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ABSTRACT

Learning predictive models from noisy annotations is a challenge in modern ma-
chine learning, particularly in domains where labels are obtained from multiple
imperfect annotators. In this work, we introduce an anchor-based conformal pre-
diction framework that provides rigorous uncertainty guarantees even in the pres-
ence of label noise. Our method identifies pseudo-anchors by selecting samples
with strong agreement across annotators, uses these anchors to train a base predic-
tor, and calibrates top-k conformal sets to ensure valid coverage. This construc-
tion produces prediction sets that are both reliable and compact, while explic-
itly accounting for annotation disagreement. Our results show that anchor-guided
conformal prediction attains coverage close to nominal targets while producing
smaller prediction sets and maintaining robustness in the presence of noisy labels.
Although evaluated on single-cell data, the framework more generally offers a
principled way to integrate multiple noisy annotator signals with conformal pre-
diction, enabling reliable uncertainty estimates under imperfect supervision. This
enables reliable uncertainty estimates in settings where ground-truth labels are
scarce, expensive to obtain, or inherently ambiguous, and highlights how confor-
mal methods can be applied to more realistic and noisy supervision scenarios.

1 INTRODUCTION

Learning under noisy supervision has been extensively studied along several complementary line.
Classical strategies include noise-robust losses and label-correction techniques (Natarajan et al.,
2013; Patrini et al., 2017b), as well as importance reweighting to correct risk under class-conditional
noise (Liu & Tao, 2015). Robust training schemes further mitigate overfitting to corrupted labels
via noise-tolerant objectives, bootstrapping, sample selection, and curriculum learning (Reed et al.,
2014; Ghosh et al., 2017; Zhang & Sabuncu, 2018; Jiang et al., 2018; Han et al., 2018). Other ap-
proaches detect and relabel suspected errors using confident estimates or mixture modeling (North-
cutt et al., 2021; Li et al., 2020), and anchor-based methods leverage (approximate) class-pure
examples to identify noise transitions, with recent work exploring weaker conditions (Xia et al.,
2019). Broad surveys synthesize these strands and practical considerations for modern deep learn-
ing (Han et al., 2020). A complementary direction explicitly models annotators, treating labels as
noisy signals from multiple sources and inferring latent ground truth probabilistically (Dawid &
Skene, 1979; Raykar et al., 2010; Rodrigues & Pereira, 2018). While effective in crowd-sourced or
multi-annotator settings, these methods often assume parametric error forms and may not capture
structured biological ambiguity (e.g., overlapping cell states) in single-cell data.

Conformal prediction provides an orthogonal perspective, focusing on uncertainty quantification
with minimal assumptions (exchangeability of data) yet guaranteeing finite-sample validity (Vovk
et al., 2005; Shafer & Vovk, 2008). Recent advances have extended conformal prediction to modern
learning settings, including split conformal prediction (Lei et al., 2018), conformalized quantile re-
gression (Romano et al., 2019), distributional conformal prediction (Chernozhukov et al., 2021),
deep classifiers (Romano et al., 2020), covariate shift (Tibshirani et al., 2019), and multi-label
outputs (Angelopoulos et al., 2022). However, conformal prediction under noisy annotations has
received limited attention, and methods that integrate annotator disagreement into the calibration
process remain scarce.
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1.1 MOTIVATION AND RELATED WORK

Our motivating application arises in single-cell transcriptomics, where each cell is represented by
a high-dimensional vector of gene expression measurements, with tens of thousands of genes mea-
sured across hundreds of thousands of cells. A central task is to assign each cell to a cell type. In
practice, however, the “true” cell type is typically unknown. Researchers therefore run clustering
algorithms and use their outputs as proxy labels. Different methods often disagree on both the num-
ber of clusters and the cell assignments, highlighting inherent uncertainty in the annotation process.
Treating any one clustering as ground truth risks propagating errors throughout downstream analyses
and undermining reproducibility.

We highlight representative approaches to cell-type classification rather than an exhaustive review.
Early tools rely on unsupervised clustering (e.g., k-means, Louvain, hierarchical) followed by
marker-based annotation (Kiselev et al., 2019; Abdelaal et al., 2019). Supervised frameworks such
as SingleCellNet (Tan & Cahan, 2019) and ACTINN (Ma & Pellegrini, 2019) train neural networks
to predict cell types across datasets. More recently, deep learning has been leveraged to capture com-
plex gene–cell dependencies, including convolutional and recurrent networks (Jia & Benson, 2020)
and graph neural networks (GNNs) that model cell–cell similarity graphs (Brendel et al., 2022). A
recent contribution, scCopulaGNN, combines copula theory with GNNs to model non-linear de-
pendencies and cell–cell relationships in scRNA-seq data, achieving competitive performance on
several benchmark datasets (Min et al., 2024). While these methods deliver strong predictive per-
formance, they typically assume access to high-quality reference annotations, and more importantly,
they do not directly address either annotation noise or the need for calibrated uncertainty.

Our work builds on these threads by addressing the dual challenges of label noise and predictive un-
certainty in single-cell classification. Unlike existing single-cell classifiers, we do not treat annotator
disagreement as noise to be eliminated; instead, we leverage regions of annotator agreement to iden-
tify anchor samples, and integrate these anchors into a conformal prediction framework that provides
rigorous, distribution-free uncertainty guarantees. This bridges the gap between annotation-robust
learning with uncertainty-aware prediction, enabling reliable cell-type assignment in the presence
of ambiguous or noisy supervision.

1.2 OUR CONTRIBUTIONS

A central ingredient of our approach is the use of anchor points and their variants – pseudo–anchor
points: instances that can be assigned to a class with near certainty (exactly or approximately).
Leveraging this property, we learn the latent class distribution and estimate instance-dependent noise
transition models, thereby bypassing the need to observe true labels for general instances. We com-
bine anchors/pseudo-anchors with deep neural networks that jointly model annotator skill and class
structure, yielding a flexible representation of the annotation process.

Point predictions alone are insufficient for deployment; predictions must include quantified uncer-
tainty to reflect randomness from data collection and learning. We therefore integrate conformal
prediction to produce prediction sets with rigorous, distribution-free coverage guarantees. Rather
than outputting a single predicted label, the model returns a set of plausible labels that contains the
truth with high probability. These sets are calibrated on held-out data and adapt to annotator noise,
providing valid and efficient uncertainty quantification. This makes predictions not only accurate
but also trustworthy—especially in biomedical and scientific applications. We make the following
notable contributions:

• We extend the conformal prediction framework to data with noisy labels and formalize true-
label prediction with multiple noisy annotators. We introduce an anchor-based framework
that couples deep neural models of annotator skill and class structure with data-driven an-
chor (and pseudo-anchor) identification, capturing complex annotation processes common
in biomedicine and beyond.

• We integrate conformal prediction to deliver distribution-free, calibrated prediction sets.
The resulting method is robust to annotation noise, flexible in modeling annotator behav-
ior, and principled in its treatment of uncertainty. Although we focus on single-cell clas-
sification, the framework applies broadly to medical imaging, crowdsourcing, and natural
language processing, where noisy labels are the norm.
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• We establish theoretical guarantees and validate the method on two single-cell RNA-seq
datasets, showing strong performance.

2 PROBLEM SETUP AND METHODS

Let xi ∈ Rp denote the feature vector for cell i (e.g., gene expression), associated with an unob-
served true class yi ∈ [K] (e.g., cell type), where [K] = {1, . . . ,K}. For each cell we observe
a vector of noisy labels ỹi = (ỹ

(1)
i , . . . , ỹ

(Ri)
i ) from Ri annotators; for ease of exposition we as-

sume Ri ≡ R (which matches our application datasets). We use uppercase letters Xi, Yi and Ỹ
(with the subscript i sometimes omitted) for the corresponding random variables. We propose a
method for predicting latent true labels from multiple noisy annotators with distribution-free un-
certainty guarantees, using class-specific anchor points: an instance x is an anchor for class k if
P(Y = k | X = x) = 1.

Warm-up and pipeline. In a warm-up stage, we train base models on noisy data (Liu & Tao,
2015) and identify class-specific anchor sets D0,k; let D0 =

⋃
k∈[K]D0,k. For model development,

each D0,k is split into index sets At
k (training) and Ac

k (calibration/hold-out), and we define

Dt
0 =

⋃
k∈[K]

{(xi, ỹi, yi=k) : i ∈ At
k}, Dc

0 =
⋃

k∈[K]

{(xi, ỹi, yi=k) : i ∈ Ac
k}.

We then (i) learn an annotator-dependent transition model parameterized by two deep networks, (ii)
form likelihood-based class scores for point prediction, and (iii) calibrate top-k prediction sets on
held-out anchors. Our full training and inference pipeline is summarized in Algorithm 1.

Annotator transition model. We model annotator behavior and class dependence via two feature
maps, ψA(x) and ψC(x), implemented as feedforward neural networks. For annotator r ∈ [R] and
class j ∈ [K], the probability of reporting class j when the true class is k is modeled by the softmax
transition:

P(
(
Ỹ(r) = j | Y = k, X = x

)
=

exp{⟨α(r)
j ψA(x)⟩+ ⟨β(k)

j ψC(x)⟩
}∑K

ℓ=1 exp
{
⟨α(r)

ℓ ψA(x)⟩+ ⟨β(k)
ℓ , ψC(x)⟩

} , (1)

where α(r)
j captures annotator–specific effects and β(k)

j captures class–specific structure. This pa-

rameterization disentangles annotator-specific effects (via α(r) ≡ {α(r)
j }Rj=1 and ψA) from class-

specific structure (via β(k) ≡ {β(k)
j }Kj=1 and ψC).

Anchors-based likelihood training. Given Dt
0, estimate the model parameters θ =

(θA, θC, {α(r)}Rr=1, {β(k)}Kk=1) by maximizing the log-likelihood of observed annotator labels un-
der 1:

θ̂ = argmax
θ

∑
k∈[K]

∑
i∈At

k

R∑
r=1

K∑
j=1

1{ỹ(r)i = j} logPθ

(
Ỹ(r) = j

∣∣Y = k,X = xi
)
, (2)

where Pθ

(
Ỹ(r) = j

∣∣Y = k,X = xi
)

denotes the probability (1) parameterized by θ. For inference,
we define the annotator-conditional term and the joint class score. Using the fitted parameters θ̂, set

τ
(r)
kj (x) ≡ Pθ̂

(
Ỹ(r) = j

∣∣Y = k,X = x
)
, r ∈ [R], j ∈ [K], (3)

and for an observed pair (xi, ỹi) define

τk(xi, ỹi) ≡
R∏

r=1

K∏
j=1

{
τ
(r)
kj (xi)

}1{ỹ(r)
i =j}

. (4)

Equivalently, viewing the score as a plug-in likelihood under θ̂ yields

τ̂k(x, ỹ) ≡
R∏

r=1

K∏
j=1

{
Pθ̂

(
Ỹ(r) = j

∣∣Y = k,X = x
)}1{ỹ(r)=j}

. (5)
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The product form in 4 assumes conditional independence of annotators given (Y,X):
P(ỹ(1), . . . , ỹ(R) | Y = k,X = x) =

∏R
r=1 P(ỹ(r) | Y = k,X = x). The point predictor

takes the maximum-score class:

ĥ(x, ỹ) = arg max
k∈[K]

τ̂k(x, ỹ).

Conformal Prediction. To quantify uncertainty, we calibrate top-k prediction sets on the held-out
anchors Dc

0. For each (xi, ỹi, yi) ∈ Dc
0, compute the class scores {τ̂k(xi, ỹi)}k∈[K], sort them in

decreasing order to obtain ŷ(1), . . . , ŷ(K), and form the nested sets C(xi, ỹi; k) = {ŷ(1), . . . , ŷ(k)}.
Let ki = min{k : yi ∈ C(xi, ỹi; k)} be the smallest set size that captures the true label. Given
a target miscoverage α ∈ (0, 1), choose k̂c(α) as the ⌈|Dc

0| + 1⌉(1 − α) quantile of {ki : i ∈⋃
k∈[K] Ac

k}. At deployment, the calibrated set predictor returns Cα(x, ỹ) = C(x, ỹ; k̂c(α)), which
achieves marginal coverage at least 1 − α under exchangeability, while keeping sets as small as
possible. The procedure for constructing top-k conformal sets is given in Algorithm 2.

Assumptions and relaxations. Our procedure is developed under a conditional-independence as-
sumption: given the features, annotators label an instance independently. Formally, for any x ∈ X ,
P(Ỹ (1), . . . , Ỹ (R) | X = x) =

∏R
r=1 P(Ỹ (r) | X = x), which reduces learning the label-noise

process to estimating the annotator-specific transition model (1). When this assumption is substan-
tially violated (e.g., correlated annotators), one can replace the product form with a joint model
P(Ỹ (1), . . . , Ỹ (R) | X = x) or incorporate a shared latent factor to capture dependence across
annotators. Within the pool of anchor points D0, the paired variables {Xi, Ỹi} are assumed inde-
pendent across i; they need not be identically distributed, though our coverage statements apply to
the anchor subset that is exchangeable with the corresponding test points. When the size of D0 is
small in applications, we enlarge it with pseudo-anchors: an instance x is a δ-pseudo-anchor for
class k if P(Y = k | X = x) ≥ 1 − δ for 0 ≤ δ < 1, with δ = 0 recovering an anchor; see
Appendix B for details.

Algorithm 1: Anchor–Guided Training and Point Prediction
Input: Anchors D0 =

⋃
k∈[K]D0,k with index splits At

k,Ac
k for each k ∈ [K].

Output: MLE θ̂ and point predictor ĥ(x, ỹ).
Train.;
Maximize the objective in (2) on Dt

0 =
⋃

k∈[K]{(xi, ỹi, yi=k) : i ∈ At
k}, using the transition

form (1).
Score.;
For any (x, ỹ), compute τ (r)kj (x) as in (3) and the class score τk(x, ỹ) via (4); equivalently use
τ̂k from (5).

Predict.;
Set ĥ(x, ỹ) = argmaxk∈[K] τ̂k(x, ỹ).

Algorithm 2: Top-k Conformal Set Prediction
Input: Calibration anchors Dc

0 =
⋃

k∈[K]{(xi, ỹi, yi=k) : i ∈ Ac
k}; target miscoverage

α ∈ (0, 1).
Output: Set predictor (x, ỹ) 7→ Cα(x, ỹ).
For each (xi, ỹi, yi) ∈ Dc

0, compute {τ̂k(xi, ỹi)}k∈[K] (cf. (5)), order classes to form
C(xi, ỹi; k), and record the minimal ki with yi ∈ C(xi, ỹi; ki).

Choose k̂c(α) by the ⌈|Dc
0|+1⌉(1− α) quantile rule described in Section 2.

At test time, output Cα(x, ỹ) = C(x, ỹ; k̂c(α)).
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3 THEORETICAL GUARANTEE

We begin by formalizing when anchor points exist and how they can be identified from observable
quantities. Theorem 1 provides a necessary-and-sufficient characterization under a mild separability
assumption on annotators.
Theorem 1. Assume that for any r ∈ [R], k ∈ [K], and x ∈ X ,

P(Ỹ(r) = k|Y = k,X = x) > P(Ỹ(r) = k|Y = j,X = x) for all j ̸= k. (6)

Then for an x ∈ X ,

P(Y = k|X = x) = 1 iff P(Ỹ(r) = k|X = x) = P(Ỹ(r) = k|Y = k,X = x),

where “iff” means “if and only if”.

Assumption (6) states that, conditional on any input x, annotator r is more likely to assign label k
when the true class is k than when it is any other class, i.e., the annotator is better than chance for
class k at x (non-degenerate). This is reasonable in settings where annotators are not incompetent
(see Appendix B). The equivalence in Theorem 1 has two key implications: (i) anchors (and practical
pseudo-anchors, as discussed in Appendix B) can be discovered directly from data without observing
true labels, and (ii) at anchors, annotator-specific noise transitions are identified, enabling consistent
estimation of instance-dependent transition models.
Theorem 2. Assume the condition in Theorem 1, and further assume that

P(Ỹ(r) = k|Y = k,X = x(k)) = P(Ỹ(r) = k|X = x(k)) (7)

holds for
x(k) = argmaxxP(Ỹ(r) = k|X = x), (8)

where k ∈ [K]. Then for this k,
P(Y = k|X = x(k)) = 1.

That is, x(k) is an anchor point for class k.

This theorem follows directly from Theorem 1 and yields a practical anchor–point identification
rule: apply (8) to the observed annotations and inputs (essentially a majority–voting argmax over
P(Ỹ(r) = k | X = x)). Related proposals (e.g.,Li et al. (2020) Liu & Tao (2015); Patrini et al.
(2017a)) implicitly rely on consistent estimation of P(Ỹ = ỹ | X = x) in the presence of anchors,
but typically do not state the additional condition (7), which is needed to justify the validity of the
procedure based on (8). (7) asserts that, at x(k), the input alone is sufficient for predicting Ỹ(r) = k
(i.e., it captures all information about the true label Y = k relevant to the annotator’s output). This
is plausible in practice—for example, a diagnostic biomarker that determines a test’s positive call
for disease k, or spam detection where predictions rely solely on message features. Importantly, (7)
is required only at the argmax points x(k) selected by (8), not for all x ∈ X ; it is thus weaker than
the global nondifferential misclassification condition

P
(
Ỹ(r) = j | Y = k, X = x

)
= P

(
Ỹ(r) = j | X = x

)
for all j, k ∈ [K], (9)

which states conditional independence between Ỹ and Y, given X.

Building on the foundation set by Theorems 1 and 2, our anchor-based likelihood estimators are
consistent under standard regularity using the likelihood theory, and consequently, we can estab-
lish distribution-free validity of our conformal top-k prediction sets calibrated on (pseudo-)anchors,
including monotonicity in α and finite-sample marginal coverage at level 1 − α, as stated in the
following theorem.

Theorem 3. Suppose we have a future input X = x with crowdsourced label ỹ. Then

(a) C(xi, ỹi; k1) ⊂ C(xi, ỹi; k2) for k1 ≤ k2;

(b) For any α ∈ (0, 1), P{Y ∈ C(x, ỹ; kc(α)} ≥ 1− α.

5
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Figure 1: Overview of the proposed anchor-based conformal prediction pipeline. The framework
identifies anchors from annotator agreement, trains a base model on these anchors, and calibrates
conformal prediction sets to handle label noise.

4 IMPLEMENTATION PROCEDURES

We develop a procedure for predicting latent true labels from multiple noisy annotators while pro-
viding distribution-free uncertainty guarantees. The approach proceeds by constructing per-class
anchor sets from high-agreement subsets of annotations, learning an annotator-dependent transi-
tion model parameterized by two deep networks, forming likelihood-based class scores for point
prediction, and calibrating top-k prediction sets on held-out anchors. As illustrated in Figure 1,
our method consists of four main stages: anchor selection, base predictor training, anchor-guided
calibration, and conformal prediction set generation.

4.1 DATA AND PREPROCESSING

We evaluate on two single-cell RNA-seq datasets: Baron3 (Baron et al., 2016) and PBMC2 (Stuart
et al., 2020). The Baron3 data were collected from pancreatic islets of a 38-year-old male (BMI
= 27.5; non-diabetic). The PBMC2 data comprise peripheral blood mononuclear cells from a
healthy donor. Both datasets contain substantial cellular and genetic information and are labeled
for classification. In terms of gene counts, they are comparable, with counts ranging from 20,000 to
24,000, indicating consistency in gene capture across studies. From each raw expression matrix we
selected 1,200 highly variable genes (HVGs). Counts were transformed using the centered log-ratio
(CLR) to mitigate compositional effects and used to construct a k-nearest neighbor (kNN) graph.
Across experiments, we used stratified splits, Adam optimization with early stopping on validation
loss, and cross-entropy as the primary objective.

4.2 BASE PREDICTORS

We evaluate our anchor-based conformal prediction framework with several choices of the base pre-
dictor f for cell-type classification. Within the family of graph neural networks (GNNs), the Graph
Convolutional Network (GCN) updates node representations by aggregating neighborhood features
through learned filters (Gao et al., 2023). The Graph Attention Network (GAT) extends this by as-
signing attention weights, allowing the predictor to emphasize more informative neighbors (Liu &
Zhou, 2020). GraphSAGE (Graph Sample and Aggregate) provides an inductive variant that sam-
ples neighborhoods and aggregates features to construct low-dimensional node embeddings suitable
for large graphs (Hamilton et al., 2018). As a non-graph baseline, we also consider a Multi-Layer
Perceptron (MLP), a standard feed-forward predictor with fully connected layers (Gharehbaghi,
2023).

6
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Table 1: Anchor counts and proportions (Prop) per cell type for both datasets.

(a) Dataset 1: Baron3

Cell type Total Anchors Prop

t cell 81 6 0.0741
macrophage 117 7 0.0598
epsilon 132 7 0.0530
mast 78 4 0.0513
schwann 86 4 0.0465
quiescent stellate 96 4 0.0417
name 107 4 0.0374
gamma 133 4 0.0301
ductal 218 6 0.0275
beta 334 5 0.0150
delta 292 4 0.0137
endothelial 160 2 0.0125
activated stellate 565 4 0.0071
alpha 457 3 0.0066
acinar 737 4 0.0054

(b) Dataset 2: PBMC2

Cell type Total Anchors Prop

B cell 250 215 0.8600
cMono 409 349 0.8533
ncMono 119 92 0.7731
CD4 T cell 1238 872 0.7044
NK cell 270 185 0.6852
CD8 T cell 676 434 0.6420
cDC 20 12 0.6000
pDC 12 7 0.5833
Plasma cell 6 0 0.0000

5 ANALYSIS RESULTS

We evaluated the proposed anchor-based conformal prediction framework on two single-cell datasets
with noisy annotations. Our primary focus is Top-k conformal prediction; the adaptive prediction
sets (APS) method serves as a conservative comparator.

Baron3. Agreement-based anchor selection yielded 68 high-confidence cells across 15 cell types.
Anchor representation was heterogeneous: relatively enriched in T cells (7.4%) and macrophages
(6.0%), but sparse in acinar and α cells (both < 1%), reflecting variation in annotator agreement
(Table 1). Using the anchor-calibration split, Top-k conformal sets closely tracked nominal cover-
age (1 − α): at 80%, 85%, 90%, and 95% targets, empirical coverage was 0.80, 0.88, 0.95, and
0.95, respectively. By contrast, APS achieved highly conservative coverage (≥ 96% across targets)
but produced much larger prediction sets. Visualization on a low-dimensional embedding further
supports these patterns: under APS, nearly all cells attain maximal set sizes, whereas our Top-k set
sizes vary smoothly across clusters, with smaller sets in well-separated endocrine populations and
larger sets in ambiguous ductal and stellate regions (Figure 2).

PBMC2. Anchor selection again revealed substantial heterogeneity (Table 1): some immune sub-
types exhibited relatively high anchor proportions, whereas others had very few, underscoring dif-
ferences in annotator consistency. As in Baron3, APS achieved near-perfect coverage across all
nominal levels but at the cost of inflated set sizes, often approaching the entire label space. In con-
trast, our Top-k delivered coverage much closer to the target values while maintaining smaller, more
interpretable sets. Compact sets concentrated in well-defined clusters, whereas ambiguous regions
yielded larger sets, as expected.

To quantify this trade-off across datasets, Table 2 reports average conformal set sizes. APS consis-
tently produced very large sets (near the total number of classes), whereas Top-k yielded compact
and interpretable sets (average sizes 12–14 in Baron3 and substantially smaller in PBMC2). Together
with the anchor statistics, these results indicate that anchors not only capture annotator agreement
but also enable calibration procedures that produce valid, biologically meaningful, and compact con-
formal prediction sets. Overall, anchor-guided Top-k maintains reliable calibration with practical
utility, while APS serves as a conservative upper baseline. Additional per-class results, including
confusion matrices (Figure 4) and detailed classification metrics (Tables 3–4), are provided in Ap-
pendix D.

Set size analysis across datasets. Table 2 summarizes the average conformal prediction set sizes
obtained from the anchor-based calibration procedure in both datasets. In Baron3, APS produced

7
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(a) Dataset 1: Baron3 (b) Dataset 2: PBMC2

Figure 2: Low-dimensional embedding (UMAP or PCA fallback) colored by conformal set size
at 90% target. Regions with higher ambiguity receive larger sets; well-separated clusters receive
smaller sets.

(a) Dataset 1: Baron3 (b) Dataset 2: PBMC2

Figure 3: Empirical vs nominal coverage on two datasets. APS is highly conservative, while Top-k
tracks nominal levels more closely.

nearly maximal set sizes (14–15 labels on average), confirming its conservative nature and limited
informativeness. By contrast, in PBMC2, the anchor-based procedure yielded much more compact
sets, often of size one across most targets, with only a modest increase at the 95% coverage level.
This difference illustrates how anchor prevalence and annotator agreement directly influence cali-
bration outcomes: when anchors are sparse (Baron3), conformal sets inflate toward the full label
space, whereas when anchors are abundant and reliable (PBMC2), prediction sets remain small and
interpretable. Together, these results reinforce that anchors provide a flexible mechanism for trading
off between validity and efficiency across datasets of differing annotation quality. They highlight
the expected trade-off: APS provides conservative coverage with inflated sets, while Top-k achieves
coverage close to nominal with more compact and interpretable sets.
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Table 2: Empirical coverage and average set size for APS and Top-k conformal prediction across
targets on both datasets. Top-k provides compact sets while APS is more efficient than APS but still
less conservative.

Method Dataset Target Empirical Coverage Avg. Set Size

APS Baron3 0.80 0.967 14.49
0.85 0.981 14.68
0.90 0.986 14.74
0.95 0.986 14.74

PBMC2 0.80 0.998 4.40
0.85 1.000 4.94
0.90 1.000 5.45
0.95 1.000 6.20

Top-k Baron3 0.80 0.804 12.00
0.85 0.882 13.00
0.90 0.949 14.00
0.95 0.949 14.00

PBMC2 0.80 0.947 1.00
0.85 0.947 1.00
0.90 0.947 1.00
0.95 0.998 2.00

Extended baseline comparisons on the Baron3 dataset are provided in Appendix D (Table 5), show-
ing that our anchor-based conformal prediction achieves high ROC-AUC while maintaining com-
petitive PR-AUC against state-of-the-art classifiers.

6 CONCLUSION AND DISCUSSION

We introduced an anchor-based conformal prediction framework for classification with noisy anno-
tations. By leveraging agreement-based pseudo-anchors to guide calibration, our method provides
rigorous uncertainty guarantees while remaining robust to annotator disagreement. The applica-
tion to two single-cell datasets confirmed that anchor-guided Top-k tracked nominal coverage while
yielding smaller sets. Visual analyses demonstrated that prediction set sizes aligned with biolog-
ical structure, expanding in ambiguous regions and contracting in well-separated clusters, thereby
providing not only validity but also meaningful interpretability. These findings suggest that anchor-
based conformal prediction offers a practical solution for integrating noisy labels in biomedical
applications, where annotator variability is common and rigorous uncertainty quantification is es-
sential. While demonstrated here on single-cell classification, the framework applies broadly to other
domains where multiple imperfect annotations are available(e.g., medical diagnosis, crowdsourced
vision/NLP). In high-stakes settings such as biomedicine, our guarantees support trustworthy de-
ployment while explicitly accounting for annotator variability.

Promising directions include semi- and weakly supervised extensions that leverage unlabeled data,
multi-modal integration, and active/online anchor discovery for dynamic annotator pools. Scaling-
efficient calibration (e.g., cross-conformal and streaming variants), fairness-aware uncertainty quan-
tification, and robustness to distribution shift and label bias are additional priorities for real-world
deployment.

9
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7 ETHICS STATEMENT

This paper introduces an anchor-based conformal prediction framework for handling noisy anno-
tations in single-cell data. The goal of this work is to improve the reliability and robustness of
predictive modeling in biomedical research, thereby advancing our understanding of cellular het-
erogeneity and disease mechanisms. We have carefully considered the ethical implications and do
not anticipate any direct negative consequences arising from this work. While potential downstream
applications may involve clinical or biomedical decision-making, this study is methodological in
nature and not directly applied to patient care. We are committed to the responsible communication
and use of our methods and encourage their application in ways that respect ethical standards in
biomedical research and data privacy.

8 REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our work. All datasets used in this study are
clearly referenced in the paper. Descriptions of preprocessing procedures, model architectures, train-
ing protocols, and evaluation metrics are provided in the Methods section and Appendix. To further
support transparency and facilitate future research, we will release an open-source implementation
of our framework on GitHub upon acceptance of the paper.
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APPENDICES: TECHNICAL DETAILS AND EXTENDED ANALYSIS RESULTS

A PROOFS OF THEOREMS

First, we comment that in defining anchor points, it is implicitly assumed that an instance x can
be an anchor point for at most one class, with the property that if P(Y = k|X = x) = 1, then
P(Y = j|X = x) = 0 for any j ̸= k. However, each class can have multiple anchor points; having
P(Y = k|X = x) = 1 does not exclude P(Y = k|X = x∗) = 1 for those instances x∗ that are not
identical to x.

Proof of Theorem 1: First we show the ‘=⇒” direction, which is immediate from the following
derivations:

P(Ỹ(r) = ỹ(r)|X = x)

=
∑
j∈Y

{
P(Ỹ(r) = ỹ(r)|Y = j,X = x)P(Y = j|X = x)

}
=

∑
j ̸=k

{
P(Ỹ(r) = ỹ(r)|Y = j,X = x)P(Y = j|X = x)

}
+P(Ỹ(r) = ỹ(r)|Y = k,X = x)P(Y = k|X = x)

= P(Ỹ(r) = ỹ(r)|Y = k,X = x), (A.1)

where we use the conditions for anchor points.

Next, we show the “⇐=” direction. Indeed, applying (A.1) to the condition

P(Ỹ(r) = k|X = x) = P(Ỹ(r) = k|Y = k,X = x)

leads to ∑
j ̸=k

P(Ỹ(r) = k|Y = j,X = x)P(Y = j|X = x)

+P(Ỹ(r) = k|Y = k,X = x){P(Y = k|X = x)− 1} = 0,

which is equivalently written as∑
j ̸=k

{
P(Ỹ(r) = k|Y = j,X = x)− P(Ỹ(r) = k|Y = k,X = x)

}
P(Y = j|X = x) = 0.

By the assumption (6) and the fact that P(Y = j|X = x) ≥ 0 for all j ̸= k, we conclude that

P(Y = j|X = x) = 0 for all j ̸= k,

and thus yielding
P(Y = k|X = x) = 1.

To prove Theorem 3, we first show the following lemma.
Lemma 1. Suppose {c1, . . . , cm; cm+1} is a sequence of constants, taking values in [K]. For k ∈
[K] and α ∈ (0, 1), define

Ik = {i ∈ [m] : ci ≤ k},
k(α) = inf{k ∈ [K] : |Ik| ≥ (m+ 1)(1− α)},

and
J = {i ∈ [m] : ci < cm+1}.

Then “cm+1 > k(α)” iff “|J | > (m+ 1)(1− α)”.

13
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Proof. Show “=⇒”:

For any i0 ∈ Ik(α), we have that ci0 ≤ k(α). Then by the condition cm+1 > k(α), ci0 < cm+1,
leading to i0 ∈ J by definition of J . Therefore,

Ik(α) ⊂ J ,

yielding |Ik(α)| ≤ |J |. Then applying definition of k(α) shows (m+ 1)(1− α) ≤ |J |.

Show “⇐=”: We show the conclusion by contradiction. If the conclusion does not hold, then
cm+1 ≤ k(α), implying that ci < k(α) for any i ∈ J . Consequently, max{ci : i ∈ J } < k(α).
Thus, there exists k0 such that max{ci : i ∈ J } < k0 < k(α), showing that

J ⊂ Ik0
. (A.2)

By the condition |J | > (m+ 1)(1− α), we obtain |Ik0 | > (m+ 1)(1− α). On the other hand, by
the definition of k(α), we conclude that k(α) ≤ k0, which is a contradiction to (A.2).

Proof of Theorem 3. (a). This is immediate by construction.

(b). For any (x, y) ∈ Dc

0, define the calibration score

s(x, ỹ; y) = inf {k : y ∈ C(x, ỹ; k)} .

Then for any k ∈ [K],
s(x, ỹ; y) ≤ k ⇐⇒ y ∈ C(x, ỹ; k). (A.3)

Then for any α ∈ (0, 1),

k̂c(α) = inf {k : |{i ∈ Ac : yi ∈ C(xi, ỹi; k)}| ≥ (nc + 1)(1− α)}
= inf {k : |{i ∈ Ac : s(xi, ỹi; yi) ≤ k}| ≥ (nc + 1)(1− α)}

Because {s(Xi, Ỹi; Yi)}n
c

i=1 and s(XN+1, ỸN+1; YN+1) are exchangeable random variables, so

|{i ∈ Ac : s(XN+1, ỸN+1; YN+1) > s(xi, ỹi; yi)}|

is stochastically dominated by the discrete uniform distribution on {0, 1, . . . , n}. Consequently, by
(A.3) and Lemma 1,

P{YN+1 /∈ C(XN+1, ỸN+1; k
c(α)}

= P{s(XN+1, ỸN+1; YN+1) > kc(α)}
= P{|{i ∈ Ac : s(XN+1, ỸN+1; YN+1) > s(xi, ỹi; yi)}| > (nc + 1)(1− α)}
≤ P{U > (nc + 1)(1− α)}
≤ α,

where the second last step is due to the uniform distribution derived from the exchangeablity. and U
represents a discrete random variable following a uniform distribution on {0, 1, . . . , n}.

B DETAILS ABOUT PSEUDO-ANCHOR POINTS

Here, we show results for pseudo anchor points.

Theorem 4. For r ∈ [R] and k ∈ [K], let prk(x) = P(Ỹ(r) = ỹ(r)|Y = k,X = x). If x is a
δ-pseudo anchor point, then

(i) (1− δ)prk(x) ≤ P(Ỹ(r)|X = x) ≤ (K − 1)δ + prk(x);

14
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(ii) P(Ỹ(r) = ỹ(r)|X = x)− (K − 1)δ ≤ prk(x) ≤ 1
1−δP(Ỹ

(r) = ỹ(r)|X = x).

Proof. Assume that x is a δ-pseudo anchor point for class k. Then expression (A.1) becomes

P(Ỹ(r) = ỹ(r)|X = x)

=
∑
j∈Y

{
P(Ỹ(r) = ỹ(r)|Y = j,X = x)P(Y = j|X = x)

}
=

∑
j ̸=k

{
P(Ỹ(r) = ỹ(r)|Y = j,x)P(Y = j|X = x)

}
+P(Ỹ(r) = ỹ(r)|Y = k,X = x)P(Y = k|X = x) (B.1)

Noting that all probabilities in the first term of (B.1) are nonnegative, then by definition of the
δ-pseudo anchor point for x, we obtain that

P(Ỹ(r)|X = x) ≥ (1− δ)P(Ỹ(r) = ỹ(r)|Y = k,X = x). (B.2)

On the other hand, if x is a δ-pseudo anchor point, then

P(Y = j|X = x) ≤ δ for any j ̸= k,

therefore, by that all conditional probabilities in (B.1) are between 0 and 1, we obtain that

P(Ỹ(r) = ỹ(r)|X = x)

≤
∑
j ̸=k

{
P(Ỹ(r) = ỹ(r)|Y = j,x)× δ

}
+ prk(x)P(Y = k|X = x)

≤ δ
∑
j ̸=k

P(Ỹ(r) = ỹ(r)|Y = j,x) + prk(x)

= (K − 1)δ + prk(x). (B.3)

Combining (B.2) and (B.3) gives us

(1− δ)prk(x) ≤ P(Ỹ(r) = ỹ(r)|X = x) ≤ (K − 1)δ + prk(x),

leading to

P(Ỹ(r) = ỹ(r)|X = x)− (K − 1)δ

≤ P(Ỹ(r) = ỹ(r)|Y = k,X = x)

≤ 1

1− δ
P(Ỹ(r) = ỹ(r)|X = x). (B.4)

Remark. The inequalities in (B.4) has important implications. In the degenerate situation with
δ = 0, i.e., x is an anchor point, (B.4) recovers the identity:

P(Ỹ(r) = ỹ(r)|Y = k,X = x) = P(Ỹ(r) = ỹ(r)|X = x).

When δ is extremely small such that (K − 1)δ is close to 0 and 1
1−δ is close to 1, we have that

P(Ỹ(r) = ỹ(r)|Y = k,X = x) ≈ P(Ỹ(r) = ỹ(r)|X = x).

, showing that a pseudo-anchor point can be practically regarded as an anchor point.
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C DEEP NEURAL NETWORKS

We describe architectures ψA, ψC , and ψS in detail. Let

SK−1 =

(s1, . . . , sK)T : sj ≥ 1 for j ∈ [K] and
K∑
j=1

sj = 1


denote the (K − 1)-dimensional simplex, and let

G : RK −→ SK−1

denote a softmax function, given by

G(z) =



exp(z1)∑K
j=1 exp(zj)
exp(z2)∑K

j=1 exp(zj)

...
exp(zK)∑K
j=1 exp(zj)

 for z = (z1, . . . , zK)T.

For r ∈ [R], we now describe the conditional probability mass function of Ỹ(r), given Y and X.
Specifically, for k ∈ [K], we specify the vector of the conditional probability mass functions of
Ỹ(r), given Y = k and X = x as:

P(Ỹ(r) = 1|Y = k,X = x)

P(Ỹ(r) = 2|Y = k,X = x)
...

P(Ỹ(r) = K|Y = k,X = x)

 = G




α
(r)
1

α
(r)
2
...

α
(r)
K

ψA(x) +


β
(k)
1

β
(k)
2
...

β
(k)
K

ψC(x)


where α(r) ≜ (α

(r)
1 , . . . , α

(r)
K )T and β(k) ≜ (β

(k)
1 , . . . , β

(k)
1 )T are weights; and ψA(x) and ψC(x) are

functions facilitating the dependence on the annotator’s skills and the class label.

Expressing this elementwisely, we obtain that for j ∈ [K],

P(Ỹ(r) = j|Y = k,X = x) =
exp{< α

(r)
j , ψA(x) > + < β

(k)
j , ψC(x) >}∑K

l=1 exp{< α
(r)
l , ψA(x) > + < β

(k)
l , ψC(x) >}

. (C.1)

Here, the weights α(r) and β(k) and the functions ψA(xi) and ψC(x) are unknown, which need to be
trained using the data D0,k or its subset.

To flexibly reflect possibly different effects of the annotator expertise (r) and the ground truth (k) in
the annotation process, we employ deep neural network (DNN) architectures to describe ψA(xi) and
ψC(xi). Specifically, we specify ψA(xi) as a network with an input layer and an output layer that are
linked by HA − 1 hidden layers, where the hth hidden layer has LA

h nodes for h = 1, . . . ,HA − 1.
Let LA = (LA

0, L
A
1, . . . , L

A
HA)T denote the width vector for the network, with LA

0 = p for the input
layer that records measurements of p elements of xi, and LA

HA = 1 for the output layer. The
network architecture {HA, LA} is characterized by a sequence of linear and nonlinear functions,
approximating ψA(x) by

ψ̂A(θA; x) ≜W A
HAσA

HA−1

[
· · · σA

2

{
W A

2σ
A
1(W

A
1x + bA

1) + bA
2

}
+ bA

3 · · ·
]
+ bA

HA , (C.2)

or equivalently,
ψ̂A(θ; x) ≜ g(HA; x),

where the g functions is determined by the recursive equation

g(j; x) =W A
j g(j − 1; x) + bA

j for j = 2, . . . ,HA;

with
g(1; x) = σA

1(W
A
1x + bA

1).
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(a) Dataset 1: Baron3 (b) Dataset 2: PBMC2

Figure 4: Confusion Matrices of predicted cells vs true cell types for both datasets

Here, for h = 1, . . . ,HA, W A
h is an LA

h × LA
h−1 weight matrix, bA

h ∈ RLA
h is the bias vector in

layer h, θA is the parameter vector formed by stacking {W A
h, b

A
h}H

A

h=1 from bottom to top, σA
h is a

user-specified activation function that operates elementwise (e.g, a ReLu function), and x is a p-
dimensional argument.

Analogously, we specify ψC(x) as a network, using similar notation but replacing the subscript A

with C for the relevant quantities. Let θ = (θAT, θCT;α(r), β(k) : r ∈ [R], k ∈ [K])T. As a result, the
conditional probability in (C.1) is modeled as follows:

P(Ỹ(r) = j|Y = k,X = x) =
exp{< α

(r)
j , ψ̂A(θA; x) > + < β

(k)
j , ψ̂C(θC; x) >}∑K

l=1 exp{< α
(r)
l , ψ̂A(θA; x) > + < β

(k)
l , ψ̂C(θC; x) >}

.

D EXTENDED RESULTS

We include per-class coverage tables, histograms, and plots to supplement the analysis results in
Section 5.

Table 3: Confusion matrix of predicted vs. true cell types

B cell CD4 T cell CD8 T cell NK cell Plasma cell cDC cMono ncMono pDC

B cell 75 0 0 0 0 0 0 0 0
CD4 T cell 0 363 8 0 0 0 0 0 0
CD8 T cell 0 18 181 4 0 0 0 0 0
NK cell 0 0 5 76 0 0 0 0 0
Plasma cell 0 0 0 0 2 0 0 0 0
cDC 0 0 0 0 0 6 0 0 0
cMono 0 0 0 0 0 0 123 0 0
ncMono 0 0 0 0 0 0 0 36 0
pDC 0 0 0 0 0 1 0 0 2

Table 4: Per-class classification report

B cell CD4 T cell CD8 T cell NK cell Plasma cell cDC cMono ncMono pDC Accuracy Macro Avg Weighted Avg

Precision 1.000 0.953 0.933 0.950 1.000 0.857 1.000 1.000 1.000 0.960 0.966 0.960
Recall 1.000 0.978 0.892 0.938 1.000 1.000 1.000 1.000 0.667 0.960 0.942 0.960
F1-score 1.000 0.965 0.912 0.944 1.000 0.923 1.000 1.000 0.800 0.960 0.949 0.960
Support 75 371 203 81 2 6 123 36 3 0.960 900 900
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Table 5: Performance comparison on the Baron3 dataset. Our method is the proposed anchor-based
conformal prediction (Top-k). Metrics include ROC-AUC and PR-AUC.

Model ROC-AUC PR-AUC

GCN 0.9942 0.9815
MLP 0.9881 0.9799
GAT 0.9867 0.9738
GraphSAGE 0.9909 0.9803
SingleCellNet 0.9866 0.9756
ACTINN 0.9889 0.9804

Ours (Anchor-based CP) 0.9953 0.9803
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