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Abstract001

In Machine Translation (MT) research, we of-002
ten come across recipes recommending a set003
of fixed hyperparameters to train segmenta-004
tion models to segment words regardless of the005
amount of text or language pair involved. Al-006
though a fixed hyperparameter for the word007
segmentation model can reduce training re-008
source overhead, we find that using the same009
number of merge operations (NMO) on both010
source and target languages - symmetric Byte011
Pair Encoding (BPE), for different language012
pairs and text sizes does not guarantee optimal013
Machine Translation system performance. In014
this work, we explore and identify BPE seg-015
mentation recipes across various data sizes and016
language pairs to obtain optimal performance.017
We find that using asymmetric BPE improves018
results compared to symmetric BPE, particu-019
larly in low-resource scenarios (50K, 100K,020
500K) by (5.32,4.46,0.7) CHRF++ scores (with021
p < 0.05) on average for English-Hindi. We fur-022
ther validate our findings on the other six pairs,023
English↔Telugu, Shona, Norwegian, Kyrgyz,024
Hausa and Inuktitut, to show the consistency of025
this work. A statistically significant improve-026
ment is observed using asymmetric BPE config-027
urations in 10 of 12 systems when comparing028
symmetric BPE configurations. Our findings029
indicate that using a high NMO for the source030
(4K to 32K) and a low NMO (0.5K to 2K)031
provides optimal results, particularly in low-032
resource contexts.033

1 Introduction034

There have been commendable and considerable035

efforts in the recent past to bring low resource036

language pairs into the fold of Neural Machine037

Translation paradigm (e.g. Workshop on Technolo-038

gies for MT of Low Resource Languages). How-039

ever, in this process, it is common to apply suc-040

cessful configurations or methodologies, such as041

hyperparameters for data preprocessing pipelines042

and neural networks from past work, without suffi- 043

cient consideration of their suitability for the spe- 044

cific language pair in question. For example, if 045

we take a preprocessing step, such as word seg- 046

mentation, it plays a vital role by dividing words 047

into “subwords” to improve learning. In machine 048

translation, word segmentation/subword tokenisa- 049

tion reduces vocabulary size, manages rare and un- 050

known words, and improves MT performance. No- 051

table methods include BPE (Sennrich et al., 2016), 052

word piece (Devlin et al., 2019), sentence piece 053

(Kudo and Richardson, 2018), and morfessor (Smit 054

et al., 2014). BPE compresses the data by merging 055

frequent character pairs into new symbols (Gage, 056

1994) and thus the resultant subword tokenisation 057

model has number of merge operations (NMO) as 058

a hyperparameter. The NMO determines the de- 059

gree of word segmentation: a lower NMO, such 060

as 500 (see Table 1), leads to smaller vocabularies 061

and more segmentation, whereas a higher NMO, 062

such as 32K, creates larger vocabularies with mini- 063

mal segmentation (segmenting mostly rare or un- 064

known words). More often than not, same num- 065

ber of merge operations are performed on both 066

the source and the target languages. Most of the 067

work using BPE as preprocessing step has taken 068

the same NMO on source and target for various lan- 069

guage pairs without taking the language pair into 070

account or the amount of data involved. Recent 071

research highlights the importance of examining 072

BPE hyperparameters in MT systems, particularly 073

in low-resource scenarios (Ding et al., 2019; Abid, 074

2020). However, there is still uniformity in terms 075

of having the same NMO for both the source and 076

the target (symmetrical BPE) (Huck et al., 2017; 077

Ortega et al., 2020; Lankford et al., 2021; Domingo 078

et al., 2023; Lee et al., 2024) and very little explo- 079

ration has been done on asymmetrical BPE for MT. 080

Work like Ngo Ho and Yvon (2021) explored asym- 081

metric BPE for alignment between languages, but 082

not for MT. 083
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In the context of MT, we define the “BPE config-084

uration” as m1_m2 where m1 and m2 are the num-085

ber of merge operations (NMO) for the source and086

target languages, respectively. Our work explores087

the effects of symmetric and asymmetric BPE con-088

figurations for English-Hindi language pair in dif-089

ferent dataset availability scenarios and shows that090

we achieve best performance using asymmetric091

configuration. We further validate our findings on092

other six language pairs English ↔{Telugu, Shona,093

Norwegian, Kyrgyz, Hausa, and Inuktitut} across094

different language families to show the consistency095

of this work. These languages were chosen to rep-096

resent different typology and morphological struc-097

tures. We find that, depending on data availability098

and the language pair involved, the optimal BPE099

configuration is likely to be asymmetric. Specifi-100

cally, for low-resource scenarios, we find that, irre-101

spective of the language pair, the optimal configu-102

ration should have 4K to 32K NMO on the source103

side and 500 to 2K on the target.104

Section 2 summarises previous efforts to use105

symmetric BPE merge operations to improve MT106

performance. Section 3 explains our motivation for107

finding optimal BPE configurations by exploring108

asymmetric BPE. Section 4 outlines our experi-109

mental setup and presents the performance of the110

English-Hindi MT system on FLORES. Section 5111

evaluates the setup for other language pairs in low112

resource context, concluding our observations in113

Section 6.114

2 Related Work - Symmetrical BPE115

In quite a lot of work on BPE to find the opti-116

mal segmentation of sub-words for low to high117

resource settings, the recipe/BPE configuration of118

keeping NMO the same for both source and target119

is prevalent. Ding et al. (2019) showed that in low-120

resource settings with transformer architectures,121

using 0-4000 (4K) merge operations is optimal,122

as traditional 32K operations can reduce BLEU123

scores by up to 4 points. Abid (2020) found lower124

merge operations are better for English, Egyptian,125

and Levantine in low-resource scenarios. Domingo126

et al. (2023) revealed that the performance of the127

system varies with tokenizers in the target lan-128

guage. There is a class of works which modify129

the segmentation strategy based on the typologi-130

cal and morphological properties of one or both131

of the languages in the pair. Ortega et al. (2020)132

improved BPE by restricting segmentation based133

Figure 1: CHRF++ Scores for Symmetrical BPE
(32K,4K) vs Asymmetrical BPE (m1 ̸= m2)

on token suffixes in polysynthetic languages. Lank- 134

ford et al. (2021) highlighted the importance of 135

NMO in low-resource settings for MT performance 136

affecting English-to-Irish systems. Lee et al. (2024) 137

addressed BPE’s over-segmentation issue in mor- 138

phologically rich languages like Korean by incor- 139

porating longer words from monolingual corpora, 140

linking difficulties to morphological complexity. 141

However, there also has been works which have 142

shown potential directions to find different subword 143

tokenising strategies. Work like Huck et al. (2017) 144

and Poncelas et al. (2020) used cascading segmen- 145

tation strategies. Xu et al. (2021) applied Marginal 146

Utility to select appropriate vocabularies (VOLT), 147

which refined segmentation methods and further 148

improved results. Ngo Ho and Yvon (2021) used 149

various BPE NMO in source and target languages 150

independently to improve word alignment between 151

language pairs, but this was not extended to check 152

the performance in the MT system. Unfortunately, 153

we did not find any study that explored asymmetric 154

BPE configurations in diverse resource availability 155

scenario as presented here. 156

3 Exploring Asymmetrical BPE 157

In practice, for a BPE configuration m1_m2, the 158

values of m1 and m2 are the same and the NMO 159

for both the source and target range from 8K to 40K 160

(Wu, 2016; Denkowski and Neubig, 2017; Cherry 161

et al., 2018; Renduchintala et al., 2019), but Ding 162

et al. (2019); Dewangan et al. (2021) found that 163

these are not ideal for low-resource language pairs. 164

Ding et al. (2019) observed m1 = m2 <=4K 165

NMO is better for low-resource settings than 32K. 166

This finding aligns with our experiments on 0.1 mil- 167

lion sentence pairs (English ↔ {Hindi, Telugu}), 168

showing better performance with 4K NMO (Fig- 169
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Sentence bosusco , 54 , runs an adventure tourism bureau .

500 NMO
bo@@ su@@ sc@@ o , 5@@ 4 , r@@ un@@ s an
ad@@ v@@ en@@ ture t@@ our@@ is@@ m bu@@ re@@ a@@ u .

32K NMO bo@@ su@@ sco , 54 , runs an adventure tourism bureau .

Table 1: Different NMO Effect

ure 1). Dewangan et al. (2021) found that identical170

BPE configurations do not guarantee similar perfor-171

mance across different language pairs, as demon-172

strated by the English-Hindi vs. English-Telugu173

comparisons (Figure 1) for 4K NMO.174

To choose NMO, one should consider datasize175

and language pair as nuanced BPE strategies have176

benefitted morphologically complex languages (Or-177

tega et al., 2020; Mujadia and Sharma, 2021). We178

examine symmetrical BPE configurations that em-179

ploy the same NMO for both source and target180

languages, and investigate alternative BPE configu-181

rations by independently altering the NMO m1 and182

m2 for the source and target languages in English-183

Hindi, examining datasets ranging from low re-184

source (50K) to high resource (8 million). We find185

that this approach delivered better results (Figure186

1) in low-resource contexts. Our extensive experi-187

ments with English-Hindi, evaluated on FLORES188

(Goyal et al., 2022), show that this kind of atypi-189

cal BPE configuration yields better performance.190

We further validate the exploration of BPE con-191

figurations for optimal results by extending these192

experiments to English ↔{Telugu, Shona, Norwe-193

gian, Kyrgyz, Hausa, and Inuktitut}.194

Our work yields compelling results in favour195

of optimising NMO based on training data size196

and language pair. Figure 2 offers a conceptual197

overview of the optimal ranges of the BPE config-198

uration derived from our experiments in English-199

Hindi, as we move from low to high-resource set-200

tings. In this context, “ranges” denote the spectrum201

of NMO values that serve as hyperparameters for202

the source and target subword tokenization mod-203

els in word segmentation. The performance gap204

between the best and symmetrical BPE systems205

is depicted by varying shades of green, with the206

most significant improvement seen in low-resource207

settings (darker shade of green). As the dataset size208

grows (for medium to high resource contexts), the209

performance variance between different configura-210

tions decreases (lighter shade of green).211

4 Evaluation on English ⇐⇒ Hindi 212

We explore BPE configurations with the Samanan- 213

tar dataset (Ramesh et al., 2022) for English- 214

Hindi1, with 8 million parallel sentences. En- 215

glish text is tokenised, normalised and lowercase 216

using scripts from Moses, while for the prepro- 217

cessing of the Hindi text we use the Indic NLP 218

library (Kunchukuttan, 2020). We simulate various 219

training set size scenarios by grouping sentences 220

based on English sentence length (Table 2) and ran- 221

domly sample datasets of sizes 0.05 million (M), 222

0.1M, 0.5M, 1M, 4M and 8M, maintaining sen- 223

tence length propotion. For each language and 224

dataset size, the BPE tokenizer is trained on eight 225

different NMOs - 0.5K, 1K, 2K, 4K, 8K, 16K, 25K 226

and 32K. After subword segmentation, all possible 227

BPE configurations (src500_tgt500, src500_tgt1000, 228

src500_tgt2000, etc.) are trained with Transformer 229

architecture (Vaswani et al., 2017) using Fairseq 230

(Ott et al., 2019)2. Training a single BPE config- 231

uration m1_m2 for all dataset sizes required an 232

average of 1040 GPU hours using a 1080 Ti. This 233

results in 64 system configurations trained per lan- 234

guage direction for 6 datasets, totalling 768 sys- 235

tems (64×6×2), and resultant systems are evalu- 236

ated on FLORES (Goyal et al., 2022) Dataset using 237

CHRF++ (Popović, 2015) to assess the impacts of 238

the BPE configurations. 239

Figures 3 present the performance of all configu- 240

rations for English ⇐⇒ Hindi systems in a low 241

resource scenario (for data set sizes of 0.05M, 0.1M 242

and 0.5M). And Figures 4 show the performance 243

of all configurations on 1M, 4M and 8M dataset 244

sizes. Each subgraph represents performance on 245

a particular dataset size, with the x-axis being the 246

source NMO. The black stepped dotted lines indi- 247

cate the maximum CHRF++ score for each dataset 248

size considering for each source NMOs. 249

In figure 3 for low-resource environments 250

(0.05M, 0.1M and 0.5M) systems, as noted by 251

(Ding et al., 2019), the use of symmetric BPE 252

1English Hindi bitext under the created directory of version
2 of Samanantar is used.

2Transformer Base Architecture
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Figure 2: Changes in Optimal BPE Configuration from Low- to High-Resource Settings

Length bin 1 to 10 11 to 15 16 to 20 21 to 25 26 to 30 31 to 35 35 to 40 >=41 Total
No. of sentences 2792334 1655162 1150396 854091 617318 420583 275774 414926 8180584

Percentage 34.13 20.23 14.06 10.44 7.55 5.14 3.37 5.07 100

Table 2: Distribution of sentences in groups based on token length for full data

configuration with lower NMOs improves perfor-253

mance over high NMOs. However, the best results254

are achieved using asymmetric BPE configurations255

when the source has a higher NMO than the target.256

We see a maximum performance gain when the257

source NMO is very high and the target NMO very258

low (we see consistent performance with the target259

NMO = 500). Conversely, when the target’s NMO260

is greater than that of the source, performance de-261

clines, like for the Hindi to English 0.1M dataset,262

performance of 500_25K and 500_32K was worse263

than symmetric BPE configurations.264

In medium resource settings (1M), optimal con-265

figuration for both the source and target NMO266

moves towards medium (2K - 8K) range of val-267

ues, with relatively small score variations across268

different configurations ≈ 3 CHRF++ between ex-269

tremes. In contrast, among configurations with270

low resources, the best system outperforms the271

weakest system by a margin of ≈ 15 CHRF++272

scores and the best symmetric BPE configuration273

by ≈ 5 CHRF++ scores. For the high-resource274

scenario, the score disparity between the most ef-275

fective and least effective configuration is minimal276

(< 2 CHRF++), with the most effective system em-277

ploying a 32K NMO for the target. This pattern278

of shifting optimal BPE configurations across the279

size of the dataset is also evident if we consider280

only the last point (32K on x-axis) in all subplots281

in Figures 3 and 4. This highlights that modify-282

ing the NMO on the target side, especially in a283

low resource scenario, plays a more vital role in284

determining the optimal BPE configuration. For285

example, for English to Hindi MT systems consid-286

ering all the configurations 32K_x for all dataset 287

sizes, we see a gradual change in the configurations 288

of the best performing systems starting with 500 289

NMO for 0.05M to 32K NMO for 8M. 290

We also see that as far as symmetric BPE con- 291

figurations are concerned, for low resource MT 292

systems it under performs compared to the asym- 293

metric configuration. But as we move to larger 294

dataset size, symmetrical configurations start to per- 295

form comparable to asymmetrical configurations. 296

However, using BPE configurations in an asym- 297

metric fashion has yielded a statistically significant 298

improvement in a low-resource environment. 299

We also compare our systems using optimal BPE 300

configurations with VOLT (Xu et al., 2021)3. Fig- 301

ure 5 shows the comparison of the CHRF++ scores 302

between the systems using VOLT tokenisation, op- 303

timal BPE, and baseline configurations4. Systems 304

using optimal BPE settings surpass those tokenised 305

with VOLT in all dataset sizes, especially for low re- 306

source setting with statistical significant (p<0.05). 307

5 Exploring Asymmetrical BPE 308

Configurations for other language pairs 309

To confirm the effectiveness of asymmetric BPE 310

configurations to improve machine translation 311

(MT), we extended our work with atypical BPE 312

configurations using 0.1 million sentence pairs 313

in English ↔ {Telugu, Shona, Norwegian, Kyr- 314

gyz, Hausa and Inuktitut}5. The English-Telugu 315

3using hyperparameters specified in their work
4We selected the top performing BPE configuration as

baseline configuration where source NMO = target NMO
5Sampled in a manner similar to English-Hindi sampling
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(a) 0.05 Million English to Hindi (b) 0.05 Million Hindi to English

(c) 0.1 Million English to Hindi (d) 0.1 Million Hindi to English

(e) 0.5 Million English to Hindi (f) 0.5 Million Hindi to English

Figure 3: Evaluation of English ↔ Hindi MT Systems for 0.05M, 0.1M and 0.5M dataset sizes on FLORES, x-axis
is source NMO and y-axis is CHRF++ scores
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(a) 1 Million English to Hindi (b) 1 Million Hindi to English

(c) 4 Million English to Hindi (d) 4 Million Hindi to English

(e) 8 Million English to Hindi (f) 8 Million Hindi to English

Figure 4: Evaluation of English ↔ Hindi MT Systems for 1M, 4M and 8M dataset sizes on FLORES, x-axis is
source NMO and y-axis is CHRF++ scores
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Figure 5: CHRF++ score comparison of Asymmetric BPE with VOLT

Figure 6: CHRF++ scores improvement with asymmetrical over symmetrical BPE

pair is taken from Ramesh et al. (2022), English-316

{Shona, Norwegian, Kyrgyz, Hausa} from Gowda317

et al. (2021) and English-Inuktitut from Joanis et al.318

(2020). These language pairs are intended to ex-319

amine the impact of both symmetric and asymmet-320

ric BPE configurations in a low resource scenario321

across languages belonging to various language322

families and exhibiting diverse levels of morpholog-323

ical complexity. Using symmetric configurations324

(4K_4K, 32K_32K) as baselines and asymmetric325

configurations (8K_500, 16K_500) based on in-326

sights gained from optimal BPE settings in English-327

Hindi. We perform evaluations on the FLORES328

test set, with the exception of Inuktitut, which is329

evaluated using the test set from Joanis et al. (2020).330

Figure 6 compares the performance of asymmetric331

and symmetric BPE. Asymmetric BPE improves332

translation in four of six X to English translation333

systems and for all systems while translating from334

English to X languages. The improvements are sta-335

tistically significant (p<0.05, languages indicated336

by * in the figure) compared to symmetric BPE,337

underscoring the importance of investigating BPE338

configurations beyond standard choices, particu-339

larly for low-resource language pairs.340

6 Conclusion 341

In-depth examination of BPE configurations across 342

diverse language pairs and differing dataset sizes 343

reveals that typical configurations (n_n) do not al- 344

ways produce optimal results. As referenced in 345

Section 2, in low-resource settings, systems ben- 346

efit from using symmetric n NMO configurations 347

when n is significantly smaller than 32K; our ex- 348

periments with asymmetric BPE n_m show that 349

further improvement in translation performance is 350

possible, under low-resource conditions, when n » 351

m and n, m represent NMOs for source and target 352

respectively. 353

In conclusion, this study underscores the impor- 354

tance of moving beyond the default segmentation 355

options typically used in machine translation, es- 356

pecially when working with languages that have 357

limited data available. In cases with medium- to 358

high-availability of training data, symmetric Byte 359

Pair Encoding (BPE) configurations might be ade- 360

quate. However, their effectiveness tends to dimin- 361

ish when applied to low-resource scenarios. By util- 362

ising configurations with larger number of merger 363

operations (NMO) for the source language and a 364

7



smaller NMO for the target language, significant365

improvements in translation quality can be realised.366

These asymmetric BPE configurations prove to be367

consistently effective across various language fam-368

ilies, regardless of their differing morphological369

complexities, thereby emphasising the necessity370

for specifically tailored configurations to optimise371

translation results in a low resource scenario.372

Limitation373

This study is restricted by the computationally ex-374

pensive resources required to analyse all BPE con-375

figurations for each language pair. However, the376

findings demonstrate that particular configuration377

ranges can consistently elevate translation quality,378

especially in low-resource setups, thus reducing the379

search grid by significant margin.380
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