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ABSTRACT

Conformal prediction provides a flexible framework for quantifying prediction un-
certainty and has attracted extensive interest. However, most existing methods are
designed to handle clean data and may fail to perform satisfactorily when labels
are noisy. In this work, we consider the setting where the ground-truth labels are
unobserved but crowdsourced noisy labels are available. We introduce an anchor—
based conformal prediction method that provides uncertainty quantification. Our
method identifies anchor points by selecting samples with strong agreement across
annotators. These anchors points are used to train a base predictor that is calibrated
to construct a conformal prediction set with a desired coverage rate. Meanwhile,
we provide a theoretical analysis of anchor—point identification and provide as-
sociated conditions that have been importantly overlooked in the literature. We
apply the proposed method to analyze two single—cell datasets to demonstrate its
utility and promise.

1 INTRODUCTION

Conformal prediction emerges as a model-agnostic framework that has attracted extensive attention
in supervised learning. It produces prediction sets (for classification tasks) or prediction intervals
(for regression problems) with prediction error rate controlled under a desired tolerance level. Con-
formal prediction may be strategically categorized as full conformal prediction (also referred to as
transductive conformal prediction) and split conformal prediction (also called inductive conformal
prediction), as discussed in |Vovk et al.| (2005) and Barber et al.| (2023), among others. Various
conformal prediction methods have been developed to address different learning objectives. These
methods include conformalized quantile regression (Romano et al.l 2019)), distributional conformal
prediction (Chernozhukov et al.l [2021), cross—validation+ and jackknife+ (Romano et al.l 2020),
multi—label outputs (Cauchois et al.,[2021), graph neural networks (Zargarbashi et al.||2023)), covari-
ate shift (Tibshirani et al., |2019), label shift (Podkopaev & Ramdas| [2021), conformalized survival
analysis (Candes et al.l |2023)), and class—conditional conformal prediction (Ding et al., [2023)). For
details, see |[Vovk et al.| (1999), [Shafer & Vovk| (2008)), Angelopoulos & Bates| (2023)), and [Fontana
et al.| (2023)).

While those methods provide useful tools to characterize prediction uncertainty, they are typically
developed for clean data. They can be vulnerable to perturbations of clean input examples, as
examined by |Ghosh et al| (2023). On the other hand, in the absence of clean labels, Einbinder
et al. (2024) studied the impact of label noise on the validity of conformal prediction, and their
analysis suggested that ignoring label noise effects can lead to invalid conformal prediction results.
As acquiring accurately annotated data can be expensive or even impossible, it is often of interest
to study conform predication for data with noisy or ambiguous labels. For example, concerning
image classification, |Angelopoulos et al.| (2020) described a method for constructing prediction
sets from a pre—trained image classifier that are regularized to calibrate unlikely classes. |[Penso
& Goldberger| (2024) and |Penso et al.| (2025) developed conformal prediction methods to handle
medical imaging classification networks, where labels are assumed to be corrupted by uniform noise
with a known noise level. In many applications, label information is derived from multiple expert
annotations, where the majority—voted label is commonly treated as the ground—truth label. When
experts seriously disagree, summarizing the expert annotations by a single one—hot distribution can
lead to severely deteriorated prediction results. To address this, Stutz et al.| (2023) developed Monte
Carlo conformal prediction procedures to account for uncertainty associated with ambiguous labels.
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Constructing credal regions in a conformal way, (Caprio et al| (October 2024) extended classical
conformal prediction to problems with ambiguous ground truth, where the exact labels for inputs
are not known.

1.1 MOTIVATING SETTING

In single—cell transcriptomics, tens of thousands of genes are measured across hundreds of thousands
of cells to reveal the information on cell types, subtypes, and states for a tissue sample (Baron
et al., 2016). Manual annotations to determine cell types are time—consuming when the number
of cells and samples are substantial, and the process can be irreproducible due to varying levels
of annotators’ expertise. Practically, clustering algorithms are devised to conduct automatic cell
identification, e.g., SingleCellNet (Tan & Cahanl [2019) and ACTINN (Ma & Pellegrini, [2020).
The automation process, however, involves various challenges, including difficulties in biological
interpretation and implementation variability, as discussed by Kiselev et al.| (2019)). |Abdelaal et al.
(2019) compared the performance of twenty—two classification methods that automatically assign
cell identities for twenty—seven publicly available single—cell RNA sequencing datasets, which differ
in sizes, technologies, species, and levels of complexity. While those methods output overlapping
classes, their performance varies and typically depends on the data complexity. Different methods
often yield varying cluster numbers and cell assignments, and it is important to address uncertainty
in identified labels from automatic annotation methods rather than merely take results of a single
clustering method as ground truth labels. To this end, we cast the problem into the conformal
prediction framework by treating output proxy labels from multiple automatic annotation algorithms
as crowdsourced labels (Ibrahim et al.|[2023). Utilizing the research on noisy labels, we introduce a
new conformal prediction method to handle data with crowdsourced labels.

1.2 OUR CONTRIBUTIONS

Without restricting to a specific model for label noise, we consider general cases where label noise
can be instance—dependent, and utilize deep neural network architectures to provide a flexible rep-
resentation of the annotation process to reflect annotator skills as well as possible influence of the
true class labels, in addition to the dependence on the input. We utilize the notation of anchor points
(Xia et al.l [2019)), defined in Section @ to bypass the need to access the true labels in order to es-
timate the instance—dependent noise transition matrix. Although anchor points can be heuristically
identified based on applying majority—voting to data with noisy labels (Liu & Taol 2016; Patrini
et al.| 2017), this method is only valid under certain conditions, which, however, are unidentified in
existing work. In this work, we close this gap and further make the following contributions:

* We provide a necessary—and—sufficient characterization for anchor points, which is accom-
panied by an identified, mild condition for annotation. We further identify conditions that
ensure the validity of using majority—voting to find anchor points from corrupted data.
These analyses provides theoretical insights into the available works that utilize anchor
points and make them valid for settings satisfying those identified conditions.

* We extend the conformal prediction framework to accommodate corrupted labels and de-
velop true—label prediction sets by using crowdsourced noisy annotations. We introduce
an anchor-based method that couples with flexile deep neural models to learn complex
annotation processes, which commonly arise from biomedicine and other fields.

* We establish theoretical guarantees and validate the method on two single—cell RNA-seq
datasets to demonstrate its utility. Although we focus on single—cell classification, the
framework applies broadly to general biomedical applications or problems with crowd-
sourced noisy labels.

In summary, we integrate conformal prediction and crowdsourced noisy labels to provide valid pre-
diction sets. Our work supplies a new addition to address robustness of conformal prediction to label
noise, which enjoys broad applications involving ambiguous or noisy labels.
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2 PROBLEM SETUP AND METHODS

For i € [n], let x; € X C RP denote the feature vector for cell 4 (e.g., gene expression), associated
with an unobserved true class y; € [K] (e.g., cell type), where [K] = {1,..., K} is the label space
and X is the input space of the p—dimension. For each cell we observe a vector of noisy labels y; =
(?El), . ,ngi)) from R; annotators; for ease of exposition we assume R; = R (which matches
our application datasets). We use uppercase letters X;, Y; and Y; (with the subscript ¢ sometimes
omitted) for the corresponding random variables. Let IP represent the probability or conditional
probability for the associated random variables. We are interested in devising a conformal prediction
method by utilizing the notion of anchor points.

2.1 ANCHOR POINTS

Definition 2.1. An instance x € X is called an anchor point for class k € [K] if
PY=Fk|X=x) =1

Anchor points were considered by |Liu & Tao|(2016), |Patrini et al.| (2017), Xia et al.|(2019), and |Guo
et al.| (2023), among others. Its introduction ensures the identifiability of the transition matrix that

is formed by the conditional probability of Y™ given Y and X, which, as shown in the following
theorem, can be learned from training data consisting of anchor points and the associated noisy
annotated labels alone, provided suitable conditions.

Assumption 1. Foranyr € [R], k € [K], andx € X,
PYD = kY =k, X=x) >P(Y" =k|]Y = j,X =x) forall j+k.

This assumption indicates that given the input, the true label is more likely to be annotated than any
other labels. In other words, annotators have reasonably competent skills while they may be unable
to annotate the true labels surely.

Theorem 1. Suppose Assumption[l| holds for the annotation process. Then for x € X,
P(Y=kX=x)=1 ifandonlyif P(Y") =kX=x)=P(Y") = kY =k X =x).

The equivalence in Theorem [I| allows us to use anchor points to learn the transition matrix, even
though our training data have no information about the true labels. A natural question then arises:
with the availability of corrupted—labeled data only, how to find anchor points? |Li et al.| (2021])
suggested to take arg maxy P(Y = k | X = x) as anchor points for class k, provided noisy class—
posterior P(Y = k | X = x) is accurately modeled and the data size is sufficient. This majority—
voting scheme echoed the proposals of [Liu & Tao|(2016)) and Patrini et al.|(2017)), which, however, is
not theoretically justified. Its validity is not automatic and requires certain conditions. To close this
gap, we identify conditions that allow the use of the majority—voting scheme, which are importantly
overlooked in the existing literature.

Assumption 2. Assume that
PY" =k |Y=kX=x(k)=PY" =k|X=x(k)) (1)
holds for x(k) = argmax, P(Y(") = k | X = x), with k € [K] and r € [R].

Assumption [2| essentially states that x(k) is sufficient for predicting Y (") to be k and captures all
relevant information about the true label Y = k. This assumption is often plausible in applications.
In email spam detection, for example, let Y denote the true label (spam or not spam), Y (") be
the classifier’s prediction, and X include features extracted from emails (e.g.,the number of links,
presence of certain words, etc.). If the features are sufficiently informative, then the assumption (1)
is feasible. Importantly, is required only for those selected points x(k), but not for all x € X.
This condition is weaker than the global nondifferential misclassification condition

IP(\?“):J'W:/@,X:X) :P(?W:ﬂxzx) for all j, k € [K],

which requires conditional independence between Y™ and Y, given X.
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Theorem 2. Suppose Assumptions hold. Then x(k) is an anchor point for class k.

Theorem 2] directly comes from Theorem|[T] It suggests that applying majority—voting, anchor points
can be discovered directly from corrupted data without observing true labels. Combining Theo-
rems [T] and [2] asserts that utilizing anchor points, the instance—dependent transition matrix can be
estimated even though we have no access to clean labels, and this is the foundation for the subse-
quent development.

2.2  SpLIT CONFORMAL PREDICTION

This subsection presents the conformal prediction procedure by using anchor points to incorporate
the label noise effects. We employ deep neural network architectures to model the transition matrix
and implement the likelihood method to learn model parameters. Then we calculate calibration
scores to construct prediction sets for test data, as detailed below.

Warm-—up and pipeline. In the warm-up stage, we apply majority—voting to the data {x;, ¥; }ic[n]
to obtain anchor points. Let Ay, := {i € [n] : P(Y = k | X = x)} denote the index set of anchor
points for class k, and write A := Ugex)Ai. For each k € [K], randomly split Ay, into A}, for
training and A§, for calibration (i.e., a hold—out set), and form training and calibration data:

U {&i5ipi=k) i€ AL} D= | {0,575, mi=k) 1 i € AL}
ke[K] ke[K]
Let n® and n°¢ denote the size of D* and D¢, respectively.
Annotator transition model. We model the annotation process via two functions, ¥*(x) and
1°(x), which are charaterized by feedforward neural networks, and let 6, and 6. denote the as-

sociated parameters. For annotator r € [R] and class j € [K], the probability for annotator r to
report class 7, given the true class k and input x, is modeled by

exp{(a}”, ¥ (x)) + (B, ¢ (x))}
S exp {{af”, 9 (x)) + <ﬁé’“>,wc<x>>}’

where o(") = {ag-r ¢ | facilitates annotator—specific effects and S(*) := {B( K | captures

2

(YO =j|Y=kX=x)=

class—specific structures Let 0 = {0,,0c, {aM}E {BH®) |} denote the resultlng model pa-
rameters, and let Py (Y =j|Y=kKX= X) denote the probability (2) parameterized by 6.

Anchors-based likelihood training. Using D!, we estimate the model parameter § by maximiz-
ing the log-likelihood function:

= argmax Z Z ZZ ]l{yZ = jHogPy (Y(T) = j|Y =k X=x), 3)

ke[K] 1€Afr 1j5=1

where 1(-) is the indicator function. Using the estimated parameter 0, for r € [R] and k, j € [K],
we define 77 (x) := P;(Y(") = j|Y = k,X = x) and

K S
e (Xi, Vi) ¢ H H{?,E; Xi) }H{YZ j}. “)

Conformal Prediction. To construct a prediction set for a test data with a (1 — «) coverage rate for

€ (0, 1), we first determine the threshold value using the held-out data D¢ by proceeding with the
following five steps: (i) for eachi € A° := ke[K] Af., compute {7 (x;,¥:) }re[k)s (i) sort them in
decreasing order (assuming no ties) and let 1) (X;,¥:), - - , Y(x)(Xi,y:) denote the corresponding
class labels; (iii) form nested sets C(x;,ys; k) = {y(1)(Xi, ¥i), -+, Yoy (X4, ¥3)} for all & € [KT;
(iv) define the calibration score S(x;,y;;y:) = min{k € [K]:y; € C(x;,¥:; k)} for all i € A<
and (v) define k(o) = min {k € [K] : |{i € A : s(x;, Vi3 v:) < k} > (n° + 1)(1 — a)}.
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Next, for prediction of a test data point with (x,y), we repeat Steps (i)—-(iii) with (x;,y;) replaced
by (x,¥). The predicted label ¥ for the test data corresponds to the class having the largest value
derived from applying (4)) to (x,¥), and the prediction set is taken as

Ca(x,¥) = C(x, 51 k()

by setting & in Step (iii) to Ec(a). We call the resulting set a top-k conformal set and summarize this
procedure in Algorithm [I]

Our procedure is developed for settings where for given features, annotators label instances inde-
pendently, i.e., the following assumption is made:

Assumption 3. P(Y =7 | X =x) = Hle P(Y™ =50 | X =x).

This assumption is not essential yet it simplifies learning of the joint label-noise process for all an-
notators to estimating the annotator—specific transition model (2). When this assumption is deemed

infeasible, one may modify the procedure by learning the joint model P(Y = ¥ | X = x) or incorpo-
rate a shared latent factor to capture dependence across annotators. It is worth noting that variables
{Xi,Yi,Y;}icae do need not be identically distributed. Further, as the top-k method takes anchor
points as input, one might wonder how variability in identifying anchor points, together with uncer-
tainty in model specification and the estimation of model parameters using the likelihood method,
may affect statistical guarantees of the resulting prediction sets. This is also a natural concern arising
from existing conformal prediction methods, which typically involves multiple stages of determining
intermediate quantities. Fortunately, as noted by [Romano et al.| (2020), these sources of variability
are automatically accounted for through the threshold k°(«), which is chosen adaptively to ensure
finite-sample coverage on future test points, as shown in the proof of Theorem [3]in Appendix

Algorithm 1: Anchor-Based Conformal Prediction
Input:

Anchor-based training and calibration data: D* and D¢
Target miscoverage rate « € (0, 1); Test data (x,y)
Training based on D*:
Solve (3) and obtain 6
Determine Threshold Value using D°:
1. Foralli € A°,
(i) Forall k € [K], compute 73, (x;,;) by @);

(ii) Sort the values in decreasing order, and let %/(1)(x;, ¥i), - - -, Y(x) (x4, yi) denote the
corresponding class labels

(iii) For all k € [K], form nested sets C(x;,¥i; k) = {y(1) (i, ¥i)s =+ > Uy (X4, i) }
(iv) Define the calibration score S(x;,¥;; k) = min{k € [K] : y; € C(x;,¥:;k)}
2. Set k() = min {k € [K] : |{i € A°: S(xi, 55 i) <k} > (n®+1)(1 — a)}
Qutput: Prediction Set for Test Data
Ca(x,¥) = C(x,¥; k()

3 THEORETICAL GUARANTEE

For brevity, we write py(y) :=P(Y =y | X = x), qf:’)(j ly)=P(Y") =j|Y=y,X=x),and

P(y,y) :=P(Y =y, Y =7 | X = x). We examine theoretical results for the proposed conformal
prediction method, provided certain assumptions.

Assumption 4. Calibration scores {S(X;,Y;Y;)}Yicae for the calibration anchor points and

S(X, 3?; Y) for a test point are exchangeable and almost surely distinct, or ties are broken at ran-
dom.
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Assumption 5. Fory,j € [K| andr € [R], px(y) and q,((r) (j | v) are L-Lipschitz in x with respect

to a given norm || - ||.

Theorem 3. Suppose that Assumptions hold and that 0 in is a consistent estimator of 6.
Then for any o € (0, 1),

1

l—a<P{YeC.,(X,Y)}<1— .
a<P{ (X,Y)} at =

Theorem 3 establishes the marginal coverage rate for the proposed prediction set, which is bounded
between 1 —aand 1 —a+ %ﬂ If the calibration anchor point set is sufficiently large, the coverage
rate is almost identical to 1 —«. Further, one may be interested in evaluating the conditional coverage

rate of the prediction set C,(x,y), a stronger version than the marginal coverage: Is it true that
P{Y € Co,(X,Y) | X =x} > 1 — o for x € X'? This question is about valid coverage conditional
on a specific observed value of the feature X. However, as noted by [Lei & Wasserman| (2014)), [Vovk:
(2012), and |Barber et al.| (2021, finite sample conditional validity is impossible for any distribution
P and any x € X unless x is an atom, as defined in |Lei & Wasserman| (2014). That said, it is
undeniable that conditional coverage would be preferable. We thus take a step back to relax the
requirement of conditional validity by considering a weaker condition and introduce the following
definition, which can be regarded as an approximate conditional coverage.

Definition 3.1. For o € (0,1) and v € [0,1), an instance x is called an («, 7)-conditional valid
point with respect to Cy (x,5) if P{Y € Co(X,Y) | X = x} > 1 — av — 7. Let the collection of
those («, v)-conditional valid points be denoted

Vary ={xeX :P{YeCoX,Y) | X=x}>1—a—~}.

For p > 0, define NV, ,(p) = {x € X : infy e, [|x —xo| < p} to be the p-neighborhood of
Va,~-

Proposition 1. Suppose the assumptions in Theoremand Assumptionhold. Then for « € (0,1)

and vy € [0,1),
a

a+y

PXeVyy) >1-

Theorem 4. Suppose the assumptions in Theorem and Assumption hold, and let a,6 € (0,1)
and p € [0,1). Then for any x € No ~(p),

~ 1
P{Y € C(X,Y) |X:x}217a77—§(1+R)KR“Lp. 5)
Consequently,
(@). P{Y € Co(X,Y) | X € Noy(p)} > 1 —a—~— 31+ R)KELp;

(b). P{Y € Co(X,Y) | X €EVar}>1—a—7.

Proposition E] shows that V,, ,, has strictly positive probability mass for every v > 0, and thus it is
nonempty. In particular, P(X € Vy1-a) > 1 —aand P(X €V, 1/0-4) > 1 - 2aif 0 < a < 1/2,
which illustrates that a larger v value tolerates a greater deviation from the conditional coverage
level. When ~y = 0, then V, o includes all x values that ensures the conditional validity (if V¢ is
nonempty). In this case, Theorem [] describes a weaker conditional coverage for those points not
in V, - but in its neighborhood. Interestingly, the number of annotators and the number of classes
come into play in the lower bound in (3).

4 IMPLEMENTATION PROCEDURES

We develop a procedure for predicting latent true labels from multiple noisy annotators. The ap-
proach proceeds by constructing per—class anchor sets from high—agreement subsets of annotations,
learning an instance—dependent transition model parameterized by two deep networks, forming
likelihood—based class scores for point prediction, and calibrating top-k prediction sets on held—
out anchors. As illustrated in Figure[I] our method consists of four main stages: anchor selection,
base predictor training, anchor—guided calibration, and conformal prediction set generation.
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Figure 1: Overview of the proposed anchor-based conformal prediction pipeline. The framework
identifies anchors from annotator agreement, trains a base model on these anchors, and calibrates
conformal prediction sets to handle label noise.

Data and Preprocessing. We evaluated the performance of the proposed top-k method by ana-
lyzing two single—cell RNA—seq datasets: Baron3 (Baron et al.| [2016) and PBMC2 (Stuart et al.,
2020). The Baron3 data were collected from pancreatic islets from human donors. The PBMC2 data
comprise peripheral blood mononuclear cells from healthy donors. Both datasets contain substantial
cellular and genetic information and were labeled for classification. In terms of gene counts, they
are comparable, with counts ranging from 20,000 to 24,000. The information of gene and annotated
cell types was displayed as a matrix, where 1,200 highly variable genes are selected. Counts were
transformed using the centered log—ratio to mitigate compositional effects and used to construct
a nearest-neighbor graph. Across experiments, we used stratified splits, Adam optimization with
early stopping on validation loss, and cross—entropy as the primary objective.

Base Predictors. We applied our anchor—based conformal prediction method with several choices
of the base predictor for cell-type classification. Within the family of graph neural networks, the
graph convolutional network updates node representations by aggregating neighborhood features
through learned filters (Gao et al., [2023). The graph attention network extends this by assigning
attention weights, allowing the predictor to emphasize more informative neighbors (Liu & Zhou,
2020). GraphSAGE provides an inductive variant that samples neighborhoods and aggregates fea-
tures to construct low—dimensional node embeddings suitable for large graphs (Hamilton et al.,
2018). As a non-graph baseline, we also considered a Multi-Layer Perceptron, a standard feed—
forward predictor with fully connected layers (Gharehbaghil 2023)).

5 ANALYSIS RESULTS

We employed the proposed anchor—based method to analyze the two datasets, and compared the
performance to a baseline of the adaptive prediction sets (APS) method (Romano et al.l 2020), a
widely used method in practice.

Baron3. Agreement—based anchor selection yielded 68 high—confidence cells across 15 cell types.
Anchor representation was diverse relatively enriched in T cells (7.4%) and macrophages (6.0%),
but sparse in acinar and « cells (both < 1%), reflecting variation in annotator agreement (Table [La).
Using the anchor—calibration split, Top-k conformal sets closely tracked nominal coverage (1—«) at
80%, 85%, 90%, and 95% targets, with empirical coverage results at 0.80, 0.88, 0.95, and 0.95, re-
spectively. By contrast, APS usually achieved highly conservative coverage (> 96% across targets)
but produced much larger prediction sets. Visualization on a low—dimensional embedding further
supports these patterns: under APS, nearly all cells attain maximal set sizes, whereas our Top-k set
sizes vary smoothly across clusters, with smaller sets in well-separated endocrine populations and
larger sets in ambiguous ductal and stellate regions (Figure [2)).
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Figure 2: Low—dimensional embedding (UMAP or PCA fallback) colored by conformal set size
at 90% target. Regions with higher ambiguity receive larger sets; well-separated clusters receive
smaller sets.

PBMC2. Anchor selection again revealed substantial heterogeneity (Table [Ib). Some immune
subtypes exhibited relatively high anchor proportions, whereas others had very few, underscoring
differences in annotator consistency. As in Baron3, APS achieved near—perfect coverage across
all nominal levels but at the cost of inflated set sizes, often approaching the entire label space. In
contrast, our Top-k delivered coverage much closer to the target values while maintaining smaller,
more interpretable sets. Compact sets concentrated in well-defined clusters, whereas ambiguous
regions yielded larger sets, as expected. To quantify this trade—off across datasets, Table 2] reports
average conformal set sizes. APS consistently produced very large sets (near the total number of
classes), whereas Top-k yielded compact and interpretable sets (average sizes 12—14 in Baron3 and
substantially smaller in PBMC2). Together with the anchor statistics, these results indicate that
anchors not only capture annotator agreement but also enable calibration procedures that produce
valid, biologically meaningful, and compact conformal prediction sets. Overall, anchor—guided Top-
k method maintains reliable calibration with practical utility, while APS serves as a conservative
upper baseline. Additional per—class results, including confusion matrices (Figure @) and detailed
classification metrics (Tables [3H4), are provided in Appendix [D]

Set size analysis across datasets. Table 2] summarizes the average conformal prediction set sizes
obtained from the anchor—based calibration procedure and APS for both datasets. In Baron3, APS
produced nearly maximal set sizes (14—15 labels on average), confirming its conservative nature and
limited informativeness. By contrast, in PBMC2, the anchor—based procedure yielded much more
compact sets, often of size one across most targets, with only a modest increase at the 95% coverage
level. This difference illustrates how anchor prevalence and annotator agreement directly influence
calibration outcomes. When anchors are sparse (Baron3), conformal sets inflate toward the full label
space, whereas when anchors are abundant and reliable (PBMC2), prediction sets remain small and
interpretable. Together, these results reinforce that anchors provide a flexible mechanism for trading
off between validity and efficiency across datasets of differing annotation quality. APS provides
conservative coverage with inflated sets, while Top-k achieves coverage close to nominal with more
compact and interpretable sets.

Furthermore, we compared the performance of the proposed method to three additional baselines:
regularized adaptive prediction sets (RAPS), sorted adaptive prediction sets (SAPS), and split con-
formal prediction using softmax scores (SoftCP). RAPS (Angelopoulos et al.| [2020) and SAPS
(Huang et al., [2024)) are derived from APS, with the goal to output stable predictive sets. RAPS reg-
ularizes conformity scores by adding a penalty function to exclude unlikely classes, whereas SAPS
examines softmax probabilities and retains only the maximum probability. SoftCP is a split confor-
mal prediction method (Lei et al.l |2018)) applying softmax class probabilities and the score-based
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Table 1: Anchor counts and proportions (Prop) per cell type for both datasets.

(a) Dataset 1: Baron3 (b) Dataset 2: PBMC2

Cell type Total Anchors Prop Cell type Total Anchors Prop
t_cell 81 6 0.0741 B cell 250 215  0.8600
macrophage 117 7 0.0598 cMono 409 349  0.8533
epsilon 132 7 0.0530 ncMono 119 92 0.7731
mast 78 4 0.0513 CD4 Tecell 1238 872 0.7044
schwann 86 4 0.0465 NK cell 270 185 0.6852
quiescent_stellate 96 4 0.0417 CD8 T cell 676 434 0.6420
name 107 4 0.0374 cDC 20 12 0.6000
gamma 133 4 0.0301 pDC 12 7 0.5833
ductal 218 6 0.0275 Plasma cell 6 0 0.0000
beta 334 5 0.0150
delta 292 4 0.0137
endothelial 160 2 0.0125
activated_stellate 565 4 0.0071
alpha 457 3 0.0066
acinar 737 4 0.0054
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Figure 3: Empirical versus nominal coverage for two datasets. APS is highly conservative, while
Top-k tracks nominal levels more closely.

conformal classification formulation. We report in Appendix [D] (Table[6) the analysis results of the
empirical coverage rates and the size of the resulting prediction set corresponding to four values of
the target size: 1 — o = 0.80,0.85,0.90 and 0.95. Clearly, no method outperforms others simul-
taneously with respect to the coverage rate and set size, which aligns with the expectation that as
a higher coverage tends to require a larger prediction set. Furthermore, no method exhibits consis-
tently better performance on both datasets, and this underscores that heterogeneity in data plays an
important role in affecting the performance of the methods: the performance of a method relies on
whether the associated conditions are true or nearly true. For the Baron3 dataset, SoftCP and RAPS
yield under—coveraged prediction sets. While the coverage rates produced by SAPS agree with the
target rates, they are a lot smaller than those from APS and our top-k method although the latter two
methods output slightly larger prediction sets. Regarding the PBMC?2 dataset, all methods produce
higher coverage rates than the target levels, the size of the resulting prediction sets varies, which
can be roughly grouped into two categories: large or small. APS and RAPS produce a lot larger
prediction sets, suggesting reduced efficiency. On the other hand, our top-k£ method, together with
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Table 2: Empirical coverage and average set size for APS and Top-k conformal prediction across
targets on both datasets.

Method Dataset Target Empirical Coverage Avg. Set Size

APS Baron3  0.80 0.967 14.49
0.85 0.981 14.68

0.90 0.986 14.74

0.95 0.986 14.74

PBMC2  0.80 0.998 4.40

0.85 1.000 4.94

0.90 1.000 545

0.95 1.000 6.20

Top-k Baron3  0.80 0.804 12.00
0.85 0.882 13.00

0.90 0.949 14.00

0.95 0.949 14.00

PBMC2  0.80 0.947 1.00

0.85 0.947 1.00

0.90 0.947 1.00

0.95 0.998 2.00

SoftCP and SAPS, gives effective results with the smallest prediction sets. Furthermore, our method
yields the highest coverage rates among these three methods, which demonstrates the promise of our
method.

6 CONCLUSION AND DISCUSSION

We introduced an anchor—based conformal prediction method for classification with crowdsourced
noisy annotations. By leveraging anchor points to guide calibration, our method provides rigorous
uncertainty quantification. In applications, when the number of anchor points is small or even zero
for some classes, we may enlarge A by including pseudo-anchors: an instance x is called a §-pseudo-
anchor for class k if P(Y = k | X =x) > 1 —-¢for0 < ¢ < 1. When § = 0, it becomes an
anchor point; §-pseudo-anchor points are also called anchor points by [Xia et al.|(2019) if § is close
to zero; additional discussions are deferred to Appendix |[Bl A future work is waranted to examine
the impact on coverage rates and sizes of conformal prediction sets when anchor points are mis—
identified in settings violating the assumptions in Theorems [T|and [2] Examining the exact influence
of the number of anchor points can be valuable, although it is expected that, in principle, the more
anchor points, the better learning results.

It is worthwhile to further assess the performance of the proposed top-k method from other perspec-
tives. For example, it is interesting to explore how the inclusion of pseudo-anchor points or how
different degrees of class imbalance may affect the coverage rate of prediction sets. As observed in
Section[5] different methods may perform differently when applied to different data, and this reflects
the fact that heterogeneity in data plays an important role in affecting the performance of a method
while the application to two single—cell datasets confirmed the promise of our method, it is useful
in assessing how the proposed method performs when applied to other settings such as imaging or
language processing data.

10
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7 ETHICS STATEMENT

This paper introduces an anchor-based conformal prediction approach for handling noisy anno-
tations in single—cell data. The goal of this work is to improve the reliability and robustness of
predictive modeling in biomedical research, thereby enhancing our understanding of cellular het-
erogeneity and disease mechanisms. We have carefully considered the ethical implications and do
not anticipate any direct negative consequences arising from this work. While potential downstream
applications may involve clinical or biomedical decision—making, this study is methodological in
nature and not directly applied to patient care. We are committed to the responsible communication
and use of our methods and encourage their application in ways that respect ethical standards in
biomedical research and data privacy.

8 REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our work. All datasets used in this study are
clearly referenced. Descriptions of preprocessing procedures, model architectures, training proto-
cols, and evaluation metrics are provided in the Methods section and Appendix.
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A  PROOFS OF THEOREMS

A.l1 PROOF OF THEOREMIII

First, we comment that in defining anchor points, it is implicitly assumed that an instance x can be
an anchor point for at most one class. Thatis, if P(Y = kX =x) = 1, then P(Y = j|[X =x) =0
for any j # k. However, each class can have multiple anchor points; having P(Y = kX =x) =1
does not exclude P(Y = k|X = x*) = 1 for those instances x* that are not identical to x.

Proof of Theorem|[I}: First we show the ‘=" direction, which is immediate from the following
derivations:

P(Y™ =57 |X = x)
= Y {PEO =Y = X = x)P(Y = jIX = x)}

JjEY
= Y {PEY =5 = i X = x)P(Y = jIX =x)}
J#k
+P(Y" = §)Y = k, X = x)P(Y = k|X = x)
= P(Y") =3y =k, X =x), (A1)

where we use the conditions for anchor points.

Next, we show the “<=" direction. Indeed, applying (A-I)) to the condition
PY" = kX =x) =P(Y™") = k]Y = k, X = x)
leads to
S P =k|Y =, X = x)P(Y = j|X =x)
J#k
+P(Y") = kY =k, X = x){P(Y = k|X =x) — 1} = 0,
which is equivalently written as
3 {P(\?(” — kY =j,X=x) - P(Y® =k|]Y = k,X = x)}}P’(Y —jX =x) =0.
7k
By Assumption|[I]and the fact that P(Y = j|X = x) > 0 for all j # k, we conclude that
P(Y=jX=x)=0 forall j#k,

and thus yielding
P(Y=kX=x)=1.

14
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A.2 PROOF OF THEOREM[3]

To prove Theorem 3] we first show the following lemma.

Lemma 1. Suppose {c1,...,Cm;Cm+1]} is a sequence of constants, taking values in [K]. For k €
[K] and o« € (0, 1), define
I, = {i€e[m]:c¢ <k},
k(o) = inf{ke[K]:|Zx] > (m+1)(1 —a)}, and
J = {i€em]:c <cmyr}

Then “cpi1 > k(a)”  iff

JlI>m+1)1—-a)”.
Proof. Show “==>": For any iy € Zj (), we have that ¢;, < k(). Then by the condition ¢, 11 >
k(a), ¢iy < ¢my1, leading to iy € J by definition of 7. Therefore,
Tr) C T,
yielding |Zj, )| < |7|. Then applying definition of k(c) shows (m + 1)(1 — a) < |T].

Show “<=": We show the conclusion by contradiction. If the conclusion does not hold, then
em+1 < k(a), implying that ¢; < k(«) for any ¢ € J. Consequently, max{c; : i € J} < k(«).
Thus, there exists ko such that max{c; : i € J} < ko < k(a), showing that

T C Ty (A2)

By the condition | 7| > (m + 1)(1 — ), we obtain |Zy,| > (m + 1)(1 — «). On the other hand, by
the definition of k(«), we conclude that k(«) < ko, which contradicts (A.2). O

Proof of Theorem 3] By definition, for any (x,y) € D¢ and any k € [K],
S(x,¥;y) <k <=y € C(x,¥; k). (A3)
Then for any « € (0,1),
k(@) = min{ke [K]:|{i€ Ay € Clxi,yi;k)} > (n° +1)(1 —a)}
= min{k € [K]:|{i € A°: S(xs,¥75;y:) <k} > (n°+1)(1— )}
Because {S(X;, Y Y;)}icae and S(X,Y;Y) are exchangeable random variables as stated in As-

sumption ] so B
U= {ie A S(X,Y;Y) > S(xi,¥isvi) H

is stochastically dominated by the discrete uniform distribution on {0, 1, ..., n}. When the calibra-
tion scores are almost surely distinct (or when random tie-breaking is used to break ties), exchange-
ability implies that U follows a uniform distribution on {0, 1,...,n°}.

Consequently, by (A.3) and Lemmal[T]
P{Y ¢ C(X,Y; k*(a)}
= P{S(X,Y;Y) > k°(a)}
= P{|{i € A°: S(X,YV;Y) > S(xi, ¥isvi) | > (n° +1)(1 — )}
= P{U>n+1)(1—-a)}
1
D R
u>(nc+1)(1—a) ne+1
n—[(n°+ 1)1 -a)]+1
nc+1
[(n°+ 1)1 —a)]
nc+1

- 1-

)
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where the second last step is due to the fact that n — [(n® + 1)(1 — «)] + 1 integers u satisfy
“u > (n®+1)(1 — «)”. Therefore,

w4 1)(1 - a)]
nc+1 '

P{Y € C(X,Y;k(a)} = It

By definition of ceiling and floor functions, it is immediate

(n°+ 1)1 —0) _ [(n°+D(1-a)] _(n"+1)(1—a)+1

7

nc+1 - nc+1 nc+1
ie.,
[(n°+1)(1—0a)] 1
1—a< 1-— _
a < e+ 1 < o+ e 1
therefore, the conclusion follows.
O
A.3 PROOF OF PROPOSITION[I]AND THEOREM [4]
First, we present two lemmas, which will be used to prove Proposition I}
Lemma 2. For any sequences {a, },c[r) and {b, },¢c|g) of real values,
R R R
Har— HbT :Z (Har> (as — bs) (HbT> .
r=1 r=1 s=1 \r<s >S5
Proof. For ease of exposition, define
R
Pry1 = H Ay
r=1
s—1 R
P = (Har>< bT> for s=2,...,R;
r=1 r=s
R
P = H b,..
r=1
Then
R R
[To - IIn.
r=1 r=1
= (PR+1 —PR)+(PR—PR71)+"'+(P3—P2)+(P2—Pl)
R
= Z(Ps+1 - PS)- (A4)
s=1
By definition, it is clear thatfor s =2, ..., R,
s—1 R s—1 R
P, = (H ar> bs ( 11 br> and P, 1 = (H ar> as ( 11 br> ,
r=1 r=s+1 r=1 r=s+1
which leads to
s—1 R
R9+1 - Ps = (H ar) (as - be) ( H br) .
r=1 r=s+1
Then plugging this identity into (A.4) proves the result. O
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Lemma 3. Suppose Assumptionsand hold. Let TV (Py, P3) denote the total variation distance
between distributions Py and P,. Then for any xg,x € X,

1
TV(Py, Py,) < 5( +R)KR+1LHX_XOH~

Proof. By Assumption[J] forall y € [K] and all r € [R], j € [K],

[px(y) = oo )| < Lllx =0l and g7 | ¥) = ¢ (G | ¥)] < Llix = xol| (A.5)
Then by Assumption 3]
) R
Pu(y,7) =P(Y =y, Y =7 | X=x) = p.(y) [["F" | v),
r=1

and similarly for P, (v, ). Therefore, applying the triangle inequality, we obtain
|P y7~ _PXO(Y7F}7)|

A PO, \
R

‘px(y)qu)('yv(r)ly — Pxo (v H
o

1 r=1
R
Ao () [T "G 1) = oo (v Hq(’”) vt y‘
r=1
R R
< pxy) — Pl |Hq 519+ )| [L6 19 - )6 1)
r=1 r=1
R
< ) - pel+ | [ -1l 6 y>], (A6)
r=1 r=1

because each probability factor ¢\ ( | v) lies in [0, 1] and py, (y) < 1.

Applying Lemmalw1th a, = ¢ ") | y), b, = q(0 () | y), we obtain
R

VEO y) - H al) (7 |;Y)’ <D G 1Y) =G ).
r=1

Combining with (A.3) and (A.6) yields

R
| Pe(y:3) = Py (v, 9)] < Lllx = 0]l + Y Lllx = xo]| = (1 + R)L||x = o] - (A7)

r=1

Since the total variation distance between Py and Py, is

TV (Py, Py,) = Z > Py, Y) = P (v,7)]

yE[K | yelK]®
then using (A.7) and the fact that there are K possible labels and K ¥ possible annotator combina-
tions, we obtain

TV(Py, Py,) < = (1 + R)K®TL||x — x|

N[ =
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Proof of Proposition[I] Forx € X, define
g(x) =P{Y € 0o (X,Y) | X = z}.
Then

B0} = [ abondax

_ / Y € CalX, V) | X = x}fx(x)dx

N /ex{ Z ~f(y’y|x)}fx(x)dx

(v,5):v€Ca(x,¥)

N /eX Z f,y [ %) fx(@)dx

(v, ¥):y€Ca(x,¥)

= /XEX > fy¥x)dx

(v,3):y€Ca (%)

= P{Y € Co(X,Y)}

> 1—aq, (A.8)
where the last step comes from Theorem 3]
Let

Boy =X \Vay = {xo € X :g(xo0) <1—a—'y}.
Then writing X = B, 4 UV, -, we obtain
E{1-9(X)} = E[{1-g(X)H{1X € Bay)+1L(XEVay)}]
= E[{1 - g(X)}L(X € Bay)] + E[{1 = g(X)}1(X € Vo 5)]

- / {1 = g} (x € Bay) Pe(x)dx + / {1 - g} (x € Vi) fx (x)dlx
=/ {1 - g} fx(x)dx + / {1 - g()} fx(x)dx
xeB,

a,y Xeva,’y
> (a+5)/ fx(x)dx+0
XEBa,~
= (a4 6P(X € Ba), (A.9)

where we used 1 — g(X) > a +~vyon B, , and 1 — g(X) > 0 always.
On the other hand, (A-8)) implies

E{1-g(X)} =1-E{g(X)} < a. (A.10)
Combining (A.9) and (A.10) gives
a>E[l-g(X)] > (a+)P(X € Bay)
leading to
@
P(X € B,~) < .
(X€Bay) <
Therefore o
PX€Vyr)=1-P(XeBy~)>1-— ,
(X€Var) =1 - PX € Buy) > 1 - S
which proves the result. O
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Proof of Theorem[d] For x € X, let

g(x) =P{Y € Co(X,Y) | X = x}.

For any x € N, ,(p) and any € > 0, there exists xo € Vs such that

Then by Proposition 3]
96 = g(x0)| = [P{Y € Ca(X,¥) | X =x} = P{Y € Ca(X,Y) | X = x0}
< TV(P,Py,)
< %(1 + R)KT 1 L[|x — x|
< %(1 FRKFFL(p 4 o).
Therefore,

[x —xol < p+e.

900 > glw) = S 1+ RIKTL(p+e)

1
> l-a—-vy- 5(1 +R)K" 1 L(p + o),

(A.11)

where the last step come from the fact that g(x*) > 1 — o — «y for any x* € V, . Lettinge | 0

gives equation 3]

Finally,

Y

P{Y € Co(X,Y) | X € Ny (p)}

P{Y € Co(X,Y),X € Na~(p)}
P{X € Nay(p)}

Jeenas o) 2w iyveca @y I ¥, X)dx
Seena(p Sx(x)dx
Seen ) wiywecaws FOT 1) fx (x)dx
fxeNM(p) fx(x)dx
fxeN"‘”(p) P{Y € Co(X,Y) | X = 2} fx(x)dx
fxe/\/(,ﬁ(p) fx(x)dx
Jxeni, (909 fx(x)dx
fxeNM(p) fx(x)dx
Jeens 11— @ =7 = 30+ BIE™HL(p + )} fx(x)dx
Seenn () Fx(x)dx

| —a— %(1 +FRKFFL(p+ o)

where the second last step is due to equation [A.TT} When p = 0, Ny, (0) = Va5

B DETAILS ABOUT PSEUDO-ANCHOR POINTS

Here, we show results for pseudo anchor points.
Theorem 5. If x is a 6-pseudo anchor point with § € [0, 1), then forr € [R] and k € [K],

(i) (1-6)g” T | k) <PYT =50 | X =x) < (K - 1)8 + ¢ | k);
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(i) P(Y() = 50X = x) — (K = 1)6 < ¢ (™) | k) < Z5P(Y™) = 50|X = x).

Proof. Assume that x is a §-pseudo anchor point for class k. Then expression (A-T)) becomes
P(Y" = 5|X = x)
= Y {REY =50 = X = B = X =)}

JjeY
= S {PAO =3Oy = jx)P(Y = jIX = x)}
i#k
+P(Y™ =30y = k, X = x)P(Y = kX = x) (B.1)

Noting that all probabilities in the first term of (B.I) are nonnegative, then by definition of the
d-pseudo anchor point for x, we obtain that

PYP|X =x) > (1-86)P(Y™ =5"|Y =k, X = x). (B.2)
On the other hand, if x is a J-pseudo anchor point, then
P(Y=jX=x)<¢§ forany j#k,
therefore, by that all conditional probabilities in @) are between 0 and 1, we obtain that

P(Y™ =X =x)

< > {P(?(r) = 7Y = j,x) x 6} +¢MF | BP(Y = kX =x)
%k
< 6 PY™ =3Y = j,x) + ¢ F" | k)
%k
= (K-1)5+q"GF" | k). (B.3)

Combining (B.2) and (B3) gives us
(1—=0)g"F [ k) <PY") =3[X =x) < (K - 1)6 + ¢ ) | k),
leading to

1

PO =3 0X =x) - (K - 1)6 < gD G | 1) <

PY?" =3 |X =x), (B4)

which proves (i) and (ii).

Remark. The inequalities in (B.4)) have important implications. In the degenerate situation with
6 = 0, i.e., x is an anchor point, (B.4) recovers the identity:

PY™) =50y =k, X =x) = BY® = D |X = x).
When ¢ is extremely small such that (K — 1)¢ is close to 0 and ﬁ is close to 1, we have
PY®D =50y =k, X =x) =~ P(Y® = 5 |X = x),

showing that a pseudo-anchor point can be practically regarded as an anchor point.
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C DEEP NEURAL NETWORKS

We describe architectures ¥ 4, ¥ ¢, and ¥ g in detail. Let

K
SEt={(s1,...,8¢)" :s;>1 for je[K] and Zsj =1
j=1
denote the (K — 1)-dimensional simplex, and let
G:RF — K

denote a softmax function, given by

exp(z1)

>orey exp(z))
;Xp(@)
G(z) = 2=1 (?Xp(zj) for z=(z1,...,2K)"
exp('zK)

5o exp(z;)

For r € [R], we now describe the conditional probability mass function of Y, given Y and X.
Specifically, for k£ € [K], we specify the vector of the conditional probability mass functions of

?(T), given Y = kand X = x as:

P(Y™ = 1]Y = k, X = x) al” gk

P(Y") =2]Y = k,X = x ay” ")
e O TR S R PN [ P

P(Y") = K|Y =k, X =x) oy B

where (") £ (agr), e a(Kr))T and g(0) & (5%“, . ,ﬁ%k))T are weights; and 1" (x) and ¥°(x) are
functions facilitating the dependence on the annotator’s skills and the class label.

Expressing this elementwisely, we obtain that for j € [K],

exp{(af” ¥ () + (87 v}
S exp{(af”, v (x)) + (B, ve(x)) )

Here, the weights o™ and j3 (k) and the functions 1)*(x;) and 1)°(x) are unknown, which need to be
trained using the data Dy . or its subset.

P(Y" =Y =k X =x) =

(C.1)

To flexibly reflect possibly different effects of the annotator expertise (r) and the ground truth (k) in
the annotation process, we employ deep neural network (DNN) architectures to describe 1" (x;) and
1°(x;). Specifically, we specify ¥*(x;) as a network with an input layer and an output layer that are
linked by H* — 1 hidden layers, where the hth hidden layer has L} nodes for h = 1,..., H* — 1.
Let L* = (Lp, L4, ..., L.)" denote the width vector for the network, with L = p for the input
layer that records measurements of p elements of x;, and L};, = 1 for the output layer. The
network architecture { H*, L*} is characterized by a sequence of linear and nonlinear functions,
approximating ¥*(x) by

PN x) 2 Wihaoha_y { . JQ{WQU?(WﬁX +b))+ bg} +b3 - } + by, (C.2)
or equivalently,
PN (0;x) £ g(H*x),
where the g functions is determined by the recursive equation
9(j;x) =Wig(j — 1;x) + b for j=2,... H

with
9(1;x) = o7 (Wix +bY).
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Stage 3 Confusion Matrix (High-Confidence Anchors) . .
Stage 3 Confusion Matrix (Dataset 2, High-Confidence Anchors)
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Figure 4: Confusion Matrices of predicted cells vs true cell types for both datasets

. . . A, . .
Here, for h = 1,...,H* W} is an L} x Lj_; weight matrix, b € RE% is the bias vector in

layer h, 6* is the parameter vector formed by stacking {W}}, b}, hH; from bottom to top, o}, is a
user-specified activation function that operates elementwise (e.g, a ReLu function), and x is a p-
dimensional argument.

Analogously, we specify ¥°(x) as a network, using similar notation but replacing the subscript a
with c for the relevant quantities. Let § = (6", 0"; (™) ) : r € [R], k € [K])". As a result, the
conditional probability in (C:I) is modeled as follows:

exp{(al” (0% %)) + (B, 00 (6% %))}
SE L exp{{af™, 9264 %)) + (B, e (69 %))}

PY" =Y =k X=x) =

D EXTENDED RESULTS

We include per—class coverage tables, histograms, and plots to supplement the analysis results in
Section[3]

Table 3: Predicted versus annotated cell types

Beell CD4Tcell CD8Tcell NKcell Plasmacell c¢DC c¢cMono ncMono pDC

B cell 75 0 0 0 0 0 0 0

CD4 T cell 0 363 8 0 0 0 0 0 0
CDS8 T cell 0 18 181 4 0 0 0 0 0
NK cell 0 0 5 76 0 0 0 0 0
Plasma cell 0 0 0 0 2 0 0 0 0
cDC 0 0 0 0 0 6 0 0 0
cMono 0 0 0 0 0 0 123 0 0
ncMono 0 0 0 0 0 0 0 36 0
pDC 0 0 0 0 0 1 0 0 2

Table 4: Per—class classification report

Beell CD4Tcell CD8Tcell NKcell Plasmacell ¢DC cMono ncMono pDC  Accuracy Macro Avg Weighted Avg

Precision  1.000 0.953 0.933 0.950 1.000  0.857 1.000 1.000  1.000 0.960 0.966 0.960
Recall 1.000 0.978 0.892 0.938 1.000  1.000 1.000 1.000  0.667 0.960 0.942 0.960
Fl-score  1.000 0.965 0912 0.944 1.000  0.923 1.000 1.000  0.800 0.960 0.949 0.960
Support 75 371 203 81 2 6 123 36 3 0.960 900 900
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Table 5: Performance comparison on the Baron3 dataset using different methods. Metrics include
ROC-AUC and PR-AUC.

Model ROC-AUC PR-AUC
GCN 0.9942 0.9815
MLP 0.9881 0.9799
GAT 0.9867 0.9738
GraphSAGE 0.9909 0.9803
SingleCellNet 0.9866 0.9756
ACTINN 0.9889 0.9804

Proposed Anchor-based CP 0.9953 0.9803

Table 6: Comparison of conformal prediction baselines across Baron3 ( 14—cell types) and PBMC2
(Immune dataset). Metrics are empirical coverage and average set size for target coverage levels
{0.80,0.85,0.90,0.95}.

(a) Baron3 Dataset (b) PBMC2 Dataset
Method Target Emp. Cov. Set Size Method Target Emp. Cov. Set Size
0.80 0.967 14.49 0.80 0.998 4.40
0.85 0.981 14.68 0.85 1.000 4.94
APS 0.90 0.986 14.74 APS 0.90 1.000 5.45
0.95 0.986 14.74 0.95 1.000 6.20
0.80 0.780 10.93 0.80 0.992 4.53
0.85 0.833 11.69 0.85 0.992 5.09
RAPS 0.90 0.889 12.50 RAPS 0.90 0.992 5.40
0.95 0.947 13.32 0.95 0.993 5.84
0.80 0.815 11.39 0.80 0.903 1.00
0.85 0.860 11.93 0.85 0.903 1.00
SAPS 0.90 0.908 12.66 SAPS 0.90 0.913 1.04
0.95 0.954 13.34 0.95 0.958 1.36
0.80 0.793 10.94 0.80 0.927 1.00
0.85 0.860 11.87 0.85 0.927 1.00
SoftCP 90 0.911 12.67 SOftCP 90 0.927 1.00
0.95 0.943 13.18 0.95 0.953 1.09
0.80 0.804 12.00 0.80 0.947 1.00
Too-l: 0.85 0.882 13.00 Too-l: 0.85 0.947 1.00
P 0.90 0.949 14.00 P 0.90 0.947 1.00
0.95 0.949 14.00 0.95 0.998 2.00
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