

ANCHOR-BASED CONFORMAL PREDICTION UNDER NOISY ANNOTATIONS IN SINGLE-CELL DATA

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Conformal prediction provides a flexible framework for quantifying prediction un-
012 certainty and has attracted extensive interest. However, most existing methods are
013 designed to handle clean data and may fail to perform satisfactorily when labels
014 are noisy. In this work, we consider the setting where the ground-truth labels are
015 unobserved but crowdsourced noisy labels are available. We introduce an anchor-
016 based conformal prediction method that provides uncertainty quantification. Our
017 method identifies anchor points by selecting samples with strong agreement across
018 annotators. These anchors points are used to train a base predictor that is calibrated
019 to construct a conformal prediction set with a desired coverage rate. Meanwhile,
020 we provide a theoretical analysis of anchor-point identification and provide as-
021 sociated conditions that have been importantly overlooked in the literature. We
022 apply the proposed method to analyze two single-cell datasets to demonstrate its
023 utility and promise.
024

1 INTRODUCTION

025 Conformal prediction emerges as a model-agnostic framework that has attracted extensive attention
026 in supervised learning. It produces prediction sets (for classification tasks) or prediction intervals
027 (for regression problems) with prediction error rate controlled under a desired tolerance level. Con-
028 formal prediction may be strategically categorized as full conformal prediction (also referred to as
029 transductive conformal prediction) and split conformal prediction (also called inductive conformal
030 prediction), as discussed in Vovk et al. (2005) and Barber et al. (2023), among others. Various
031 conformal prediction methods have been developed to address different learning objectives. These
032 methods include conformalized quantile regression (Romano et al., 2019), distributional conformal
033 prediction (Chernozhukov et al., 2021), cross-validation+ and jackknife+ (Romano et al., 2020),
034 multi-label outputs (Cauchois et al., 2021), graph neural networks (Zargarbashi et al., 2023), covari-
035 ate shift (Tibshirani et al., 2019), label shift (Podkopaev & Ramdas, 2021), conformalized survival
036 analysis (Candes et al., 2023), and class-conditional conformal prediction (Ding et al., 2023). For
037 details, see Vovk et al. (1999), Shafer & Vovk (2008), Angelopoulos & Bates (2023), and Fontana
038 et al. (2023).
039

040 While those methods provide useful tools to characterize prediction uncertainty, they are typically
041 developed for clean data. They can be vulnerable to perturbations of clean input examples, as
042 examined by Ghosh et al. (2023). On the other hand, in the absence of clean labels, Einbinder
043 et al. (2024) studied the impact of label noise on the validity of conformal prediction, and their
044 analysis suggested that ignoring label noise effects can lead to invalid conformal prediction results.
045 As acquiring accurately annotated data can be expensive or even impossible, it is often of interest
046 to study conformal prediction for data with noisy or ambiguous labels. For example, concerning
047 image classification, Angelopoulos et al. (2020) described a method for constructing prediction
048 sets from a pre-trained image classifier that are regularized to calibrate unlikely classes. Penso
049 & Goldberger (2024) and Penso et al. (2025) developed conformal prediction methods to handle
050 medical imaging classification networks, where labels are assumed to be corrupted by uniform noise
051 with a known noise level. In many applications, label information is derived from multiple expert
052 annotations, where the majority-voted label is commonly treated as the ground-truth label. When
053 experts seriously disagree, summarizing the expert annotations by a single one-hot distribution can
lead to severely deteriorated prediction results. To address this, Stutz et al. (2023) developed Monte
Carlo conformal prediction procedures to account for uncertainty associated with ambiguous labels.

054 Constructing credal regions in a conformal way, Caprio et al. (October 2024) extended classical
 055 conformal prediction to problems with ambiguous ground truth, where the exact labels for inputs
 056 are not known.

059 1.1 MOTIVATING SETTING

061 In single-cell transcriptomics, tens of thousands of genes are measured across hundreds of thousands
 062 of cells to reveal the information on cell types, subtypes, and states for a tissue sample (Baron
 063 et al., 2016). Manual annotations to determine cell types are time-consuming when the number
 064 of cells and samples are substantial, and the process can be irreproducible due to varying levels
 065 of annotators' expertise. Practically, clustering algorithms are devised to conduct automatic cell
 066 identification, e.g., SingleCellNet (Tan & Cahan, 2019) and ACTINN (Ma & Pellegrini, 2020).
 067 The automation process, however, involves various challenges, including difficulties in biological
 068 interpretation and implementation variability, as discussed by Kiselev et al. (2019). Abdelaal et al.
 069 (2019) compared the performance of twenty-two classification methods that automatically assign
 070 cell identities for twenty-seven publicly available single-cell RNA sequencing datasets, which differ
 071 in sizes, technologies, species, and levels of complexity. While those methods output overlapping
 072 classes, their performance varies and typically depends on the data complexity. Different methods
 073 often yield varying cluster numbers and cell assignments, and it is important to address uncertainty
 074 in identified labels from automatic annotation methods rather than merely take results of a single
 075 clustering method as ground truth labels. To this end, we cast the problem into the conformal
 076 prediction framework by treating output proxy labels from multiple automatic annotation algorithms
 077 as crowdsourced labels (Ibrahim et al., 2023). Utilizing the research on noisy labels, we introduce a
 078 new conformal prediction method to handle data with crowdsourced labels.

079 1.2 OUR CONTRIBUTIONS

081 Without restricting to a specific model for label noise, we consider general cases where label noise
 082 can be instance-dependent, and utilize deep neural network architectures to provide a flexible rep-
 083 resentation of the annotation process to reflect annotator skills as well as possible influence of the
 084 true class labels, in addition to the dependence on the input. We utilize the notation of anchor points
 085 (Xia et al., 2019), defined in Section 2.1, to bypass the need to access the true labels in order to es-
 086 timate the instance-dependent noise transition matrix. Although anchor points can be heuristically
 087 identified based on applying majority-voting to data with noisy labels (Liu & Tao, 2016; Patrini
 088 et al., 2017), this method is only valid under certain conditions, which, however, are unidentified in
 089 existing work. In this work, we close this gap and further make the following contributions:

- 091 • We provide a necessary-and-sufficient characterization for anchor points, which is accom-
 092 panied by an identified, mild condition for annotation. We further identify conditions that
 093 ensure the validity of using majority-voting to find anchor points from corrupted data.
 094 These analyses provides theoretical insights into the available works that utilize anchor
 095 points and make them valid for settings satisfying those identified conditions.
- 096 • We extend the conformal prediction framework to accommodate corrupted labels and de-
 097 velop true-label prediction sets by using crowdsourced noisy annotations. We introduce
 098 an anchor-based method that couples with flexible deep neural models to learn complex
 099 annotation processes, which commonly arise from biomedicine and other fields.
- 100 • We establish theoretical guarantees and validate the method on two single-cell RNA-seq
 101 datasets to demonstrate its utility. Although we focus on single-cell classification, the
 102 framework applies broadly to general biomedical applications or problems with crowd-
 103 sourced noisy labels.

106 In summary, we integrate conformal prediction and crowdsourced noisy labels to provide valid pre-
 107 diction sets. Our work supplies a new addition to address robustness of conformal prediction to label
 108 noise, which enjoys broad applications involving ambiguous or noisy labels.

108

2 PROBLEM SETUP AND METHODS

109

110 For $i \in [n]$, let $\mathbf{x}_i \in \mathcal{X} \subseteq \mathbb{R}^p$ denote the feature vector for cell i (e.g., gene expression), associated
111 with an unobserved true class $y_i \in [K]$ (e.g., cell type), where $[K] = \{1, \dots, K\}$ is the label space
112 and \mathcal{X} is the input space of the p -dimension. For each cell we observe a vector of noisy labels $\tilde{\mathbf{y}}_i =$
113 $(\tilde{y}_i^{(1)}, \dots, \tilde{y}_i^{(R_i)})$ from R_i annotators; for ease of exposition we assume $R_i \equiv R$ (which matches
114 our application datasets). We use uppercase letters X_i , Y_i and \tilde{Y}_i (with the subscript i sometimes
115 omitted) for the corresponding random variables. Let \mathbb{P} represent the probability or conditional
116 probability for the associated random variables. We are interested in devising a conformal prediction
117 method by utilizing the notion of anchor points.

118

2.1 ANCHOR POINTS

119

120 **Definition 2.1.** An instance $\mathbf{x} \in \mathcal{X}$ is called an anchor point for class $k \in [K]$ if

121
$$\mathbb{P}(Y = k | X = \mathbf{x}) = 1.$$
122

124 Anchor points were considered by Liu & Tao (2016), Patrini et al. (2017), Xia et al. (2019), and Guo
125 et al. (2023), among others. Its introduction ensures the identifiability of the transition matrix that
126 is formed by the conditional probability of $\tilde{Y}^{(r)}$ given Y and X , which, as shown in the following
127 theorem, can be learned from training data consisting of anchor points and the associated noisy
128 annotated labels alone, provided suitable conditions.

129 **Assumption 1.** For any $r \in [R]$, $k \in [K]$, and $\mathbf{x} \in \mathcal{X}$,

131
$$\mathbb{P}(\tilde{Y}^{(r)} = k | Y = k, X = \mathbf{x}) > \mathbb{P}(\tilde{Y}^{(r)} = k | Y = j, X = \mathbf{x}) \quad \text{for all } j \neq k.$$
132

133 This assumption indicates that given the input, the true label is more likely to be annotated than any
134 other labels. In other words, annotators have reasonably competent skills while they may be unable
135 to annotate the true labels surely.

136 **Theorem 1.** Suppose Assumption 1 holds for the annotation process. Then for $\mathbf{x} \in \mathcal{X}$,

137
$$\mathbb{P}(Y = k | X = \mathbf{x}) = 1 \quad \text{if and only if} \quad \mathbb{P}(\tilde{Y}^{(r)} = k | X = \mathbf{x}) = \mathbb{P}(\tilde{Y}^{(r)} = k | Y = k, X = \mathbf{x}).$$
138

139 The equivalence in Theorem 1 allows us to use anchor points to learn the transition matrix, even
140 though our training data have no information about the true labels. A natural question then arises:
141 with the availability of corrupted-labeled data only, how to find anchor points? Li et al. (2021)
142 suggested to take $\arg \max_{\mathbf{x}} \mathbb{P}(\tilde{Y} = k | X = \mathbf{x})$ as anchor points for class k , provided noisy class-
143 posterior $\mathbb{P}(\tilde{Y} = k | X = \mathbf{x})$ is accurately modeled and the data size is sufficient. This majority-
144 voting scheme echoed the proposals of Liu & Tao (2016) and Patrini et al. (2017), which, however, is
145 not theoretically justified. Its validity is not automatic and requires certain conditions. To close this
146 gap, we identify conditions that allow the use of the majority-voting scheme, which are importantly
147 overlooked in the existing literature.

148 **Assumption 2.** Assume that

149
$$\mathbb{P}(\tilde{Y}^{(r)} = k | Y = k, X = \mathbf{x}(k)) = \mathbb{P}(\tilde{Y}^{(r)} = k | X = \mathbf{x}(k)) \tag{1}$$
150

151 holds for $\mathbf{x}(k) = \arg \max_{\mathbf{x}} \mathbb{P}(\tilde{Y}^{(r)} = k | X = \mathbf{x})$, with $k \in [K]$ and $r \in [R]$.

152 Assumption 2 essentially states that $\mathbf{x}(k)$ is sufficient for predicting $\tilde{Y}^{(r)}$ to be k and captures all
153 relevant information about the true label $Y = k$. This assumption is often plausible in applications.
154 In email spam detection, for example, let Y denote the true label (spam or not spam), $\tilde{Y}^{(r)}$ be
155 the classifier's prediction, and X include features extracted from emails (e.g., the number of links,
156 presence of certain words, etc.). If the features are sufficiently informative, then the assumption (1)
157 is feasible. Importantly, (1) is required only for those selected points $\mathbf{x}(k)$, but not for all $\mathbf{x} \in \mathcal{X}$.
158 This condition is weaker than the global *nondifferential misclassification* condition

159
$$\mathbb{P}(\tilde{Y}^{(r)} = j | Y = k, X = \mathbf{x}) = \mathbb{P}(\tilde{Y}^{(r)} = j | X = \mathbf{x}) \quad \text{for all } j, k \in [K],$$
160

161 which requires conditional independence between $\tilde{Y}^{(r)}$ and Y , given X .

162 **Theorem 2.** Suppose Assumptions 1–2 hold. Then $x(k)$ is an anchor point for class k .
 163

164 Theorem 2 directly comes from Theorem 1. It suggests that applying majority–voting, anchor points
 165 can be discovered directly from corrupted data without observing true labels. Combining Theorems 1 and 2 asserts that utilizing anchor points, the instance–dependent transition matrix can be
 166 estimated even though we have no access to clean labels, and this is the foundation for the subse-
 167 quent development.
 168

169 **2.2 SPLIT CONFORMAL PREDICTION**
 170

171 This subsection presents the conformal prediction procedure by using anchor points to incorporate
 172 the label noise effects. We employ deep neural network architectures to model the transition matrix
 173 and implement the likelihood method to learn model parameters. Then we calculate calibration
 174 scores to construct prediction sets for test data, as detailed below.
 175

176 **Warm-up and pipeline.** In the warm–up stage, we apply majority–voting to the data $\{x_i, \tilde{y}_i\}_{i \in [n]}$
 177 to obtain anchor points. Let $\mathcal{A}_k := \{i \in [n] : \mathbb{P}(Y = k \mid X = x)\}$ denote the index set of anchor
 178 points for class k , and write $\mathcal{A} := \bigcup_{k \in [K]} \mathcal{A}_k$. For each $k \in [K]$, randomly split \mathcal{A}_k into \mathcal{A}_k^t for
 179 training and \mathcal{A}_k^c for calibration (i.e., a hold–out set), and form training and calibration data:
 180

$$\mathcal{D}^t := \bigcup_{k \in [K]} \{(x_i, \tilde{y}_i, y_i=k) : i \in \mathcal{A}_k^t\}; \mathcal{D}^c := \bigcup_{k \in [K]} \{(x_i, \tilde{y}_i, y_i=k) : i \in \mathcal{A}_k^c\}.$$

183 Let n^t and n^c denote the size of \mathcal{D}^t and \mathcal{D}^c , respectively.
 184

185 **Annotator transition model.** We model the annotation process via two functions, $\psi^a(x)$ and
 186 $\psi^c(x)$, which are characterized by feedforward neural networks, and let θ_a and θ_c denote the as-
 187 sociated parameters. For annotator $r \in [R]$ and class $j \in [K]$, the probability for annotator r to
 188 report class j , given the true class k and input x , is modeled by
 189

$$\mathbb{P}(\tilde{Y}^{(r)} = j \mid Y = k, X = x) = \frac{\exp\{\langle \alpha_j^{(r)}, \psi^a(x) \rangle + \langle \beta_j^{(k)}, \psi^c(x) \rangle\}}{\sum_{\ell=1}^K \exp\{\langle \alpha_\ell^{(r)}, \psi^a(x) \rangle + \langle \beta_\ell^{(k)}, \psi^c(x) \rangle\}}, \quad (2)$$

190 where $\alpha^{(r)} := \{\alpha_j^{(r)}\}_{j=1}^K$ facilitates annotator–specific effects and $\beta^{(k)} := \{\beta_j^{(k)}\}_{j=1}^K$ captures
 191 class–specific structures. Let $\theta = \{\theta_a, \theta_c, \{\alpha^{(r)}\}_{r=1}^R, \{\beta^{(k)}\}_{k=1}^K\}$ denote the resulting model pa-
 192 rameters, and let $P_\theta(\tilde{Y}^{(r)} = j \mid Y = k, X = x)$ denote the probability (2) parameterized by θ .
 193

194 **Anchors–based likelihood training.** Using \mathcal{D}^t , we estimate the model parameter θ by maximiz-
 195 ing the log–likelihood function:
 196

$$\hat{\theta} = \arg \max_{\theta} \sum_{k \in [K]} \sum_{i \in \mathcal{A}_k^t} \sum_{r=1}^R \sum_{j=1}^K \mathbb{1}\{\tilde{y}_i^{(r)} = j\} \log P_\theta(\tilde{Y}^{(r)} = j \mid Y = k, X = x_i), \quad (3)$$

197 where $\mathbb{1}(\cdot)$ is the indicator function. Using the estimated parameter $\hat{\theta}$, for $r \in [R]$ and $k, j \in [K]$,
 198 we define $\hat{\tau}_{kj}^{(r)}(x) := P_{\hat{\theta}}(\tilde{Y}^{(r)} = j \mid Y = k, X = x)$ and
 199

$$\hat{\tau}_k(x_i, \tilde{y}_i) := \prod_{r=1}^R \prod_{j=1}^K \left\{ \hat{\tau}_{kj}^{(r)}(x_i) \right\}^{\mathbb{1}\{\tilde{y}_i^{(r)} = j\}}. \quad (4)$$

200 **Conformal Prediction.** To construct a prediction set for a test data with a $(1 - \alpha)$ coverage rate for
 201 $\alpha \in (0, 1)$, we first determine the threshold value using the held-out data \mathcal{D}^c by proceeding with the
 202 following five steps: (i) for each $i \in \mathcal{A}^c := \bigcup_{k \in [K]} \mathcal{A}_k^c$, compute $\{\hat{\tau}_k(x_i, \tilde{y}_i)\}_{k \in [K]}$; (ii) sort them in
 203 decreasing order (assuming no ties) and let $\hat{y}_{(1)}(x_i, \tilde{y}_i), \dots, \hat{y}_{(K)}(x_i, \tilde{y}_i)$ denote the corresponding
 204 class labels; (iii) form nested sets $\mathcal{C}(x_i, \tilde{y}_i; k) := \{\hat{y}_{(1)}(x_i, \tilde{y}_i), \dots, \hat{y}_{(k)}(x_i, \tilde{y}_i)\}$ for all $k \in [K]$;
 205 (iv) define the calibration score $S(x_i, \tilde{y}_i; y_i) = \min\{k \in [K] : y_i \in \mathcal{C}(x_i, \tilde{y}_i; k)\}$ for all $i \in \mathcal{A}^c$;
 206 and (v) define $\hat{k}^c(\alpha) = \min\{k \in [K] : |\{i \in \mathcal{A}^c : S(x_i, \tilde{y}_i; y_i) \leq k\}| \geq (n^c + 1)(1 - \alpha)\}$.
 207

216 Next, for prediction of a test data point with $(\mathbf{x}, \tilde{\mathbf{y}})$, we repeat Steps (i)–(iii) with $(\mathbf{x}_i, \tilde{\mathbf{y}}_i)$ replaced
 217 by $(\mathbf{x}, \tilde{\mathbf{y}})$. The predicted label $\hat{\mathbf{y}}$ for the test data corresponds to the class having the largest value
 218 derived from applying (4) to $(\mathbf{x}, \tilde{\mathbf{y}})$, and the prediction set is taken as
 219

$$220 \quad \mathcal{C}_\alpha(\mathbf{x}, \tilde{\mathbf{y}}) := C(\mathbf{x}, \tilde{\mathbf{y}}; \hat{k}^c(\alpha)),$$

221 by setting k in Step (iii) to $\hat{k}^c(\alpha)$. We call the resulting set a top- k conformal set and summarize this
 222 procedure in Algorithm 1.

223 Our procedure is developed for settings where for given features, annotators label instances inde-
 224 pendently, i.e., the following assumption is made:

225 **Assumption 3.** $\mathbb{P}(\tilde{\mathbf{Y}} = \tilde{\mathbf{y}} \mid \mathbf{X} = \mathbf{x}) = \prod_{r=1}^R \mathbb{P}(\tilde{\mathbf{Y}}^{(r)} = \tilde{\mathbf{y}}^{(r)} \mid \mathbf{X} = \mathbf{x})$.

226 This assumption is not essential yet it simplifies learning of the joint label–noise process for all an-
 227 notators to estimating the annotator–specific transition model (2). When this assumption is deemed
 228 infeasible, one may modify the procedure by learning the joint model $\mathbb{P}(\tilde{\mathbf{Y}} = \tilde{\mathbf{y}} \mid \mathbf{X} = \mathbf{x})$ or incorpo-
 229 rate a shared latent factor to capture dependence across annotators. It is worth noting that variables
 230 $\{\mathbf{X}_i, \tilde{\mathbf{Y}}_i, \mathbf{Y}_i\}_{i \in \mathcal{A}^c}$ do need not be identically distributed. Further, as the top- k method takes anchor
 231 points as input, one might wonder how variability in identifying anchor points, together with uncer-
 232 tainty in model specification and the estimation of model parameters using the likelihood method,
 233 may affect statistical guarantees of the resulting prediction sets. This is also a natural concern arising
 234 from existing conformal prediction methods, which typically involves multiple stages of determining
 235 intermediate quantities. Fortunately, as noted by Romano et al. (2020), these sources of variability
 236 are automatically accounted for through the threshold $\hat{k}^c(\alpha)$, which is chosen adaptively to ensure
 237 finite-sample coverage on future test points, as shown in the proof of Theorem 3 in Appendix A.2.
 238

240 **Algorithm 1:** Anchor–Based Conformal Prediction

241 **Input:**

242 Anchor-based training and calibration data: \mathcal{D}^t and \mathcal{D}^c

243 Target miscoverage rate $\alpha \in (0, 1)$; Test data $(\mathbf{x}, \tilde{\mathbf{y}})$

244 **Training based on \mathcal{D}^t :**

245 Solve (3) and obtain $\hat{\theta}$

246 **Determine Threshold Value using \mathcal{D}^c :**

247 1. For all $i \in \mathcal{A}^c$,

248 (i) For all $k \in [K]$, compute $\hat{\theta}_k(\mathbf{x}_i, \tilde{\mathbf{y}}_i)$ by (4);

249 (ii) Sort the values in decreasing order, and let $\hat{\theta}_{(1)}(\mathbf{x}_i, \tilde{\mathbf{y}}_i), \dots, \hat{\theta}_{(K)}(\mathbf{x}_i, \tilde{\mathbf{y}}_i)$ denote the
 250 corresponding class labels

251 (iii) For all $k \in [K]$, form nested sets $\mathcal{C}(\mathbf{x}_i, \tilde{\mathbf{y}}_i; k) = \{\hat{\theta}_{(1)}(\mathbf{x}_i, \tilde{\mathbf{y}}_i), \dots, \hat{\theta}_{(k)}(\mathbf{x}_i, \tilde{\mathbf{y}}_i)\}$

252 (iv) Define the calibration score $S(\mathbf{x}_i, \tilde{\mathbf{y}}_i; k) = \min\{k \in [K] : y_i \in \mathcal{C}(\mathbf{x}_i, \tilde{\mathbf{y}}_i; k)\}$

253 2. Set $\hat{k}^c(\alpha) = \min\{k \in [K] : |\{i \in \mathcal{A}^c : S(\mathbf{x}_i, \tilde{\mathbf{y}}_i; y_i) \leq k\}| \geq (n^c + 1)(1 - \alpha)\}$

254 **Output:** Prediction Set for Test Data

$$255 \quad \mathcal{C}_\alpha(\mathbf{x}, \tilde{\mathbf{y}}) = \mathcal{C}(\mathbf{x}, \tilde{\mathbf{y}}; \hat{k}^c(\alpha))$$

261

3 THEORETICAL GUARANTEE

262 For brevity, we write $p_{\mathbf{x}}(y) := \mathbb{P}(Y = y \mid \mathbf{X} = \mathbf{x})$, $q_{\mathbf{x}}^{(r)}(j \mid y) := \mathbb{P}(\tilde{\mathbf{Y}}^{(r)} = j \mid Y = y, \mathbf{X} = \mathbf{x})$, and
 263 $P_{\mathbf{x}}(y, \tilde{y}) := \mathbb{P}(Y = y, \tilde{Y} = \tilde{y} \mid \mathbf{X} = \mathbf{x})$. We examine theoretical results for the proposed conformal
 264 prediction method, provided certain assumptions.

265 **Assumption 4.** *Calibration scores $\{S(\mathbf{X}_i, \tilde{\mathbf{Y}}_i; \mathbf{Y}_i)\}_{i \in \mathcal{A}^c}$ for the calibration anchor points and
 266 $S(\mathbf{X}, \tilde{\mathbf{Y}}; \mathbf{Y})$ for a test point are exchangeable and almost surely distinct, or ties are broken at ran-
 267 dom.*

270 **Assumption 5.** For $y, j \in [K]$ and $r \in [R]$, $p_x(y)$ and $q_x^{(r)}(j | y)$ are L -Lipschitz in x with respect
 271 to a given norm $\|\cdot\|$.

272 **Theorem 3.** Suppose that Assumptions 1–4 hold and that $\hat{\theta}$ in (3) is a consistent estimator of θ .
 273 Then for any $\alpha \in (0, 1)$,

$$275 \quad 1 - \alpha \leq \mathbb{P}\{Y \in C_\alpha(X, \tilde{Y})\} < 1 - \alpha + \frac{1}{n^c + 1}. \\ 276$$

277 Theorem 3 establishes the marginal coverage rate for the proposed prediction set, which is bounded
 278 between $1 - \alpha$ and $1 - \alpha + \frac{1}{n^c + 1}$. If the calibration anchor point set is sufficiently large, the coverage
 279 rate is almost identical to $1 - \alpha$. Further, one may be interested in evaluating the conditional coverage
 280 rate of the prediction set $C_\alpha(x, \tilde{y})$, a stronger version than the marginal coverage: Is it true that
 281 $P\{Y \in C_\alpha(X, \tilde{Y}) | X = x\} \geq 1 - \alpha$ for $x \in \mathcal{X}$? This question is about valid coverage conditional
 282 on a specific observed value of the feature X . However, as noted by Lei & Wasserman (2014), Vovk
 283 (2012), and Barber et al. (2021), finite sample conditional validity is impossible for any distribution
 284 \mathbb{P} and any $x \in \mathcal{X}$ unless x is an atom, as defined in Lei & Wasserman (2014). That said, it is
 285 undeniable that conditional coverage would be preferable. We thus take a step back to relax the
 286 requirement of conditional validity by considering a weaker condition and introduce the following
 287 definition, which can be regarded as an approximate conditional coverage.

288 **Definition 3.1.** For $\alpha \in (0, 1)$ and $\gamma \in [0, 1)$, an instance x is called an (α, γ) -conditional valid
 289 point with respect to $C_\alpha(x, \tilde{y})$ if $\mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}) | X = x\} \geq 1 - \alpha - \gamma$. Let the collection of
 290 those (α, γ) -conditional valid points be denoted

$$292 \quad \mathcal{V}_{\alpha, \gamma} := \{x \in \mathcal{X} : \mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}) | X = x\} \geq 1 - \alpha - \gamma\}.$$

293 For $\rho > 0$, define $\mathcal{N}_{\alpha, \gamma}(\rho) = \{x \in \mathcal{X} : \inf_{x_0 \in \mathcal{V}_{\alpha, \gamma}} \|x - x_0\| \leq \rho\}$ to be the ρ -neighborhood of
 294 $\mathcal{V}_{\alpha, \gamma}$.

295 **Proposition 1.** Suppose the assumptions in Theorem 3 and Assumption 5 hold. Then for $\alpha \in (0, 1)$
 296 and $\gamma \in [0, 1)$,

$$297 \quad \mathbb{P}(X \in \mathcal{V}_{\alpha, \gamma}) \geq 1 - \frac{\alpha}{\alpha + \gamma}.$$

300 **Theorem 4.** Suppose the assumptions in Theorem 3 and Assumption 5 hold, and let $\alpha, \delta \in (0, 1)$
 301 and $\rho \in [0, 1)$. Then for any $x \in \mathcal{N}_{\alpha, \gamma}(\rho)$,

$$302 \quad \mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}) | X = x\} \geq 1 - \alpha - \gamma - \frac{1}{2}(1 + R)K^{R+1}L\rho. \quad (5)$$

304 Consequently,

$$306 \quad (a). \quad \mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}) | X \in \mathcal{N}_{\alpha, \gamma}(\rho)\} \geq 1 - \alpha - \gamma - \frac{1}{2}(1 + R)K^{R+1}L\rho;$$

$$308 \quad (b). \quad \mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}) | X \in \mathcal{V}_{\alpha, \gamma}\} \geq 1 - \alpha - \gamma.$$

309 Proposition 1 shows that $\mathcal{V}_{\alpha, \gamma}$ has strictly positive probability mass for every $\gamma > 0$, and thus it is
 310 nonempty. In particular, $\mathbb{P}(X \in \mathcal{V}_{\alpha, 1-\alpha}) \geq 1 - \alpha$ and $\mathbb{P}(X \in \mathcal{V}_{\alpha, 1/2-\alpha}) \geq 1 - 2\alpha$ if $0 < \alpha < 1/2$,
 311 which illustrates that a larger γ value tolerates a greater deviation from the conditional coverage
 312 level. When $\gamma = 0$, then $\mathcal{V}_{\alpha, 0}$ includes all x values that ensures the conditional validity (if $\mathcal{V}_{\alpha, 0}$ is
 313 nonempty). In this case, Theorem 4 describes a weaker conditional coverage for those points not
 314 in $\mathcal{V}_{\alpha, \gamma}$ but in its neighborhood. Interestingly, the number of annotators and the number of classes
 315 come into play in the lower bound in (5).

317 4 IMPLEMENTATION PROCEDURES

319 We develop a procedure for predicting latent true labels from multiple noisy annotators. The ap-
 320 proach proceeds by constructing per-class anchor sets from high-agreement subsets of annotations,
 321 learning an instance-dependent transition model parameterized by two deep networks, forming
 322 likelihood-based class scores for point prediction, and calibrating top- k prediction sets on held-
 323 out anchors. As illustrated in Figure 1, our method consists of four main stages: anchor selection,
 base predictor training, anchor-guided calibration, and conformal prediction set generation.

324
325
326
327
328
329
330
331
332
333
334
335
336
337

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 1: Overview of the proposed anchor-based conformal prediction pipeline. The framework identifies anchors from annotator agreement, trains a base model on these anchors, and calibrates conformal prediction sets to handle label noise.

Data and Preprocessing. We evaluated the performance of the proposed top- k method by analyzing two single-cell RNA-seq datasets: *Baron3* (Baron et al., 2016) and *PBMC2* (Stuart et al., 2020). The *Baron3* data were collected from pancreatic islets from human donors. The *PBMC2* data comprise peripheral blood mononuclear cells from healthy donors. Both datasets contain substantial cellular and genetic information and were labeled for classification. In terms of gene counts, they are comparable, with counts ranging from 20,000 to 24,000. The information of gene and annotated cell types was displayed as a matrix, where 1,200 highly variable genes are selected. Counts were transformed using the centered log-ratio to mitigate compositional effects and used to construct a nearest-neighbor graph. Across experiments, we used stratified splits, Adam optimization with early stopping on validation loss, and cross-entropy as the primary objective.

Base Predictors. We applied our anchor-based conformal prediction method with several choices of the base predictor for cell-type classification. Within the family of graph neural networks, the graph convolutional network updates node representations by aggregating neighborhood features through learned filters (Gao et al., 2023). The graph attention network extends this by assigning attention weights, allowing the predictor to emphasize more informative neighbors (Liu & Zhou, 2020). GraphSAGE provides an inductive variant that samples neighborhoods and aggregates features to construct low-dimensional node embeddings suitable for large graphs (Hamilton et al., 2018). As a non-graph baseline, we also considered a Multi-Layer Perceptron, a standard feed-forward predictor with fully connected layers (Gharehbaghi, 2023).

5 ANALYSIS RESULTS

We employed the proposed anchor-based method to analyze the two datasets, and compared the performance to a baseline of the adaptive prediction sets (APS) method (Romano et al., 2020), a widely used method in practice.

Baron3. Agreement-based anchor selection yielded 68 high-confidence cells across 15 cell types. Anchor representation was diverse relatively enriched in T cells (7.4%) and macrophages (6.0%), but sparse in acinar and α cells (both < 1%), reflecting variation in annotator agreement (Table 1a). Using the anchor-calibration split, Top- k conformal sets closely tracked nominal coverage ($1 - \alpha$) at 80%, 85%, 90%, and 95% targets, with empirical coverage results at 0.80, 0.88, 0.95, and 0.95, respectively. By contrast, APS usually achieved highly conservative coverage ($\geq 96\%$ across targets) but produced much larger prediction sets. Visualization on a low-dimensional embedding further supports these patterns: under APS, nearly all cells attain maximal set sizes, whereas our Top- k set sizes vary smoothly across clusters, with smaller sets in well-separated endocrine populations and larger sets in ambiguous ductal and stellate regions (Figure 2).

Figure 2: Low-dimensional embedding (UMAP or PCA fallback) colored by conformal set size at 90% target. Regions with higher ambiguity receive larger sets; well-separated clusters receive smaller sets.

PBMC2. Anchor selection again revealed substantial heterogeneity (Table 1b). Some immune subtypes exhibited relatively high anchor proportions, whereas others had very few, underscoring differences in annotator consistency. As in *Baron3*, APS achieved near-perfect coverage across all nominal levels but at the cost of inflated set sizes, often approaching the entire label space. In contrast, our Top- k delivered coverage much closer to the target values while maintaining smaller, more interpretable sets. Compact sets concentrated in well-defined clusters, whereas ambiguous regions yielded larger sets, as expected. To quantify this trade-off across datasets, Table 2 reports average conformal set sizes. APS consistently produced very large sets (near the total number of classes), whereas Top- k yielded compact and interpretable sets (average sizes 12–14 in *Baron3* and substantially smaller in *PBMC2*). Together with the anchor statistics, these results indicate that anchors not only capture annotator agreement but also enable calibration procedures that produce valid, biologically meaningful, and compact conformal prediction sets. Overall, anchor-guided Top- k method maintains reliable calibration with practical utility, while APS serves as a conservative upper baseline. Additional per-class results, including confusion matrices (Figure 4) and detailed classification metrics (Tables 3–4), are provided in Appendix D.

Set size analysis across datasets. Table 2 summarizes the average conformal prediction set sizes obtained from the anchor-based calibration procedure and APS for both datasets. In *Baron3*, APS produced nearly maximal set sizes (14–15 labels on average), confirming its conservative nature and limited informativeness. By contrast, in *PBMC2*, the anchor-based procedure yielded much more compact sets, often of size one across most targets, with only a modest increase at the 95% coverage level. This difference illustrates how anchor prevalence and annotator agreement directly influence calibration outcomes. When anchors are sparse (*Baron3*), conformal sets inflate toward the full label space, whereas when anchors are abundant and reliable (*PBMC2*), prediction sets remain small and interpretable. Together, these results reinforce that anchors provide a flexible mechanism for trading off between validity and efficiency across datasets of differing annotation quality. APS provides conservative coverage with inflated sets, while Top- k achieves coverage close to nominal with more compact and interpretable sets.

Furthermore, we compared the performance of the proposed method to three additional baselines: regularized adaptive prediction sets (RAPS), sorted adaptive prediction sets (SAPS), and split conformal prediction using softmax scores (SoftCP). RAPS (Angelopoulos et al., 2020) and SAPS (Huang et al., 2024) are derived from APS, with the goal to output stable predictive sets. RAPS regularizes conformity scores by adding a penalty function to exclude unlikely classes, whereas SAPS examines softmax probabilities and retains only the maximum probability. SoftCP is a split conformal prediction method (Lei et al., 2018) applying softmax class probabilities and the score-based

Table 1: Anchor counts and proportions (Prop) per cell type for both datasets.

(a) Dataset 1: <i>Baron3</i>				(b) Dataset 2: <i>PBMC2</i>			
Cell type	Total	Anchors	Prop	Cell type	Total	Anchors	Prop
t_cell	81	6	0.0741	B cell	250	215	0.8600
macrophage	117	7	0.0598	cMono	409	349	0.8533
epsilon	132	7	0.0530	ncMono	119	92	0.7731
mast	78	4	0.0513	CD4 T cell	1238	872	0.7044
schwann	86	4	0.0465	NK cell	270	185	0.6852
quiescent_stellate	96	4	0.0417	CD8 T cell	676	434	0.6420
name	107	4	0.0374	cDC	20	12	0.6000
gamma	133	4	0.0301	pDC	12	7	0.5833
ductal	218	6	0.0275	Plasma cell	6	0	0.0000
beta	334	5	0.0150				
delta	292	4	0.0137				
endothelial	160	2	0.0125				
activated_stellate	565	4	0.0071				
alpha	457	3	0.0066				
acinar	737	4	0.0054				

Figure 3: Empirical versus nominal coverage for two datasets. APS is highly conservative, while Top- k tracks nominal levels more closely.

conformal classification formulation. We report in Appendix D (Table 6) the analysis results of the empirical coverage rates and the size of the resulting prediction set corresponding to four values of the target size: $1 - \alpha = 0.80, 0.85, 0.90$ and 0.95 . Clearly, no method outperforms others simultaneously with respect to the coverage rate and set size, which aligns with the expectation that as a higher coverage tends to require a larger prediction set. Furthermore, no method exhibits consistently better performance on both datasets, and this underscores that heterogeneity in data plays an important role in affecting the performance of the methods: the performance of a method relies on whether the associated conditions are true or nearly true. For the Baron3 dataset, SoftCP and RAPS yield under-covered prediction sets. While the coverage rates produced by SAPS agree with the target rates, they are a lot smaller than those from APS and our top- k method although the latter two methods output slightly larger prediction sets. Regarding the PBMC2 dataset, all methods produce higher coverage rates than the target levels, the size of the resulting prediction sets varies, which can be roughly grouped into two categories: large or small. APS and RAPS produce a lot larger prediction sets, suggesting reduced efficiency. On the other hand, our top- k method, together with

486
487 Table 2: Empirical coverage and average set size for APS and Top- k conformal prediction across
488 targets on both datasets.

489	Method	Dataset	Target	Empirical Coverage	Avg. Set Size
490	APS	<i>Baron3</i>	0.80	0.967	14.49
491			0.85	0.981	14.68
492			0.90	0.986	14.74
493			0.95	0.986	14.74
494	<i>PBMC2</i>	<i>PBMC2</i>	0.80	0.998	4.40
495			0.85	1.000	4.94
496			0.90	1.000	5.45
497			0.95	1.000	6.20
498	Top- k	<i>Baron3</i>	0.80	0.804	12.00
499			0.85	0.882	13.00
500			0.90	0.949	14.00
501			0.95	0.949	14.00
502	<i>PBMC2</i>	<i>PBMC2</i>	0.80	0.947	1.00
503			0.85	0.947	1.00
504			0.90	0.947	1.00
505			0.95	0.998	2.00

506
507
508 SoftCP and SAPS, gives effective results with the smallest prediction sets. Furthermore, our method
509 yields the highest coverage rates among these three methods, which demonstrates the promise of our
510 method.

512 6 CONCLUSION AND DISCUSSION

514
515 We introduced an anchor-based conformal prediction method for classification with crowdsourced
516 noisy annotations. By leveraging anchor points to guide calibration, our method provides rigorous
517 uncertainty quantification. In applications, when the number of anchor points is small or even zero
518 for some classes, we may enlarge \mathcal{A} by including pseudo-anchors: an instance x is called a δ -pseudo-
519 anchor for class k if $\mathbb{P}(Y = k \mid X = x) \geq 1 - \delta$ for $0 \leq \delta < 1$. When $\delta = 0$, it becomes an
520 anchor point; δ -pseudo-anchor points are also called anchor points by Xia et al. (2019) if δ is close
521 to zero; additional discussions are deferred to Appendix B. A future work is waranted to examine
522 the impact on coverage rates and sizes of conformal prediction sets when anchor points are mis-
523 identified in settings violating the assumptions in Theorems 1 and 2. Examining the exact influence
524 of the number of anchor points can be valuable, although it is expected that, in principle, the more
525 anchor points, the better learning results.

526
527 It is worthwhile to further assess the performance of the proposed top- k method from other perspec-
528 tives. For example, it is interesting to explore how the inclusion of pseudo-anchor points or how
529 different degrees of class imbalance may affect the coverage rate of prediction sets. As observed in
530 Section 5, different methods may perform differently when applied to different data, and this reflects
531 the fact that heterogeneity in data plays an important role in affecting the performance of a method
532 while the application to two single-cell datasets confirmed the promise of our method, it is useful
533 in assessing how the proposed method performs when applied to other settings such as imaging or
534 language processing data.

535
536
537
538
539

540 7 ETHICS STATEMENT
541

542 This paper introduces an anchor-based conformal prediction approach for handling noisy anno-
543 tations in single-cell data. The goal of this work is to improve the reliability and robustness of
544 predictive modeling in biomedical research, thereby enhancing our understanding of cellular het-
545 erogeneity and disease mechanisms. We have carefully considered the ethical implications and do
546 not anticipate any direct negative consequences arising from this work. While potential downstream
547 applications may involve clinical or biomedical decision-making, this study is methodological in
548 nature and not directly applied to patient care. We are committed to the responsible communication
549 and use of our methods and encourage their application in ways that respect ethical standards in
550 biomedical research and data privacy.

551
552 8 REPRODUCIBILITY STATEMENT
553

554 We have taken steps to ensure the reproducibility of our work. All datasets used in this study are
555 clearly referenced. Descriptions of preprocessing procedures, model architectures, training proto-
556 cols, and evaluation metrics are provided in the Methods section and Appendix.

557
558 REFERENCES
559

560 Tamim Abdelaal, Lieke Michielsen, Davy Cats, Dylan Hoogduin, Hailiang Mei, Marcel J. T. Rein-
561 ders, and Ahmed Mahfouz. A comparison of automatic cell identification methods for single-cell
562 rna sequencing data. *Genome Biology*, 20(1):194, 2019. doi: 10.1186/s13059-019-1795-z.

563 Anastasios N. Angelopoulos and Stephen Bates. Conformal prediction: A gentle introduction. *Foun-
564 dations and Trends in Machine Learning*, 16(4):494–591, 2023. ISSN 1935-8237.

565 Anastasios N. Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I. Jordan. Uncertainty
566 sets for image classifiers using conformal prediction. [https://people.eecs.berkeley.
567 edu/~angelopoulos/blog/posts/conformal-classification/](https://people.eecs.berkeley.edu/~angelopoulos/blog/posts/conformal-classification/), 2020. Techni-
568 cal Report.

569 Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. The limits
570 of distribution-free conditional predictive inference. *Information and Inference: A Journal of
571 the IMA*, 10(2):455–482, 2021. doi: 10.1093/imaiai/iaaa017. URL [https://doi.org/10.
572 1093/imaiai/iaaa017](https://doi.org/10.1093/imaiai/iaaa017).

573 Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. Conformal
574 prediction beyond exchangeability. *The Annals of Statistics*, 51(2):816–845, 2023. doi: 10.1214/
575 23-AOS2276.

576 Maayan Baron, Adrian Veres, Samuel L. Wolock, Aubrey L. Faust, Renaud Gaujoux, Amedeo Vet-
577 ere, Jennifer Hyoje Ryu, Bridget K. Wagner, Shai S. Shen-Orr, Allon M. Klein, Douglas A.
578 Melton, and Itai Yanai. A single-cell transcriptomic map of the human and mouse pancreas
579 reveals inter- and intra-cell population structure. *Cell Systems*, 3(4):346–360.e4, 2016. doi:
580 10.1016/j.cels.2016.08.011.

581 Emmanuel Candes, Lihua Lei, and Zhimei Ren. Conformalized survival analysis. *Journal of the
582 Royal Statistical Society: Series B (Statistical Methodology)*, 85(1):24–45, 2023.

583 Michele Caprio, David Stutz, Shuo Li, and Arnaud Doucet. Conformalized credal regions for clas-
584 sification with ambiguous ground truth. *Transactions on Machine Learning Research*, October
585 2024.

586 Maxime Cauchois, Suyash Gupta, and John C. Duchi. Knowing what you know: Valid and validated
587 confidence sets in multiclass and multilabel prediction. *Journal of Machine Learning Research*,
588 22:1–42, 2021.

589 Victor Chernozhukov, Kaspar Wüthrich, and Yinchu Zhu. Distributional conformal prediction. *Pro-
590 ceedings of the National Academy of Sciences*, 118(48), 2021.

594 Tiffany Ding, Anastasios N. Angelopoulos, Stephen Bates, Michael I. Jordan, and Ryan J. Tib-
 595 shirani. Class-conditional conformal prediction with many classes. In *Proceeding of the 37th*
 596 *Conference on Neural Information Processing Systems (NeurIPS)*, 2023.

597

598 Bat-Sheva Einbinder, Shai Feldman, Stephen Bates, Anastasios N. Angelopoulos, Asaf Gendler,
 599 and Yaniv Romano. Label noise robustness of conformal prediction. *arXiv preprint*
 600 *arXiv:2209.14295*, 2024. URL <https://arxiv.org/abs/2209.14295>. Available un-
 601 der CC BY 4.0.

602 Matteo Fontana, Gianluca Zeni, and Simone Vantini. Conformal prediction: a unified review of
 603 theory and new challenges. *Bernoulli*, 29(1):1–23, 2023.

604

605 Hongli Gao, Bin Zhang, Long Liu, Shan Li, Xin Gao, and Bin Yu. A universal framework for single-
 606 cell multi-omics data integration with graph convolutional networks. *Briefings in Bioinformatics*,
 607 24(3):bbad081, 03 2023. ISSN 1477-4054. doi: 10.1093/bib/bbad081. URL <https://doi.org/10.1093/bib/bbad081>.

608

609 Arash Gharehbaghi. *Deep Learning in Time Series Analysis*, pp. 81–88. CRC Press, 2023.

610

611 Subhankar Ghosh, Yuanjie Shi, Taha Belkhoudja, Yan Yan, Janardhan Rao Doppa, and Brian Jones.
 612 Probabilistically robust conformal prediction. In *Proceedings of the 39th Conference on Uncer-
 613 tainty in Artificial Intelligence (UAI)*, volume 216 of *Proceedings of Machine Learning Research*,
 614 pp. 681–690. PMLR, 2023.

615 Hui Guo, Boyu Wang, and Grace Y. Yi. Label correction of crowdsourced noisy annotations with
 616 an instance-dependent noise transition model. In *Proceedings of the 37th Conference on Neural
 617 Information Processing Systems (NeurIPS)*, 2023.

618

619 William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
 620 graphs, 2018. URL <https://arxiv.org/abs/1706.02216>.

621

622 Jianguo Huang, Huajun Xi, Linjun Zhang, Huaxiu Yao, Yue Qiu, and Hongxin Wei. Conformal pre-
 623 diction for deep classifier via label ranking, 2024. URL <https://arxiv.org/abs/2310.06430>.

624

625 Shahana Ibrahim, Tri Nguyen, and Xiao Fu. Deep learning from crowdsourced labels: Coupled
 626 cross-entropy minimization, identifiability, and regularization. In *Proceedings of the International
 627 Conference on Learning Representations (ICLR)*, 2023.

628

629 Vladimir Y Kiselev, Tallulah S Andrews, and Martin Hemberg. Challenges in unsupervised cluster-
 630 ing of single-cell rna-seq data. *Nature Reviews Genetics*, 20(5):273–282, 2019.

630

631 Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric regression.
 632 *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76(1):71–96, 2014.

633

634 Jing Lei, Max G'Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry Wasserman. Distribution-
 635 free predictive inference for regression. *Journal of the American Statistical Association*, 113
 636 (523):1094–1111, 2018. doi: 10.1080/01621459.2017.1307116.

636

637 Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, and Masashi Sugiyama. Provably end-to-end
 638 label-noise learning without anchor points. In *Proceedings of the 38th International Conference
 639 on Machine Learning (ICML)*. PMLR, 2021.

640

641 Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting. *IEEE
 642 Transactions on Pattern Analysis and Machine Intelligence*, 38(3):447–461, 2016. doi: 10.1109/TPAMI.2015.2456899.

643

644 Zhiyuan Liu and Jie Zhou. *Graph Attention Networks*. Springer, Cham, 2020. ISBN 978-3-
 645 031-01587-8. doi: 10.1007/978-3-031-01587-8_7. URL https://doi.org/10.1007/978-3-031-01587-8_7.

646

647 Feiyang Ma and Matteo Pellegrini. Actinn: Automated identification of cell types in single cell rna
 sequencing. *Bioinformatics*, 36(2):533–538, 2020.

648 Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
 649 deep neural networks robust to label noise: A loss correction approach. In *Proceedings of the*
 650 *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.

651

652 Coby Penso and Jacob Goldberger. A conformal prediction score that is robust to label noise. *arXiv*
 653 *preprint arXiv:2405.02648*, 2024. URL <https://arxiv.org/abs/2405.02648>.

654 Coby Penso, Jacob Goldberger, and Ethan Fetaya. Conformal prediction of classifiers with many
 655 classes based on noisy labels. In *Proceedings of Machine Learning Research*, volume 266 of
 656 *Conformal and Probabilistic Prediction with Applications*, pp. 1–14. PMLR, 2025.

657

658 Artem Podkopaev and Aaditya Ramdas. Distribution–free uncertainty quantification for classifica-
 659 tion under label shift. In *Proceedings of the Conference on Uncertainty in Artificial Intelligence*
 660 (*UAI*). PMLR, 2021.

661 Yaniv Romano, Evan Patterson, and Emmanuel J. Candès. Conformalized quantile regression. In
 662 *Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS)*, 2019.

663

664 Yaniv Romano, Matteo Sesia, and Emmanuel J. Candès. Classification with valid and adaptive
 665 coverage. In *Proceedings of the 34th Conference on Neural Information Processing Systems*
 666 (*NeurIPS*), 2020.

667 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning*
 668 *Research*, 9:371–421, 2008.

669

670 Tim Stuart, Avi Srivastava, Caleb A. Lareau, and Rahul Satija. Multimodal single-cell chro-
 671 matin analysis with signac. *bioRxiv*, 2020. URL <https://api.semanticscholar.org/CorpusID:226959324>.

672

673 David Stutz, Abhijit Guha Roy, Tatiana Matejovicova, Patricia Strachan, Ali Taylan Cemgil, and
 674 Arnaud Doucet. Conformal prediction under ambiguous ground truth. *Transactions on Machine*
 675 *Learning Research*, 2023.

676

677 Yuqi Tan and Patrick Cahan. Singlecellnet: A computational tool to classify single cell rna-seq data
 678 across platforms and across species. *Cell Systems*, 9(2):207–213, 2019.

679

680 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal pre-
 681 diction under covariate shift. *Advances in Neural Information Processing Systems*, 32, 2019.

682

683 Vladimir Vovk. Conditional validity of inductive conformal predictors. In *JMLR: Workshop and*
 684 *Conference Proceedings, Asian Conference on Machine Learning (ACML)*, pp. 475–490, 2012.

685

686 Vladimir Vovk, Alexander Gammerman, and Craig Saunders. Machine-learning applications of
 687 algorithmic randomness. In *Proceedings of the International Conference on Machine Learning*
 688 (*ICML*), pp. 444–453, 1999.

689

690 Vladimir Vovk, Alex Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random World*.
 691 Springer, New York, 2005.

692

693 Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, and Masashi Sugiyama.
 694 Are anchor points really indispensable in label-noise learning? In *Advances in Neural Information*
 695 *Processing Systems (NeurIPS)*, 2019.

696

697 Soroush H. Zargarbashi, Simone Antonelli, and Aleksandar Bojchevski. Conformal prediction sets
 698 for graph neural networks. In *Proceedings of the 40th International Conference on Machine*
 699 *Learning*, volume 202 of *Proceedings of Machine Learning Research*, 2023.

700

701

702 APPENDICES: TECHNICAL DETAILS AND EXTENDED ANALYSIS RESULTS
 703

706 A	Proofs of Theorems	14
707 B	Details about Pseudo-Anchor Points	19
708 C	Deep Neural Networks	21
709 D	Extended Results	22

711 A PROOFS OF THEOREMS
 712

713 A.1 PROOF OF THEOREM 1
 714

715 First, we comment that in defining anchor points, it is implicitly assumed that an instance x can be
 716 an anchor point for at most one class. That is, if $\mathbb{P}(Y = k|X = x) = 1$, then $\mathbb{P}(Y = j|X = x) = 0$
 717 for any $j \neq k$. However, each class can have multiple anchor points; having $\mathbb{P}(Y = k|X = x) = 1$
 718 does not exclude $\mathbb{P}(Y = k|X = x^*) = 1$ for those instances x^* that are not identical to x .
 719

720 *Proof of Theorem 1:* First we show the ‘ \implies ’ direction, which is immediate from the following
 721 derivations:
 722

$$\begin{aligned}
 & \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)}|X = x) \\
 &= \sum_{j \in \mathcal{Y}} \left\{ \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)}|Y = j, X = x) \mathbb{P}(Y = j|X = x) \right\} \\
 &= \sum_{j \neq k} \left\{ \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)}|Y = j, X = x) \mathbb{P}(Y = j|X = x) \right\} \\
 &\quad + \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)}|Y = k, X = x) \mathbb{P}(Y = k|X = x) \\
 &= \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)}|Y = k, X = x), \tag{A.1}
 \end{aligned}$$

734 where we use the conditions for anchor points.
 735

736 Next, we show the ‘ \iff ’ direction. Indeed, applying (A.1) to the condition
 737

$$\mathbb{P}(\tilde{Y}^{(r)} = k|X = x) = \mathbb{P}(\tilde{Y}^{(r)} = k|Y = k, X = x)$$

738 leads to
 739

$$\begin{aligned}
 & \sum_{j \neq k} \mathbb{P}(\tilde{Y}^{(r)} = k|Y = j, X = x) \mathbb{P}(Y = j|X = x) \\
 &+ \mathbb{P}(\tilde{Y}^{(r)} = k|Y = k, X = x) \{ \mathbb{P}(Y = k|X = x) - 1 \} = 0,
 \end{aligned}$$

740 which is equivalently written as
 741

$$\sum_{j \neq k} \left\{ \mathbb{P}(\tilde{Y}^{(r)} = k|Y = j, X = x) - \mathbb{P}(\tilde{Y}^{(r)} = k|Y = k, X = x) \right\} \mathbb{P}(Y = j|X = x) = 0.$$

742 By Assumption 1 and the fact that $\mathbb{P}(Y = j|X = x) \geq 0$ for all $j \neq k$, we conclude that
 743

$$\mathbb{P}(Y = j|X = x) = 0 \quad \text{for all } j \neq k,$$

744 and thus yielding
 745

$$\mathbb{P}(Y = k|X = x) = 1.$$

754 \square
 755

756 A.2 PROOF OF THEOREM 3
757

758 To prove Theorem 3, we first show the following lemma.

759 **Lemma 1.** Suppose $\{c_1, \dots, c_m; c_{m+1}\}$ is a sequence of constants, taking values in $[K]$. For $k \in$
760 $[K]$ and $\alpha \in (0, 1)$, define

761
$$\begin{aligned} \mathcal{I}_k &= \{i \in [m] : c_i \leq k\}, \\ 762 k(\alpha) &= \inf\{k \in [K] : |\mathcal{I}_k| \geq (m+1)(1-\alpha)\}, \text{ and} \\ 763 \mathcal{J} &= \{i \in [m] : c_i < c_{m+1}\}. \end{aligned}$$

764 Then “ $c_{m+1} > k(\alpha)$ ” iff “ $|\mathcal{J}| > (m+1)(1-\alpha)$ ”.765 *Proof.* Show “ \implies ”: For any $i_0 \in \mathcal{I}_{k(\alpha)}$, we have that $c_{i_0} \leq k(\alpha)$. Then by the condition $c_{m+1} >$
766 $k(\alpha)$, $c_{i_0} < c_{m+1}$, leading to $i_0 \in \mathcal{J}$ by definition of \mathcal{J} . Therefore,

767
$$\mathcal{I}_{k(\alpha)} \subset \mathcal{J},$$

768 yielding $|\mathcal{I}_{k(\alpha)}| \leq |\mathcal{J}|$. Then applying definition of $k(\alpha)$ shows $(m+1)(1-\alpha) \leq |\mathcal{J}|$.769 Show “ \impliedby ”: We show the conclusion by contradiction. If the conclusion does not hold, then
770 $c_{m+1} \leq k(\alpha)$, implying that $c_i < k(\alpha)$ for any $i \in \mathcal{J}$. Consequently, $\max\{c_i : i \in \mathcal{J}\} < k(\alpha)$.
771 Thus, there exists k_0 such that $\max\{c_i : i \in \mathcal{J}\} < k_0 < k(\alpha)$, showing that

772
$$\mathcal{J} \subset \mathcal{I}_{k_0}. \tag{A.2}$$

773 By the condition $|\mathcal{J}| > (m+1)(1-\alpha)$, we obtain $|\mathcal{I}_{k_0}| > (m+1)(1-\alpha)$. On the other hand, by
774 the definition of $k(\alpha)$, we conclude that $k(\alpha) \leq k_0$, which contradicts (A.2). \square 775 *Proof of Theorem 3.* By definition, for any $(x, y) \in \mathcal{D}^c$ and any $k \in [K]$,

776
$$S(x, \tilde{y}; y) \leq k \iff y \in \mathcal{C}(x, \tilde{y}; k). \tag{A.3}$$

777 Then for any $\alpha \in (0, 1)$,

778
$$\begin{aligned} \hat{k}^c(\alpha) &= \min\{k \in [K] : |\{i \in \mathcal{A}^c : y_i \in \mathcal{C}(x_i, \tilde{y}_i; k)\}| \geq (n^c + 1)(1-\alpha)\} \\ 779 &= \min\{k \in [K] : |\{i \in \mathcal{A}^c : S(x_i, \tilde{y}_i; y_i) \leq k\}| \geq (n^c + 1)(1-\alpha)\} \end{aligned}$$

780 Because $\{S(X_i, \tilde{Y}_i; Y_i)\}_{i \in \mathcal{A}^c}$ and $S(X, \tilde{Y}; Y)$ are exchangeable random variables as stated in Assumption 4, so

781
$$U := |\{i \in \mathcal{A}^c : S(X, \tilde{Y}; Y) > S(x_i, \tilde{y}_i; y_i)\}|$$

782 is stochastically dominated by the discrete uniform distribution on $\{0, 1, \dots, n^c\}$. When the calibration
783 scores are almost surely distinct (or when random tie-breaking is used to break ties), exchangeability
784 implies that U follows a uniform distribution on $\{0, 1, \dots, n^c\}$.

785 Consequently, by (A.3) and Lemma 1,

786
$$\begin{aligned} 787 \mathbb{P}\{Y \notin \mathcal{C}(X, \tilde{Y}; k^c(\alpha))\} \\ 788 &= \mathbb{P}\{S(X, \tilde{Y}; Y) > k^c(\alpha)\} \\ 789 &= \mathbb{P}\{|\{i \in \mathcal{A}^c : S(X, \tilde{Y}; Y) > S(x_i, \tilde{y}_i; y_i)\}| > (n^c + 1)(1-\alpha)\} \\ 790 &= \mathbb{P}\{U > (n^c + 1)(1-\alpha)\} \\ 791 &= \sum_{u > (n^c + 1)(1-\alpha)} \frac{1}{n^c + 1} \\ 792 &= \frac{n^c - \lceil (n^c + 1)(1-\alpha) \rceil + 1}{n^c + 1} \\ 793 &= 1 - \frac{\lceil (n^c + 1)(1-\alpha) \rceil}{n^c + 1}, \end{aligned}$$

810 where the second last step is due to the fact that $n^c - \lceil (n^c + 1)(1 - \alpha) \rceil + 1$ integers u satisfy
 811 “ $u > (n^c + 1)(1 - \alpha)$ ”. Therefore,
 812

$$813 \mathbb{P}\{\mathbf{Y} \in \mathcal{C}(\mathbf{X}, \tilde{\mathbf{Y}}; k^c(\alpha))\} = \frac{\lceil (n^c + 1)(1 - \alpha) \rceil}{n^c + 1}. \\ 814$$

815 By definition of ceiling and floor functions, it is immediate

$$816 \frac{(n^c + 1)(1 - \alpha)}{n^c + 1} \leq \frac{\lceil (n^c + 1)(1 - \alpha) \rceil}{n^c + 1} < \frac{(n^c + 1)(1 - \alpha) + 1}{n^c + 1}, \\ 817$$

818 i.e.,

$$819 1 - \alpha \leq \frac{\lceil (n^c + 1)(1 - \alpha) \rceil}{n^c + 1} < 1 - \alpha + \frac{1}{n^c + 1}, \\ 820$$

821 therefore, the conclusion follows. □

824 A.3 PROOF OF PROPOSITION 1 AND THEOREM 4

825 First, we present two lemmas, which will be used to prove Proposition 1.

826 **Lemma 2.** *For any sequences $\{a_r\}_{r \in [R]}$ and $\{b_r\}_{r \in [R]}$ of real values,*

$$827 \prod_{r=1}^R a_r - \prod_{r=1}^R b_r = \sum_{s=1}^R \left(\prod_{r < s} a_r \right) (a_s - b_s) \left(\prod_{r > s} b_r \right). \\ 828$$

829 *Proof.* For ease of exposition, define

$$830 \begin{aligned} P_{R+1} &= \prod_{r=1}^R a_r \\ 831 P_s &= \left(\prod_{r=1}^{s-1} a_r \right) \left(\prod_{r=s}^R b_r \right) \quad \text{for } s = 2, \dots, R; \\ 832 P_1 &= \prod_{r=1}^R b_r. \end{aligned} \\ 833$$

834 Then

$$835 \begin{aligned} &\prod_{r=1}^R a_r - \prod_{r=1}^R b_r \\ 836 &= (P_{R+1} - P_R) + (P_R - P_{R-1}) + \dots + (P_3 - P_2) + (P_2 - P_1) \\ 837 &= \sum_{s=1}^R (P_{s+1} - P_s). \end{aligned} \tag{A.4} \\ 838$$

839 By definition, it is clear that for $s = 2, \dots, R$,

$$840 P_s = \left(\prod_{r=1}^{s-1} a_r \right) b_s \left(\prod_{r=s+1}^R b_r \right) \text{ and } P_{s+1} = \left(\prod_{r=1}^{s-1} a_r \right) a_s \left(\prod_{r=s+1}^R b_r \right), \\ 841$$

842 which leads to

$$843 P_{s+1} - P_s = \left(\prod_{r=1}^{s-1} a_r \right) (a_s - b_s) \left(\prod_{r=s+1}^R b_r \right). \\ 844$$

845 Then plugging this identity into (A.4) proves the result. □

864 **Lemma 3.** Suppose Assumptions 3 and 5 hold. Let $\text{TV}(P_1, P_2)$ denote the total variation distance
 865 between distributions P_1 and P_2 . Then for any $x_0, x \in \mathcal{X}$,

$$867 \quad \text{TV}(P_x, P_{x_0}) \leq \frac{1}{2}(1+R)K^{R+1}L\|x - x_0\|. \\ 868 \\ 869 \\ 870$$

871 *Proof.* By Assumption 5, for all $y \in [K]$ and all $r \in [R], j \in [K]$,

$$872 \quad |p_x(y) - p_{x_0}(y)| \leq L\|x - x_0\| \quad \text{and} \quad |q_x^{(r)}(j | y) - q_{x_0}^{(r)}(j | y)| \leq L\|x - x_0\|. \quad (\text{A.5}) \\ 873 \\ 874$$

875 Then by Assumption 3,

$$876 \quad P_x(y, \tilde{y}) := \mathbb{P}(Y = y, \tilde{Y} = \tilde{y} | X = x) = p_x(y) \prod_{r=1}^R q_x^{(r)}(\tilde{y}^{(r)} | y), \\ 877 \\ 878$$

879 and similarly for $P_{x_0}(y, \tilde{y})$. Therefore, applying the triangle inequality, we obtain

$$880 \quad \begin{aligned} & |P_x(y, \tilde{y}) - P_{x_0}(y, \tilde{y})| \\ 881 &= \left| p_x(y) \prod_{r=1}^R q_x^{(r)}(\tilde{y}^{(r)} | y) - p_{x_0}(y) \prod_{r=1}^R q_{x_0}^{(r)}(\tilde{y}^{(r)} | y) \right| \\ 882 &= \left| p_x(y) \prod_{r=1}^R q_x^{(r)}(\tilde{y}^{(r)} | y) - p_{x_0}(y) \prod_{r=1}^R q_x^{(r)}(\tilde{y}^{(r)} | y) \right. \\ 883 &\quad \left. + p_{x_0}(y) \prod_{r=1}^R q_x^{(r)}(\tilde{y}^{(r)} | y) - p_{x_0}(y) \prod_{r=1}^R q_{x_0}^{(r)}(\tilde{y}^{(r)} | y) \right| \\ 884 &\leq |p_x(y) - p_{x_0}(y)| \prod_{r=1}^R q_x^{(r)}(\tilde{y}^{(r)} | y) + p_{x_0}(y) \left| \prod_{r=1}^R q_x^{(r)}(\tilde{y}^{(r)} | y) - \prod_{r=1}^R q_{x_0}^{(r)}(\tilde{y}^{(r)} | y) \right| \\ 885 &\leq |p_x(y) - p_{x_0}(y)| + \left| \prod_{r=1}^R q_x^{(r)}(\tilde{y}^{(r)} | y) - \prod_{r=1}^R q_{x_0}^{(r)}(\tilde{y}^{(r)} | y) \right|, \end{aligned} \quad (\text{A.6}) \\ 886 \\ 887 \\ 888 \\ 889 \\ 890 \\ 891 \\ 892 \\ 893 \\ 894 \\ 895 \\ 896$$

897 because each probability factor $q_x^{(r)}(\cdot | y)$ lies in $[0, 1]$ and $p_{x_0}(y) \leq 1$.

898 Applying Lemma 2 with $a_r = q_x^{(r)}(\tilde{y}^{(r)} | y)$, $b_r = q_{x_0}^{(r)}(\tilde{y}^{(r)} | y)$, we obtain

$$900 \quad \left| \prod_{r=1}^R q_x^{(r)}(\tilde{y}^{(r)} | y) - \prod_{r=1}^R q_{x_0}^{(r)}(\tilde{y}^{(r)} | y) \right| \leq \sum_{r=1}^R |q_x^{(r)}(\tilde{y}^{(r)} | y) - q_{x_0}^{(r)}(\tilde{y}^{(r)} | y)|. \\ 901 \\ 902 \\ 903$$

904 Combining with (A.5) and (A.6) yields

$$905 \quad |P_x(y, \tilde{y}) - P_{x_0}(y, \tilde{y})| \leq L\|x - x_0\| + \sum_{r=1}^R L\|x - x_0\| = (1+R)L\|x - x_0\|. \quad (\text{A.7}) \\ 906 \\ 907 \\ 908$$

909 Since the total variation distance between P_x and P_{x_0} is

$$910 \quad \text{TV}(P_x, P_{x_0}) = \frac{1}{2} \sum_{y \in [K]} \sum_{\tilde{y} \in [K]^R} |P_x(y, \tilde{y}) - P_{x_0}(y, \tilde{y})|, \\ 911 \\ 912$$

913 then using (A.7) and the fact that there are K possible labels and K^R possible annotator combina-
 914 tions, we obtain

$$915 \quad \text{TV}(P_x, P_{x_0}) \leq \frac{1}{2}(1+R)K^{R+1}L\|x - x_0\|. \\ 916 \\ 917$$

□

918 *Proof of Proposition 1.* For $x \in \mathcal{X}$, define
 919

$$920 \quad g(x) = \mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}) \mid X = x\}.$$

921 Then
 922

$$\begin{aligned} 923 \quad \mathbb{E}\{g(X)\} &= \int_{x \in \mathcal{X}} g(x) f_X(x) dx \\ 924 \\ 925 &= \int_{x \in \mathcal{X}} \mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}) \mid X = x\} f_X(x) dx \\ 926 \\ 927 &= \int_{x \in \mathcal{X}} \left\{ \sum_{(y, \tilde{y}) : y \in C_\alpha(x, \tilde{y})} f(y, \tilde{y} \mid x) \right\} f_X(x) dx \\ 928 \\ 929 &= \int_{x \in \mathcal{X}} \sum_{(y, \tilde{y}) : y \in C_\alpha(x, \tilde{y})} f(y, \tilde{y} \mid x) f_X(x) dx \\ 930 \\ 931 &= \int_{x \in \mathcal{X}} \sum_{(y, \tilde{y}) : y \in C_\alpha(x, \tilde{y})} f(y, \tilde{y}, x) dx \\ 932 \\ 933 &= \mathbb{P}\{Y \in C_\alpha(X, \tilde{Y})\} \\ 934 \\ 935 &\geq 1 - \alpha, \end{aligned} \tag{A.8}$$

936 where the last step comes from Theorem 3.
 937

938 Let
 939

$$\mathcal{B}_{\alpha, \gamma} := \mathcal{X} \setminus \mathcal{V}_{\alpha, \gamma} = \{x_0 \in \mathcal{X} : g(x_0) < 1 - \alpha - \gamma\}.$$

940 Then writing $\mathcal{X} = \mathcal{B}_{\alpha, \gamma} \cup \mathcal{V}_{\alpha, \gamma}$, we obtain
 941

$$\begin{aligned} 942 \quad \mathbb{E}\{1 - g(X)\} &= \mathbb{E}[\{1 - g(X)\}\{1(X \in \mathcal{B}_{\alpha, \gamma}) + 1(X \in \mathcal{V}_{\alpha, \gamma})\}] \\ 943 &= \mathbb{E}[\{1 - g(X)\}1(X \in \mathcal{B}_{\alpha, \gamma})] + \mathbb{E}[\{1 - g(X)\}1(X \in \mathcal{V}_{\alpha, \gamma})] \\ 944 &= \int \{1 - g(x)\}1(x \in \mathcal{B}_{\alpha, \gamma}) f_X(x) dx + \int \{1 - g(x)\}1(x \in \mathcal{V}_{\alpha, \gamma}) f_X(x) dx \\ 945 &= \int_{x \in \mathcal{B}_{\alpha, \gamma}} \{1 - g(x)\} f_X(x) dx + \int_{x \in \mathcal{V}_{\alpha, \gamma}} \{1 - g(x)\} f_X(x) dx \\ 946 &\geq (\alpha + \delta) \int_{x \in \mathcal{B}_{\alpha, \gamma}} f_X(x) dx + 0 \\ 947 &= (\alpha + \delta) \mathbb{P}(X \in \mathcal{B}_{\alpha, \gamma}), \end{aligned} \tag{A.9}$$

948 where we used $1 - g(X) > \alpha + \gamma$ on $\mathcal{B}_{\alpha, \gamma}$ and $1 - g(X) \geq 0$ always.
 949

950 On the other hand, (A.8) implies
 951

$$952 \quad \mathbb{E}\{1 - g(X)\} = 1 - \mathbb{E}\{g(X)\} \leq \alpha. \tag{A.10}$$

953 Combining (A.9) and (A.10) gives
 954

$$955 \quad \alpha \geq \mathbb{E}[1 - g(X)] \geq (\alpha + \delta) \mathbb{P}(X \in \mathcal{B}_{\alpha, \gamma})$$

956 leading to
 957

$$958 \quad \mathbb{P}(X \in \mathcal{B}_{\alpha, \gamma}) \leq \frac{\alpha}{\alpha + \gamma}.$$

959 Therefore
 960

$$961 \quad \mathbb{P}(X \in \mathcal{V}_{\alpha, \gamma}) = 1 - \mathbb{P}(X \in \mathcal{B}_{\alpha, \gamma}) \geq 1 - \frac{\alpha}{\alpha + \gamma},$$

962 which proves the result. \square
 963

964

972 *Proof of Theorem 4.* For $x \in \mathcal{X}$, let
 973

$$974 \quad g(x) = \mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}) \mid X = x\}.$$

975 For any $x \in \mathcal{N}_{\alpha,\gamma}(\rho)$ and any $\epsilon > 0$, there exists $x_0 \in \mathcal{V}_{\alpha,\gamma}$ such that
 976

$$977 \quad \|x - x_0\| < \rho + \epsilon.$$

978 Then by Proposition 3,
 979

$$\begin{aligned} 980 \quad |g(x) - g(x_0)| &= |\mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}) \mid X = x\} - \mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}) \mid X = x_0\}| \\ 981 &\leq \text{TV}(P_x, P_{x_0}) \\ 982 &\leq \frac{1}{2}(1 + R)K^{R+1}L\|x - x_0\| \\ 984 &< \frac{1}{2}(1 + R)K^{R+1}L(\rho + \epsilon). \end{aligned}$$

986 Therefore,
 987

$$\begin{aligned} 988 \quad g(x) &> g(x_0) - \frac{1}{2}(1 + R)K^{R+1}L(\rho + \epsilon) \\ 990 &> 1 - \alpha - \gamma - \frac{1}{2}(1 + R)K^{R+1}L(\rho + \epsilon), \end{aligned} \tag{A.11}$$

992 where the last step come from the fact that $g(x^*) \geq 1 - \alpha - \gamma$ for any $x^* \in \mathcal{V}_{\alpha,\gamma}$. Letting $\epsilon \downarrow 0$
 993 gives equation 5.

994 Finally,
 995

$$\begin{aligned} 996 \quad &\mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}) \mid X \in \mathcal{N}_{\alpha,\gamma}(\rho)\} \\ 997 &= \frac{\mathbb{P}\{Y \in C_\alpha(X, \tilde{Y}), X \in \mathcal{N}_{\alpha,\gamma}(\rho)\}}{\mathbb{P}\{X \in \mathcal{N}_{\alpha,\gamma}(\rho)\}} \\ 999 &= \frac{\int_{x \in \mathcal{N}_{\alpha,\gamma}(\rho)} \sum_{(y, \tilde{y}): y \in C_\alpha(x, \tilde{y})} f(y, \tilde{y}, x) dx}{\int_{x \in \mathcal{N}_{\alpha,\gamma}(\rho)} f_X(x) dx} \\ 1000 &= \frac{\int_{x \in \mathcal{N}_{\alpha,\gamma}(\rho)} \{\sum_{(y, \tilde{y}): y \in C_\alpha(x, \tilde{y})} f(y, \tilde{y} \mid x)\} f_X(x) dx}{\int_{x \in \mathcal{N}_{\alpha,\gamma}(\rho)} f_X(x) dx} \\ 1001 &= \frac{\int_{x \in \mathcal{N}_{\alpha,\gamma}(\rho)} P\{Y \in C_\alpha(X, \tilde{Y}) \mid X = x\} f_X(x) dx}{\int_{x \in \mathcal{N}_{\alpha,\gamma}(\rho)} f_X(x) dx} \\ 1002 &= \frac{\int_{x \in \mathcal{N}_{\alpha,\gamma}(\rho)} g(x) f_X(x) dx}{\int_{x \in \mathcal{N}_{\alpha,\gamma}(\rho)} f_X(x) dx} \\ 1003 &\geq \frac{\int_{x \in \mathcal{N}_{\alpha,\gamma}(\rho)} \{1 - \alpha - \gamma - \frac{1}{2}(1 + R)K^{R+1}L(\rho + \epsilon)\} f_X(x) dx}{\int_{x \in \mathcal{N}_{\alpha,\gamma}(\rho)} f_X(x) dx} \\ 1004 &= 1 - \alpha - \gamma - \frac{1}{2}(1 + R)K^{R+1}L(\rho + \epsilon) \end{aligned}$$

1017 where the second last step is due to equation A.11. When $\rho = 0$, $\mathcal{N}_{\alpha,\gamma}(0) = \mathcal{V}_{\alpha,\gamma}$. \square
 1018

1019 B DETAILS ABOUT PSEUDO-ANCHOR POINTS

1020 Here, we show results for pseudo anchor points.
 1021

1022 **Theorem 5.** *If x is a δ -pseudo anchor point with $\delta \in [0, 1)$, then for $r \in [R]$ and $k \in [K]$,*
 1023

$$1024 \quad (i) \quad (1 - \delta)q_x^{(r)}(\tilde{y}^{(r)} \mid k) \leq \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} \mid X = x) \leq (K - 1)\delta + q_x^{(r)}(\tilde{y}^{(r)} \mid k);$$

$$(ii) \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | X = x) - (K - 1)\delta \leq q_x^{(r)}(\tilde{y}^{(r)} | k) \leq \frac{1}{1-\delta} \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | X = x).$$

1029 *Proof.* Assume that x is a δ -pseudo anchor point for class k . Then expression (A.1) becomes

$$\begin{aligned} & \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | X = x) \\ &= \sum_{j \in \mathcal{Y}} \left\{ \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | Y = j, X = x) \mathbb{P}(Y = j | X = x) \right\} \\ &= \sum_{j \neq k} \left\{ \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | Y = j, X = x) \mathbb{P}(Y = j | X = x) \right\} \\ & \quad + \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | Y = k, X = x) \mathbb{P}(Y = k | X = x) \end{aligned} \quad (\text{B.1})$$

1039 Noting that all probabilities in the first term of (B.1) are nonnegative, then by definition of the
1040 δ -pseudo anchor point for x , we obtain that
1041

$$\mathbb{P}(\tilde{Y}^{(r)} | X = x) \geq (1 - \delta) \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | Y = k, X = x). \quad (\text{B.2})$$

1042 On the other hand, if x is a δ -pseudo anchor point, then
1043

$$\mathbb{P}(Y = j | X = x) \leq \delta \quad \text{for any } j \neq k,$$

1044 therefore, by that all conditional probabilities in (B.1) are between 0 and 1, we obtain that
1045

$$\begin{aligned} & \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | X = x) \\ & \leq \sum_{j \neq k} \left\{ \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | Y = j, X) \times \delta \right\} + q_x^{(r)}(\tilde{y}^{(r)} | k) \mathbb{P}(Y = k | X = x) \\ & \leq \delta \sum_{j \neq k} \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | Y = j, X) + q_x^{(r)}(\tilde{y}^{(r)} | k) \\ & = (K - 1)\delta + q_x^{(r)}(\tilde{y}^{(r)} | k). \end{aligned} \quad (\text{B.3})$$

1057 Combining (B.2) and (B.3) gives us
1058

$$(1 - \delta)q_x^{(r)}(\tilde{y}^{(r)} | k) \leq \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | X = x) \leq (K - 1)\delta + q_x^{(r)}(\tilde{y}^{(r)} | k),$$

1059 leading to
1060

$$\mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | X = x) - (K - 1)\delta \leq q_x^{(r)}(\tilde{y}^{(r)} | k) \leq \frac{1}{1-\delta} \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | X = x), \quad (\text{B.4})$$

1061 which proves (i) and (ii). □
1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

Remark. The inequalities in (B.4) have important implications. In the degenerate situation with $\delta = 0$, i.e., x is an anchor point, (B.4) recovers the identity:

$$\mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | Y = k, X = x) = \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | X = x).$$

1074 When δ is extremely small such that $(K - 1)\delta$ is close to 0 and $\frac{1}{1-\delta}$ is close to 1, we have
1075

$$\mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | Y = k, X = x) \approx \mathbb{P}(\tilde{Y}^{(r)} = \tilde{y}^{(r)} | X = x),$$

1076

1077

1078

1079

showing that a pseudo-anchor point can be practically regarded as an anchor point.

1080 **C DEEP NEURAL NETWORKS**
10811082 We describe architectures ψ_A , ψ_C , and ψ_S in detail. Let
1083

1084
$$\mathcal{S}^{K-1} = \left\{ (s_1, \dots, s_K)^\top : s_j \geq 1 \quad \text{for } j \in [K] \quad \text{and} \quad \sum_{j=1}^K s_j = 1 \right\}$$

1085

1086 denote the $(K - 1)$ -dimensional simplex, and let
1087

1088
$$G : \mathbb{R}^K \longrightarrow \mathcal{S}^{K-1}$$

1089

1090 denote a softmax function, given by
1091

1092
$$G(z) = \begin{pmatrix} \frac{\exp(z_1)}{\sum_{j=1}^K \exp(z_j)} \\ \frac{\exp(z_2)}{\sum_{j=1}^K \exp(z_j)} \\ \vdots \\ \frac{\exp(z_K)}{\sum_{j=1}^K \exp(z_j)} \end{pmatrix} \quad \text{for } z = (z_1, \dots, z_K)^\top.$$

1093
1094
1095
1096
1097

1098 For $r \in [R]$, we now describe the conditional probability mass function of $\tilde{Y}^{(r)}$, given Y and X .
1099 Specifically, for $k \in [K]$, we specify the vector of the conditional probability mass functions of
1100 $\tilde{Y}^{(r)}$, given $Y = k$ and $X = x$ as:
1101

1102
$$\begin{pmatrix} \mathbb{P}(\tilde{Y}^{(r)} = 1 | Y = k, X = x) \\ \mathbb{P}(\tilde{Y}^{(r)} = 2 | Y = k, X = x) \\ \vdots \\ \mathbb{P}(\tilde{Y}^{(r)} = K | Y = k, X = x) \end{pmatrix} = G \left\{ \begin{pmatrix} \alpha_1^{(r)} \\ \alpha_2^{(r)} \\ \vdots \\ \alpha_K^{(r)} \end{pmatrix} \psi^A(x) + \begin{pmatrix} \beta_1^{(k)} \\ \beta_2^{(k)} \\ \vdots \\ \beta_K^{(k)} \end{pmatrix} \psi^C(x) \right\}$$

1103
1104
1105
1106
1107

1108 where $\alpha^{(r)} \triangleq (\alpha_1^{(r)}, \dots, \alpha_K^{(r)})^\top$ and $\beta^{(k)} \triangleq (\beta_1^{(k)}, \dots, \beta_K^{(k)})^\top$ are weights; and $\psi^A(x)$ and $\psi^C(x)$ are
1109 functions facilitating the dependence on the annotator's skills and the class label.
11101111 Expressing this elementwisely, we obtain that for $j \in [K]$,
1112

1113
$$\mathbb{P}(\tilde{Y}^{(r)} = j | Y = k, X = x) = \frac{\exp\{\langle \alpha_j^{(r)}, \psi^A(x) \rangle + \langle \beta_j^{(k)}, \psi^C(x) \rangle\}}{\sum_{l=1}^K \exp\{\langle \alpha_l^{(r)}, \psi^A(x) \rangle + \langle \beta_l^{(k)}, \psi^C(x) \rangle\}}. \quad (\text{C.1})$$

1114

1115 Here, the weights $\alpha^{(r)}$ and $\beta^{(k)}$ and the functions $\psi^A(x_i)$ and $\psi^C(x)$ are unknown, which need to be
1116 trained using the data $\bar{\mathcal{D}}_{0,k}$ or its subset.
11171118 To flexibly reflect possibly different effects of the annotator expertise (r) and the ground truth (k) in
1119 the annotation process, we employ deep neural network (DNN) architectures to describe $\psi^A(x_i)$ and
1120 $\psi^C(x_i)$. Specifically, we specify $\psi^A(x_i)$ as a network with an input layer and an output layer that are
1121 linked by $H^A - 1$ hidden layers, where the h th hidden layer has L_h^A nodes for $h = 1, \dots, H^A - 1$.
1122 Let $L^A = (L_0^A, L_1^A, \dots, L_{H^A}^A)^\top$ denote the width vector for the network, with $L_0^A = p$ for the input
1123 layer that records measurements of p elements of x_i , and $L_{H^A}^A = 1$ for the output layer. The
1124 network architecture $\{H^A, L^A\}$ is characterized by a sequence of linear and nonlinear functions,
1125 approximating $\psi^A(x)$ by
1126

1127
$$\hat{\psi}^A(\theta^A; x) \triangleq W_{H^A}^A \sigma_{H^A-1}^A \left[\dots \sigma_2^A \left\{ W_2^A \sigma_1^A (W_1^A x + b_1^A) + b_2^A \right\} + b_3^A \dots \right] + b_{H^A}^A, \quad (\text{C.2})$$

1128

1129 or equivalently,
1130

1131
$$\hat{\psi}^A(\theta; x) \triangleq g(H^A; x),$$

1132

1133 where the g functions is determined by the recursive equation
1134

1135
$$g(j; x) = W_j^A g(j-1; x) + b_j^A \quad \text{for } j = 2, \dots, H^A;$$

1136

1137 with
1138

1139
$$g(1; x) = \sigma_1^A (W_1^A x + b_1^A).$$

1140

Figure 4: Confusion Matrices of predicted cells vs true cell types for both datasets

Here, for $h = 1, \dots, H^A$, W_h^A is an $L_h^A \times L_{h-1}^A$ weight matrix, $b_h^A \in \mathbb{R}^{L_h^A}$ is the bias vector in layer h , θ^A is the parameter vector formed by stacking $\{W_h^A, b_h^A\}_{h=1}^{H^A}$ from bottom to top, σ_h^A is a user-specified activation function that operates elementwise (e.g, a ReLu function), and x is a p -dimensional argument.

Analogously, we specify $\psi^c(x)$ as a network, using similar notation but replacing the subscript A with c for the relevant quantities. Let $\theta = (\theta^{AT}, \theta^{CT}; \alpha^{(r)}, \beta^{(k)} : r \in [R], k \in [K])^T$. As a result, the conditional probability in (C.1) is modeled as follows:

$$\mathbb{P}(\tilde{Y}^{(r)} = j | Y = k, X = x) = \frac{\exp\{\langle \alpha_j^{(r)}, \hat{\psi}^A(\theta^A; x) \rangle + \langle \beta_j^{(k)}, \hat{\psi}^c(\theta^c; x) \rangle\}}{\sum_{l=1}^K \exp\{\langle \alpha_l^{(r)}, \hat{\psi}^A(\theta^A; x) \rangle + \langle \beta_l^{(k)}, \hat{\psi}^c(\theta^c; x) \rangle\}}.$$

D EXTENDED RESULTS

We include per-class coverage tables, histograms, and plots to supplement the analysis results in Section 5.

Table 3: Predicted versus annotated cell types

	B cell	CD4 T cell	CD8 T cell	NK cell	Plasma cell	cDC	cMono	ncMono	pDC
B cell	75	0	0	0	0	0	0	0	0
CD4 T cell	0	363	8	0	0	0	0	0	0
CD8 T cell	0	18	181	4	0	0	0	0	0
NK cell	0	0	5	76	0	0	0	0	0
Plasma cell	0	0	0	0	2	0	0	0	0
cDC	0	0	0	0	0	6	0	0	0
cMono	0	0	0	0	0	0	123	0	0
ncMono	0	0	0	0	0	0	0	36	0
pDC	0	0	0	0	0	1	0	0	2

Table 4: Per-class classification report

	B cell	CD4 T cell	CD8 T cell	NK cell	Plasma cell	cDC	cMono	ncMono	pDC	Accuracy	Macro Avg	Weighted Avg
Precision	1.000	0.953	0.933	0.950	1.000	0.857	1.000	1.000	1.000	0.960	0.966	0.960
Recall	1.000	0.978	0.892	0.938	1.000	1.000	1.000	1.000	0.667	0.960	0.942	0.960
F1-score	1.000	0.965	0.912	0.944	1.000	0.923	1.000	1.000	0.800	0.960	0.949	0.960
Support	75	371	203	81	2	6	123	36	3	0.960	0.900	0.900

1188
 1189
 1190
 1191 Table 5: Performance comparison on the *Baron3* dataset using different methods. Metrics include
 1192 ROC–AUC and PR–AUC.
 1193

Model	ROC–AUC	PR–AUC
GCN	0.9942	0.9815
MLP	0.9881	0.9799
GAT	0.9867	0.9738
GraphSAGE	0.9909	0.9803
SingleCellNet	0.9866	0.9756
ACTINN	0.9889	0.9804
Proposed Anchor-based CP	0.9953	0.9803

1203
 1204
 1205
 1206
 1207
 1208
 1209 Table 6: Comparison of conformal prediction baselines across Baron3 (14–cell types) and PBMC2
 1210 (Immune dataset). Metrics are empirical coverage and average set size for target coverage levels
 1211 {0.80, 0.85, 0.90, 0.95}.
 1212

(a) Baron3 Dataset				(b) PBMC2 Dataset			
Method	Target	Emp. Cov.	Set Size	Method	Target	Emp. Cov.	Set Size
APS	0.80	0.967	14.49	APS	0.80	0.998	4.40
	0.85	0.981	14.68		0.85	1.000	4.94
	0.90	0.986	14.74		0.90	1.000	5.45
	0.95	0.986	14.74		0.95	1.000	6.20
RAPS	0.80	0.780	10.93	RAPS	0.80	0.992	4.53
	0.85	0.833	11.69		0.85	0.992	5.09
	0.90	0.889	12.50		0.90	0.992	5.40
	0.95	0.947	13.32		0.95	0.993	5.84
SAPS	0.80	0.815	11.39	SAPS	0.80	0.903	1.00
	0.85	0.860	11.93		0.85	0.903	1.00
	0.90	0.908	12.66		0.90	0.913	1.04
	0.95	0.954	13.34		0.95	0.958	1.36
SoftCP	0.80	0.793	10.94	SoftCP	0.80	0.927	1.00
	0.85	0.860	11.87		0.85	0.927	1.00
	0.90	0.911	12.67		0.90	0.927	1.00
	0.95	0.943	13.18		0.95	0.953	1.09
Top- k	0.80	0.804	12.00	Top- k	0.80	0.947	1.00
	0.85	0.882	13.00		0.85	0.947	1.00
	0.90	0.949	14.00		0.90	0.947	1.00
	0.95	0.949	14.00		0.95	0.998	2.00