistically significant differences), as well as decline in performance on followup evalua-

tions (also statistically significant), in an international sample.

14

2.3 Handwriting on DSST

(Cook 2023) explored implementation of a DSST that captures pen strokes, and admin-
istered the Montreal Cognitive Assessment (MoCA) to 17 patients, but did not evaluate
the correlation between the two instruments. Previous work from the same group, with an
older version of the test, hand-engineered a set of features and found an AUC for AD vs
Healthy, PD vs Healthy, and AD vs PD in the range of about .97 (Huang 2017). Published
evaluations of Sainte-Cerveau, a superset of the DSST, claims 97% sensitivity and 91%
specificity for AD.

However, there has not been work directly feeding the pen stroke data into a deep learn-
ing model and training end-to-end. This would allow the automatic discovery of features

that are most predictive of the outcome, and a richer understanding of the data.

15

16

Chapter 3

Data

Figure 1: The SDST. (a) the answer key (b) untimed translation (c) timed translation (d)
untimed copying (e) timed copying (f) untimed pure recall

17

3.1 Symbol Digit Substitution Test (SDST)

The SDST is a refined version of the DSST, designed to be easier to score, and to increase
informativeness in the context of dementia. Section [a] (the answer key, see Figure 1) is
similar to the DSST answer key, except the sy mbols have been made simpler and more
distinct, and only the digits 70”7, 71”7, and ”2” are used. A moment’s reflection on 4/9, 1/7,
3/8 will suffice to show why this simplifies evaluation. Section [b] (the untimed translation)
and section [c| (the timed translation) are roughly the same as the DSST, although [c] has
a more uniform distribution of the tasks than the DSST.

Sections [d] and [e], which are not found in DSST, are similar to [b] and [c], except there
is no translation involved. The intent is to provide a control group to isolate and control for
effects based on motor problems alone, which explain a significant fraction of the variation
in test outcomes - one study found 72% of the difference between younger and older patients
(Lezak 2004). Finally, section [f] asks the patient to recall what was in the translation key
they saw a few minutes prior. For reference, the author, a second year student being of
as sound of mind and body as a person might be and choose to enter a doctoral program,
found this difficult.

Finally, the SDST repeats the same exercise a second time, in order to quantify im-

provements in the task based on associative learning.

18

Meta Category Characteristic Count

Age <65 44
65-74 20

75-84 17

85+ 2

Sex F 55
M 28

Race/Ethnicity White, Non-Hispanic 75
Black 7

Hispanic 1

Table 1: Demographic information for the 83 patients in the study.

3.2 Demographics

The data used in this thesis was obtained from recordings of pen strokes by 83 patients
completing the SDST using a digitizing ballpoint pen. The tests were administered, and
ground truth diagnostic labels assigned by Dana Penney, director of Neuropsychology at La-
hey Clinic, along with collaborators. ask Randy about the details and appropriate citation
here Patients were mostly caucasian, reflecting demographics at Lahey, and predominantly
female and under the age of 65 (see table 1).

We use 90% of the data for training and tuning, and hold out 10% of the sample for
evaluation. Since this produces a small test set, we also run a robustness check in which
we train on 60% of the data and evaluate on 40% of the data. The results are similar,

suggesting that good performance is not simply an artifact of small sample size.

19

TODO 1
ask Randy abo
details and appr

citation here

3.3 Preprocessing

The use of deep learning sequential models reduces the need for careful feature engineering.
Nevertheless, there were two important challenges. First, correctly assigning the pen strokes
to the question they were intended to answer allows more efficient use of data. Second, some
simple processing of position and time to create dynamical features makes the baseline linear
model more competitive, and allows feature ablations to give more insight into what aspects

of handwriting the model is using.

3.3.1 Assigning Pen Strokes to Questions

First of all, the questions are each answered in a separate box (see 1). However, subjects’
pen strokes don’t always stick within a given box. A pretty straightforward solution to this
is to pool all the positions at which the pen was observed, and assume that this density
is roughly a mixture of gaussians, with the gaussian means fixed in a grid. We can then
estimate the grid location using maximum likelihood, a convex optimization problem that
is readily solved by standard methods (e.g. those provided by scipy.optimize.minimize).

In practice, I found that the exact edges were still quite difficult to determine. Unfor-
tunately, no single offset provided a clear separation of strokes; it seems that subjects were
crossing over the edges of the boxes that separate answers. Of course this is no problem
for a human clinician, but an algorithm needs a decision rule. After manual inspection, we
restorted to the oldest machine learning method: a graduate student inspected the data

and manually created the decision tree shown in Algorithm 1.

Algorithm 2 The decision rule for mapping pen strokes which cross box boundaries.

1: procedure MAPSTROKE(stroke)

2 if at least 75% of stroke is in one box then

3 map stroke to that box

4 else if ignoring points close to the edge, at least 75% of stroke is in one box then
5: map stroke to that box
§
7
8
9

else if stroke is much closer to preceding than succeeding stroke then
map stroke to the same box as the preceding stroke

else if stroke is much closer to succeeding than preceding stroke then
map stroke to the same box as the succeeding stroke

10: else
11: map stroke to the box where it starts
12: end if

13: end procedure

20

Once we’ve mapped the pen strokes to the question they were intended to answer, then
we readily infer what the correct answer was, and what type of memory and processing were
involved. For example, the correct response in the upper left box in the whole response is

”1”, and it’s a simple copying task.

3.3.2 Pen Stroke Dynamics

After both speaking with clinicians and examining the literature (e.g. (D’Alessandro et al.
2023)) we find that simple dynamics (the profile of stroke speed, in particular) is useful for
building linear models. Since we’re doing this for a baseline anyway, we use it as an input
sequence for all the models.

The obvious features borrowed from physics would be time, position, velocity, accel-
eration. We add jerk, the lesser known third derivative of position, which measures the
steadiness with which force can be applied by a subject. Moreover, to maintain transla-
tional and rotational invariance (conjectured to be important since subjects don’t always
find the center of the boxes provided for answers), we feed the log magnitude of these
quantities into the model, rather than their x and y components.

However, the interaction between the directions of velocity and acceleration is also
important. Longitudinal acceleration, along or against the direction of velocity, represents
a patient speeding up or slowing down a stroke. Centripetal acceleration, orthogonal to
motion, reflects the curvature of the stroke. In this case, the standard measure in the

literature is curvature, a closely related quantity - see table for details.

Metric Normalization
Time t— 1o
Velocity symloglp K ||%||
Acceleration symloglp K H%H

Jerk symloglp K|| % I

Change in Speed (Longitudinal) symlog K %H%H
do o i’z
Curvature (Centripetal) symlog K %
dt

Table 2: The 6 dynamical features used as inputs to linear and deep models. For explana-
tions of symlog and symloglp , see 3.3.3.

21

3.3.3 Dynamical Range

Because these dynamics have a wide dynamic range, we log-scale them. However, since some
of them can take zero or negative values, we use a modified function sometimes referred
to as the signed or symmetric logarithm. I use here the name ’symlog’ which is typical in
python packages, particularly the matplotlib library. See the figure for intuition, and then

the equations below for the details.

The Symmetric or Signed Logarithm

----- log(x)

21 —— symlog(x)

symloglp(x)
> 0 .

]

_4 T T T T I T T T T
-8 -4 -2-10 1 2 4 8

X

Figure 2: Two implementations of the symmetric or signed logarithm function.

The simplest implementation asymptotically matches sgn(z) log |x| for large values of x.

log(l4+2z) x>0
symloglp (z) = ¢ — log(l—z) <0

T otherwise

Although the scaling near zero is easy for an algorithm to handle, it’s a bit more annoying
for a human to understand. An alternate implementation is simply linear between -1 and 1,
but then remains 1 unit larger than the logarithm for large values. We used this in practice
to simplify debugging of quantities that were meant to take both positive and negative

values, though the difference is not really significant to the models.

1+ log(z) x>1
symlog (z) = ¢ —1 —log(—z) =< —1

T otherwise

22

Chapter 4

Methods

The overall goal of this project is to explore methods for classifying Alzheimer’s based on
pen strokes on the SDST. On a technical level, we fit the models using gradient descent on

a loss function, which is the binary cross entropy loss for the classification task.

loss(y, P(y)) = Y _ylog P(y) + (1 — y)log(1 — P(y))

For a large and complex model this optimization problem can be quite ill-conditioned.
However, large and complex models have shown radically better performance than smaller,
simpler models in other domains (particularly vision and language), so the purpose of this
thesis is to explore whether they can also radicall improve performance in Alzheimer’s
classification. To test this proposition, we experiment with various modern optimization

techniques for accelerating gradient descent on these larger models.

In addition to the difficulty of optimization methods, larger models have shown to
require larger amounts of labeled data. By fitting a prediction on each of 108 answers for
each of the 83 subjects, we expand the number of labeled examples for training by about
two orders of magnitude. However, there are still on the order of about 100 data points per
answer. In many domains, training machine learning models to predict the local structure
(the next word, the next pixel, or in our case the speed and direction of motion a few tens
of milliseconds later) has shown to produce more powerful models. When these are then
fine-tuned for use in classification tasks, they sometimes outperform models directly trained

on classification.

23

Dimensionality
Reduction Example Pro Con
Raster 2D CNN Doesn’t require digital pen | Data loss
Scalar | Logistic Regression | Fast, well understood Not very sensitive
Symmetric 1D CNN More expressive No pretrain
Causal Transformer Next step pretrain Less flexible

Table 3: High architectural approaches

4.1 Architecture

A central challenge of the pen stroke data is that it’s originally formatted as a variable-length
list of (x,y) pairs. Even when we preprocess the features to get information about dynamics,
we need an approach to reducing the dimensionality if we want to train a classifier.

At a high level, these may be divided into scalar approaches (e.g. a logistic regression
based on maximum velocity, acceleration, etc), raster image based approaches (e.g. a CNN
on a 28x28 image), and sequence approaches (e.g. a Transformer on a 128 timestep sequence
of values). Sequence approaches can be further divided into those that treat past and future
symmetrically (e.g. a 1D CNN), and those causal approaches which only use data up to a
point in time. Causal approaches have proven particularly successful in natural language
processing, where the prediction of the next token has produced the recent revolution in

large language models, and produced much better tools for classification.

4.1.1 Raster

We can take the x,y coordinates and convert them into a raster image of shape BaWxH,
where B represents the batch (training many examples at once for efficiency), and W and
H are height and width, which are set to 28 for compatibility with the standard MNIST
task (Deng 2012). We then train a 2D convolutional model (LeCun et al. 1989) to predict

the patient status based on this pixel data, which takes about 40s.

4.1.2 Scalar

As a baseline for what can be done with the preprocessed dynamical features, we simply
take both the min and max values of all dynamics for the entire stroke, producing data of
shape BxC' where B represents the examples, and C' represents the ”channels” (min and

max values of features over the stroke). We then run a logistic regression using these inputs.

24

This includes temporal information that’s left out of the raster model, and is fast (about

one second to train) and statistically very well understood, but ignores layout and ordering.

4.1.3 Symmetric (1D)

In this setting, we arrange the data to be of shape BxLxzC, where L is the length of the

longest pen stroke data, and C are the 6 dynamical features. For reasons of practicality,

we truncate stroke length to 128 tokens, which captures 97% of the data, and we pad the

sequences with zeros to get the same length in a given batch. We then run a one dimensional

CNN on this sequence data.

We compare a variety of different approaches to this CNN.

Training
Model Time Motivations

Baseline 7s Well understood, fast and easy to optimize

A Trous 12s Longer connections improve performance, but slower to train

Butterfly 16s Mathematically more elegant than a trous , but may not match hardware

FFT 15s Elegant, sometimes more effective on time series
Table 4: 1D CNN approaches
Background: the Feedforward Block

The Feedforward Block
101

- X
Ax
=== SiLU(Ax)

—— Normalized(SiLU(AX))
6 -

Figure 3: The Feedforward Block

Although the idea of deep learning is predominantly to compose similar, nearly lin-

25

ear functions with each other to produce more complex functions, the details of standard
practice are worth explaining.

In a standard feedforward block, the inputs are multiplied by a matrix to produce
outputs of a different size. Then the outputs are "rectified” to cap negative values near
zero. Then rectified outputs are normalized so that in any given batch of training samples,
the outputs will have mean zero and variance 1 (Ioffe and Szegedy 2015). A new linear
transformation is composed with this, just rescaling and shifting the output distribution,
but maintaining the stability from batch to batch. This stability of distribution greatly
improves the conditioning of the optimization problem, which makes training faster.

There are various rectifying functions in current use, but we tested a variety and found

the best results with the SiLU function (2017).

.j‘ /<
a I\

® [LU
el lotasien] |

Figure 4: The Baseline CNN

The key idea of a basic CNN is to cut the sequence into non-overlapping windows, and
run the same feed-forward neural network over each window, producing a shorter output
sequence LeCun et al. 1989. This is done repeatedly until we have a single output, which
is fed to a scalar classifier. In some cases, at some scale we take a maximum along the
sequence over the output channels. This allows better handling of varying-length inputs.

Because the same feedforward block is used at each point in the sequence, each parameter
is updated by gradients from many more data points, which makes for far more stable

training.

26

A search of the design space found best performance came from cutting into pieces of
size 2 in the first layer, then 2, then 16 and then the maximum value of each output channel

is kept, producing a sequence of length 1.

A Trous

Figure 5: The A Trous CNN

The key idea of the a trous CNN is that our input window doesn’t have to sample
contiguous points in the sequence (Chen et al. 2018). If we instead sample points with a
longer spacing, we can more easily mix information on different scales. This means the
sequence length doesn’t decrease as we stack more layers, which slows down the model, but

can also produce better classifiers.

FFT

Rather than carefully pick a strategy to sample the sequence at different spacings, we can
simply take a fast fourier transform of the sequence, and keep the first N lowest frequency
components. Then we can process this (much shorter) sequence with a standard CNN. This
idea was popularized in the context of sequence attention for transformers by (Lee-Thorp
et al. 2021). While it didn’t prove useful for transformers (because it cannot be made causal,

see below), it is useful for symmetric treatment of 1d sequences.

27

Horizontal

CNN CNN

Figure 6: The Butterfly CNN

Butterfly Matrix

A generalization of many schemes for processing data at different scales, including the a
trous convolution and the FFT, is the butterfly matrix. It begins by folding the 1d input into
a 2d grid, and then operates on that 2d grid with 2d convolutions. This is mathematically
the same as the a trous convolution, but conceptually elegant, and can be faster if the

CUDA compiler used on the hardware in question is optimized for it (Dao et al. 2019).

Performance Comparison

In fact, the FFT gives the best discrimination of the 1d models. AUC-ROC, a well known
metric, can be interpreted as the probability that given one response from a person with
alzheimer’s, and one from a person without, the model would correctly guess which was
more likely to have Alzheimer’s. A higher AUC-ROC is better. Brier Score, the mean-
squared error of the probabilistic prediction, gives more insight into how well calibrated
the probabilistic predictions of the model are. It can be interpreted as the average cost of
misclassification if the base rate of the positive classes varies uniformly between 0 and 1.
This linear / decision-theoretic meaning is less important, because we intend to combine

predictions across many questions. A lower Brier Score is better.

28

Model
Type | AUC-ROC Brier Score
1D CNN | 0.789 +0.019 0.215 +0.017
A Trous | 0.811 +0.010 0.206 £+ 0.004
FFT | 0.823 +0.024 0.213 £ 0.018
Butterfly | 0.765 + 0.015 0.222 £ 0.004

Table 5: 1D model types and their evaluation metrics on holdout sets. Standard deviation
in parentheses, tuned on 10 runs.

Training Filter
Model Time Type Motivations
TCN 62s Finite Impulse Response | Fast, simple, requires few tricks.
TCN (custom) 16s Finite Impulse Response | Same as TCN, but hand-tuned
LSTM 40s Infinite Impulse Response | Does well on short sequences.
Transformer 68s Embedding Space Difficult, very good with big data.

Table 6: Causal sequence modeling approaches

4.1.4 1D Causal (Next Step Pretraining)

Rather than treat the past and future symmetrically, we can design models which can
only react to the past. These so called causal models can be used in real time, but they
can also be trained to predict future values of the sequence. That approach creates two
orders of magnitude more labeled examples (one at each time step), and can in some cases
significantly improve the model performance by using more generalizable features (Dai and
Quoc V Le 2015).

There are three basic types of these models. The first two (TCN and LSTM) are similar
to those known from signal processing: finite and infinite impulse response, respectively.
The third (Transformer) learns a connectivity graph between elements of the sequence, only
loosely based on their position in the sequence, and then runs calculations using proximity
in that graph rather than time. Finally, because the TCN approach is the simplest, and we
trained models on non-standard hardware, we also hand-wrote a TCN implementation to

see if we could get better performance.

Finite Impulse Response: TCN

TCN is like a trous , except that the filters are aligned so that only past data is used in
calculating at any point in time (Lea et al. 2016). Since we cannot simply downsample the

data, we have to use the a trous convolution to sample more distant points in the past. Since

29

HEEEEE B HEE EEEE

[S R Y I
o AN
DEEN EEEEeeEEE

Figure 7: Temporal Convolution Networks vs normal Convolutional Neural Networks

the fields are aligned, the next time point will not appear in the inputs to the regression,
and it can be used to predict the next step.

For classification purposes we can simply max-pool the outputs at all time steps again.

Classification-Optimized TCN

Since the next-step version of the TCN does not shrink the sequence, training is quite slow.
A simple optimization approach to speed up classification training might be to decimate
the outputs that will not be reused for the final result. This was hand-implemented, and
performed comparably to an off-the-shelf TCN implementation, while speeding up by a

factor of 4 or so.

Infinite Impulse Response: LSTM

An ironically older approach is the Recurrent Neural Network (RNN), which learns a
(mostly) linear dynamical system whose inputs are the features of the data, and whose
outputs are the next step’s features. This never really scaled up to very long sequences,
and is no longer used as much for natural language, but is still a viable approach for this
kind of data.

We use the Long Short-Term Memory (LSTM) variant of the RNN (Hochreiter and
Schmidhuber 1997), which keeps an additional nonlinear hidden state, which receives inputs
with time-varying intensity. Although later work found that GRU (Chung et al. 2014) does
as well as LSTM with fewer parameters, the community never really saw a strong reason

to change, and for our purposes the more popular LSTM is fine.

30

Unlike the TCN, in this case for classification we will simply take the final hidden state

of the dynamical system as an input to our classifier.

Transformers

4 1) Rl

Figure 8: Attention in a transformer model. Blue represents points in the input sequence
that strongly affect the output. White represents points in the future, which are not used
in the calculation. Order in the sequence (the numbers) is only a part of what determines
which points are connected.

In the last 10 years, deep sequence modeling has largely been taken over by transformers,
whose receptive field is based on similarity in an embedding space, rather than position in
the 1D sequence of input tokens (Vaswani et al. 2017). The strength of the connections
between tokens (known as attention) is still generally partly based on distance, with an
exponentially decaying strength of connection (Press, N. A. Smith, and Lewis 2022).

However, CNNs and RNNs provide a tremendously strong inductive bias towards the
effect of sequence elements on each other based on position in the sequence, whereas trans-
formers largely need to learn representations of the proximity graph of elements by embed-
ding them into a higher dimensional space. This requires better optimization techniques,
and generally requires orders of magnitude more data to pay off. The back of the envelope
suggests the number of data points here is probably only slightly too low, so it’s worth
testing the performance of these models. Although at this point clearly better for natural
language (Radford et al. 2019), it’s less obvious for low dimensional, small data problems.

However, the first step of embedding the low-dimensional, continuous features we’ve

engineered into a high dimensional space can be particularly difficult to learn. One technique

31

used in such circumstances is to use an untrained CNN layer with random coeflicients, and
then pass the output through a sine transform. This approach can be more stable and
therefore faster to train than the normal CNN layer, and is known to be able to approximate
kernel functions between inputs(Rahimi and Recht 2007). We tested both approaches, and

used the sine transform in the final model.

Performance Comparison

In fact, TCN seems to have the best performance, although it’s hard to distinguish from

LSTM. Transformer really doesn’t seem to have enough data to deliver better results.

’ Type \ AUC-ROC \ Brier Score ‘
TCN (custom) | 0.840 £ 0.007 | 0.199 4 0.004
LSTM | 0.833 £0.009 | 0.194 4+ 0.004
TCN | 0.855 + 0.005 | 0.195 =+ 0.003
Transformer | 0.821 +0.012 | 0.198 £ 0.004

Table 7: Performance without pretraining. Standard deviation in parentheses, tuned on 10
runs.

Pretraining

Here we report the accuracy of the pre-trained model in forecasting future dynamics, using
root mean-squared error as a metric (lower is better). We also take that pre-trained model
and fine-tune it on the classification task, and report the AUC-ROC and Brier Score for that
model. Surprisingly, pretraining basically doesn’t improve any of the models’ performance
much (maybe the LSTM, but only very slightly). The transformer delivers substantially

better results in next-step prediction, but they don’t transfer to classification.

’ Type \ RMSE \ AUC-ROC \ Brier Score ‘
TCN (custom) | 1.096 £0.001 | 0.834 4+0.012 | 0.201 + 0.004
LSTM | 0.938+0.116 | 0.849 +0.009 | 0.190 + 0.004
TCN | 1.929+0.134 | 0.8244+0.020 | 0.210 £ 0.009
Transformer | 0.759 +0.010 | 0.806 & 0.004 | 0.205 + 0.002

Table 8: Performance in next-step prediction, and classification performance of pretrained

models. Standard deviation in parentheses, tuned on 10 runs.

32

4.2 Optimization

Unlike convex problems, the best techniques for optimizing deep neural networks are not
theoretically clear. A wide range of techniques are discussed in the literature, but some

organization is possible. The major categories are:

e Discretization and Conditioning: carefully following infinitesimal gradient flow to the
optimal parameters of an enormous model is impractical. We explore discretization

and techniques for handling ill-conditioned problems.

e Scheduling: the learning rate is a critical hyperparameter that determines the size of
steps that is taken. However, changing the size of the learning rate during training

can produce better results. We explore a few of the most popular techniques.

e Gradient modifications: traditionally gradients are evaluated at the current parameter
values, but there are various techniques to evaluate gradients at carefully chosen

nearby points, or otherwies directly modify the update to the model parameters.

4.2.1 Discretization and Conditioning

The workhorse of deep learning is stochastic gradient descent, in which a small batch of
data samples are collected, the classification is made, and then the weights are perturbed
in a direction that maximally moves the predictions in the right direction.

However, there are several variations on this theme. We’ll begin with the simplest.

Gradient Flow

dx

ar =V f(z)

In theory, we can solve a convex problem by simply following the direction of steepest
descent until we find a minimum. The catch here is that in the limit that the step size
becomes infinitesimal, the number of steps becomes infinite. In fact, however, the loss
function we’re training is based on randomly sampled training data, so finding the exact
minimum may not be useful.

In practice, we can’t run this forever, so we approximate it using a Runge-Kutta 4 solver,

whose error goes like the fourth power of the learning rate.

33

Gradient Descent

Tip1 — xp = —nV f(x4)

This is the fundamental workhorse of deep learning. We pick a step size (learning rate),
and we advance that far in the direction of steepest descent. For problems with small
number of parameters, we can actually approximate the local curvature by a parabola, and
use that to guess how far to step forward. However, calculating the hessian is quadratic in
the number of parameters, so in practical deep learning, these second-order methods are

never usable.

A central problem is to find a decent step size for an approximation here. While there
are clever ideas that work pretty well for convolutional architectures (L. N. Smith 2017),
they don’t work for all architectures. Often a coarse grid search on a log scale, using single-
epoch results, followed by more careful gaussian-process based exploration with full runs

will produce notably better results.

SGD

ziy1 — x¢ = —nV f (24, batch)

In practice, we rarely have enough working memory to calculate the loss for the entire
set of data at once. Given the linearity of derivatives, we could run through the whole data

set, add up all the gradients, and then update the parameters once.

But in practice this is usually wildly inefficient. Instead, updating parameters after each
segment of the data set is processed allows much faster convergence. Stochastic gradient
descent now has two free parameters: the step size (learning rate), and the size of the batch
of updates which are applied together simultaneously. In general, it is believed that the

learning rate should vary inversely with the batch size (Fu et al. 2023).

Note that the model chosen to illustrate these principles is quite small, and shrinking
the batch sizes produced only a very small speedup. However, in general, the difference can

be significant.

The choice of batch size 1000 is somewhat arbitrary here.

34

SGDM
Yir1 — Yt = —Pys + V f (4, batch)
Ti41 — Tt = —NYt

For a variety of reasons, smoothing the parameter updates may be better than directly

taking the direction of steepest descent. Principal among them:

e updating the parameters after every single batch of gradients is calculated is very
noisy. Rather than wait to apply them all at the same time, we can smooth out that

noise with an exponential moving average.

e given the poor conditioning of all optimization problems in reality, a step size big
enough to make progress on the directions with low curvature will generally oscillate

in the directions of high curvature, and this oscillation will slow training

e in fact without momentum, this oscillation will typically not only waste time, but
actually cause the solver to diverge. This would constrain us to very low learning

rates, which is slow.
o faster learning rates appear to produce better generalization.

However, this requires twice as much memory as SGD, because during training there’s an
additional shadow momentum parameter that needs to be stored for every single parameter

of the model.

Signed Momentum
Yer1 — Y = —Pye + V f(x¢, batch)
L1t — @y = —n -sen(y;)

The atrocious conditioning of these optimization problems means that even with smooth-
ing, we often get gradients that are gigantic in one direction or another. One appealing
solution is gradient clipping, where no direction is allowed to have more than a given size
update. An even simpler solution is to simply have fixed-magnitude updates for each coor-

dinate, and use the sign of the gradient only to inform this.

35

This update rule has been found to be effective for very large language models. But for
most smaller applications, the amount of noise this creates is untenable, and the models are

essentially untrainable.

Adam

A more complex approach would be to estimate a diagonal preconditioner for the problem.
In effect, Adam keeps a running estimate of the curvature of each parameter, based on the
variance of the gradient. It then rescales updates based on that curvature. (Kingma and

Ba 2017)

Yt+1 — Yt = —B1yr + V f (x4, batch)

Vi1 — v = —Bovy + ||V f (24, batch) ||

Yt

ﬁ%—e

Ti41 — Ty = —1N

Performance Comparison

Not very surprising: Adam comes out the winner, as usual. Signed Momentum is surpris-
ingly close, though. Because it doesn’t track the curvature of the problem, it has lower
memory usage, so it’s sometimes used for very large models for that reason. However, it

doesn’t save any evaluation time.

Optimizer | Seconds | AUC Brier
GF 88s 0.802 + 0.013 | 0.211 4+ 0.008
GD 15s 0.785+0.019 | 0.219 4+ 0.009
SGD 15s 0.801 +0.012 | 0.215 4 0.005
SGDM 27s 0.811 +0.020 | 0.214 4+ 0.006
Signed Momentum 16s 0.819 £ 0.014 | 0.202 £+ 0.007
Adam 16s 0.839 + 0.006 | 0.196 + 0.003

Table 9: Performance comparison of different optimization algorithms on the custom imple-
mentation of TCN. While slightly less effective than the off the shelf TCN, it’s considerably

faster, which makes it good for testing optimization ideas.

4.2.2 Adaptive Step Size / Schedules

In this section we will consider only Adam, and explore ways that the step size can be

modified during training, known as a schedule or scheduler.

Warmup

It’s well established that random initialization can produce atrocious conditioning. A simple
solution is just to reduce the learning rate for a couple of epochs at first, in order to try to
find a flatter, less difficult part of the loss landscape. This tends to prevent early divergence,
and allow training at overall higher learning rates.

This can be thought of as related to cold-starting momentum estimates with zero, as
the normal adam estimate corrects for this zero, and we’re just putting it back.

This is very important with huge models, and very irregular data. In this case we've
chosen one of the smaller models for demonstration, so it’s not as important. It is a little
more important to get the transformer model to train, although this is still very much a

small model with few parameters and little training data.

Decay

For larger and more complex models, better results can also come from lowering the step
size at the end of optimization. There are always various ideas about better ways to do
this, but just as the torrent of papers ”improving” on Adam have never yet replaced it, so
Cosine decay remains the undisputed champion of off-the-shelf decay schedules. In practice,
in training very large models, often the learning rate is simply changed by hand. (Zhang
et al. 2022).

The exact value of warmup vs cosine appears to vary with a lot with small changes in
the learning rate. At high learning rates, cosine outperforms warmup which outperforms

constant learning rate. At lower learning rates, they’re all much the same.

Prodigy

Another technique with a bit more track record is D-adaptation, which sets the learning
rate based on the total distance traveled since the beginning. The logic is that if the recent

gradient updates have not been canceling each other out, then it’s okay to take larger step

37

sizes.

Of course this is a bit daft in a nonconvex problem where the conditioning changes as
the problem evolves, and after a while we expect it to get worse. With extremely large
momentum or giant batch sizes (both more common in the large model settings that are
currently dominant in the literature), it might work better. Or maybe the trick is to clip
gradients, so that there are no outlier updates. Regardless, this technique is well and
properly useless on the transformer models in our setting.

The reason is that the D-Adaptation optimizer estimates the update size needed based
on distance already traveled since initialization. When the model is working well, it slowly
increases step size until it zeros in on the right scale to find a solution, then the gradient
flattens out, and the optimizer starts making smaller updates (despite a constant learning
rate). But, if the model begins to diverge, then the gradients steepen, the updates get
bigger, and the learning rate continues to increase - a runaway reaction.

There’s no real benefit over the one-cycle approach (L. N. Smith 2017), which at least
runs a lot faster. In theory, at least you can just run it once, and it’ll find a decent learning
rate. In practice, that will diverge as mentioned above unless several of the hyperparameters

are tuned, which is no better than just tuning learning rate directly.

Performance Comparison

For this section, we evaluate by testing performance of the Transformer model with the
Adam optimizer in predicting next-step dynamics, and report the Root Mean Squared
Error in this task. Linear warmup and cosine decay does outperform the other schedules,

as expected. The performance of Prodigy is notably worse, and not worth the complications.

Scheduler RMSE
Constant | 1.616 + 0.097
Warmup | 1.637 £ 0.091
Warmup + Cosine | 1.540 + 0.056
Prodigy | 1.840 + 0.050

Table 10: RMSE comparison from different schedulers, using Transformer and Adam. Lower
is better

38

4.2.3 Gradient Modifications

The field of modifications to the gradient as an update is large, fast moving, and filled with

irreproducible results. However, we test a couple of recent developments.

Schedule Free

There’s been some recent interest around a tuning schedule which has been (optimistically)
named "schedule free”. The rough idea is to keep two locations: y, the current location,
and x, a running arithmetic mean of y. The trick is that the update nudges y both away
from x, and in the direction of zero from x. The term ”schedule free” refers to the idea that
no further variation in learning rate is necessary. (Defazio et al. 2024)

This is oddly effective when coupled with SAM. Because the two mechanisms of action
are related, and the conceptual models offered by their creators don’t really mesh together,
it’s quite hard to understand what the combination of the two is actually doing. Note that
not only does it lower the RMSE when coupled with SAM and raise it when used without
SAM, but the variance is substantially reduced when coupled with SAM, and increased
when used without it.

Incidentally, it’s not at all clear to me that the schedule free optimizer doesn’t itself

benefit from scheduling, but that seems out of scope to test.

SAM

This one is pretty straightforward. (Foret et al. 2021). The meta optimizer calls autograd
once, then takes a step up instead of down the gradient. It then calls autograd a second
time to get gradients at that second, worse point. Then it comes back down to the original
point, and lets the base optimizer handle the gradients however it likes.

How do we reason about that? On a poorly conditioned, axis aligned parabola, the
gradient in the direction of slow movement won’t change at all. The gradient in the direction
of fast movement will increase. This seems wild! It makes the conditioning of the problem
effectively worse.

So this is probably some kind of edge of stability phenomenon, where SAM prevents
momentum from smoothing out training as much, so higher momentum is usable, which in

turn drives the model out of the sharpest basins, and that produces better generalization.

39

Weight Decay

Similar to L2 / Tikhonov / Ridge Regression, weight decay penalizes large parameter values,
and will tend to shrink them back towards zero. This is popular outside of deep learning,

with underparameterized models, but can also be used with overparameterized models.

Performance Comparison

Again, comparison is of RMSE in next-step dynamics prediction using a transformer and
Adam. SAM produces a huge boost in performance, cutting RMSE by 30-50%. Weight
decay seems to make a tiny difference across the board, but within the margin of error.
Schedule Free only helps if used together with SAM, which I have oddly not seen reported

in the literature.

Decay w/ SAM w/o SAM
w/o Decay | w/ Schedule Free | 0.773 £0.012 | 1.666 + 0.164
- | w/o Schedule Free | 0.905+0.032 | 1.581 +0.105
w/ Decay | w/ Schedule Free | 0.759 + 0.010 -
- | w/o Schedule Free | 0.854+0.024 | 1.578 +0.061

40

Table 11: RMSE comparison for gradient modifications, using Transformer + Adam

Chapter 5

Results

The high level question this thesis seeks to explore is whether deep learning can process
pen stroke data and classify Alzheimer’s disease with reasonable accuracy. Using a sample
of SDSTs administered to 83 patients, we find that performance is indeed promising. The
AUC-ROC for classifying responses to individual questions (e.g. copying ”12” into one
box on the test) is not bad (about 85%). When the responses to all questions for a given

individual are combined, we get an AUC of 97.25%, which is quite good.

Aggregation | Test-Set Size | AUC SE
Single Response 10% 85.34% | 0.01%
Whole Test 10% 97.25% | 0.01%
Whole Test 40% 96.50% | 0.1%

As a further check to avoid problems with small sample size, we retrain the model on

only 60% of the data, and evaluate on fully 40% of the data, producing similar results.

5.1 Overall Architectural Approaches

Model
Family Type AUC-ROC Brier Score
Raster | 2D CNN | 0.680 + 0.026 | 0.245 + 0.007
Scalar | Logistic | 0.723 £0.054 | 0.234 +0.019

1D FFT | 0.823+0.024 | 0.213+0.018
Causal TCN | 0.855 4+ 0.005 | 0.195 4+ 0.003
Pretrained LSTM | 0.8494+0.009 | 0.190 + 0.004

Table 12: Model families and metrics from the best example. Standard deviation in paren-
theses, tuned on 10 runs.

41

Overall, models based on time and space data appear to outperform models based only
on the space traversed by the pen. Narrowing in on what we tested more carefully, 1d
sequence models substantially outperform logistic regression on scalar features. Causal
CNNs appear to further outperform time-symmetric versions, although the difference is
not as large. Pretraining the models by predicting future dynamics surprisingly does not

improve classification performance, certainly not beyond the margin of error.

5.2 Feature ablations

added first | second last
Curvature | 3.9% | -2.7% | 0.9%
Time | 4.5% | -1.1% | 0.6%
Wil | 8 3% | 1.0% | 0.6%

@z 1 12.4% | -0.0% | -0.2%

iz
Lo | 131% | 1.5% | 0.8%
de) 15.1% | 1.0%
all features 16%
t, X,y 11.3%

Table 13: Feature ablations. The standard error is about .1%. All of these take about 10
seconds to train on a macbook

Since features are correlated, it’s not trivial to establish what is meant by the value
added of a single feature. Overall, shapley values are an axiomatic approach that is well
respected in the field, but require many model evaluations to calculate (Fryer, Striimke,
and Nguyen 2021). In this case it would involve evaluating the model 640 times. Instead,

we approximate the effect of features by studying
e the gain in quality of a model that uses only sequence length, if that feature is added
in
e the loss of quality of a model with all features, if that feature is removed
e the gain in quality of a single feature model when a second feature is added
We find that velocity is the most important single feature, but that any 5 features

produce an excellent model without the sixth. Since velocity is the most useful, we also

42

study the effect of adding one further feature, and find that although there is clearly some
benefit from having them all, any one additional feature doesn’t help much.

Retraining the model on raw spatiotemporal points reduces performance by about 5%
of AUC. Presumably careful tuning could produce better results, but as it stands this is

notably not as good as the engineered features.

5.3 Ablation of truncation

length | vs 128
32 | -7.4%

64 | -2.2%
128 | 0.0%
256 | 0.1%
512 | -0.7%
1000 | -1.8%

Table 14: Truncation ablation

Since the longest tail of sequences had to be cut out for the model to fit in memory, it’s
worth studying the effect of this truncation. We basically find that the model architecture
and training parameters have been optimized for the sequence length for which it was tuned.
It is likely that retuning could produce better models with longer sequences, though it is

also possible that the additional noise would simply degrade performance.

43

44

Chapter 6

Discussion

After exploring various deep learning approaches, we found that temporal convolutional
networks substantially outperformed both the results from a linear model, and from a
visual model trained on the rasterized data. From an applied rather than methodological
perspective, the theoretical motivations for deep learning are less important than the quality

of the resultant model. The key ingredients we recommend to others are:

e Dilated, causal convolutional neural networks (TCN)
e The Adam optimizer

e Sharpness Aware Minimization

On a more procedural note, we highly recommend:

e Implementing early stopping based on validation performance, and then completely

ignoring epoch-to-epoch results except during debugging.

e Using automated hyperparameter tuning tools. Even just basic Gaussian Process and
Upper Confidence Bound based tools to prioritize and schedule experiments, and then
good visualization tools makes a huge difference in mental load compared to manual

testing, or grid search.

e Tuning hyperparameters for only a few tens of seconds to guess at a range of good
values, and only then searching the range with many epoch-long runs. This makes a

huge difference in the overhead of experiments.

45

e Keeping two holdout sets. After hyperparameter tuning each configuration on the
validation set, we used the first holdout set to compare the best settings for differ-
ent architectures, which provided much more confidence. We then saved the second

holdout set for final evaluation once the work was done.

e Training on a GPU with CUDA. MacBook Metal Performance Shaders (MPS) still
give something like 10x speedup over CPU, but there are innumerable places where

pytorch tricks haven’t been implemented for MPS.

6.1 Future Directions: Data

The data used in this study was collected in a relatively limited setting, and collecting more
broadly may improve generalization, especially for underrepresented groups. In addition,
our model is trained to predict the clinicians’ contemporaneous judgment, but an even more
powerful approach may be to collect and predict follow up data. If models can not only
classify current state but predict future deterioration, this could be a major help to patients

and their care providers in planning for the future.

6.2 Future Directions: Clinician Baselines

If we can work with clinicians to more closely understand the features they pay attention
to in assessing the SDST, we may be able to not only give them the assessment, but try to

identify cases where the assessments are counterintuitive.

6.3 Future Directions: Architecture

The surprisingly strong results from FFT suggest that we might be able to directly apply
Fourier transformation at the level of individual strokes, not just responses. This might
help address the immense (orders of magnitude) variability in stroke length and provide a
better balance of performance on long and short strokes.

Stroke-level analysis may provide more useful lessons for handwriting analysis outside
the SDST setting. It might also allow better attribution of predictions to the individual

stroke level, which may be easier for clinicians to interpret.

46

A significant fraction of compute time appears to have been spent operating on padding
used to make sequences the same length, so standardizing stroke length using FFT might

also speed up training considerably.

47

48

Chapter 7

Conclusions

This thesis presents a novel deep learning approach for automated Alzheimer’s diagnosis
using handwritten responses to the Digit Symbol Substitution Test (DSST). By leverag-
ing temporal convolutional networks trained on individual question responses and ensem-
bling their predictions, we achieve state-of-the-art performance, with an AUC of 97.25% for
patient-level classification. Careful architecture search revealed dilated convolutions, Adam

optimization, and sharpness-aware minimization as crucial for this strong result.

The potential impact of this work is substantial. Alzheimer’s disease devastates millions
of patients and families worldwide, and treatments available or in the pipeline acan only slow
rather than reverse deterioration. For millions who have access only to primary care doc-
tors without specialized neuropsychological assessment training, and for whom seeking out
specialized assessment can be frightening, the deployment of cheaper and less overwhelming

early screening methods can be a game changer.

However, important work remains. While our results are promising, the models must
be validated on larger and more diverse datasets, especially incorporating longitudinal out-
comes. Investigating how our approach complements the strategies of expert clinicians
may reveal further opportunities to assist their assessments. Methodologically, reducing
the computational cost of training and inference will be crucial for scaling this approach to

real-world applications.

Though the societal challenge of Alzheimer’s is immense, this thesis demonstrates both
the value of the Symbol Digit Substitution Test (SDST) as an evaluative tool, and the power

of deep learning to extract clinically valuable insights from existing paper-based cognitive

49

tests. We are excited to apply and extend the academic and engineering lessons learned

here to inform real world deployment in a practical setting.

50

Bibliography

Akaike, Hirotugu (1974). “A new look at the statistical model identification”. In: IEEE
Transactions on Automatic Control 19, pp. 716-723. URL: https://api.semanticscholar.
org/CorpusID:411526.

Alzheimer’s Association (2024). “2024 Alzheimer’s disease facts and figures”. In: Alzheimer’s
& Dementia 20.5, pp. 3708-3821. DOI: https://doi.org/10.1002/alz.13809. eprint:
https://alz-journals.onlinelibrary.wiley.com/doi/pdf/10.1002/alz.13809.
URL: https://alz-journals.onlinelibrary.wiley.com/doi/abs/10.1002/alz.
13809.

Andersen, Stacy L. et al. (2021). “Digital Technology Differentiates Graphomotor and In-
formation Processing Speed Patterns of Behavior”. In: Journal of Alzheimer’s Disease
82.1, pp. 17-32. DOL: 10.3233/JAD-201119.

Ayaz, Zainab et al. (2023). “Automated methods for diagnosis of Parkinson’s disease and
predicting severity level”. In: Neural Computing and Applications 35.20, pp. 14499-
14534. por: 10.1007/s00521-021-06626-y. URL: https://doi.org/10.1007/s00521~
021-06626-y.

Belder, Christopher R S, Jonathan M Schott, and Nick C Fox (2024/07/15 2023). “Preparing
for disease-modifying therapies in Alzheimer’s disease”. In: The Lancet Neurology 22.9,
pp. 782-783. DOI: 10.1016/S1474-4422(23) 00274-0. URL: https://doi.org/10.
1016/S1474-4422(23)00274-0.

Belkin, Mikhail et al. (July 2019). “Reconciling modern machine-learning practice and the
classical bias—variance trade-off”. In: Proceedings of the National Academy of Sciences
116.32, pp. 15849-15854. 1SSN: 1091-6490. DOI: 10.1073/pnas.1903070116. URL: http:
//dx.doi.org/10.1073/pnas.1903070116.

Campitelli, A. et al. (Jan. 2023). “A Novel Digital Digit-Symbol Substitution Test Measur-
ing Processing Speed in Adults At Risk for Alzheimer Disease: Validation Study”. In:
JMIR Aging 6, e36663.

Chen, Liang-Chieh et al. (2018). “DeepLab: Semantic Image Segmentation with Deep Con-
volutional Nets, Atrous Convolution, and Fully Connected CRFs”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 40.4, pp. 834-848. DOIL: 10.1109/
TPAMI.2017.2699184.

Chung, Junyoung et al. (2014). Empirical Evaluation of Gated Recurrent Neural Networks
on Sequence Modeling. arXiv: 1412 .3555 [cs.NE]. URL: https://arxiv.org/abs/
1412.3555.

Cook, J. (2023). “An Effective Platform for Assessing Cognitive Health”. MA thesis. MIT.

D’Alessandro, Tiziana et al. (2023). “A Machine Learning Approach to Analyze the Effects
of Alzheimer’s Disease on Handwriting Through Lognormal Features”. In: Graphonomics
i Human Body Movement. Bridging Research and Practice from Motor Control to

51

Handwriting Analysis and Recognition. Ed. by Antonio Parziale, Moises Diaz, and Filipe
Melo. Cham: Springer Nature Switzerland, pp. 103—121. 1SBN: 978-3-031-45461-5.

Dai, Andrew M and Quoc V Le (2015). “Semi-supervised Sequence Learning”. In: Advances
in Neural Information Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran
Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2015/
file/7137debd45ae4d0ab9aa953017286b20-Paper . pdf.

Dao, Tri et al. (June 2019). “Learning Fast Algorithms for Linear Transforms Using But-
terfly Factorizations.” eng. In: Proc Mach Learn Res 97, pp. 1517-1527. 1SSN: 2640-3498
(Electronic).

Defazio, Aaron et al. (2024). The Road Less Scheduled. arXiv: 2405.15682 [cs.LG]. URL:
https://arxiv.org/abs/2405.15682.

Demakis, G. J. et al. (Mar. 2001). “Incidental recall on WAIS-R digit symbol discriminates
Alzheimer’s and Parkinson’s diseases”. In: J Clin Psychol 57.3, pp. 387-394.

Deng, Li (2012). “The MNIST Database of Handwritten Digit Images for Machine Learning
Research [Best of the Web]”. In: IEEFE Signal Processing Magazine 29.6, pp. 141-142.
DOI: 10.1109/MSP.2012.2211477.

Fernandes, Carina Pereira et al. (2023). “Handwriting Changes in Alzheimer’s Disease: A
Systematic Review”. In: Journal of Alzheimer’s Disease 96.1, pp. 1-11. bo1: 10.3233/
JAD-230438.

Foret, Pierre et al. (2021). Sharpness-Aware Minimization for Efficiently Improving Gener-
alization. arXiv: 2010.01412 [cs.LG]. URL: https://arxiv.org/abs/2010.01412.
Fryer, Daniel, Inga Striimke, and Hien Nguyen (2021). “Shapley Values for Feature Selec-
tion: The Good, the Bad, and the Axioms”. In: IEEFE Access 9, pp. 144352-144360. DOLI:

10.1109/ACCESS.2021.3119110.

Fu, Jingwen et al. (2023). When and Why Momentum Accelerates SGD:An Empirical Study.
arXiv: 2306.09000 [cs.LG]. URL: https://arxiv.org/abs/2306.09000.

Genova, Lisa (2021). Remember: The science of memory and the art of forgetting. Harmony
Books.

Gillies, Andrea (2011). Keeper: One House, three generations, and a journey into alzheimer’s.
Broadway Paperbacks.

Hochreiter, Sepp and Jiirgen Schmidhuber (1997). “Long Short-Term Memory”. In: Neural
Computation 9.8, pp. 1735-1780.

Huang, L. (2017). “The digital symbol digit test : screening for Alzheimer’s and Parkin-
son’s”. MA thesis. MIT.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: accelerating deep network
training by reducing internal covariate shift”. In: Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37. ICML’15.
Lille, France: JMLR.org, pp. 448—456.

Jaeger, Judith (Oct. 2018). “Digit Symbol Substitution Test: The Case for Sensitivity
Over Specificity in Neuropsychological Testing.” eng. In: J Clin Psychopharmacol 38.5,
pp. 513-519. 18sN: 1533-712X (Electronic); 0271-0749 (Print); 0271-0749 (Linking). DOI:
10.1097/JCP.0000000000000941.

Keuck, Lara (2018). “Diagnosing Alzheimer’s disease in Kraepelin’s clinic, 1909-1912”. In:
History of the Human Sciences 31.2, pp. 42-64. DOI: 10. 1177 /0952695118758879.
eprint: https://doi.org/10.1177/0952695118758879. URL: https://doi.org/10.
1177/0952695118758879.

Kingma, Diederik P. and Jimmy Ba (2017). Adam: A Method for Stochastic Optimization.
arXiv: 1412.6980 [cs.LG]. URL: https://arxiv.org/abs/1412.6980.

52

Knopman, David S. and Linda Hershey (Oct. 2023). “Implications of the Approval of
Lecanemab for Alzheimer Disease Patient Care”. In: Neurology 101.14, pp. 610-620.
ISSN: 1526-632X. DOI: 10.1212/wnl.0000000000207438. URL: http://dx.doi.org/
10.1212/WNL.0000000000207438.

Kumar A Sidhu J, Goyal A et al. (2022). Alzheimer Disease. Treasure Island (FL): StatPearls
Publishing.

Lea, Colin et al. (2016). “Temporal Convolutional Networks: A Unified Approach to Ac-
tion Segmentation”. In: Computer Vision — ECCV 2016 Workshops. Ed. by Gang Hua
and Hervé Jégou. Cham: Springer International Publishing, pp. 47-54. 1SBN: 978-3-319-
49409-8.

LeCun, Y. et al. (Dec. 1989). “Backpropagation Applied to Handwritten Zip Code Recog-
nition”. In: Neural Computation 1.4, pp. 541-551. 1SSN: 0899-7667. DOI: 10.1162/neco.
1989.1.4.541.

Lee-Thorp, James et al. (2021). “Fnet: Mixing tokens with fourier transforms”. In: arXiv
preprint arXiv:2105.0382.

Lesoil, C. et al. (Apr. 2023). “Validation study of ’Santé-Cerveau’, a digital tool for early
cognitive changes identification”. In: Alzheimers Res Ther 15.1, p. 70.

Lezak, Muriel Deutsch (2004). Neuropsychological assessment. Oxford University Press,
USA.

Maurer, Konrad, Stephan Volk, and Hector Gerbaldo (1997). “Auguste D and Alzheimer’s
disease”. eng. In: The Lancet (British edition) 349.9064, pp. 1546-1549. 1sSN: 0140-6736.

McKeown, Alex et al. (2020). “Health Outcome Prioritization in Alzheimer’s Disease: Un-
derstanding the Ethical Landscape.” eng. In: J Alzheimers Dis 77.1, pp. 339-353. 1SSN:
1875-8908 (Electronic); 1387-2877 (Print); 1387-2877 (Linking). por: 10 . 3233/ JAD-
191300.

Moetesum, Momina et al. (2022). “A survey of visual and procedural handwriting analy-
sis for neuropsychological assessment”. In: Neural Computing and Applications 34.12,
pp. 9561-9578. poOI: 10.1007/s00521-022-07185-6. URL: https://doi.org/10.1007/
s00521-022-07185-6.

Mucha, Jan et al. (2023). “Exploration of Various Fractional Order Derivatives in Parkin-
son’s Disease Dysgraphia Analysis”. In: ArXiv abs/2301.08529. URL: https://api.
semanticscholar.org/CorpusID:254928492.

Nandi, Arindam et al. (2024). “Cost of care for Alzheimer’s disease and related dementias
in the United States: 2016 to 2060”. In: npj Aging 10.1, p. 13. DOI: 10.1038/s41514~
024-00136-6. URL: https://doi.org/10.1038/s41514-024-00136-6.

Nolazco-Flores, Juan Arturo et al. (2021). “Exploiting spectral and cepstral handwriting
features on diagnosing Parkinson’s disease”. In: IEEE Access PP, pp. 1-1. URL: https:
//api.semanticscholar.org/CorpusID:240004346.

Patnode CD Perdue LA, Rossom RC et al. (2019). Screening for Cognitive Impairment in
Older Adults: An Evidence Update for the U.S. Preventive Services Task Force. Tech.
rep. 189. Rockville, MD: Agency for Healthcare Research and Quality.

Prange, Alexander and Daniel Sonntag (2022). “Modeling users’ cognitive performance
using digital pen features”. In: Frontiers in Artificial Intelligence 5, p. 58.

Press, Ofir, Noah A. Smith, and Mike Lewis (2022). Train Short, Test Long: Attention with
Linear Biases Enables Input Length Extrapolation. arXiv: 2108.12409 [cs.CL]. URL:
https://arxiv.org/abs/2108.12409.

Radford, Alec et al. (2019). “Language Models are Unsupervised Multitask Learners”. In:
OpenAl Blog.

93

Rahimi, Ali and Benjamin Recht (2007). “Random Features for Large-Scale Kernel Ma-
chines”. In: Advances in Neural Information Processing Systems. Ed. by J. Platt et al.
Vol. 20. Curran Associates, Inc. URL: https://proceedings . neurips . cc/paper _
files/paper/2007/file/013a006£03dbc5392effeb8f 18fda755-Paper. pdf.

Ramachandran, Prajit, Barret Zoph, and Quoc V. Le (2017). Searching for Activation Func-
tions. arXiv: 1710.05941 [cs.NE]. URL: https://arxiv.org/abs/1710.05941.

Richardson, L. F. (1911). “The Approximate Arithmetical Solution by Finite Differences of
Physical Problems Involving Differential Equations, with an Application to the Stresses
in a Masonry Dam”. In: Philosophical Transactions of the Royal Society of London.
Series A, Containing Papers of a Mathematical or Physical Character 210, pp. 307-357.
ISSN: 02643952, URL: http://www. jstor.org/stable/90994 (visited on 08/04/2024).

Smith, Leslie N. (2017). Cyclical Learning Rates for Training Neural Networks. arXiv: 1506 .
01186 [cs.CV]. URL: https://arxiv.org/abs/1506.01186.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by 1. Guyon et al. Vol. 30. Curran Associates, Inc. URL:
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a84
Paper.pdf.

Vollset, Stein Emil et al (2024/07/14 2024). “Burden of disease scenarios for 204 countries
and territories, 2022–2050: a forecasting analysis for the Global Burden of Dis-
ease Study 2021”. In: The Lancet 403.10440, pp. 2204-2256. DOI: 10.1016 /80140~
6736(24)00685-8. URL: https://doi.org/10.1016/30140-6736(24)00685-8.

Wengert, R. E. (1964). “A simple automatic derivative evaluation program”. In: Commu-
nications of the ACM 7, pp. 463-464. URL: https://api. semanticscholar . org/
CorpusID:24039274.

Werner, Perla et al. (2006). “Handwriting process variables discriminating mild Alzheimer’s
disease and mild cognitive impairment.” In: The journals of gerontology. Series B, Psy-
chological sciences and social sciences 61 4, P228-36. URL: https://api.semanticscholar.
org/CorpusID:13882317.

Williamson, M. et al. (Dec. 2022). “Validation of a digit symbol substitution test for use
in supervised and unsupervised assessment in mild Alzheimer’s disease”. In: J Clin Exp
Neuropsychol 44.10, pp. 768-779.

Zhang, Susan et al. (2022). OPT: Open Pre-trained Transformer Language Models. arXiv:
2205.01068 [cs.CL]. URL: https://github.com/facebookresearch/metaseq/blob/
main/projects/0PT/chronicles/10_percent_update.md.

o4

