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Abstract

In Machine Translation (MT) research, we of-
ten come across recipes recommending a set
of fixed hyperparameters to train segmenta-
tion models to segment words regardless of the
amount of text or language pair involved. Al-
though a fixed hyperparameter for the word
segmentation model can reduce training re-
source overhead, we find that using the same
number of merge operations (NMO) on both
source and target languages - symmetric Byte
Pair Encoding (BPE), for different language
pairs and text sizes does not guarantee optimal
Machine Translation system performance. In
this work, we explore and identify BPE seg-
mentation recipes across various data sizes and
language pairs to obtain optimal performance.
We find that using asymmetric BPE improves
results compared to symmetric BPE, particu-
larly in low-resource scenarios (50K, 100K,
500K) by (5.32,4.46,0.7) CHRF++ scores (with
p < 0.05) on average for English-Hindi. We fur-
ther validate our findings on the other six pairs,
English«<>Telugu, Shona, Norwegian, Kyrgyz,
Hausa and Inuktitut, to show the consistency of
this work. A statistically significant improve-
ment is observed using asymmetric BPE config-
urations in 10 of 12 systems when comparing
symmetric BPE configurations. Our findings
indicate that using a high NMO for the source
(4K to 32K) and a low NMO (0.5K to 2K)
provides optimal results, particularly in low-
resource contexts.

1 Introduction

There have been commendable and considerable
efforts in the recent past to bring low resource
language pairs into the fold of Neural Machine
Translation paradigm (e.g. Workshop on Technolo-
gies for MT of Low Resource Languages). How-
ever, in this process, it is common to apply suc-
cessful configurations or methodologies, such as
hyperparameters for data preprocessing pipelines

and neural networks from past work, without suffi-
cient consideration of their suitability for the spe-
cific language pair in question. For example, if
we take a preprocessing step, such as word seg-
mentation, it plays a vital role by dividing words
into “subwords” to improve learning. In machine
translation, word segmentation/subword tokenisa-
tion reduces vocabulary size, manages rare and un-
known words, and improves MT performance. No-
table methods include BPE (Sennrich et al., 2016),
word piece (Devlin et al., 2019), sentence piece
(Kudo and Richardson, 2018), and morfessor (Smit
et al., 2014). BPE compresses the data by merging
frequent character pairs into new symbols (Gage,
1994) and thus the resultant subword tokenisation
model has number of merge operations (NMO) as
a hyperparameter. The NMO determines the de-
gree of word segmentation: a lower NMO, such
as 500 (see Table 1), leads to smaller vocabularies
and more segmentation, whereas a higher NMO,
such as 32K, creates larger vocabularies with mini-
mal segmentation (segmenting mostly rare or un-
known words). More often than not, same num-
ber of merge operations are performed on both
the source and the target languages. Most of the
work using BPE as preprocessing step has taken
the same NMO on source and target for various lan-
guage pairs without taking the language pair into
account or the amount of data involved. Recent
research highlights the importance of examining
BPE hyperparameters in MT systems, particularly
in low-resource scenarios (Ding et al., 2019; Abid,
2020). However, there is still uniformity in terms
of having the same NMO for both the source and
the target (symmetrical BPE) (Huck et al., 2017;
Ortega et al., 2020; Lankford et al., 2021; Domingo
et al., 2023; Lee et al., 2024) and very little explo-
ration has been done on asymmetrical BPE for MT.
Work like Ngo Ho and Yvon (2021) explored asym-
metric BPE for alignment between languages, but
not for MT.
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In the context of MT, we define the “BPE config-
uration” as m1_ms where my and mo are the num-
ber of merge operations (NMO) for the source and
target languages, respectively. Our work explores
the effects of symmetric and asymmetric BPE con-
figurations for English-Hindi language pair in dif-
ferent dataset availability scenarios and shows that
we achieve best performance using asymmetric
configuration. We further validate our findings on
other six language pairs English <+{Telugu, Shona,
Norwegian, Kyrgyz, Hausa, and Inuktitut} across
different language families to show the consistency
of this work. These languages were chosen to rep-
resent different typology and morphological struc-
tures. We find that, depending on data availability
and the language pair involved, the optimal BPE
configuration is likely to be asymmetric. Specifi-
cally, for low-resource scenarios, we find that, irre-
spective of the language pair, the optimal configu-
ration should have 4K to 32K NMO on the source
side and 500 to 2K on the target.

Section 2 summarises previous efforts to use
symmetric BPE merge operations to improve MT
performance. Section 3 explains our motivation for
finding optimal BPE configurations by exploring
asymmetric BPE. Section 4 outlines our experi-
mental setup and presents the performance of the
English-Hindi MT system on FLORES. Section 5
evaluates the setup for other language pairs in low
resource context, concluding our observations in
Section 6.

2 Related Work - Symmetrical BPE

In quite a lot of work on BPE to find the opti-
mal segmentation of sub-words for low to high
resource settings, the recipe/BPE configuration of
keeping NMO the same for both source and target
is prevalent. Ding et al. (2019) showed that in low-
resource settings with transformer architectures,
using 0-4000 (4K) merge operations is optimal,
as traditional 32K operations can reduce BLEU
scores by up to 4 points. Abid (2020) found lower
merge operations are better for English, Egyptian,
and Levantine in low-resource scenarios. Domingo
et al. (2023) revealed that the performance of the
system varies with tokenizers in the target lan-
guage. There is a class of works which modify
the segmentation strategy based on the typologi-
cal and morphological properties of one or both
of the languages in the pair. Ortega et al. (2020)
improved BPE by restricting segmentation based
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Figure 1: CHRF++ Scores for Symmetrical BPE
(32K,4K) vs Asymmetrical BPE (m1 # m2)

on token suffixes in polysynthetic languages. Lank-
ford et al. (2021) highlighted the importance of
NMO in low-resource settings for MT performance
affecting English-to-Irish systems. Lee et al. (2024)
addressed BPE’s over-segmentation issue in mor-
phologically rich languages like Korean by incor-
porating longer words from monolingual corpora,
linking difficulties to morphological complexity.
However, there also has been works which have
shown potential directions to find different subword
tokenising strategies. Work like Huck et al. (2017)
and Poncelas et al. (2020) used cascading segmen-
tation strategies. Xu et al. (2021) applied Marginal
Utility to select appropriate vocabularies (VOLT),
which refined segmentation methods and further
improved results. Ngo Ho and Yvon (2021) used
various BPE NMO in source and target languages
independently to improve word alignment between
language pairs, but this was not extended to check
the performance in the MT system. Unfortunately,
we did not find any study that explored asymmetric
BPE configurations in diverse resource availability
scenario as presented here.

3 Exploring Asymmetrical BPE

In practice, for a BPE configuration m;_my, the
values of m; and mo are the same and the NMO
for both the source and target range from 8K to 40K
(Wu, 2016; Denkowski and Neubig, 2017; Cherry
et al., 2018; Renduchintala et al., 2019), but Ding
et al. (2019); Dewangan et al. (2021) found that
these are not ideal for low-resource language pairs.
Ding et al. (2019) observed m; = my <=4K
NMO is better for low-resource settings than 32K.
This finding aligns with our experiments on 0.1 mil-
lion sentence pairs (English <+ {Hindi, Telugu}),
showing better performance with 4K NMO (Fig-



Sentence bosusco , 54 , runs an adventure tourism bureau .
500 NMO bo@@ su@R@ sc@@0,5@@ 4 ,r@@ un@@ s an

ad@@ v@@ en@@ ture t@@ our@@ is@@ mbu@R@ re@@ a@@ u .
32K NMO | bo@@ su@ @ sco, 54 , runs an adventure tourism bureau .

Table 1: Different NMO Effect

ure 1). Dewangan et al. (2021) found that identical
BPE configurations do not guarantee similar perfor-
mance across different language pairs, as demon-
strated by the English-Hindi vs. English-Telugu
comparisons (Figure 1) for 4K NMO.

To choose NMO, one should consider datasize
and language pair as nuanced BPE strategies have
benefitted morphologically complex languages (Or-
tega et al., 2020; Mujadia and Sharma, 2021). We
examine symmetrical BPE configurations that em-
ploy the same NMO for both source and target
languages, and investigate alternative BPE configu-
rations by independently altering the NMO m4 and
my for the source and target languages in English-
Hindi, examining datasets ranging from low re-
source (50K) to high resource (8 million). We find
that this approach delivered better results (Figure
1) in low-resource contexts. Our extensive experi-
ments with English-Hindi, evaluated on FLORES
(Goyal et al., 2022), show that this kind of atypi-
cal BPE configuration yields better performance.
We further validate the exploration of BPE con-
figurations for optimal results by extending these
experiments to English < {Telugu, Shona, Norwe-
gian, Kyrgyz, Hausa, and Inuktitut}.

Our work yields compelling results in favour
of optimising NMO based on training data size
and language pair. Figure 2 offers a conceptual
overview of the optimal ranges of the BPE config-
uration derived from our experiments in English-
Hindi, as we move from low to high-resource set-
tings. In this context, “ranges” denote the spectrum
of NMO values that serve as hyperparameters for
the source and target subword tokenization mod-
els in word segmentation. The performance gap
between the best and symmetrical BPE systems
is depicted by varying shades of green, with the
most significant improvement seen in low-resource
settings (darker shade of green). As the dataset size
grows (for medium to high resource contexts), the
performance variance between different configura-
tions decreases (lighter shade of green).

4 Evaluation on English <—- Hindi

We explore BPE configurations with the Samanan-
tar dataset (Ramesh et al., 2022) for English-
Hindi', with 8 million parallel sentences. En-
glish text is tokenised, normalised and lowercase
using scripts from Moses, while for the prepro-
cessing of the Hindi text we use the Indic NLP
library (Kunchukuttan, 2020). We simulate various
training set size scenarios by grouping sentences
based on English sentence length (Table 2) and ran-
domly sample datasets of sizes 0.05 million (M),
0.1M, 0.5M, 1M, 4M and 8M, maintaining sen-
tence length propotion. For each language and
dataset size, the BPE tokenizer is trained on eight
different NMOs - 0.5K, IK, 2K, 4K, 8K, 16K, 25K
and 32K. After subword segmentation, all possible
BPE configurations (srcsoo_tgtsoo, Srcs00_tgti000s
srcso0_tgtogoo, ete.) are trained with Transformer
architecture (Vaswani et al., 2017) using Fairseq
(Ott et al., 2019)%. Training a single BPE config-
uration mj_myo for all dataset sizes required an
average of 1040 GPU hours using a 1080 Ti. This
results in 64 system configurations trained per lan-
guage direction for 6 datasets, totalling 768 sys-
tems (64 x6x2), and resultant systems are evalu-
ated on FLORES (Goyal et al., 2022) Dataset using
CHRF++ (Popovi¢, 2015) to assess the impacts of
the BPE configurations.

Figures 3 present the performance of all configu-
rations for English <= Hindi systems in a low
resource scenario (for data set sizes of 0.05M, 0.1M
and 0.5M). And Figures 4 show the performance
of all configurations on 1M, 4M and 8M dataset
sizes. Each subgraph represents performance on
a particular dataset size, with the x-axis being the
source NMO. The black stepped dotted lines indi-
cate the maximum CHRF++ score for each dataset
size considering for each source NMOs.

In figure 3 for low-resource environments
(0.05M, 0.1M and 0.5M) systems, as noted by
(Ding et al., 2019), the use of symmetric BPE

"English Hindi bitext under the created directory of version
2 of Samanantar is used.
2Transformer Base Architecture
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Figure 2: Changes in Optimal BPE Configuration from Low- to High-Resource Settings
Length bin 1tol0 | 11to15 | 16t020 | 21t0o25 | 26t030 | 31to35 | 35t040 | >=41 Total
No. of sentences | 2792334 | 1655162 | 1150396 | 854091 | 617318 | 420583 | 275774 | 414926 | 8180584
Percentage 34.13 20.23 14.06 10.44 7.55 5.14 3.37 5.07 100

Table 2: Distribution of sentences in groups based on token length for full data

configuration with lower NMOs improves perfor-
mance over high NMOs. However, the best results
are achieved using asymmetric BPE configurations
when the source has a higher NMO than the target.
We see a maximum performance gain when the
source NMO is very high and the target NMO very
low (we see consistent performance with the target
NMO = 500). Conversely, when the target’s NMO
is greater than that of the source, performance de-
clines, like for the Hindi to English 0.1M dataset,
performance of 500_25K and 500_32K was worse
than symmetric BPE configurations.

In medium resource settings (1M), optimal con-
figuration for both the source and target NMO
moves towards medium (2K - 8K) range of val-
ues, with relatively small score variations across
different configurations ~ 3 CHRF++ between ex-
tremes. In contrast, among configurations with
low resources, the best system outperforms the
weakest system by a margin of ~ 15 CHRF++
scores and the best symmetric BPE configuration
by ~ 5 CHRF++ scores. For the high-resource
scenario, the score disparity between the most ef-
fective and least effective configuration is minimal
(< 2 CHRF++), with the most effective system em-
ploying a 32K NMO for the target. This pattern
of shifting optimal BPE configurations across the
size of the dataset is also evident if we consider
only the last point (32K on x-axis) in all subplots
in Figures 3 and 4. This highlights that modify-
ing the NMO on the target side, especially in a
low resource scenario, plays a more vital role in
determining the optimal BPE configuration. For
example, for English to Hindi MT systems consid-

ering all the configurations 32K _x for all dataset
sizes, we see a gradual change in the configurations
of the best performing systems starting with 500
NMO for 0.05M to 32K NMO for 8M.

We also see that as far as symmetric BPE con-
figurations are concerned, for low resource MT
systems it under performs compared to the asym-
metric configuration. But as we move to larger
dataset size, symmetrical configurations start to per-
form comparable to asymmetrical configurations.
However, using BPE configurations in an asym-
metric fashion has yielded a statistically significant
improvement in a low-resource environment.

We also compare our systems using optimal BPE
configurations with VOLT (Xu et al., 2021)*. Fig-
ure 5 shows the comparison of the CHRF++ scores
between the systems using VOLT tokenisation, op-
timal BPE, and baseline configurations*. Systems
using optimal BPE settings surpass those tokenised
with VOLT in all dataset sizes, especially for low re-
source setting with statistical significant (p<0.05).

5 Exploring Asymmetrical BPE
Configurations for other language pairs

To confirm the effectiveness of asymmetric BPE
configurations to improve machine translation
(MT), we extended our work with atypical BPE
configurations using 0.1 million sentence pairs
in English <> {Telugu, Shona, Norwegian, Kyr-
gyz, Hausa and Inuktitut}’. The English-Telugu

3using hyperparameters specified in their work

*We selected the top performing BPE configuration as
baseline configuration where source NMO = target NMO

SSampled in a manner similar to English-Hindi sampling



23.19
24,
LIV Y 2254 2232
[ I M et essssses
20
17.26
. 1656 .
15.84
[LJ—
) | || HI “
12 |
0.5K 1K 4K 16K 25K 32K

Source Language NMO

(a) 0.05 Million English to Hindi

3473

35 33.02 33.18

N
S

N N
o a
[ ——

10
0 5K 1K 16K 25K 32K

Source Language NMO

(c) 0.1 Million English to Hindi

48
------------ 712 4732 o0
4675 1| e,

47 e e,

4643 4634 seeeneneensd 46.49
46
45
44 | | | H
43 |

05K 1K 16K 25K 32K

Source Language NMO

(e) 0.5 Million English to Hindi

\l | Illlll

W 05K
m 1K
PN
W K
W 8K
W 16K
25K

32K

.
.
3
o
x

W 05K
[ RIS
2K
[ RIS
W 8K
W 16K
W 25K
W 32K

== max

W 05K
m 1K
2K
W 4K
W 8K
W 16K
W 25K
W 32K

== max

29.33
30 28.47

16K 25K 32K

Source Language NMO

(b) 0.05 Million Hindi to English

40.66

Ty
35
30
-l Il
|
05KI 1K 16K 25K 32K

Source Language NMO

(d) 0.1 Million Hindi to English

54

E 52.49

0.5K 1K 16K 25K 32K

Source Language NMO

(f) 0.5 Million Hindi to English

W 05K
W K
FIS
RS
8K
16K
25K

32K

max

W 05K
[ RIS
02K
[ RS
W 8K
W 16K
W 25K
W 32K

== max

Figure 3: Evaluation of English <> Hindi MT Systems for 0.05M, 0.1M and 0.5M dataset sizes on FLORES, x-axis

is source NMO and y-axis is CHRF++ scores



50 49.74 4975
...................... 49.54
49.43
4925 4922 E ................
49 4875 |
48 “ H i | ‘ “ ‘ ‘ ‘
47 ‘
05K 1K 4K 16K 25K
Source Language NMO
(a) 1 Million English to Hindi
51.95
2 ity 51.84 YT
51.77 H
5171 1| eeeeegndd
5161 5163 gy L
5746 seeeeeegeeiirereged
515 ...
) ‘ ’m ‘ | ‘ ‘H } ‘ H} “
05K 16K 25K
Source Language NMO
(c) 4 Million English to Hindi
53

53 el g
5254 8251 543 543 i ;

a

153

0.5K 16K 25K

Source Language NMO

(e) 8 Million English to Hindi

fuidi

52

32K

32K

W 05K
[ RIS
02k
W 4K
W 8K
W 16K
W 25K
W 32K

== max

W 05K
[ RIS
2K
[ RIS
W 8K
W 16K
W 25K
W 32K

== max

W 05K
[ RIS
02K
[ RIS
W 8K
W 16K
W 25K
W 32K

== max

56

55

54

53

58.5

58.0

575

57.0

56.5

59.5

59.0

58.5

57.5

57.0

56.5

56.0

il

55.07 :

0.5K 16K 25K 32K

Source Language NMO

(b) 1 Million Hindi to English

58.18
58.06
G704 ey
57.79 TR A R
ey T LT e I | ____________ ' I
|. “‘ \ \I‘ |||| ’l“ " ” ‘ “\‘ l
0.5K 4K 16K 25K 32K
Source Language NMO
(d) 4 Million Hindi to English
cang 5826 | i l ........ | """"""""
BOS g
0.5K 16K 25K 32K

Source Language NMO

(f) 8 Million Hindi to English

W 05K
WK
02K
W 4K
W 8K
W 16K
W 25K
W 32K

== max

W 05K
[ RIS
02K
[ RS
W 8K
W 16K
W 25K
W 32K

== max

W 05K
[ RIS
02K
WK
LIS
W 16K
W 25K
W 32K

== max

Figure 4: Evaluation of English «> Hindi MT Systems for 1M, 4M and 8M dataset sizes on FLORES, x-axis is

source NMO and y-axis is CHRF++ scores



English to Hindi

B Voit W baseline system [l best

- 1775
50000 — 1839 23.83

100000 ————————— 265,94

35.00

500000 4770,

1000000 4

dataset size
'S
)
2

4000000

8000000 5263

20.00 30.00 40.00 50.00

BLEU

Hindi to English

B Voit [ baseline system [l best

50000 - %340

100000 —mMmM8Mm™ 39_3R

500000 %%

N

RN
o
W

7

535ﬂ
5

o
i~

1000000

0.

o
W

9

dataset size

4000000 5047 82

8000000 g

oy
SN ®
o

R
8.

30.00 40.00 50.00 60.00

Figure 5: CHRF++ score comparison of Asymmetric BPE with VOLT

I 32000_32000 [ 4000_4000 16000_500 [ 8000_500

Kyrgy, —

Shona*

———————————————————————
InUitut —————————————

To English

—
- —————
Hausa

Telugu*

———————————————————
Norwegian*

15 25 35 45 55

@ 32000_32000 [ 4000_4000 16000_500 [ 8000_500

Kyrgyz*

Shona*

Inukitut*

English To
| || |‘ |”|I|'

Hausa*

Telugu*

Norwegian*

20 30 40 50

Figure 6: CHRF++ scores improvement with asymmetrical over symmetrical BPE

pair is taken from Ramesh et al. (2022), English-
{Shona, Norwegian, Kyrgyz, Hausa} from Gowda
et al. (2021) and English-Inuktitut from Joanis et al.
(2020). These language pairs are intended to ex-
amine the impact of both symmetric and asymmet-
ric BPE configurations in a low resource scenario
across languages belonging to various language
families and exhibiting diverse levels of morpholog-
ical complexity. Using symmetric configurations
(4K_4K, 32K_32K) as baselines and asymmetric
configurations (8K_500, 16K_500) based on in-
sights gained from optimal BPE settings in English-
Hindi. We perform evaluations on the FLORES
test set, with the exception of Inuktitut, which is
evaluated using the test set from Joanis et al. (2020).
Figure 6 compares the performance of asymmetric
and symmetric BPE. Asymmetric BPE improves
translation in four of six X fo English translation
systems and for all systems while translating from
English to X languages. The improvements are sta-
tistically significant (p<0.05, languages indicated
by * in the figure) compared to symmetric BPE,
underscoring the importance of investigating BPE
configurations beyond standard choices, particu-
larly for low-resource language pairs.

6 Conclusion

In-depth examination of BPE configurations across
diverse language pairs and differing dataset sizes
reveals that typical configurations (n_n) do not al-
ways produce optimal results. As referenced in
Section 2, in low-resource settings, systems ben-
efit from using symmetric # NMO configurations
when 7 is significantly smaller than 32K; our ex-
periments with asymmetric BPE n_m show that
further improvement in translation performance is
possible, under low-resource conditions, when 7n »
m and n, m represent NMOs for source and target
respectively.

In conclusion, this study underscores the impor-
tance of moving beyond the default segmentation
options typically used in machine translation, es-
pecially when working with languages that have
limited data available. In cases with medium- to
high-availability of training data, symmetric Byte
Pair Encoding (BPE) configurations might be ade-
quate. However, their effectiveness tends to dimin-
ish when applied to low-resource scenarios. By util-
ising configurations with larger number of merger
operations (NMO) for the source language and a



smaller NMO for the target language, significant
improvements in translation quality can be realised.
These asymmetric BPE configurations prove to be
consistently effective across various language fam-
ilies, regardless of their differing morphological
complexities, thereby emphasising the necessity
for specifically tailored configurations to optimise
translation results in a low resource scenario.

Limitation

This study is restricted by the computationally ex-
pensive resources required to analyse all BPE con-
figurations for each language pair. However, the
findings demonstrate that particular configuration
ranges can consistently elevate translation quality,
especially in low-resource setups, thus reducing the
search grid by significant margin.
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