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ABSTRACT

This study seeks to understand and address a phenomenon observed in Large Vision
Language Models (LVLMs) related to their attention mechanism. Interestingly,
LVLMs tend to disproportionately focus on a few image tokens that lack meaning-
ful, query-related semantics, leading to sharp outlier values in the attention maps
— tokens we refer to as blind tokens. In well-designed attention mechanisms, the
principle is to assign higher weights to the most relevant tokens. However, in this
case, the attention imbalance leads to overemphasis on uninformative tokens, which
is far from ideal. Our analysis shows that tokens receiving lower attention weights
often hold critical information necessary for capturing subtle visual details. We hy-
pothesize that over-reliance on blind tokens contributes to hallucinations in LVLMs.
To address this, we introduce a novel decoding technique called Attentional Vision
Calibration (AVISC). During the decoding phase, AVISC identifies blind tokens by
examining the image-wise attention distribution and dynamically adjusts the logits
for the prediction. Specifically, it contrasts the logits conditioned on the original
visual tokens with those conditioned on the blind tokens, thereby reducing the
model’s dependency on blind tokens and encouraging a more balanced considera-
tion of all visual tokens. We validate AVISC on standard hallucination benchmarks,
including POPE, MME, and AMBER, where it consistently outperforms existing
decoding techniques.

1 INTRODUCTION

Large Vision Language Models (LVLMs) (Dai et al., 2024; Zhu et al., 2023; Liu et al., 2023c;b; Bai
et al., 2023; Tong et al., 2024a) have demonstrated remarkable capabilities in generating coherent
and contextually relevant descriptions from visual inputs. This success largely hinges on the models’
ability to interpret and integrate complex visual information with textual data. However, a persistent
challenge with these models is their tendency towards "hallucinations" — producing inaccurate or
fabricated descriptions that do not accurately reflect the visual data. The phenomenon of hallucination
in LVLMs can significantly impede their reliability, especially in applications requiring precise and
trustworthy visual descriptions.

Modern LVLMs (Dai et al., 2024; Liu et al., 2023c) are predominantly based on transformer ar-
chitecture (Vaswani et al., 2017), where the most critical component is the attention mechanism.
In this framework, the highest attention weights are assigned to tokens that the model considers
most important for generating the output. This concept implies that tokens with higher attention are
essential ingredients in the generation process, directly guiding the model’s output choices.

The intuitive alignment between attention weights and key tokens is a well-established principle.
For instance, the DINO (Caron et al., 2021) or OpenCLIP Ilharco et al. (2021) produce attention
maps that naturally concentrate on semantically meaningful regions of an image. Textual attention
mechanisms (Vaswani et al., 2017) were initially developed with a similar intuitive basis. It is worth
to question whether these attention mechanisms in LVLMs truly align with their intended purpose.
Our investigation reveals that LVLMs (Liu et al., 2023c; Dai et al., 2024) exhibit biased attention
toward specific image tokens, which we refer to as "blind tokens”. These tokens, despite receiving
high attention, are not crucial for prediction or semantic understanding.
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Is there a banana in the image? LLaVA-1.5InstructBLIP

Attention weight distributionInputs to LVLMs

Bounding Box Distribution Attention Map Blind TokensInputs to LVLMs

Describe this image in detail.

Figure 1: Blind tokens in LVLMs. (Top) Even when the image (V) lacks information relevant to the
textual query (Q), LVLMs (Dai et al., 2024; Liu et al., 2023c) tend to to focus disproportionately on
a few image tokens (i.e., blind tokens). This phenomenon is observed by averaging attention weights
across all layers when generating the first response. (Bottom) An overlay of bounding boxes and
the attention map of LLaVA 1.5 highlights this effect, with blind tokens marked by red boxes. More
examples are shown in Appendices B.1 and B.4.

This phenomenon aligns with the findings in (Darcet et al., 2023). They identified artifacts in
the feature maps of vision transformers (Touvron et al., 2022; Caron et al., 2021; Oquab et al.,
2023). These artifacts primarily appear in low-informative background areas of images during
inference, where such regions receive disproportionately high attention despite containing minimal
local information. (Darcet et al., 2023) suggest that, during attention operations, these tokens are
repurposed to aggregate global image information while discarding spatial details, likely due to their
association with repetitive or less informative image patches.

We are curious whether these counterintuitive attentional biases may be inherent to attention mecha-
nisms themselves. Our work seeks to investigate whether this phenomenon extends beyond Vision
Transformers to LVLMs and how differences in architecture, task, and domain contribute to atten-
tional behavior. Building on (Darcet et al., 2023), we aim to explore how these attentional patterns
manifest in LVLMs.

This issue becomes particularly apparent in image with uniform pixel values, where no specific region
of the image warrants special attention. As illustrated in Fig. 1 (Top), even when an image contains no
objects and consists only of a uniform yellow background, some regions still receive disproportionate
focus. These blind tokens highlight potential flaws in how the model interprets visual data during the
decoding process, as LVLMs (Dai et al., 2024; Liu et al., 2023c) often focus on irrelevant tokens.

We analyze the correlation between actual object regions and attention weights in LVLMs using the
COCO2014 dataset Lin et al. (2014). We ask LVLMs to describe the images and analyzed attention
distribution across 24 × 24 patches, comparing bounding boxes to attention weights on these patches.
An example is shown in Fig. 1 (Bottom). Specifically, we assess the proportion of blind tokens within
the bounding boxes. The results show that, on average, only 3.7% of actual object regions overlap
with blind tokens, and only 23.3% of attention weights are assigned to the object regions, while the
rest focused on other areas. This suggests that, the model’s actual focus does not well align with
object regions, which are crucial for accurate image descriptions.

We further examine the attention distribution of LLaVA-1.5 (Liu et al., 2023c) in response to the given
image and textual query. A closer look at the functional impact of attention weights on the model’s
responses shows interesting insights (see Fig. 2): zeroing out blind tokens – those receiving excessive
attention – has little effect on the original prediction logits, suggesting that LVLMs often assign high
attention to tokens that lack object-discriminative information. In contrast, zeroing out non-blind
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Is there a banana in the image?

Correct Answer: No

Zero-out > 𝝁𝝁 + 𝝈𝝈
Zero-out < 𝝁𝝁 + 𝝈𝝈

Original

25.78

18.58

25.98

30.31

18.85

30.12
Yes No

(-0.20)

(-7.40)

(+0.19)

(-11.27)

𝝁𝝁

𝝁𝝁 + 𝝈𝝈

(b) Zero-out effects on probability distribution

(c) Zero-out experiments on POPE-COCO benchmark (LLaVA-1.5)(a) Zero-out effects on logits

Figure 2: Measuring impact of blind/non-blind tokens with zero-out experiments. (a) Zeroing
out image tokens with attention weights above 𝜇 + 𝜎 (mean + standard deviation), i.e., blind tokens,
does not significantly affect the original logits. This suggests that LVLMs assign high attention
to tokens that lack object-discriminative information. Conversely, zeroing out non-blind tokens
drastically disrupts the logits, often leading to near 50:50 probabilities, indicating a significant
loss of discriminative information. (b) When non-blind tokens are zeroed out, the models fails to
correctly predict previously well-classified instances. (c) Across the POPE-COCO benchmark using
the LLaVA-1.5 model, zeroing out blind tokens (Zero-out > 𝜇+𝜎) has a smaller impact on prediction
logits than zeroing out non-blind tokens (Zero-out < 𝜇+𝜎). AVISC effectively reduces over-emphasis
on blind tokens, improving performance, especially in TN and FP cases.
tokens drastically alters the prediction logits, resulting in near-equal probabilities, indicating the
loss of critical object-discriminative information. These highlight the need for a more balanced
consideration of the entire image.

Such skewed attention, which disproportionately favors blind tokens while overlooking non-blind
tokens containing crucial visual details, can lead to misclassifications or entirely incorrect predictions.
We hypothesize that this over-reliance on blind tokens contributes to hallucinations in LVLMs.

In response to this challenge, we propose a novel method termed Attentional Vision Calibration
(AVISC), which recalibrates the model’s attention during the decoding phase. Unlike existing ap-
proaches that typically require extensive training (Jiang et al., 2023; Sun et al., 2023; Zhou et al.,
2023; Yu et al., 2023b) or auxiliary models (Zhao et al., 2024; Wan et al., 2024; Deng et al., 2024;
Yang et al., 2024; Li et al., 2023b), AVISC operates without these prerequisites.

AVISC dynamically modifies the decoding process in three steps: (i) Based on our findings that
different LVLMs and across layers exhibit different attentional patterns (see Fig. 4), we first select
relevant layers that allocate a higher proportion of attention to image tokens. (ii) Next, we identify
blind tokens, which disproportionately dominate attention. These tokens are isolated, while all other
image tokens are zeroed out, creating a biased visual input. (iii) Finally, we employ a contrastive
decoding (Leng et al., 2023; Favero et al., 2024). This technique contrasts the logits derived from the
original visual input with those derived solely from the blind tokens. By doing so, it amplifies the
influence of tokens that exhibit significant differences between the two distributions.

Notably, AVISC does not directly manipulate attention weights. Instead, it adjusts the influence of
blind and non-blind tokens at the prediction level using contrastive decoding, reducing the impact of
blind tokens while enhancing the influence of non-blind ones.

Through a series of experiments on hallucination benchmarks like POPE (Rohrbach et al., 2018),
MME (Fu et al., 2024), and AMBER (Wang et al., 2023b), we demonstrate that AVISC significantly
mitigates hallucination while simultaneously improving the models’ ability to capture and describe
detailed image attributes more accurately.
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2 RELATED WORK

LVLMs (Li et al., 2023a; Zhu et al., 2023; Chen et al., 2023a) are prone to generating hallucinations,
i.e., misalignment between visual inputs and textual outputs. These hallucinations manifest across
various semantic dimensions such as incorrect object presence, attributes, or relations.

To mitigate these, researchers have developed strategies across three levels:
Input-level. Efforts here focus on data quality improvement to reduce hallucinations (Gunjal et al.,
2023; Liu et al., 2023a; Wang et al., 2023a; Lu et al., 2024), including the introduction of negative
data (Liu et al., 2023a), counterfactual data (Yu et al., 2023a) to challenge the model’s assumptions,
dataset cleansing to minimize noise and errors (Wang et al., 2024; Yue et al., 2024).
Model-level. This includes increasing the resolution at which models process visual data (Chen et al.,
2023b; Liu et al., 2023b; Zhai et al., 2023), or enhancing perception abilities through advanced vision
encoders (He et al., 2024; Jain et al., 2023; Tong et al., 2024b). These are usually training-based (Jiang
et al., 2023; Yue et al., 2024), and often involve auxiliary supervision from external datasets (Chen
et al., 2023c) and reinforcement learning techniques (Zhao et al., 2023; Gunjal et al., 2024; Sun et al.,
2023; Yu et al., 2023b) to better align model outputs with accurate visual representations.
Output-level. Techniques like contrastive decoding (Leng et al., 2023; Favero et al., 2024) directly
contrast incorrect predictions during decoding, helping models distinguish between accurate and
inaccurate descriptions. Guided decoding (Zhao et al., 2024; Deng et al., 2024; Chen et al., 2024)
leverages external models like CLIP (Radford et al., 2021) or DETR (Carion et al., 2020) to enhance
accuracy. Other approaches include training-free methods (Wan et al., 2024; Zhang et al., 2024;
Huang et al., 2023) and post-hoc corrections via self-feedback (Lee et al., 2023; Wu et al., 2024).

Among these, we focus on contrastive decoding methods: (1) VCD (Leng et al., 2023) mitigates
statistical biases and language priors by contrasting output distributions from original and distorted
visual inputs, moderating decoding probabilities. (2) M3ID (Favero et al., 2024) uses a similar
approach where the reference image amplifies its influence over the language prior, thereby enhancing
the generation of tokens with higher mutual information with the visual prompt.

Our approach belongs to the output-level category. AVISC analyzes attention patterns to identify
blind tokens during decoding steps. It then utilizes a contrastive decoding technique to enhance token
prediction. Our method does not require additional training, external data or models, and costly
self-feedback mechanisms.

3 APPROACH: AVISC

Is there one bench in this Image? 

Blind Token Identification

A
tte

nt
io

n 
w

ei
gh

t

Image tokens index

Correct Answer: No

Yes
No

Yes
No

Yes
No

Contrastive Decoding

28.01
27.10

21.43
19.04

44.46
47.25

Figure 3: An overview of AVISC.

We propose a straightforward method,
called AVISC, to enhance visual ob-
ject understanding in LVLMs during
the decoding phase. AVISC dynami-
cally calibrates the over-emphasis on
blind tokens on-the-fly at every to-
ken generation step. The calibration
is guided by the attention patterns
of image tokens in response to the
given image and textual query. Im-
portantly, AVISC operates without ad-
ditional training, external models, or
complex self-feedback mechanisms.
A visual summary of our method is
shown in Fig. 3. AVISC modifies the
decoding process in three steps: (1) Layer selection: choose layers significantly influenced by im-
age tokens, (2) Blind token identification: detect non-relevant tokens in selected layers, and (3)
Contrastive decoding: adjust the decoding process to mitigate the influence of blind tokens.

3.1 LVLM FRAMEWORK

Uni-modal encoding. LVLM begins by encoding visual inputs and textual queries into compact
representations. Visual inputs provide contextual information that helps generate responses relevant
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to the textual queries. The text data is tokenized, turning it into a sequence of manageable pieces for
further processing. For visual data, a commonly used encoder is a pre-trained model like CLIP (Rad-
ford et al., 2021), which is already semantically aligned with textual data through extensive training
on image-text pairs.

Cross-modal alignment. As LLM inherently perceives only text, aligning text and vision modalities is
essential. Instead of retraining LLM, which would be prohibitively expensive, a more viable approach
is to use a learnable cross-modal alignment module. This module, such as Q-Former (Li et al., 2023a)
or a linear projection layer (Liu et al., 2023c), transforms visual features into a format compatible
with the LLM’s input space. This process results in a set of visual tokens, V = {𝜈0, 𝜈1, . . . , 𝜈𝑁−1},
which are then concatenated with the text tokens, Q = {𝜎𝑁 , 𝜎𝑁+1, . . . , 𝜎𝑁+𝑀−1}, to form a unified
input sequence of length 𝑁 + 𝑀 .

Next token prediction via LLM. The concatenated sequence of visual and textual tokens is then
processed by LVLM, parametrized by 𝜃, which generates responses in an auto-regressive manner.
The model calculates logits for each potential next token:

ℓ𝑡 = log 𝑝(𝜉𝑡 |V,Q, 𝜉<𝑡 ; 𝜃), (1)

where ℓ𝑡 are the logits for the next token at timestep 𝑡, 𝜉𝑡 denotes the next token being predicted, and
𝜉<𝑡 represents the sequence of tokens generated up to timestep (𝑡 − 1). From these logits, we apply a
softmax function to convert logits into a normalized probability distribution:

𝑝(𝜉𝑡 ) = Softmax(ℓ𝑡 ). (2)

The next token 𝜉𝑡 is sampled from this probability distribution, with the model continuing this
predictive process until the response sequence is complete.

3.2 ATTENTIONAL VISION CALIBRATION FOR ALLEVIATING HALLUCINATIONS

(a) InstructBLIP (Dai et al., 2024)

(b) LLaVA-1.5 (Liu et al., 2023c)

Figure 4: Layer-wise image atten-
tion proportion in LVLMs. This
shows the proportion of attention
given to image tokens at each layer
relative to total attention. Differ-
ent layers exhibit distinct attention
patterns, which vary across mod-
els. Attention weights are averaged
over 60 questions from the LLaVA-
Bench (Liu et al., 2023c).

Visual hallucinations in LVLMs can emerge during the decod-
ing phase when the model selects tokens based on erroneous
probability distributions that do not align with the visual inputs.
These discrepancies, as demonstrated in our observations (re-
fer to Figs. 1 and 2), often originate from an attentional bias
toward certain non-relevant tokens, referred to as blink tokens.
Our methodology aims to recalibrate these attention patterns to
correct such hallucinations.

Layer selection. The first step in our framework is to decide
which layer of the LVLM should be used as the basis for atten-
tion weights. As shown in Fig. 4, the distribution of attention
weights on image tokens varies across different layers and
varies from model to model. For example, InstructBLIP (Dai
et al., 2024) shows increasing attention levels in the later layers,
whereas LLaVA-1.5 (Liu et al., 2023c) exhibits a concentration
of attention in the earlier layers. To adapt these diverse mod-
els, we initially focus on selecting layers that exhibit a high
proportion of image-related attention. Formally, we define the
attention weight matrix for 𝑖-th layer as follows:

A𝑖 =

[
a𝑖ℎ,𝑞,𝑘

] (ℎ,𝑞,𝑘 )=(𝐻,𝑁+𝑀,𝑁+𝑀 )

(ℎ,𝑞,𝑘 )=(1,1,1)
, (3)

where a𝑖
ℎ,𝑞,𝑘

represents the attention weight assigned by head
ℎ, for query 𝑞, to key 𝑙𝑘 in layer 𝑖. The model handles two
types of tokens: image tokens (V ∈ R𝑁×𝐷) and query tokens
(Q ∈ R𝑀×𝐷). Next, we calculate the proportion of attention
dedicated to image tokens for each layer 𝑖 as:

𝐴𝑃
layer
𝑖

=

∑
ℎ

∑𝑁
𝑘=1 a𝑖

ℎ, (𝑁+𝑀 ) ,𝑘∑
𝑖,ℎ

∑𝑁
𝑘=1 a𝑖

ℎ, (𝑁+𝑀 ) ,𝑘
, (4)
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where 𝐻 is the total number of attention heads, 𝑁 is the number of image tokens, and 𝑀 is the
number of query tokens. We sort the layers by this proportion and employ top-P sampling based on a
predefined threshold value 𝛾. The selected layers are:

{Selected Layers} = top-P({𝐴𝑃layer
𝑖

}𝐿𝑖=1, 𝛾). (5)

Here, top-P selects layers until the cumulative proportion of image attention across these layers meets
or exceeds 𝛾. These selected layers are used to analyze and adjust the attention at the token level and
identify specific image tokens that the model may over-rely on, i.e., blind tokens. While we leave
the layer selection to be flexible by adjusting the 𝛾 parameter, AvisC is not sensitive to 𝛾 values
(see Tab. 5), thus layers can be fixed in practice for simplicity.

Blind token identification. After selecting relevant layers, we calculate the attention weights for
each image token within these layers. The attention proportion for image tokens, denoted as 𝐴𝑃image,
is calculated by averaging the attention weights across the selected layers and attention heads:

𝐴𝑃image =

∑
𝑖∈{Selected Layers}

∑𝐻
ℎ=1 a𝑖

ℎ, (𝑁+𝑀 ) , [1:𝑁 ]
|{Selected Layers}| × 𝐻

. (6)

To identify tokens that disproportionately capture the model’s attention, i.e., blind tokens, we calculate
the mean (𝜇) and standard deviation (𝜎) of the image attention weights. Tokens with an attention
proportion exceeding 𝜇 + 𝜆𝜎 (where 𝜆 is a hyperparameter) are classified as blind tokens:

{Blind Token Indices} = { 𝑗 |𝐴𝑃image
𝑗

> 𝜇 + 𝜆𝜎}. (7)

Contrastive decoding. Our method seeks to reduce the influence of blind tokens, thereby decreasing
the incidence of hallucinations in LVLMs. Drawing inspiration from recent successes in contrastive
decoding (Leng et al., 2023; Favero et al., 2024), which effectively minimizes hallucinations by
contrasting the differences between an image and its distorted counterpart, we adopt a similar scheme.
We construct a new set of visual tokens V∗ by zeroing out non-blind tokens and only leaving blind
tokens, which biases the input towards emphasizing blind tokens:

V∗ =
𝑁⋃
𝑗=1

𝟙{ 𝑗∈Blind Token Indices} ( 𝑗)𝜈 𝑗 . (8)

Next, we compute the logits using both the original input (V) and the biased input (V∗):

ℓ𝑡 = log 𝑝(𝜉𝑡 |V,Q, 𝜉<𝑡 ; 𝜃),
ℓ∗𝑡 = log 𝑝(𝜉𝑡 |V∗,Q, 𝜉<𝑡 ; 𝜃),

(9)

where ℓ𝑡 and ℓ∗𝑡 are the logits computed from the original and the biased inputs, respectively. We
adjust the logits by contrasting the original and biased outputs, and then sample the next token 𝜉𝑡
from the following softmax distribution:

𝜉𝑡 ∼ Softmax((1 + 𝛼)ℓ𝑡 − 𝛼ℓ∗𝑡 ). (10)

Here, 𝛼 is a hyperparameter that moderates the contrastive effect. This balances the distribution of
attention across tokens thereby mitigating the likelihood of visual hallucinations in LVLMs.

4 EXPERIMENTS

4.1 EVALUATION SETUP

In our experiments, we did not constrain the LVLMs to provide one-word answers in discriminative
tasks, which often require simple ‘Yes’ or ‘No’ responses. For instance, we avoid instructions such as
"Please answer in one word." in the query text. We see that imposing a one-word response constraint
on LVLMs leads to notable changes in performance (see Appendix D). For the experiments, we
set P = 0.5 in Eq. (5), 𝜆 = 1 Eq. (7), 𝛼 = 3 for InsturctBLIP (Dai et al., 2024) and 𝛼 = 2.5 for
LLaVA-1.5 (Liu et al., 2023c) in Eq. (10). 1 2 3

1Visualization and analysis on blind tokens are shown in Appendix B.
2Further experimental and implementation details are in Appendix C.
3Additional experimental results can be found in Appendix D.
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Table 1: POPE benchmark results. AVISC consistently outperforms base decoding and other
methods: VCD (Leng et al., 2023) and M3ID (Favero et al., 2024). We reimplemented VCD and
M3ID in our evaluation setup.

Setup Method InstructBLIP (Dai et al., 2024) LLaVA 1.5 (Liu et al., 2023c)

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

M
S-

C
O

C
O

(L
in

et
al

.,
20

14
)

Random

base 82.27 82.84 81.40 82.11 84.47 83.35 86.13 84.72
VCD 83.37 83.39 82.60 83.24 84.80 83.00 87.53 85.20
M3ID 84.37 84.62 84.00 84.31 86.00 85.11 87.27 86.18
AVISC 88.73 93.88 82.87 88.03 87.93 88.24 87.53 87.88

Popular

base 77.77 74.81 83.73 79.02 82.23 79.72 86.47 82.95
VCD 78.00 75.12 83.73 79.19 82.27 79.19 87.53 83.15
M3ID 77.30 74.10 83.93 78.71 82.83 79.62 88.27 83.72
AVISC 83.90 81.33 88.00 84.53 84.33 81.71 88.47 84.96

Adversarial

base 73.13 69.41 82.60 75.46 77.10 72.57 87.13 79.19
VCD 75.87 72.85 82.47 77.36 76.10 71.50 86.80 78.41
M3ID 76.03 72.47 83.93 77.79 77.70 73.23 87.33 79.66
AVISC 81.57 80.37 83.53 81.92 77.53 72.82 87.87 79.64

A
-O

K
V

Q
A

(S
ch

w
en

k
et

al
.,

20
22

)

Random

base 81.00 77.71 86.93 82.06 82.73 77.43 92.40 84.26
VCD 81.73 78.67 87.07 82.66 81.30 75.45 92.80 83.23
M3ID 82.33 77.81 90.47 83.66 83.57 77.86 93.80 85.09
AVISC 88.47 87.66 89.53 88.59 84.60 79.29 93.67 85.88

Popular

base 75.00 70.14 87.07 77.69 76.10 69.86 91.80 79.34
VCD 75.33 70.52 87.07 77.92 75.43 68.58 93.87 79.26
M3ID 75.60 70.40 88.33 78.36 76.80 70.20 93.13 80.06
AVISC 81.77 77.82 88.87 82.98 78.83 72.10 94.07 81.63

Adversarial

base 68.80 63.57 88.07 73.84 67.90 62.11 91.80 74.09
VCD 69.70 64.54 87.47 74.27 67.43 61.50 93.20 74.11
M3ID 69.57 64.21 88.40 74.39 68.10 61.99 93.60 74.58
AVISC 72.53 67.12 88.33 76.28 68.97 62.70 93.67 75.11

G
Q

A
(H

ud
so

n
&

M
an

ni
ng

,2
01

9)

Random

base 80.00 77.08 85.40 81.02 82.40 77.03 92.33 83.99
VCD 81.73 79.35 85.80 82.45 82.27 75.85 94.67 84.22
M3ID 80.57 76.77 87.67 81.85 82.83 76.64 94.47 84.62
AVISC 86.47 85.89 87.27 86.57 85.00 78.81 95.73 86.45

Popular

base 73.53 68.80 86.13 76.49 72.03 65.57 92.80 76.84
VCD 74.10 69.45 86.07 76.87 71.77 64.90 94.80 77.05
M3ID 74.57 69.45 87.83 77.53 72.83 66.04 94.00 77.58
AVISC 78.00 73.68 87.13 79.84 74.80 67.46 95.80 79.17

Adversarial

base 68.00 63.49 84.73 72.59 68.73 62.54 93.40 74.92
VCD 70.27 65.43 85.93 74.29 68.27 62.00 94.40 74.84
M3ID 68.90 64.06 86.13 73.47 68.13 61.88 94.47 74.78
AVISC 73.07 67.80 87.87 76.54 69.20 62.61 95.33 75.58

LVLMs. We evaluated AVISC on two state-of-the-art LVLMs: LLaVA-1.5 (Liu et al., 2023c) and
InstructBLIP (Dai et al., 2024), both incorporating Vicuna 7B (Chiang et al., 2023) as an LLM
backbone. LLaVA-1.5 synchronizes image and text modalities by applying linear projection layers,
while InstructBLIP uses the Q-Former (Li et al., 2023a) to efficiently link visual and textual features
using a fixed number of tokens (e.g., 32 tokens). Notably, AVISC is model-agnostic and can integrate
with various of LVLM architectures.

Benchmarks. (1) POPE (Li et al., 2023c) views hallucination evaluation as a binary classification
task (yes/no) with questions regarding object presence (e.g., "Is there a cat in the image?"). It includes
500 images from MS-COCO and evaluates them based on visible objects and imaginary ones across
different object categories, using three setups (random, popular, and adversarial). (2) MME (Fu
et al., 2024) evaluates 14 subtasks including object hallucination by answering binary questions
about object existence, count, position, color, etc. (3) AMBER (Wang et al., 2023b) includes both
generative and discriminative tasks, focusing on hallucinations related to object existence, attributes,
and relationships, with performance evaluated using CHAIR for generative tasks and an F1 score for
discriminative tasks. The overall AMBER score is calculated as ((100 − CHAIR) + F1)/2.

Baselines. AVISC aims to minimize hallucinations in LVLMs without the need for external models,
costly self-feedback mechanisms, or further training. We select baseline methods that fulfill these
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Table 2: MME-Hallucination (Fu et al., 2024) benchmark results. Our method effectively re-
duces hallucinations at both object and attribute levels, surpassing VCD (Leng et al., 2023) and
M3ID (Favero et al., 2024) in Total Score.

Model Method Object-level Attribute-level Total
ScoreExistence Count Position Color

InstructBLIP

base 170.19(±11.12) 89.52(±11.04) 67.62(±14.04) 114.76(±9.60) 442.09(±31.51)
VCD 172.62(±8.92) 98.33(±15.99) 71.90(±13.42) 117.14(±10.70) 459.99(±16.56)

M3ID 173.89(±10.52) 89.72(±13.44) 72.72(±14.77) 110.56(±7.20) 446.88(±28.54)

AVISC 184.76(±5.56) 82.85(±12.16) 74.76(±6.19) 131.43(±4.76) 473.80(±19.67)

LLaVA 1.5

base 173.57(±8.16) 110.00(±15.82) 100.47(±18.78) 125.24(±15.91) 509.28(±30.57)

VCD 172.14(±8.09) 117.14(±8.76) 103.33(±20.56) 119.52(±8.58) 512.14(±31.82)

M3ID 178.33(±6.83) 107.22(±14.78) 96.39(±5.52) 127.50(±8.28) 509.44(±22.52)

AVISC 189.29(±1.82) 104.76(±11.66) 106.19(±13.93) 127.86(±9.13) 528.09(±24.70)

(a) InstructBLIP (Dai et al., 2024) (b) LLaVA-1.5 (Liu et al., 2023c)

Figure 5: Performance comparison on MME-Fullset. AVISC achieves top performance in 7 of
14 categories with InstructBLIP (Dai et al., 2024) and in 11 categories with LLaVA-1.5 (Liu et al.,
2023c). Beyond minimizing hallucinations, AVISC also boosts the general functionality of LVLMs.

conditions. We choose recent contrastive decoding methods as baselines, notably VCD (Leng et al.,
2023) and M3ID (Favero et al., 2024). These methods are designed to reduce object hallucinations
by enhancing the influence of the reference image over the language model’s prior or statistical bias,
by contrasting output distributions from both original and altered visual inputs. We reimplemented
VCD and M3ID within our evaluation framework.

4.2 RESULTS ON BENCHMARKS

POPE. Table 1 showcases the performance of different methods on the POPE benchmark (Li et al.,
2023c) across MS-COCO (Lin et al., 2014), A-OKVQA (Schwenk et al., 2022), and GQA (Hudson
& Manning, 2019) datasets, evaluated under Random, Popular, and Adversarial setups. (AVISC)
consistently outperforms the baseline (base) and other decoding methods (VCD (Leng et al., 2023),
M3ID (Favero et al., 2024)) in most cases, achieving the highest Accuracy and F1 scores. It also
demonstrates balanced improvements in Precision and Recall, indicating a reduction in errors and
better information capture. For InstructBLIP, AVISC shows a significant performance boost, partic-
ularly in mitigating hallucinations related to object existence. However, LLaVA 1.5 exhibits less
pronounced improvements in Popular and Adversarial setups, highlighting its limitations in more
challenging scenarios. Yet, overall, AVISC proves to be robust and effective across different datasets
and query setups.

MME-Hallucination. Table 2 presents performance results for InstructBLIP (Dai et al., 2024) and
LLaVA 1.5 (Liu et al., 2023c) on the MME-Hallucination benchmark (Fu et al., 2024), focusing on
object-level (Existence, Count) and attribute-level (Position, Color) metrics. Both models exhibit
significant improvements in the Existence category with Ours, achieving the highest scores. While
VCD (Leng et al., 2023) performs best in the Count metric, AVISC excels in the Position and Color
categories, attaining the top scores for both models. AVISC demonstrates superior performance in
Total Score compared to other methods, affirming its effectiveness in reducing hallucinations and
improving accuracy across multiple metrics.

MME-Fullset. Figure 5 compares the performance of various decoding methods on the MME-
Fullset (Fu et al., 2024) across 14 categories. AVISC generally outperforms other methods, achieving
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Table 3: AMBER (Wang et al., 2023b) benchmark results. AVISC outperforms contrastive decoding
baselines (Leng et al., 2023; Favero et al., 2024) in both generative and discriminative tasks, achieving
the highest AMBER score.

Metric
InstructBLIP (Dai et al., 2024) LLaVA 1.5 (Liu et al., 2023c)

base VCD M3ID AVISC base VCD M3ID AVISC

G
en

er
at

iv
e CHAIR↓ 8.40(±0.57) 7.60(±0.42) 6.85(±0.07) 6.70(±0.28) 7.95(±0.64) 6.70(±0.42) 6.00(±0.14) 6.25(±0.07)

Cover ↑ 46.40(±1.27) 47.65(±0.35) 47.20(±0.71) 46.65(±1.48) 44.45(±0.21) 46.50(±0.28) 48.90(±0.28) 46.55(±0.64)

Hal↓ 31.10(±0.64) 29.90(±0.99) 27.50(±0.71) 28.00(±0.28) 31.00(±2.83) 27.80(±1.70) 26.00(±0.28) 25.60(±1.70)

Cog↓ 2.60(±0.05) 2.20(±0.14) 2.20(±0.14) 2.55(±0.35) 2.15(±0.35) 1.95(±0.35) 1.45(±0.07) 2.00(±0.04)

D
is

cr
im

in
at

iv
e

Acc. ↑ 68.20(±0.14) 69.65(±0.35) 69.05(±0.35) 72.60(±0.42) 67.00(±0.71) 67.30(±1.41) 67.25(±0.21) 70.70(±0.57)

Prec. ↑ 79.00(±0.14) 80.70(±0.42) 79.70(±0.28) 72.60(±0.42) 85.45(±0.49) 86.10(±1.70) 86.50(±0.57) 85.45(±0.21)

Rec. ↑ 70.70(±0.42) 71.60(±0.42) 71.25(±0.35) 76.10(±0.05) 60.95(±1.20) 60.55(±1.34) 60.05(±0.07) 67.55(±0.92)

F1 ↑ 74.60(±0.14) 75.90(±0.42) 75.25(±0.07) 78.60(±0.28) 71.10(±0.99) 71.10(±1.56) 70.90(±0.14) 75.45(±0.64)

AMBER ↑ 83.10(±0.35) 84.15(±0.05) 84.20(±0.07) 85.95(±0.05) 81.58(±0.18) 82.20(±0.99) 82.45(±0.14) 84.60(±0.35)

(a) InstructBLIP (Dai et al., 2024) (b) LLaVA-1.5 (Liu et al., 2023c)

Figure 6: Performance comparison on AMBER discriminative tasks. Our demonstrates superior
performance overall, particularly excelling in the Existence and Action categories in both Instruct-
BLIP (Dai et al., 2024) and LLaVA-1.5 (Liu et al., 2023c). Detailed results are in Appendix D.6.

top performance in 7 categories for InstructBLIP and 11 categories for LLaVA 1.5. This demonstrates
AVISC’s effectiveness in enhancing understanding of visual information through attention calibra-
tion. However, both models see a decline in performance for the Count category with AVISC, and
InstructBLIP shows poor OCR performance. Conversely, LLaVA 1.5 experiences significant OCR
improvement with AVISC, indicating the method’s variable impact across different models. Overall,
AVISC provides consistent and superior results across most tasks compared to other methods.

AMBER. Table 3 presents the results of InstructBLIP (Dai et al., 2024) and LLaVA 1.5 (Liu et al.,
2023c) on the AMBER benchmark (Wang et al., 2023b), which includes both generative tasks
(detailed image descriptions) and discriminative tasks (answering questions about images). Both
models show significant improvements in Accuracy and F1 scores in discriminative tasks using
AVISC, outperforming the base, VCD (Leng et al., 2023), and M3ID (Favero et al., 2024) methods.
In generative tasks, AVISC continues to exhibit substantial gains, indicating its effectiveness in
generating detailed image descriptions. Notably, there is a marked improvement in the Existence
metric, highlighting the method’s accuracy in detecting objects. Overall, both models achieve the
highest performance across most metrics with AVISC. AVISC stands out with the highest AMBER
score, indicating its comprehensive superiority in both generative and discriminative tasks. Fig. 6
visualizes the performance of each decoding method across discriminative tasks in the AMBER
benchmark.

4.3 ABLATION STUDY

Ablations on 𝛼 and 𝜆. 𝜆 is a threshold for identifying blind tokens that excessively concentrate
attention weights, as detailed in Eq. (7). On the other hand, 𝛼 is a contrastive decoding hyperparameter,
defined in Eq. (10). We conduct ablation experiments on the MME-Hallucination (Liu et al., 2023d)
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Table 4: 𝛼 and 𝜆 ablations on MME-Hallucination (Fu et al., 2024). We set 𝛼 = 3, 𝜆 = 1 for
InstructBLIP (Dai et al., 2024) and 𝛼 = 2.5, 𝜆 = 1 for LLaVA-1.5 (Liu et al., 2023b).

(a) InstructBLIP (Dai et al., 2024) (𝜆 = 1)
Object Attribute Total

Score
𝛼 Exist. Count Position Color

0.5 180 83.33 80.00 130 473.33
2.0 180 86.66 75.00 135 476.66
2.5 180 85.00 71.66 135 471.66
3.0 195 75.00 73.33 135 478.33

(b) InstructBLIP (Dai et al., 2024) (𝛼 = 3)
Object Attribute Total

Score
𝜆 Exist. Count Position Color

0.0 180 75.00 60.00 115.00 430.00
0.1 185 60.00 65.00 123.33 433.33
1.0 195 75.00 73.33 135.00 478.33
1.5 195 75.00 73.33 135.00 478.33

(c) LLaVA-1.5 (Liu et al., 2023b) (𝜆 = 1)
Object Attribute Total

Score
𝛼 Exist. Count Position Color

0.5 185 111.66 103.33 115.00 514.99
2.0 180 103.33 101.66 120.00 504.99
2.5 180 105.00 111.66 120.00 516.66
3.0 180 105.00 111.66 120.00 516.66

Table 5: 𝛾 ablations on (a) POPE-COCO-Random and (b) MME-Hallucination benchmarks.
(a) LLaVA-1.5 (𝜆 = 1, 𝛼 = 2.5)

𝛾 Acc. Prec. Rec. F1
0.5 (Ours) 87.93 88.24 87.53 87.88

0.1 86.77 83.98 90.87 87.29
0.3 87.47 85.35 90.47 87.83
1.0 88.27 88.06 88.53 88.30

(b) LLaVA-1.5 (𝜆 = 1, 𝛼 = 2.5)
𝛾 Existence Count Position Color Total Score

0.5 (Ours) 189.29 104.76 106.19 127.86 528.10
0.1 167.50 101.80 103.33 117.50 490.13
0.3 180.00 98.33 114.16 125.00 517.49
1.0 182.50 108.33 109.99 117.50 518.32

benchmark to evaluate how these hyperparameters influence the performance of our AVISC. Tab. 4
(a) and (c) show the experimental results using InstructBLIP (Dai et al., 2024) and LLaVA-1.5 (Liu
et al., 2023c), respectively, where we fixed 𝜆=1 and varied 𝛼 from 0.5 to 3. While there are variations
across evaluation categories, overall performance consistently improves with increasing values of 𝛼.
Specifically, each LVLM achieves the highest total score at 𝛼=3 and 𝛼=2.5. These results suggest
that enhancing the intensity of contrastive decoding can improve the robustness of LVLMs against
visual hallucinations. Tab. 4 (b) presents the experimental results for the InstructBLIP (Dai et al.,
2024) model using varying values of 𝜆. The results indicate that performance enhances as 𝜆 increases,
demonstrating that our AVISC yields better results when applied to a smaller number of blind tokens
with excessive attention weight.

Ablations on 𝛾. We conduct ablative experiments with the LLaVA-v1.5-7b model to explore the
sensitivity to the 𝛾 parameter. We explore the sensitivity of the model to the 𝛾 parameter while fixing
𝜆 = 1.0 and 𝛼 = 2.5. The results, shown in Tab. 5, indicate that performance remains robust across a
range of 𝛾 values, except for extreme settings like 𝛾 = 0.1. In (a), 𝛾 = 0.5, our default, achieves high
accuracy and balanced metrics on POPE-COCO-Random, while in (b), it delivers the highest total
score in the MME-Hallucination benchmark. Overall, our experiments demonstrate that the impact of
these parameters on performance is minimal, thus reducing the need for extensive tuning. Therefore,
we fixed 𝜆 = 1.0 and 𝛾 = 0.5 during our experiments.

5 CONCLUSION

This study highlights the phenomenon of blind tokens in LVLMs, where the attention mechanism
disproportionately focuses on uninformative image tokens, leading to skewed attention distributions
and contributing to hallucinatory outputs. To mitigate this issue, we introduced a novel decoding
technique, termed Attentional Vision Calibration (AVISC), which dynamically adjusts the logits by
identifying blind tokens through an analysis of image-wise attention distribution. AVISC recalibrates
the model’s attention, without requiring additional retraining, external datasets, or self-feedback
mechanisms, thereby significantly reduceing the model’s reliance on these blind tokens. Through
extensive experiments on hallucination benchmarks such as POPE, MME, and AMBER, AVISC
consistently outperforms existing decoding techniques, improving the model’s ability to capture
subtle visual details by redirecting attention toward more informative tokens.

Limitation. The discriminative capabilities of LVLMs using AVISC diminish in tasks that involve
counting objects within an image. This suggests that blind tokens may sometimes contain essential
information, particularly in object-counting scenarios, leading to reduced performance in the “Count”
category of MME and the “Numbers” category of AMBER.

Future Work. Building upon insights from (Darcet et al., 2023), the blind token phenomenon may
extend beyond LVLMs and could be a general characteristic of transformer-based architectures. This
motivates us to reasonably hypothesize that such counterintuitive attentional biases might be inherent
to attention mechanisms themselves. We aim to further explore this in future research.
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A COMPARISON OF OUR WORK WITH (DARCET ET AL., 2023)

Short summary of (Darcet et al., 2023).

Darcet et al. (2023) identify artifacts in feature maps of various vision transformers, particularly when
comparing DINOv1 (Caron et al., 2021) and DINOv2 (Oquab et al., 2023). Darcet et al. observe that
the image token attention weights are not evenly distributed across informative regions of the image;
instead, they are concentrated in seemingly unnecessary regions, such as redundant background areas.
These regions correspond to artifact patches, referred to as "high-norm outlier tokens", which receive
high attention.

Darcet et al. demonstrate that high-norm outlier tokens contain minimal local information while
retaining significant global information. Specifically, in position prediction and pixel reconstruction
tasks – where locality is crucial – these outlier tokens perform significantly worse than normal image
tokens. However, when Darcet et al. conduct linear probing classification experiments using the class
token, high-norm outlier tokens, and normal image tokens, the high-norm outlier tokens outperform
the normal image tokens. This indicates that while these outlier tokens lose local information, they
effectively encode global information about the image. Darcet et al. suggests that during the attention
mechanism’s internal operations, these tokens are repurposed to capture global information, likely due
to their association with repetitive or less informative image patches. Moreover, the paper presents
experimental results demonstrating that when additional memory space (i.e., register tokens) is added
to store this information, the artifacts disappear.

How different it is from Blind tokens?

"Blind tokens" in our work and the "high-norm outlier tokens" described in (Darcet et al., 2023)
show similar findings. Both tokens are identified by their significantly high attention weights and are
associated with regions in the image that appear irrelevant to the target task. However, despite these
conceptual similarities, there are several key differences between the two:

• Source of Attention Weights: In (Darcet et al., 2023), the high-norm outlier tokens are
derived from the attention weights computed within the vision transformer layers, whereas
our blind tokens are based on attention weights calculated by the LLMs within the Large
Vision-Language Models (LVLMs) (e.g. Vicuna-7B in LLaVA-v1.5-7B). Furthermore, each
transformer-based architecture has different mask designs.

• Task & Architectural Differences: The presence and pattern of high-norm tokens in vision
transformers appear to be highly sensitive to the training schemes and specific architectures
employed. For example, while DINOv1 (Caron et al., 2021) does not exhibit high-norm
tokens, they suddenly emerge in DINOv2 (Oquab et al., 2023), which has been refined
for dense prediction tasks. This suggests that the patterns of high-norm tokens can vary
significantly depending on the trained target task and the model architecture. Given that
these models are all confined to visual tasks, this variation is likely influenced by the specific
task the model is trained on. LVLMs are essentially a combination of LLM, a visual encoder,
and a vision-to-text projector, primarily designed for image-related question-answering
tasks. These models are trained using an auto-regressive token prediction scheme, which
significantly differs from the architecture and training methods of vision transformers.
Additionally, Darcet et al. shows that high-norm tokens in vision transformers encapsulate
global image information, as evidenced by their strong performance in linear probing
classification tasks. However, it remains unclear whether these tokens play a similarly
critical role in the language token prediction tasks of LVLMs.

• Domain Differences: While both our blind tokens and the high-norm tokens (Darcet et al.,
2023) originate from image patch tokens, LVLMs project image tokens into a LLM space
for further attention computations. This contrasts with vision transformers, where all tokens
remain within the image patch domain during attention operations. It is uncertain whether
the high-norm tokens defined in (Darcet et al., 2023) can be similarly defined in LVLMs. To
our knowledge, we first observe and define a phenomenon akin to this in LVLMs.

To explore the correlation between these concepts further, we conducted additional experiments.
Specifically, when examining the vision transformer used as the visual encoder in LLaVA-1.5-7B
(e.g., CLIP-L-336px), we observed the emergence of high attention weight regions, corresponding
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to the high-norm tokens described in (Darcet et al., 2023). Furthermore, we discovered a notable
correlation between these high-norm tokens and the blind tokens selected based on LLM attention
weights. According to our analysis on the POPE-COCO-Random benchmark, we found the following
statistics (The criteria for determining high-norm tokens were the same as for blind tokens):

• 𝑃(blind token|high-norm token) = 40.38%
• 𝑃(high-norm token|blind token) = 31.27%

While high-norm tokens do not completely overlap with blind tokens, the relatively small number of
blind and high-norm tokens (on average, 12.95 out of 576 total tokens) suggests a strong correlation.
Therefore, these tokens may share certain underlying properties. However, many blind tokens are
distributed at the beginning and end of the image token sequence. Whether high-norm tokens share
this characteristic is unclear, but this feature appears to be unique to blind tokens in LVLMs, rather
than high-norm tokens in the ViT-based architecture discussed in (Darcet et al., 2023). Based on this
evidence, we conclude that while blind tokens and the artifacts described in (Darcet et al., 2023) are
not identical, they may share certain properties. Despite these differences, we believe that (Darcet
et al., 2023) complements our findings and could further stimulate exploration of erroneous focus
within attention mechanisms across modern architectures.

Is it really a good idea to reduce the dependency on blind tokens?

In our work, we observed that, similar to (Darcet et al., 2023), blind tokens tend to emerge in
non-important patches, such as backgrounds. However, a key difference is that while they describe
high-norm tokens as containing global information at the expense of local information, we found that
blind tokens contain information irrelevant to generating a response to the textual query. While Darcet
et al. found that high-norm tokens carry global information, they try to mitigate their influence, as
their presence negatively impacts dense prediction tasks that require spatial locality. For instance, in
attention-based object discovery tasks like LOST (Siméoni et al., 2021), high-norm tokens can directly
cause errors. Similarly, we argue that the presence of blind tokens is not a desirable phenomenon,
especially for image-related response prediction tasks. Our approach stems from the observation that
blind tokens do not contain question-relevant information. If a small number of blind tokens carry
global information and are key sources for token prediction (with these tokens, as expected, having
high attention weights), their performance should be reasonably strong. However, the results shown
in Figs. 1 and 2 challenge this assumption. As seen in Fig. 2, the truly important information is often
found in non-blind tokens. Therefore, our contrastive decoding scheme, which reduces the influence
of blind tokens and strengthens the influence of non-blind tokens, can be understood as a method to
mitigate hallucination.

B VISUALIZATIONS & ANALYSIS ON BLIND TOKENS

B.1 MORE EXAMPLES OF ATTENTION BIAS IN LLAVA

“Is there a carrot in the image?”

Black WhiteGaussian

Figure 7: Attention weights for images without semantics nor query-related information.

Our method aims to correct the identified tendency (somewhat misaligned image attention patterns) in
LVLMs without undermining the fundamental design of the attention mechanism itself. Blind tokens
are image tokens that excessively occupy attention weights even though they do not significantly
impact the prediction logits. Based on our observation (see Figs. 1 and 7) that the blind tokens tend
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to miss the important semantics, and in fact, tokens with lower attention weights can contain such
information, our approach aims to recalibrate the attention weights on the image. We do this by
contrasting two probability distributions: one with all image tokens and one with only the blind
tokens. In fact, our approach does not modify the intrinsic attention values themselves during this
process. Instead, by contrasting the probability distributions, we reduce the effect of blind tokens
and give more consideration to the rest of the tokens at the final token prediction phase. Through
experiments, we verify our hypothesis on blind tokens and show that our method ensures a broader
and more accurate semantic capture of the image, thereby reducing hallucinations.

B.2 VISUALIZATION OF BLIND TOKENS AND TARGET OBJECTS

Q: “Is there a snowboard in the image?”

Q: “Is there a person in the image?”

Q: “Is there a truck in the image?”
Figure 8: Visualization of blind tokens and target object bounding box on the POPE benchmark.

To support the claim that there is a mismatch between blind tokens and query-relevant information,
we visualize blind tokens and the bounding boxes of the target objects in several images from the
POPE-COCO benchmark in Fig. 8.

B.3 DISTRIBUTIONS OF BOUNDING BOXES AND BLIND TOKENS

Additionally, we analyze the distribution of object bounding boxes and blind tokens in the POPE-
COCO-Random benchmark, visualizing the results as heatmaps in Fig. 9. This shows that while
object bounding boxes are evenly distributed around the center of the image, blind tokens tend to be
concentrated at the edges of the image, which indicates a significant disparity in distribution.

B.4 VISUALIZATION AND STATISTICS OF BLIND TOKENS

We conduct a correlation analysis between actual object region and attention weights in LVLMs using
the 3000 COCO2014 validation dataset. The results are in Fig. 10. We asked LVLMs to describe
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Figure 9: Average distributions of bounding boxes and blind tokens in COCO dataset.

the image and analyzed the attention distribution on 24 × 24 patches, comparing bounding boxes vs.
attention weights on these patches. Particularly, we assess the proportion of blink tokens within the
bounding boxes. The results show that, on average, only 3.7% of blind tokens overlapped with the
actual object regions, and only 23.3% of the attention weights were assigned to the object regions
while the rest were assigned to other regions. This indicates that although blind tokens receive
excessive attention weights, they fail to effectively capture the objects that are crucial for accurate
image description.

B.5 HISTOGRAM OF BLIND TOKENS

Fig. 11 illustrates the histogram of the number of blind tokens identified by AVISC and the image
token attention weights for these blind tokens when evaluating the LLaVA-1.5v-7B model on the
POPE-COCO-Random benchmark. In this experimental setup, an average of 12.95 blind tokens
appeared, accounting for 33.23% of the image token attention weight.

B.6 BLIND TOKENS AND TOKEN PROBABILITY DISTRIBUTION

Fig. 12 visualizes the location of blind tokens for a given image and query, and presents the token
logit values of both the baseline model and AVISC. For example, in the first problem, which asked
whether there is a banana in the image, the original probability distribution was: ’No’ at 89.62%,
’Yes’ at 8.46%, and ’There’ at 1.56%. After applying AVISC, the logit distribution shifted to: ’No’ at
98.00%, ’There’ at 1.35%, and ’Yes’ at 0.61%.

C MORE EXPERIMENTAL DETAILS

C.1 FURTHER IMPLEMENTATION DETAILS

The text generation decoding process utilized cut-off sampling to assess the effectiveness of logit dis-
tribution enhancements achieved through AVISC. Following the experimental settings of VCD (Leng
et al., 2023), tokens with probability values below 𝛽 times the maximum generating token probability
were masked and excluded from sampling. Specifically, we only consider text tokens that belong to
H at the generation step 𝑡:

H(𝜉<𝑡 ) = {𝜉𝑡 ∈ H : 𝑝 (𝜉𝑡 | V,Q, 𝜉<𝑡 ; 𝜃) ≥ 𝛽max
𝑤

𝑝 (𝑤 | V,Q, 𝜉<𝑡 ; 𝜃)}. (11)

We set the balancing parameter 𝛽 to 0.1. We configured the LVLMs to generate a maximum of 64
tokens for both generative and discriminative tasks. During our experiments with the LLaVA-1.5 (Liu
et al., 2023c), we utilized the "llava_v1" template provided by LLaVA for the conversation setup.

For reproducing the VCD (Leng et al., 2023), we referenced the official code provided by VCD. We
set 𝛼 for contrastive decoding to 1.0, the cut-off hyperparameter 𝛽 to 0.1, and the diffusion noise step
𝑇 used for generating noise images to 500. In the reproduction of the M3ID (Favero et al., 2024), we
used 0.2 as the 𝜆. The aforementioned token generation decoding method was utilized to ensure a fair
comparison with other methods.
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(a): 0.0254
(b): 0.4098

(a): 0.0145
(b): 0.1734

(a): 0.0000
(b): 0.1023

(a): 0.0278
(b): 0.3958

(a): 0.0375 
(b): 0.8244

(a) Avg. # blind tokens in BBox / # BBox tokens 3.68%
(b) Avg. BBox token attention propotion 23.2%

Figure 10: Visualization and statistics of object bounding boxes and blind tokens on the COCO2014
dataset.

C.2 EVALUATION BENCHMARKS

POPE. We employed the official benchmark described in (Li et al., 2023c), which comprises 3,000
question-answer pairs across the random, popular, and adversarial settings. Our queries followed the
structure ‘Is there a [object] in the image?’, where [object] is selected either at random, from the most
common objects in the dataset, or from objects that are often found alongside the specified [object],
tailored to the random, popular, and adversarial scenarios, respectively. The model’s effectiveness
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Figure 11: Number and attention weight statistics of blind tokens on POPE-COCO-Random bench-
mark.

Q: “Is there a banana in the image?”

Q: “Is there a banana in the image?”

Q: “Is there a grape in the image?”

Q: “What is the color of the leftmost object in the image?”

Figure 12: Visualization of blind tokens and logit probability enhancement by AvisC.

was assessed by determining if the model-generated response accurately matched the correct answer
(’Yes’ or ’No’), using metrics such as accuracy, precision, recall, and mean F1-score.4

MME. The MME dataset (Fu et al., 2024) is divided into 10 perceptual categories (existence, count,
position, color, posters, celebrity, scene, landmark, artwork, OCR) and four cognitive categories
(commonsense reasoning, numerical calculation, text translation, code reasoning). While we utilized
the official dataset, we modified the prompt by eliminating the instruction (i.e. "Answer the question
using a single word or phrase.") that restricts LVLMs to response length.5

AMBER. The AMBER dataset (Wang et al., 2023b) comprises 1004 images along with their
associated generative task prompts (i.e. "Describe this image.") and questions categorized into three
discriminative task types (existence, attribute, and relation). We randomly sampled 500 questions

4https://github.com/RUCAIBox/POPE
5https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation
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for the generative tasks and 5000 questions for the discriminative tasks, and the evaluation was
established on official protocols.6

LLaVA-Bench. (Liu et al., 2023c) features a collection of 24 images, accompanying 60 questions
that span a range of contexts, including indoor and outdoor scenes, paintings, and sketches. This
dataset is crafted to assess the capability of LVLMs in tackling more challenging tasks and their
adaptability to new domains.7

C.3 METRICS

Metrics on the MME. The evaluation dataset, D of the MME bechmark consists of two questions,
{𝑞1, 𝑞2} regarding the same visual input,V. Every question in D is a discriminating question. Based
on the answers ("Yes" or "No") provided by the LVLMs, we can calculate the accuracy (ACC) for
any 𝑖 as follows:

ACC(V, 𝑞𝑖) =
{
1 if LVLMs(V, 𝑞𝑖) = Answer(V, 𝑞𝑖),
0 otherwise.

(12)

ACC, which is calculated for each query corresponding to an individual image, ACC+ (Fu et al., 2024)
is calculated only when both queries associated with a single image are answered correctly. This
metric is defined as follows:

ACC+(V) =
{
1 if LVLMs(V, 𝑞𝑖) = Answer(V, 𝑞𝑖) for any 𝑖,

0 otherwise.
(13)

MME score for each evaluated category is the summation of ACC and ACC+.

Metrics on the generative task. Considering 𝑅 as the response by LVLMs for visual input, 𝑉 , the
following metrics can be delineated.

CHAIR (Rohrbach et al., 2018; Wang et al., 2023b) The CHAIR evaluates the occurrence of halluci-
natory objects in responses to LVLMs. CHAIR uses an annotated list of objects 𝐴={𝑎1

𝑜𝑏 𝑗
, 𝑎2

𝑜𝑏 𝑗
, . . .,

𝑎𝑛
𝑜𝑏 𝑗

} to calculate how often hallucinated objects appear in the responses. Let 𝑅={𝑟1
𝑜𝑏 𝑗

, 𝑟2
𝑜𝑏 𝑗

, . . .,
𝑟𝑚
𝑜𝑏 𝑗

} be the list of objects mentioned in the response of LVLMs, the formula for CHAIR is given as:

CHAIR = 1 − 𝑙𝑒𝑛(𝑅 ∩ 𝐴)
𝑙𝑒𝑛(𝑅) . (14)

Cover (Wang et al., 2023b) The Cover metric measures how completely the objects in the response
cover the identified objects in the image. Cover calculates the ratio of objects mentioned in the
response to the total objects listed. The formula for Cover is:

Cover =
𝑙𝑒𝑛(𝑅 ∩ 𝐴)
𝑙𝑒𝑛(𝐴) . (15)

Hal (Wang et al., 2023b) The Hal metric quantifies the presence of hallucinations by checking if
the CHAIR value is not zero, indicating the presence of hallucinations. The Hal is presented by the
following formula:

Hal =
{
1 if CHAIR ≠ 0,
0 otherwise.

(16)

Cog (Wang et al., 2023b) The Cog metric evaluates whether the hallucinations in LVLMs responses
resemble human cognition. The Cog calculates the ratio of the human hallucinatory object targets,
denoted as 𝐻={ℎ1

𝑜𝑏 𝑗
, ℎ2

𝑜𝑏 𝑗
, . . ., ℎ𝑛

𝑜𝑏 𝑗
} to the objects mentioned in the response. The formula for Cog

is:
Cog =

𝑙𝑒𝑛(𝑅 ∩ 𝐻)
𝑙𝑒𝑛(𝑅) . (17)

6https://github.com/junyangwang0410/AMBER.git
7https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild
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AMBER Score (Wang et al., 2023b) The AMBER Score metric evaluates the comprehensive per-
formance of LVLMs for generative tasks and discriminative tasks. This score combines the CHAIR
metric for generative tasks with the F1 metric for discriminative tasks. The formula representing the
AMBER Score is as follows:

AMBER Score =
1
2
× (1 − CHAIR + F1). (18)

D ADDITIONAL EXPERIMENTS

D.1 INFERENCE TIME AND OPERA

Table 6: Comparison of inference time and performance on POPE-COCO-Random benchmark.

LLaVA-1.5
Method Acc. Prec. Rec. F1 tokens/sec
base 84.47 83.35 86.13 84.72 24.44
VCD 84.80 83.00 87.53 85.20 11.53
M3ID 86.00 85.11 87.27 86.18 13.14
AvisC 87.93 88.24 87.53 87.88 12.28

OPERA (Beam=2) 89.35 90.37 88.80 89.58 0.17

Tab. 6 presents an efficiency and performance comparison between contrastive decoding methods
(AvisC, M3ID, OPERA, and VCD) and AVISC. Inference speed is measured with a TiTAN RTX
GPU on the POPE-COCO-Random benchmark. OPERA introduces the concept of an "anchor token"
and uses this token to guide sentence generation and rollback, thereby mitigating hallucinations.
OPERA is implemented on the beam search decoding method of LLMs, so a fair comparison with
AvisC is not possible. However, OPERA showed the best performance overall. However, its inference
speed was approximately x72.23 slower than AVISC.

D.2 ALTERNATIVES TO ZERO-OUT

Table 7: Design choices for non-blind
image token deactivation.

Case Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑

In
st

ru
ct

B
L

IP Zeros 88.50 93.00 83.27 87.86
Ones 82.50 75.48 96.27 84.62
Noise 86.77 84.71 89.73 87.15
Mask 88.53 90.14 86.53 88.30

L
L

aV
A

1.
5 Zeros 87.87 88.12 87.53 87.83

Ones 79.97 72.22 97.40 82.94
Noise 88.47 93.19 83.00 87.80
Mask 84.77 86.29 82.67 84.44

Table 7 presents the results of ablation experiments on vari-
ous deactivation schemes for non-blind image tokens using
InstructBLIP (Dai et al., 2024) and LLaVA 1.5 (Liu et al.,
2023c) models, evaluated on the POPE-COCO-random
benchmark (Li et al., 2023c). We compare Zeros, Ones,
Noise, and Mask. For InstructBLIP, Mask achieves the
highest Accuracy and F1 score, while Zeros excels in Pre-
cision. Ones shows the highest Recall, and Noise provides
balanced performance with high Precision and Recall. For
LLaVA 1.5, Noise achieves the highest Accuracy and Pre-
cision, while Zeros shows balanced performance across all
metrics. On average, using Zeros was the most effective in
improving model performance by calibrating attention to
image tokens.

D.3 RESULTS OF LARGER LVLM

Tab. 8 presents the performance of each method on the POPE benchmark using the COCO dataset
based on the LLaVA-1.5v-13B model. In this experiment setup, compared to the 7B small model
shown in Tab. 1, the performance improvement of AVISC is even more pronounced. For other methods
(i.e., VCD, M3ID), the performance increase is slight or, in some cases, decreases depending on
the metric. However, AVISC demonstrates robust performance improvement, remaining resilient to
changes in the size of LVLMs.
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Table 8: Results of 13B models on COCO dataset.

Setup Method LLaVA-1.5 (13B)
Acc. Prec. Rec. F1

Random

base 83.17 79.49 89.40 84.15
VCD 82.97 78.90 90.00 84.09
M3ID 83.43 79.31 90.47 84.52
AVISC 88.40 86.05 91.67 88.77

Popular

base 80.93 76.45 89.40 82.42
VCD 79.67 74.59 90.00 81.57
M3ID 80.90 75.94 90.47 82.57
AVISC 85.73 81.94 91.67 86.53

Adversarial

base 76.03 70.74 88.80 78.75
VCD 75.57 69.86 89.93 78.64
M3ID 75.80 69.97 90.40 78.88
AVISC 79.27 73.65 91.13 81.47

D.4 POPE (LI ET AL., 2023C) WITH SINGLE-WORD CONSTRAINT

As shown in Tab. 9, we see that imposing a one-word response constraint on LVLMs leads to notable
changes in performance compared to Tab. 1. Despite the change in query setup, AVISC shows the
best performance on the POPE benchmark. Specifically, precision and recall vary significantly in
the COCO random setup comparing scenarios with and without the instruction, "Please answer this
question with one word." To mitigate these impacts and better evaluate discriminative capabilities,
we designed experiments that allow the LVLMs to freely make judgments and provide explanations
for these judgments rather than restricting them to answers in one word.

D.5 DETAILED RESULTS ON MME-FULLSET

The detailed results on MME-Fullset are provided in Tab. 10. AVISC demonstrates substantial
improvements in both LLaVA-1.5 and InstructBLIP across a wide range of perception and recognition
tasks. These findings highlight the capability of AVISC to effectively handle diverse tasks, extending
beyond hallucination mitigation, and suggest its potential to enhance the ability of LVLMs to
accurately interpret and analyze visual information and query text appropriately.

D.6 DETAILED RESULTS ON AMBER DISCRIMINATIVE TASKS

Tab. 11 presents the performance of the discriminative task on the AMBER benchmark across dif-
ferent categories. The discriminative task in the AMBER benchmark is divided into six categories:
’Existence’, ’Attribute’, ’State’, ’Number’, ’Action’, and ’Relation’, to evaluate the model’s perfor-
mance. For most categories, except for a few, both the LLaVA-1.5 and InstructBLIP models show
performance improvements due to the applied AVISC.

D.7 ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results on all benchmarks (POPE (Li et al., 2023c), MME (Fu et al.,
2024), AMBER (Wang et al., 2023b), and LLaVA-Bench (Liu et al., 2023c)) in Figs. 13 to 16. These
highlight the differences between sentences generated by standard decoding (Base), VCD (Leng et al.,
2023), and those produced by AVISC. The results demonstrate the effectiveness of AVISC in dealing
with a variety of challenging visual contexts. Base and VCD often generate descriptions that include
errors or hallucinations where elements not present in the image are described. In contrast, AVISC
helps counteract these hallucinations, generating sentences that reflect a more accurate comprehension
of the image.
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Table 9: POPE (Li et al., 2023c) results with one-word constraint. We use the instruction "Please
answer in one word." at the end of the query text.

Setup Method InstructBLIP (Dai et al., 2024) LLaVA 1.5 (Liu et al., 2023c)

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

M
S-

C
O

C
O

Random

base 81.53 82.71 79.73 81.19 83.77 92.31 73.67 81.94
VCD 82.03 83.77 79.47 81.56 85.43 93.25 76.40 83.99
AVISC 86.03 95.53 75.60 84.41 84.67 97.88 70.87 82.21

Popular

base 78.47 77.73 79.80 78.75 82.57 89.62 73.67 80.86
VCD 79.13 78.94 79.47 79.20 83.17 88.36 76.40 81.94
AVISC 84.27 91.45 75.60 82.77 83.67 95.25 70.87 81.27

Adversarial

base 77.43 76.09 80.00 78.00 79.77 83.85 73.73 78.47
VCD 77.23 76.10 79.40 77.72 80.27 82.76 76.47 79.49
AVISC 81.83 86.20 75.80 80.67 81.83 90.99 70.67 79.55

A
-O

K
V

Q
A

Random

base 81.33 78.52 86.27 82.21 84.93 89.16 79.53 84.07
VCD 81.57 78.78 86.40 82.42 85.53 87.64 82.73 85.12
AVISC 87.10 89.95 83.53 86.62 87.33 95.09 78.73 86.14

Popular

base 76.87 72.69 86.07 78.82 80.90 81.77 79.53 80.64
VCD 77.30 73.10 86.40 79.19 81.17 80.22 82.73 81.46
AVISC 82.47 81.79 83.53 82.65 85.03 90.08 78.73 84.03

Adversarial

base 71.40 66.67 85.60 74.96 74.80 72.63 79.60 75.95
VCD 72.47 67.39 87.07 75.97 75.03 71.87 82.27 76.72
AVISC 76.47 73.16 83.60 78.03 79.27 79.58 78.73 79.16

G
Q

A

Random

base 80.57 77.47 86.20 81.60 84.80 87.88 80.73 84.16
VCD 81.73 79.02 86.40 82.55 85.63 86.89 83.93 85.38
AVISC 85.30 88.57 81.07 84.65 87.40 95.17 78.80 86.21

Popular

base 74.67 70.17 85.80 77.20 79.37 78.59 80.73 79.64
VCD 74.63 69.94 86.40 77.30 78.73 76.03 83.93 79.78
AVISC 80.63 80.37 81.07 80.72 83.33 86.66 78.80 82.54

Adversarial

base 72.63 67.78 86.27 75.92 76.00 74.13 79.87 76.89
VCD 71.93 67.21 85.67 75.32 76.40 72.76 84.40 78.15
AVISC 77.60 75.91 80.87 78.31 80.37 81.52 78.53 80.00

E LICENSE OF ASSETS.

POPE (Li et al., 2023c) is made available under the MIT License. AMBER (Wang et al., 2023b)
and LLaVA-Bench (Liu et al., 2023c) is available under Apache-2.0 License. InstructBLIP (Dai
et al., 2024) is under BSD-3-Clause License and LLaVA (Liu et al., 2023c) is licensed under the
Apache-2.0 License.

F BROADER IMPACTS

The release of our proposed AVISC for alleviating hallucinations in LVLMs comes with a wide range
of positive and negative impacts.

Positive impacts. By mitigating hallucination, LVLMs can become more accurate and reliable
tools for a wide range of applications, such as machine translation, chatbot development, and news
generation.

Negative impacts. Our approach, AVISC, aimed at reducing hallucination, could heighten computa-
tional requirements, potentially resulting in higher expenses and greater energy use.
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Table 10: Results on MME-Fullset (Fu et al., 2024).

Task Category
LLaVA 1.5 (Liu et al., 2023c) InstructBLIP (Dai et al., 2024)

base VCD M3ID AVISC base VCD M3ID AVISC
Pe

rc
ep

tio
n

Existence
173.57
(±8.16)

172.14
(±8.09)

178.33
(±6.83)

189.29
(±1.89)

170.19
(±11.12)

172.62
(±8.92)

173.89
(±10.52)

184.76
(±5.56)

Count
110.00
(±15.82)

117.14
(±8.76)

107.22
(±14.78)

104.76
(±11.66)

89.52
(±11.04)

98.33
(±15.99)

89.72
(±13.44)

82.85
(±12.16)

Position
100.47
(±18.78)

103.33
(±20.56)

96.39
(±5.52)

106.19
(±13.93)

67.62
(±14.04)

71.90
(±13.42)

72.72
(±14.77)

74.76
(±6.19)

Color
125.24
(±15.91)

119.52
(±8.58)

127.50
(±8.28)

127.86
(±9.13)

114.76
(±9.60)

117.14
(±10.70)

110.56
(±7.20)

131.43
(±4.76)

Posters
132.31
(±6.73)

135.54
(±3.61)

132.82
(±7.94)

150.85
(±6.49)

114.97
(±6.25)

129.08
(±6.97)

114.46
(±6.97)

145.92
(±2.41)

Celebrity
114.56
(±6.45)

118.09
(±7.69)

113.38
(±0.21)

125.59
(±2.50)

113.38
(±3.95)

123.82
(±4.99)

114.12
(±2.91)

120.29
(±7.90)

Scene
149.13
(±0.53)

150.00
(±3.54)

156.63
(±1.59)

162.00
(±1.06)

140.50
(±0.71)

136.50
(±10.25)

141.00
(±1.06)

150.38
(±3.36)

Landmark
138.25
(±4.95)

140.75
(±4.95)

135.13
(±4.77)

142.38
(±0.53)

98.50
(±0.35)

110.75
(±4.24)

103.25
(±6.72)

99.25
(±0.35)

Artwork
97.50
(±2.83)

95.25
(±4.24)

89.38
(±3.36)

101.00
(±7.42)

110.38
(±4.42)

113.00
(±3.54)

110.13
(±6.89)

123.38
(±2.30)

OCR
91.25

(±19.45)
101.25
(±1.77)

96.25
(±15.91)

143.75
(±5.3)

87.50
(±21.21)

91.25
(±8.84)

85.00
(±10.61)

68.75
(±5.3)

R
ec

og
ni

tio
n

Commonsense
Reasoning

100.36
(±2.53)

96.79
(±5.56)

87.14
(±12.12)

102.86
(±7.07)

96.43
(±1.01)

107.14
(±8.08)

99.64
(±2.53)

101.79
(±6.57)

Numerical
Calculation

80.00
(±7.07)

66.25
(±8.84)

76.25
(±12.37)

65.00
(±14.14)

68.75
(±1.77)

66.25
(±15.91)

71.25
(±22.98)

73.75
(±5.30)

Text
Translation

75.00
(±3.54)

86.25
(±22.98)

65.00
(±14.14)

77.50
(±17.68)

63.75
(±5.3)

91.25
(±1.77)

53.75
(±5.3)

86.25
(±1.77)

Code
Reasoning

62.50
(±10.61)

61.25
(±1.77)

71.25
(±15.91)

71.25
(±5.30)

73.75
(±5.30)

57.50
(±0.00)

81.25
(±1.77)

76.25
(±5.3)

Table 11: Results on AMBER discriminative tasks (Wang et al., 2023b).

Category
LLaVA 1.5 (Liu et al., 2023c) InstructBLIP (Dai et al., 2024)

base VCD M3ID AVISC base VCD M3ID AVISC

Existence
68.55
(±0.21)

67.15
(±1.91)

68.50
(±0.14)

75.35
(±0.21)

72.05
(±0.49)

73.20
(±1.27)

72.95
(±0.21)

81.35
(±0.07)

Attribute
67.85
(±0.49)

69.50
(±1.27)

68.20
(±0.42)

69.80
(±0.85)

68.40
(±0.14)

69.90
(±0.14)

69.15
(±0.92)

70.80
(±1.56)

State
65.55
(±0.35)

67.80
(±0.28)

65.75
(±0.64)

68.40
(±1.70)

70.55
(±0.64)

72.40
(±0.00)

70.70
(±0.85)

72.85
(±1.77)

Number
69.05
(±0.78)

68.50
(±2.40)

68.95
(±0.92)

67.10
(±1.84)

60.90
(±0.00)

60.70
(±0.85)

61.80
(±0.71)

60.85
(±0.49)

Action
78.50
(±3.96)

81.90
(±3.39)

81.50
(±1.84)

84.50
(±3.25)

74.95
(±2.05)

79.05
(±2.62)

78.70
(±1.27)

85.20
(±2.40)

Relation
58.80
(±4.10)

57.75
(±0.07)

59.70
(±3.39)

60.50
(±0.14)

56.05
(±1.63)

58.00
(±1.41)

57.00
(±1.98)

54.65
(±2.76)

Overall, the potential positive impacts of research on reducing hallucination in LVLMs surpass
the potential negative consequences. By addressing the hallucination problem, we can enhance the
trustworthiness of LVLMs.
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AvisC: There are several children sitting at tables on
mats, with no visible chairs in the image.

Base: Yes, there is a wooden chair in the image, used
primarily by the children.

VCD: There is a chair in the image, with kids sitting on it.

M3ID: Yes, there is a chiar in the image.

Query: Is there a tv in the image?

GT: No

LLaVA-1.5

InstructBLIP

AvisC: No, there is no TV in the image. The image
features a dining room table with chairs, but it does not
show any TV present in the image.

Base: Yes, there is a tv in the image. It sits atop a large
modern dresser in the dining and living room area.

VCD: Yes, there is a flat screen television in the living
room.

M3ID: Yes, there is a TV in the image, located in the
living room area of the house.

Query: Is there a chair in the image?

GT: No

AvisC: There is a step stool or a chair in the image,
which the little girl is standing on while brushing her teeth.

Base: No, there isn't a chair in the image.

VCD: There is no chair in the image.

Query: Is there a chair in the image?

GT: Yes

M3ID: No, there is no chair in the image.

LLaVA-1.5

AvisC: Yes, there is a chair in the image, located next to
the boy standing on the pillows.

InstructBLIP

Base: No, there is no chair in the image. The image
features a boy standing by a wall, surrounded by a bed
with a comforter and a pillow.

VCD: No, there is no chair in the image. The scene takes
place in a bedroom.

M3ID: No, there is no chair in the image. The image
features a young boy standing on a bed with a flowered
blanket.

Query: Is there a chair in the image?

GT: Yes

Figure 13: Qualitative examples on POPE (Li et al., 2023c).
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InstructBLIP

AvisC: No, there is no brown scarf in the image. The teddy bear
in the picture is wrapped in a red bandana or a red scarf.

Base: Yes, there is a red and brown scarf wrapped around the
teddy bear's neck in the image.

VCD: Yes, there is a brown scarf in the image, wrapped around
the teddy bear.

GT: No

AvisC: No, there is a red couch in the image.

Base: Yes, there is a black couch in the image.

VCD: Yes, there is a red couch with a black dog sitting on top
of it in the image.

Query: Is there a black couch in the image?

GT: No

Query: Is there a brown scarf in the image?

LLaVA-1.5

InstructBLIP

AvisC: Yes, there is a blue and yellow fire hydrant in the image,
located on the side of the road.

Base: No, there is no blue and yellow fire hydrant in the image.

VCD: Yes, there is a blue and yellow fire hydrant in the image.

GT: Yes

AvisC: Yes, the motorcycle is on the right side of the bus.

Base: No.

VCD: No.

Query: Is the motorcycle on the right side of 
the bus?

Query: Is there a blue and yellow fire 
hydrant in the image?

LLaVA-1.5

GT: Yes

Figure 14: Qualitative examples on MME (Fu et al., 2024).
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InstructBLIP

AvisC: The image features a little girl happily laying inside a
ball pit filled with multiple colorful balls. She is having a good
time as she smiles while being surrounded by the balls. The
ball pit is quite full, with numerous balls placed across the
area, indicating the child’s enjoyment.

Base: In the video, a young girl is lying in a large ball pit,
surrounded by various sized and colorful balls. She seems to
be playing and enjoying herself, smiling and laughing as she
plays with her new surroundings.

VCD: In the image, a young child is playing a ball pit,
surrounded by colorful balls of different sizes and shapes.
The child is fully immersed in the fun and enjoying the
experience.

Query: Describe this image.

AvisC: Yes, there is only one surfboard in the image, being
ridden by the man.

Base: No, there are multiple surfboards in the image.

VCD: No, there are multiple surfboards in the image.

Query: Is there one surfboard in this image?

GT: Yes

InstructBLIP

AvisC: The image features a golden retriever swimming in a
body of water, carrying a piece of something in his mouth.
The dog is skillfully navigating the water while holding onto
the object, likely a toy or something else it found during its
swim.

Base: The image displays a playful dog in the water, with a
tennis ball in its mouth. The dog is floating in the water,
seemingly enjoying its time playing in the water. The dog is a
medium-sized breed, likely a retriever, and is centered in the
water.

VCD: The image showcases a brown dog swimming in a
large body of water, holding a toy in its mouth. The dog is
covered by water as it moves through the water, possibly
retrieving the toy or enjoying the activity of swimming.

Query: Describe this image.

AvisC: No, there is only one lamp in the image, placed next to
the bed on a side table.

Base: Yes, there are two lamps in this image. Specifically there
are two white bedside table lamps on either side of the bed.

VCD: Yes, there are two lamps in the image. One is located on
the bedside table and the other is on the nightstand

Query: Are there two lamps in this image?

GT: No

Figure 15: Qualitative examples of InstructBLIP (Dai et al., 2024) on AMBER (Wang et al.,
2023b).
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LLaVA-1.5

AvisC: In the image, a young girl wearing a red dress
is riding her yellow bicycle near a white picket fence.
She appears to be enjoying her ride down the
driveways or the street, creating a charming scene.

Base: The image shows a little girl dressed in a red
dress, happily riding her yellow bike on a path. Behind
her, there are houses likely in a fenced-in area,
providing a cozy and quiet atmosphere for her to enjoy
her ride.

VCD: The image features a little girl wearing a pink
dress and standing next to her bicycle. She appears to
be learning how to ride her bike, as she is positioned in
front of a fence. The bicycle is situated to the right of
the girl.

Query: Describe this image.

AvisC: No, the lamp in this image is open, providing light in the
bedroom.

Base: Yes, the lamp in the image is closed.

VCD: Yes, the lamp in the image is closed.

Query: Does the lamp closed in this image?

GT: No

LLaVA-1.5

AvisC: In the image, a golden dog is running across a
snow-covered field in a park. The dog appears to be
enjoying the snow as it moves swiftly through the area.
There are several trees surrounding the field, adding to
the picturesque winters scene.

Base: A brown dog is skiing through a snow-covered
field, creating its own mini-groomed path as it goes.
The dog is accompanied by one person in the distance
who seems to be providing guidance or looking at the
dog as it run.

VCD: The image captures a golden dog running across
a snow-covered field in the middle of a park. The dog is
enjoying the open space and appears to be moving at a
fast pace. In the background, there are several trees
lining the field, adding to the picturesque winter scenery.

Query: Describe this image.

AvisC: Yes, the frisbee in this image is yellow.

Base: Yes, the frisbee in the image is yellow.

VCD: No, the frisbee in this image is not yellow. Instead, it is
orange.

Query: Is there a yellow frisbee in this image?

GT: Yes

Figure 16: Qualitative examples of LLaVA-1.5 (Liu et al., 2023b) on AMBER (Wang et al.,
2023b).
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Query: Describe this photo in detail.

AvisC: The image features a busy city street where a man is ironing
clothes while sitting on the back of a yellow taxi cab. The taxi is
parked, allowing the man to attend to his laundry amidst the urban
bustle.

AvisC: The image features four plump purple fruit, possibly plums,
placed on a wooden table. Three of the fruits are still whole, while the
fourth fruit appears to be split in half, revealing its interior. The table
provides an ideal surface for these fruits to be displayed on.

Base: In this bustling urban scene, a man in a yellow shirt is
perched atop the back of a taxi or a yellow vehicle, possibly
performing maintenance work on the car. This unique scene could
incorporate elements from promoting an open source project such
as a website.

Query: Describe this photo in detail. Base: Initially, this image portrays three green fruits, possibly ripe figs,
with a white spot, harmlessly covering the inside of the fruit. They nestle
among leaves, waiting for consumption or simply displayed for viewing.
In addition to the three apples, their juxtaposition creates an aesthetic
scene. The overall frame is filled with an inviting display of fresh fruits for
those who appreciate or consume these delicious treats.

VCD: The image showcases a table with several fresh, ripe fruits cut in
half. These fruits are not apples but rather a unique type of fruit that has
a slightly purple tint, and their appearance is similar to grapefruits. The
table displays four cut pieces of this fruit.

VCD: The image depicts a busy city street with various vehicles and
people. A man is prominently riding on the back of a yellow car,
holding a blue shirt over the open hood of the vehicle. The car is
parked on the side of the road.

Figure 17: Response comparison on LLaVA-Bench (Liu et al., 2023c). Hallucinations are colored
in red. AVISC demonstrates a robust understanding of images and reduces hallucinations in responses.
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