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Figure 1: Sample images generated from SDXL trained with Diffusion-LPO. Diffusion-LPO gener-
alizes Diffusion-DPO by optimizing the preference under a list of ranked images. After finetuning
with Diffusion-LPO, SDXL produces images with higher visual aesthetics and prompt alignments.

ABSTRACT

Reinforcement learning from human feedback (RLHF) has proven effectiveness
for aligning text-to-image (T2I) diffusion models with human preferences. Al-
though Direct Preference Optimization (DPO) is widely adopted for its compu-
tational efficiency and avoidance of explicit reward modeling, its applications to
diffusion models have primarily relied on pairwise preferences. The precise opti-
mization of listwise preferences remains largely unaddressed. In practice, human
feedback on image preferences often contains implicit ranked information, which
conveys more precise human preferences than pairwise comparisons. In this work,
we propose Diffusion-LPO, a simple and effective framework for Listwise Pref-
erence Optimization in diffusion models with listwise data. Given a caption, we
aggregate user feedback into a ranked list of images and derive a listwise exten-
sion of the DPO objective under the Plackett–Luce model. Diffusion-LPO en-
forces consistency across the entire ranking by encouraging each sample to be

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

preferred over all of its lower-ranked alternatives. We empirically demonstrate
the effectiveness of Diffusion-LPO across various tasks, including text-to-image
generation, image editing, and personalized preference alignment. Diffusion-LPO
consistently outperforms pairwise DPO baselines on visual quality and preference
alignment.

1 INTRODUCTION

Diffusion models, including prominent architectures like Stable Diffusion (Podell et al., 2023; Rom-
bach et al., 2022), Imagen (Saharia et al., 2022), and DALL-E 2 (Ramesh et al., 2022), have become
a dominant paradigm in text-to-image synthesis due to their ability to generate high-fidelity and se-
mantically aligned images (Ho et al., 2020). While these models are pretrained on massive web-scale
datasets to establish a powerful foundation, real-world deployment necessitates further finetuning to
align their outputs more closely with human preferences. Drawing inspiration from alignment tech-
niques in large language models (LLMs), recent works have adapted methods like Direct Preference
Optimization (DPO) for diffusion models, enabling preference learning without an explicit reward
model (Yang et al., 2024; Wallace et al., 2024; Zhu et al., 2025; Li et al., 2024; Gu et al., 2024).
These approaches have demonstrated superior performance over standard supervised fine-tuning by
directly incorporating preference signals into the optimization process.

Despite these advances, prior works mostly
rely on pairwise human preference data. Pair-
wise comparisons are relatively easy to collect
and annotate, making them the dominant form
in existing human preference datasets (Bai
et al., 2022; Kirstain et al., 2023). However,
human preferences are inherently expressed
as ranked lists rather than isolated pairs, since

≻ ≻ ≻

Figure 2: An example of a ranked list of images
under human preference. The caption is “Rocket
Raccoon, furry art, fanart, digital painting.”

preferences are not simply absolute approvals or rejections but relative orderings among multiple
options, as shown in the example of Figure 2. In this sense, pairwise annotations implicitly contain
richer ranking information: if we consider a user indicating their preferences as response x(a) ≻
x(b) and x(b) ≻ x(c), this naturally implies the transitive ordering x(a) ≻ x(b) ≻ x(c), which
more faithfully represents the user’s overall preference. Notably, we observe that in the Pick-a-Pic
dataset (Kirstain et al., 2023), where each user provides pairwise preferences for images, 56% of
such annotations can be benefited from grouping into consistent rankings with size greater than 2 to
form more informative human preferences. This motivates the need for listwise optimization, which
directly models the ranking nature of human preferences. A straightforward approach to formulating
an objective for listwise preference is to decompose rankings of size m into m(m − 1)/2 pairs to
apply the pairwise DPO objective. Several works (Chen et al., 2025; Karthik et al., 2024) have
explored this direction, but their methods rely on auxiliary evaluators to assign reward scores to
each image, introducing extra computational overhead and resource burden.

In this work, we introduce Diffusion-LPO (Listwise Preference Optimization), a new framework for
aligning diffusion models with user-level preferences. Instead of reducing user feedback to pairwise
comparisons, Diffusion-LPO directly models listwise preferences with the Plackett-Luce ranking
model (Plackett, 1975). Unlike pairwise DPO, which only compares a winning sample against a
single loser, Diffusion-LPO enforces consistency across the entire ranking by encouraging each
sample to be preferred over all of its lower-ranked alternatives, thereby preserving the full relative
order within the list. When the list size equals 2, Diffusion-LPO degenerates to Diffusion-DPO.
As a general approach for listwise preference optimization, the formulation of Diffusion-LPO can
potentially enhance many existing methods built upon the Diffusion-DPO family.

To evaluate the effectiveness of our method, we train SD1.5 (Rombach et al., 2022) and
SDXL (Podell et al., 2023) on the Pick-a-Pic dataset (Kirstain et al., 2023), a dataset of real-world
user preferences that contains human preference pairs of images. We uncover the inherent listwise
preference within the dataset, with detailed information of dataset reformulation illustrated in Sec-
tion 4.1. Empirical results show that Diffusion-LPO improves PickScore win rates by 12% and by
4% over Diffusion-DPO on SD1.5 and SDXL. Specifically, our contribution can be listed as follows:
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• We first provide a novel perspective that ranked human preferences are implicitly embedded
within pairwise annotations. It motivates us to intentionally enforce the diffusion model to
learn such structural rank information.

• We propose Diffusion-LPO, a direct preference optimization framework from listwise hu-
man feedback. As a generalization of pairwise DPO, Diffusion-LPO can be integrated into
any DPO-based method to further boost the performance.

• We empirically demonstrate the effectiveness of Diffusion-LPO across various T2I tasks.
Diffusion-LPO exhibits higher alignment with human preferences over baselines.

2 RELATED WORK

RLHF Alignment Reinforcement Learning from Human Feedback (RLHF) has emerged as the
dominant paradigm for aligning large language models (LLMs) with human preferences (Chris-
tiano et al., 2017; Stiennon et al., 2020; Mnih et al., 2016; Ziegler et al., 2019; Bai et al., 2022;
Bakker et al., 2022; Jiang et al., 2025). In its standard formulation, a reward model is trained to
approximate user preferences, and the policy is subsequently optimized via reinforcement learning
with this reward signal. While effective, this two-stage pipeline is computationally expensive and
can be susceptible to reward hacking (Singhal et al., 2023; Chen et al., 2024). To address these
limitations, recent work has explored direct preference optimization (DPO) (Rafailov et al., 2023),
which bypasses explicit reward modeling and instead optimizes the policy to prefer human-preferred
outputs directly. Most existing approaches rely on pairwise preference data and the Bradley–Terry
(BT) model (Bradley & Terry, 1952) to parameterize the likelihood of a winning sample over a los-
ing one (Ethayarajh et al., 2024; Meng et al., 2024). However, pairwise comparisons may provide
limited information about human preferences, as they reduce complex judgments into binary wins
and losses. Several recent works have extended DPO to the listwise ranking setting (Liu et al.,
2025; Song et al., 2024; Hong et al., 2024a), enabling richer supervision signals from ranked lists of
responses than pairs.

Preference Alignment with Diffusion Models Recent work has shown that reinforcement learn-
ing is an effective tool for aligning diffusion models with human aesthetic and semantic prefer-
ences (Fan et al., 2023; Black et al., 2023; Xue et al., 2025; Clark et al., 2023; Zhao et al., 2025; Ue-
hara et al., 2024; Prabhudesai et al., 2023; Lee et al., 2023; Eyring et al., 2024; Sun et al., 2025a; Lee
et al., 2025; Zhang et al., 2025). Among existing reinforcement learning optimization approaches,
Direct Preference Optimization (DPO) stands out as an attractive option by defining an implicit
reward through preference comparisons, eliminating the need for explicit reward models (Wallace
et al., 2024; Yang et al., 2024; Li et al., 2024; Gu et al., 2024; Zhu et al., 2025; Hong et al., 2024b;
Lee et al., 2025; Wang et al., 2025; Liang et al., 2024; Sun et al., 2025b; Lu et al., 2025; Wu et al.,
2025; Cai et al., 2025; Hu et al., 2025; Zhang et al., 2024). Diffusion-DPO (Wallace et al., 2024)
adapts this framework to the diffusion setting. Follow-up work includes DSPO (Zhu et al., 2025)
which derives the DPO objective through score matching, Diffusion-KTO (Li et al., 2024) which
formulates the objective by maximizing human utility, MaPO (Hong et al., 2024b) which maxi-
mizes likelihood margin between preferred and dispreferred image sets. Despite these advances, the
above DPO-based methods for diffusion rely exclusively on pairwise preference data, while human
feedback can come as a list of rankings.

3 PRELIMINARIES

3.1 DIFFUSION MODELS

Diffusion models are generative models that learn data distributions by reversing a gradual noising
process (Ho et al., 2020; Song et al., 2021). The forward (diffusion) process starts from clean data
x0 ∼ pdata, where pdata is the data distribution, and progressively adds Gaussian noise across T time
steps with noise scheduling β1, ..., βT :

q(xt | x0) = N
(√

ᾱtx0, (1− ᾱt)I
)
, ᾱt =

t∏
s=1

αs, αt = 1− βt.
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The reverse process (denoising) is parameterized by a neural network ϵθ, which predicts noise ϵt
given a noisy image xt at timestep t. The standard training objective is a weighted denoising score
matching loss (Ho et al., 2020):

LDM(θ) = E
x
(1:m)
t ∼pθ(x

(1:m)
t |x(1:m)

0 )

[
ω(λt) ∥ϵ− ϵθ(xt, t)∥22

]
,

where λt = log(α2
t /σ

2
t ) is the signal-to-noise ratio, pθ is the reverse process, and ω(λt) a pre-

defined weighting function.

3.2 DIRECT PREFERENCE OPTIMIZATION (DPO)

Large generative models can be aligned with human feedback via reinforcement learning from hu-
man feedback (RLHF) (Christiano et al., 2017; Stiennon et al., 2020). The goal of RLHF is to
optimize the policy πθ by maximizing the reward r(c,x0) given the prompt c sampled from prompt
set Dc and sample x0, with a regularization KL-divergence from a reference policy πref(x0|c):

max
πθ

Ec∼Dc,x0∼πθ(x0|c)[r(c,x0)]− βDKL[πθ(x0|c)||πref(x0|c)]. (1)

Classical RLHF requires training a separate reward model and then optimizing the generative policy
with reinforcement learning (e.g., PPO (Schulman et al., 2017)). Direct Preference Optimization
(DPO) (Rafailov et al., 2023) eliminates the need for explicit reward modeling by modeling human
preferences with the Bradley-Terry (BT) model (Bradley & Terry, 1952):

pBT (x
+
0 ≻ x−

0 | c) = σ
(
r(c,x+

0 )− r(c,x−
0 )
)
,

where c is the conditioning prompts and (x+
0 ,x

−
0 ) is the pair of human-labeled winning and losing

samples. Here, r(c,x0) is the latent reward, and σ is the sigmoid function. Use the log-likelihood
ratios to get the implicit rewards, the DPO loss becomes

LDPO(θ) = −E(c,x+
0 ,x−

0 )∼D

[
log σ

(
β
(
log πθ(x

+
0 |c)− log πθ(x

−
0 |c)

))]
.

Here, (c,x+
0 ,x

−
0 ) ∼ D indicates c ∼ Dc,x

+
0 ∼ πθ(x

+
0 |c),x

−
0 ∼ πθ(x

−
0 |c).

3.3 DIFFUSION-DPO

The key observation of adapting DPO to diffusion models is that the diffusion denoising objective
LDM serves as an implicit reward. Specifically, Diffusion-DPO (Wallace et al., 2024) defines a
reward for an image x at timestep t as the improvement of the fine-tuned model ϵθ over the reference
model ϵref, specifically rθ(c,x, t) ∝ δθ(c,xt, t), where

δθ(c,xt, t) := −
(
∥ϵ− ϵθ(xt, c, t)∥22 − ∥ϵ− ϵref(x,c, t)∥22

)
. (2)

The resulting preference objective is

LDiff-DPO(θ) = −E(c,x+,x−)∼D,t

[
log σ

(
β T ω(λt) (δθ(c,x

+, t)− δθ(c,x
−, t))

)]
,

where T is the number of diffusion steps and ω(λt) reweights timestep contributions.

4 METHOD

4.1 LISTWISE PREFERENCE OPTIMIZATION FOR DIFFUSION MODELS

Existing preference alignment methods for diffusion models, such as Diffusion-DPO, are built on
the Bradley–Terry (BT) model, which assumes pairwise preferences. In this work, we adopt listwise
preference optimization, x(1) ≻ x(2) ≻ · · · ≻ x(m), which leverages the ranking as a more fine-
grained information for preferences. To capture this higher-order structure, we adopt the Plackett–
Luce (PL) model (Plackett, 1975), a probabilistic model for listwise rankings.
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Reward Under Plackett–Luce Model. Let G = {x(1),x(2), . . . ,x(m)} denote a group of m
candidate images generated under prompt c, ranked by a user as x(1) ≻ x(2) ≻ · · · ≻ x(m). The PL
model defines the probability of this ranking as

pPL(x
(1) ≻ x(2) ≻ · · · ≻ x(m) | c) =

m∏
j=1

exp
(
r(c,x(j))

)∑m
k=j exp

(
r(c,x(k))

) ,
where r(c,x) denotes the latent reward of the image x conditioned on the prompt c. This formula-
tion can be viewed as applying a softmax over each suffix sublist x(j),x(j+1), . . . ,x(m), ensuring
that at every step the selected item is assigned a higher preference than all remaining lower-ranked
candidates.

Objective for Diffusion-LPO We would like to finetune the diffusion model pθ(x0|c) with the
RLHF objective as in Equation 1. For diffusion models, the KL-divergence regularizes the whole dif-
fusion chain, and the reward is defined as r(c,x0) = Epθ(x1:T |x0,c)[R(c,x0:T )], where (x1, ...,xT )
are variables defined on the diffusion path. Maximizing the reward from the objective of Plackett-
Luce model, we can get the listwise Diffusion-DPO objective:

LDiffusion-LPO(θ) =− E
(c,x

(1:m)
0 )∼D,x

(1:m)
1:T

∼pθ(x
(1:m)
1:T

|x(1:m)
0 )

m∑
j=1

[
β log

pθ(x
(j)
0:T | c)

pref(x
(j)
0:T | c)

− log

m∑
k=j

exp
(
β log

pθ(x
(k)
0:T | c)

pref(x
(k)
0:T | c)

)]
.

(3)

Let ϵθ(·, c, t) and ϵref(·, c, t) be the learned and reference denoisers. Using the standard Diffusion-
DPO surrogate ∆θ(x

(j)
0:T | c) ≈ T ω(λt) δθ(c,x

(j)
t , t), where δθ(c,xt, t) is defined in Equation 2,

the listwise objective becomes

LDiffusion-LPO(θ) =− E
(c,x

(1:m)
0 )∼D,x

(1:m)
t ∼pθ(x

(1:m)
t |x(1:m)

0 )

m∑
j=1

[
β T ω(λt) δθ(c,x

(j)
t , t)− log

m∑
k=j

exp
(
β T ω(λt) δθ(c,x

(k)
t , t)

)]
.

(4)

The proof of deriving Equation (4) from the RLHF objective (Equation 1) can be found in Appendix
B.1. As listwise optimization is a more general form of pairwise, it is possible to extend Diffusion-
LPO with other pairwise DPO methods. We use DSPO (Cai et al., 2025) as an example and provide
the derivation and relevant discussion in Appendix E. We observe improvement when using list-
wise preferences in DSPO compared with original pairwise DSPO, with detailed results shown in
Appendix E.2.

Besides Diffusion-LPO, we also found similar existing works that also aim to optimize at the list
level. We include a discussion of the comparison between our method and theirs in Appendix B.2.

Constructing Listwise Groups. The Pick-a-Pic dataset provides user preferences in a pairwise
form, e.g., xa ≻ xb and xb ≻ xc under the same prompt c. To construct a more faithful repre-
sentation of human feedback, we form a list of preferences from the above pairwise preferences
as xa ≻ xb ≻ xc. We conduct aggregation as directed acyclic graphs (DAG) of preferences and
extract listwise paths, which we treat as ranking sublists. We provide statistics of transforming the
pick-a-pic dataset into listwise in Appendix A. An example of the preference group can be found in
Figure 5.

4.2 ADVANTAGE OF LISTWISE PREFERENCE MODELING

Given a list of preferences, prior work on pairwise optimization (Wallace et al., 2024) can be ex-
tended naively. One can find the optimal policy model by minimizing the objective below, where we
refer to it as Group Pairwise DPO(GP-DPO):

LGP-DPO = −E
(c,x

(1:m)
0 )∼D,x

(1:m)
1:T

∼pθ(x
(1:m)
1:T

|x(1:m)
0 ,c)

∑
1≤j<k≤m

log σ
(
r(c,x(j))− r(c,x(k))

)
. (5)

Such an objective is also derived in Chen et al. (2025). Conducting pairwise optimization in a group
of size m will introduce m(m−1)/2 pairs for comparison with equal importance. For our proposed
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method, denote the score s(j)θ :=
pθ(x

(j)
0:T |c)

pref(x
(j)
0:T |c)

, which is the part of reward R(c,x
(j)
0:T ) related to policy

model up to scalar β. In objective (4), when treating x(j) as the positive sample and optimizing over
its set of negative samples {x(j+1), · · · ,x(m)}, it yields the following reward difference

PDiffusion-LPO(x
(j) > x(k),∀k ∈ {j + 1, · · · ,m}) ∝ β log s

(j)
θ − log(

m∑
k=j

(s
(k)
θ )β). (6)

Besides, we can find for Group Pairwise DPO with objective (5), the reward difference when treating
x(j) as the positive sample and computing with all the preference pairs as

PGP-DPO(x
(j) > x(k), ∀k ∈ {j + 1, · · · ,m}) ∝ β log s

(j)
θ − 1

m− j + 1

m∑
k=j+1

log((s(j))β + (s(k))β).

(7)

The detailed analysis can be found in Appendix B.3. GP-DPO and Diffusion-LPO derive different
reward functions in terms of human preference of x(j) over the negative samples. Compare their
rewards for negative samples, we can find

1

m− j + 1

m∑
k=j+1

log((s(j))β + (s(k))β) ≤ 1

m− j + 1

m∑
k=j+1

max
k:k>j

log((s(j))β + (s(k))β)

≤ log

 m∑
k=j

(s
(k)
θ )β

 .

(8)

From the above analysis, we observe that GP-DPO leads to an underestimate of the aggregate reward
of negative samples, since it reduces the ranking into equally weighted pairwise comparisons as
shown in (7) . In particular, the reward assigned to negatives under GP-DPO is upper-bounded by
the corresponding term in Diffusion-LPO, as shown in (8). This underestimation inflates the margin
between the current positive sample x(j) and its negatives. In contrast, Diffusion-LPO directly
normalizes over the entire negative group as shown in (6) , which ensures higher-ranked samples are
favored over the lower-ranked ones.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Models, Datasets, and Evaluations. We finetune two text-to-image diffusion backbones: Stable
Diffusion 1.5 (SD1.5) (Rombach et al., 2022) and SDXL (Podell et al., 2023). Training data is drawn
from the Pick-a-Pic v1 preference dataset (Kirstain et al., 2023), and our listwise data construction
follows the procedure described in Appendix A. We evaluate models on: (1) General Text-to-Image
Alignment: We use the prompts from three datasets for evaluation: Pick-a-Pic test dataset (Kirstain
et al., 2023), Parti-Prompts (Yu et al., 2022), HPSV2 test dataset (Wu et al., 2023). (2) Image
Editing: We use the instructions on the InstructPix2Pix dataset for evaluation. (3) Personalized
Preference Generation: Testing whether models adapt to individual user preference embeddings.
We train the SD1.5 model with the pipeline in PPD (Dang et al., 2025) and evaluate the personal-
ization performance on the Pick-a-Pic test dataset. Comprehensive details of the evaluation pipeline
and prompts are given in Appendix C.1. Implementation details are in Appendix C.2.

Baselines. We consider baselines of: SFT (supervised fine-tuning on preferred images), pairwise
Diffusion-DPO (Wallace et al., 2024), and DSPO (Zhu et al., 2025), along with the original pre-
trained SD1.5 and SDXL. Besides finetuning on these baselines, we also include Diffusion-DPO*,
SD1.5, and SDXL tuned on the Pick-a-Pic v2 preference dataset, which has almost twice the data
size as Pick-a-Pic v1. We directly use the released checkpoint for evaluation. Notice that we only
consider baselines that do not require additional reward models or evaluators for a fair comparison.

Evaluation. For text-to-image alignment and image editing, we adopt five widely used automatic
evaluators: PickScore (Kirstain et al., 2023), HPSV2 (Wu et al., 2023), CLIP score (Radford et al.,

6
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2021), Image Reward (Xu et al., 2023), and Aesthetic Score (AES) (Schuhmann, 2022). For person-
alized preference generation, where no standard automatic metric exists, we follow recent evaluation
practice in (Dang et al., 2025) and rely on GPT-4o (Hurst et al., 2024) as a judge, prompting it to
rate which generated image better aligns with a user’s historical preferences.

5.2 GENERAL EVALUATION: TEXT-TO-IMAGE ALIGNMENT

Table 1: Winrate results over original SD1.5 and SDXL for Diffusion-LPO compared with other
baselines. For abbreviation, we use “PS”, “IM”, and “AES” to represent PickScore, Image Reward,
and Aesthetics score. “Diff.” is short for “Diffusion”. Note: best results trained under Pick-a-
Pic v1 (Kirstain et al., 2023) are in boldface. Diffusion-DPO* is trained under Pick-a-Pic v2
dataset, with almost twice the data size than v1. We directly use the checkpoint trained by (Wal-
lace et al., 2024). All results are averaged over generations from 5 random seeds. ↑: higher values
indicate better performance.

Dataset Method Stable Diffusion 1.5 Stable Diffusion XL

PS ↑ HPS ↑ CLIP↑ IM↑ AES↑ PS↑ HPS ↑ CLIP↑ IM ↑ AES ↑

Pick-a-Pic

SFT 73.4% 80.7% 56.3% 74.9% 71.7% 22.5% 39.3% 46.6% 37.0% 24.3%
Diff.-DPO* 73.3% 69.8% 57.1% 61.7% 63.4% 77.1% 78.4% 66.0% 70.0% 50.8%
Diff.-DPO 68.2% 70.7% 54.8% 65.2% 60.1% 73.0% 81.1% 64.5% 66.4% 47.1%
DSPO 73.1% 82.6% 57.8% 75.2% 70.9% 59.2% 77.4% 56.6% 62.9% 45.9%
Diff.-LPO 80.4% 74.6% 58.5% 68.1% 64.0% 77.1% 87.1% 64.0% 73.7% 51.5%

Parti-Prompts

SFT 65.0% 79.0% 54.2% 69.7% 72.3% 24.2% 39.6% 47.9% 40.9% 32.0%
Diff.-DPO* 67.3% 64.9% 53.7% 60.2% 62.3% 70.0% 80.5% 64.6% 74.0% 58.6%
Diff.-DPO 59.7% 64.0% 52.9% 61.6% 58.9% 66.8% 77.7% 56.0% 68.7% 56.0%
DSPO 63.8% 78.2% 54.3% 70.3% 71.1% 55.5% 78.1% 54.2% 65.5% 55.4%
Diff.-LPO 71.9% 69.7% 57.4% 65.9% 62.5% 72.8% 82.9% 60.1% 73.6% 59.7%

HPSV2

SFT 75.1% 85.0% 56.4% 77.7% 72.9% 20.4% 40.1% 47.8% 42.3% 25.9%
Diff.-DPO* 76.5% 71.0% 57.4% 64.4% 67.2% 72.5% 79.2% 59.3% 70.4% 55.5%
Diff.-DPO 69.5% 70.9% 51.5% 65.8% 62.0% 72.1% 80.0% 59.2% 70.8% 47.7%
DSPO 74.4% 85.3% 56.8% 77.4% 71.6% 58.4% 77.3% 47.8% 63.7% 48.2%
Diff.-LPO 82.9% 76.6% 57.7% 69.0% 65.1% 74.6% 85.0% 56.3% 72.3% 51.9%

We report text-to-image generation results in Table 1. Diffusion-LPO achieves substantial gains
over its pairwise baselines and even surpasses Diffusion-DPO trained on Pick-a-Pic v2, on most
metrics. On SD1.5, Diffusion-LPO shows clear improvements over pairwise Diffusion-DPO. In
particular, the PickScore increases by more than 12% across all evaluation sets, indicating more
reliable alignments with human preferences. On SDXL, Diffusion-LPO consistently outperforms all
baselines. Notably, Diffusion-LPO improves the PickScore win rate on Parti-prompts with 6% and
HPS score win rate on HPSV2 with 5% compared with its pairwise baseline, Diffusion-DPO. While
SFT achieves competitive results on SD1.5, its performance drops significantly on SDXL, with win
rates falling below 50%. This degradation is likely due to a mismatch between the relatively lower
quality of training data and the higher intrinsic quality of SDXL generations. In contrast, Diffusion-
LPO exploits relative ranking information effectively, enabling the model to better capture human
preferences and outperform its pairwise baseline, Diffusion-DPO.

Figure 3 qualitatively illustrates these improvements. Diffusion-LPO demonstrates a stronger capa-
bility to handle fine-grained structures. For the last column, although all methods produce visually
appealing images of the dolphin mid-jump, Diffusion-LPO generates dolphin tails with smoother
curvature and more accurate shape, highlighting its superiority in capturing detailed features. More
qualitative illustrations of Diffusion-LPO over other baselines are shown in Appendix D.1.

5.3 IMAGE EDITING

We further evaluate Diffusion-LPO in the context of instruction-based image editing. Following
prior work, we adopt the InstructPix2Pix dataset (Brooks et al., 2023), which provides paired source
images, natural language edit instructions, and target outputs. We perform editing with Stable Diffu-
sion 1.5, comparing the original model and its tuned variants. For editing, we apply SDEdit (Meng
et al., 2021) with a noise strength of 0.6. Diffusion-LPO achieves notable improvements over its
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Figure 3: Images generated from original SDXL, Diffusion-DPO, DSPO, and Diffusion-LPO.
Diffusion-LPO demonstrates improved image generation quality over other baselines regarding gen-
eral aesthetics and detail handling. The last column indicates the zoom-in parts.

pairwise counterpart, Diffusion-DPO, with win-rate gains of 9.1% on PickScore and 4.4% on HPS.
These results indicate that listwise supervision provides stronger alignment signals for following
editing instructions. Qualitative results are shown in Figure 8 in Appendix D.2.

5.4 PERSONALIZED PREFERENCE ALIGNMENT

Beyond general text-to-image alignment, we further evaluate Diffusion-LPO under the personalized
preference setting. Following the pipeline of Dang et al. (2025), we condition the diffusion model
on user embeddings extracted by a vision–language model that summarizes each user’s historical
preferences (see Appendix C.3 for details).

We use SD1.5 as the backbone and evaluate it on the Pick-a-Pic test set, which is partitioned into
held-in users (seen during training) and held-out users (unseen during training). As a baseline, we
adopt Personalized Preference Diffusion (PPD) (Dang et al., 2025), which aligns user embeddings
with diffusion models using the Diffusion-DPO objective. We then replace the pairwise loss with
our listwise formulation, denoted as PPD-LPO. Incorporating Diffusion-LPO into the personaliza-
tion pipeline yields consistent gains: the win rate improves from 71.1% to 72.3% on held-in users
and from 70.3% to 80.2% on held-out users, demonstrating that listwise optimization both enhances
personalization for known users and substantially improves generalization to unseen users. Qual-
itative analysis is shown in Figure 4. While the original PPD improves alignment relative to the
untuned SD1.5 model, PPD-LPO further enhances both visual appeal and fine-grained detail.

5.5 ABLATION: RANK ENFORCEMENT FROM DIFFUSION-LPO

To further assess the effectiveness of Diffusion-LPO, we compare it against Group-Pairwise DPO
(GP-DPO), with the objective in Equation 5 to finetune Stable Diffusion 1.5. Both objectives are

8
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User Profile SD 1.5 SD 1.5+Profile PPD PPD-LPO

This user prefers images
that . . . capture the beauty
of nature and technology
coexisting, such as trains
traveling through scenic
landscapes, evoke feelings
of adventure and
progress. . . cinematic still of highly reflective stainless steel train in the desert, at sunset

The preferred images share
common traits such as high
visual quality, detailed
textures. . . and immersive
scenes. They often feature
majestic dragons in natural
landscapes, evoking a
sense of wonder and
fantasy. . . .

a majestic vicious dragon habitat landscape, boss fight scene, refractions
realistic, cinematic lighting, antview, natural, horrific atmosphere, sharp focus

The user prefers images
that have high visual
quality, with detailed and
dynamic elements, vibrant
colors, . . . The user values
depth, lighting, and color
saturation in their preferred
images, . . . . swirling water tornados epic fantasy

The preferred images
consistently exhibit more
detailed character design,
richer colors, and engaging
backgrounds... dispreferred
images lack these qualities,
appearing flatter, less
detailed. . . paladin in full plate armor, 3d render, realistic, photorealism

Figure 4: Images generated under Diffusion-LPO with personal preference alignment with other
baselines. User profiles are summarized by VLM. “SD 1.5+Profile” represents images generated
using SD 1.5 with user profile appended to the caption. We highlight the user preferences in green
and dispreferences in red.

trained under the same objective. For each prompt, we calculate the scores of images generated by

win rates across all evaluation sets, indicat-
ing stronger preference alignment. This re-
sult demonstrates that, by enforcing the dif-
fusion model to optimize on human pref-
erence in ranking structure, Diffusion-LPO
achieves better alignment quality, validating
our theoretical analysis in Section 4.2

Table 2: Winrate for Diffusion-LPO on SD1.5 in
comparison to SD1.5 trained under GP-DPO.

Dataset PS↑ HPS ↑ CLIP ↑ IM ↑ AES ↑
Pick-a-Pic 52.3% 51.3% 50.6% 50.8% 53.7%

HPSv2 52.4% 54.0% 50.6% 51.3% 49.1%
Parti-Prompts 52.4% 53.0% 50.8% 51.4% 52.1%

.

6 CONCLUSION

In this work, we introduce Diffusion-LPO, a novel framework for aligning text-to-image models us-
ing listwise preference optimization. By modeling full preference rankings with the Plackett-Luce
model, our approach surpasses pairwise methods like Direct Preference Optimization (DPO). Exper-
iments on Stable Diffusion 1.5 and SDXL demonstrate that Diffusion-LPO produces outputs with
superior coherence and human preference alignment, highlighting the efficacy of listwise supervi-
sion for fine-tuning generative models.

9
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A PICK-A-PIC DATASET LISTWISE CONSTRUCTION

We restructure the Pick-a-Pic dataset into user–prompt specific directed acyclic graphs (DAGs) of
image rankings. Specifically, we collect all images generated under the same prompt and annotated
by the same user, and construct a graph where each image corresponds to a node. Whenever the
user provides a pairwise annotation indicating that image xA is preferred over image xB , we add
a directed edge xA → xB . By aggregating all such edges, we obtain a DAG that encodes the
transitive structure of the user’s annotations. From these DAGs, we can extract consistent listwise
rankings of images (e.g. xA ≻ xB ≻ xC) whenever sufficient pairwise information is available,
thus transforming independent pairwise judgments into richer listwise preference orders.

Table 3: Statistics of Pick-a-Pic after listwise group construction.

List Size # of list

2 225,656
3 81,704
4 42,113
5 22,216
6 14,191
7 8,953
≥8 23,087

A

B

C

D

E

A:

B:

C:

D:

E:

Figure 5: An example of a group with preferences that forms a DAG. The arrow pointing from
image xA to image xB represents human preference: xA ≻ xB . The prompt is “Rocket Raccoon,
furry art, fanart, digital painting”. Here, valid rank list will be (xA ≻ xB ≻ xC ≻ xE) and
(xA ≻ xD ≻ xE).

Data usability. Table 3 summarizes the statistics of the reformulated lists. In total, we analyze
511,840 preference pairs. Among them, 225,656 pairs (44.09%) form lists of size 2, which naturally
reduce to standard pairwise DPO training. Importantly, 274,895 pairs (53.71%) belong to lists of
size > 2, making them directly applicable to listwise preference optimization. Only 11,289 pairs
(2.20%) fall into inconsistent groups and are discarded. Such inconsistencies correspond to cyclic
preferences (e.g., xA ≻ xB , xB ≻ xC , xC ≻ xA), which cannot be represented as DAGs and
thus reflect low-quality or noisy annotations. The very small fraction of such cases demonstrates
that the overwhelming majority of human annotations are internally consistent and can be reliably
aggregated into rankings. In our training, lists of size 2 still contribute through Diffusion-DPO,
while longer lists provide richer preference information for Diffusion-LPO.
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Constructing lists from DAGs. Each group is represented as a directed acyclic graph (DAG),
where nodes correspond to images and edges encode user-indicated pairwise preferences. To trans-
form this structure into training examples for listwise optimization, we enumerate valid topological
paths within each DAG. Each path yields an ordered list of images {x(1) ≻ x(2) ≻ · · · ≻ x(m)} that
is consistent with all local pairwise edges. These lists are then used directly in the Plackett–Luce
likelihood of our objective. In practice, multiple valid paths may exist within a single DAG; we use
all valid paths for Diffusion-LPO.

B DIFFUSION-LPO OBJECTIVE

B.1 DIFFUSION-LPO OBJECTIVE

Recall the RLHF objective:

max
pθ

Ec,x0 [r(c,x0)]− βDKL [pθ(x0|c)∥pref(x0|c)] , (9)

where β is a parameter that controls how much pθ(x0|c) deviates from pref(x0|c).
We define R(c,x0:T ) as the reward on the whole diffusion chain to define the reward r(c,x0) as
r(c,x0) = Ep(x1:T |x0,c)[R(c,x0:T )]. Given 9, we have

min
pθ

− Epθ(x0|c)

[
1
β r(c,x0)

]
+ DKL [pθ(x0|c)|pref(x0|c)]

≤ min
pθ

− Epθ(x0:T |c)

[
1
βR(c,x0:T )

]
+ DKL [pθ(x0:T |c)|pref(x0:T |c)]

= min
pθ

Epθ(x0:T |c)

[
log

pθ(x0:T |c)
pref(x0:T |c)

− 1
βR(c,x0:T )

]
= min

pθ

Epθ(x0:T |c)

[
log

pθ(x0:T |c)
pref(x0:T |c) exp (R(c,x0:T )/β)

]
= min

pθ

Epθ(x0:T |c)

[
log

pθ(x0:T |c)
1

Z(c)pref(x0:T |c) exp (R(c,x0:T )/β)
− logZ(c)

]
= min

pθ

DKL [pθ(x0:T |c)∥pref(x0:T |c) exp(R(c,x0:T )/β)/Z(c)] .

(10)

where Z(c) =
∑

x pref(x0:T |c) exp (r(c,x0)/β) is the partition function, and we get rid of logZ(c)
as it is independent from pθ. The optimal p∗θ(x0:T |c) of Equation (10) has a unique closed-form
solution:

p∗θ(x0:T |c) = pref(x0:T |c) exp(R(c,x0:T )/β)/Z(c),

Therefore, we have the reparameterization of the reward function

R(c,x0:T ) = β log
p∗θ(x0:T |c)
pref(x0:T |c)

+ β logZ(c).

Plugging this into the definition of r, we have the following

r(c,x0) = βEpθ(x1:T |x0,c)

[
log

p∗θ(x0:T |c)
pref(x0:T |c)

]
+ β logZ(c).

Substituting this reward reparameterization into the maximum likelihood objective of the Plackett-
Luce model, the partition function cancels out, and we get a maximum likelihood objective defined
on diffusion models, for the group (c,x

(1)
0 , ...,x

(m)
0 ):

LDiffusion-LPO(θ) = log

m∏
j=1

exp

(
βE

pθ(x
(j)
1:T |x(j)

0 ,c)

[
log

p∗
θ(x

(j)
0:T |c)

pref(x
(j)
0:T |c)

])
∑m

k=j exp

(
βE

pθ(x
(k)
1:T |x(k)

0 ,c)

[
log

p∗
θ(x

(k)
0:T |c)

pref(x
(k)
0:T |c)

]) .
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By applying Jensen’s inequality, we can push the expectation out, and with some simplification, we
can have,

LDiffusion-LPO(θ) =− E
(c,x

(1:m)
0 )∼D,x

(1:m)
1:T ∼pθ(x

(1:m)
1:T |x(1:m)

0 )

m∑
j=1

[
β log

pθ(x
(j)
0:T | c)

pref(x
(j)
0:T | c)

− log

m∑
k=j

exp
(
β log

pθ(x
(k)
0:T | c)

pref(x
(k)
0:T | c)

)]
.

Since sampling from pθ(x1:T |x0, c) is intractable, we utilize the forward process q(x1:T |x0) for
approximation. As x(j)

1:T ∼ q(x1:T | x(j)
0 , c) for j = 1, . . . ,m,

Lapprox(θ) = −
m∑
j=1

β E
x
(j)
1:T

[
log

pθ(x
(j)
0:T |c)

pref(x
(j)
0:T |c)

]
− log

m∑
k=j

exp

(
β E

x
(k)
1:T

[
log

pθ(x
(k)
0:T |c)

pref(x
(k)
0:T |c)

])
= −

m∑
j=1

[
β E

x
(j)
1:T

[
T∑

t=1

log
pθ(x

(j)
t−1 | x(j)

t , c)

pref(x
(j)
t−1 | x(j)

t , c)

]

− log

m∑
k=j

exp

(
β E

x
(k)
1:T

[
T∑

t=1

log
pθ(x

(k)
t−1 | x(k)

t , c)

pref(x
(k)
t−1 | x(k)

t , c)

])]

= −
m∑
j=1

[
β E

x
(j)
1:T

[
T Et log

pθ(x
(j)
t−1 | x(j)

t , c)

pref(x
(j)
t−1 | x(j)

t , c)

]

− log

m∑
k=j

exp

(
β E

x
(k)
1:T

[
T Et log

pθ(x
(k)
t−1 | x(k)

t , c)

pref(x
(k)
t−1 | x(k)

t , c)

])]

= −
m∑
j=1

[
βT E

t,x
(j)
t−1,t

[
log

pθ(x
(j)
t−1 | x(j)

t , c)

pref(x
(j)
t−1 | x(j)

t , c)

]

− log

m∑
k=j

exp

(
βT E

t,x
(k)
t−1,t

[
log

pθ(x
(k)
t−1 | x(k)

t , c)

pref(x
(k)
t−1 | x(k)

t , c)

])]

= −
m∑
j=1

[
βT E

t,x
(1:m)
t ,x

(j)
t−1

[
log

pθ(x
(j)
t−1 | x(j)

t , c)

pref(x
(j)
t−1 | x(j)

t , c)

]

− log

m∑
k=j

exp

(
βT E

t,x
(1:m)
t ,x

(k)
t−1

[
log

pθ(x
(k)
t−1 | x(k)

t , c)

pref(x
(k)
t−1 | x(k)

t , c)

])]
,

(11)

where x
(j)
1:T ∼ q(x1:T | x

(j)
0 , c), x

(j)
t ∼ q(xt | x

(j)
0 ) and x

(j)
t−1 ∼ q(xt−1 | x

(j)
t ,x

(j)
0 ) for

j = 1, . . . ,m. Since the stagewise negative Plackett–Luce term −
∑

j

[
sj − log

∑
k≥j exp(sk)

]
is convex in the score vector s, by Jensen’s inequality we can push E

t,x
(1:m)
t

outside and obtain an
upper bound:

Lapprox(θ) ≤ − E
t,x

(1:m)
t

m∑
j=1

[
βT E

x
(j)
t−1

[
log

pθ(x
(j)
t−1 | x(j)

t , c)

pref(x
(j)
t−1 | x(j)

t , c)

]

− log

m∑
k=j

exp

(
βT E

x
(k)
t−1

[
log

pθ(x
(k)
t−1 | x(k)

t , c)

pref(x
(k)
t−1 | x(k)

t , c)

])]
.

Using the standard reverse-Gaussian parameterization of the diffusion model, each inner expectation
reduces to a KL-difference that, in turn, yields the denoising-error form with the usual timestep
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weight ω(λt):

Lapprox(θ) = − E
c,x

(1:m)
0 , t

m∑
j=1

[
βT ω(λt)

(
−
∥∥ϵ(j) − ϵθ(x

(j)
t , c, t)

∥∥2
2
+
∥∥ϵ(j) − ϵref(x

(j)
t , c, t)

∥∥2
2

)
− log

m∑
k=j

exp
(
βT ω(λt)

(
−
∥∥ϵ(k) − ϵθ(x

(k)
t , c, t)

∥∥2
2
+
∥∥ϵ(k) − ϵref(x

(k)
t , c, t)

∥∥2
2

))]
,

where ϵ(j) ∼ N (0, I), x(j)
t =

√
ᾱt x

(j)
0 +

√
1− ᾱt ϵ

(j), and λt = α2
t /σ

2
t .

B.2 COMPARISON WITH EXISTING RANK PREFERENCE OPTIMIZATION METHODS.

We found similar existing works that also aim to optimize at the list level. Defining the score
as s(j) = ∥ϵ(j) − ϵθ(x

(j)
t , c, t)∥22 − ∥ϵ(j) − ϵref(x

(j)
t , c, t)∥22, Chen et al. (2025) derives a group

pairwise loss (GPO) in the form of LGPO =
∑m

j=1[(m− 2j + 1)s(j)] from the pairwise DPO loss,

and introduces a standard rewards Aj = r−mean(r)
std(r) for r = {r(j)}mj=1 representing the reward for

each image. The reward is scored by some external evaluators. The image reward replaces the term
(m− 2j + 1), and the final objective becomes,

LGPO =

m∑
j=1

[Aj(∥ϵ(j) − ϵθ(x
(j)
t , c, t)∥22 − ∥ϵ(j) − ϵref(x

(j)
t , c, t)∥22)].

Also, Karthik et al. (2024) proposes RankDPO, which uses lambda loss (Wang et al., 2018) for the
list of images:

LRankDPO = −
m∑
j=1

m∑
k=j

∆j,k log σ(−β(s(j) − s(k))),

where ∆j,k = |(2ϕ(j)− 1)− (2ϕ(k)− 1)| · | 1
log(1+τ(j)) −

1
log(1+τ(k)) | represents the weight between

image pairs (x(j),x(k)), with ϕ(j), ϕ(k) and τ(j), τ(k) being the true scores and true ranks of
(x(j),x(k)). As the true scores are not available, Karthik et al. (2024) considers evaluation models
such as HPS, Pick Score, Image Reward, etc., to compute the simulated scores for the images.

Different from existing methods, Diffusion-LPO does not require any additional scoring model to
learn the ranked preference, as (a) the evaluator can cause extra computation cost, and (b) the auto-
mated responses from evaluators cannot replace the human annotation. As the goal is to learn user
preferences, evaluator feedback may cause misleading information and contradict the actual human
feedback.

B.3 DETAIL COMPARIOSN BETWEEN GP-DPO AND DUFFUSION-LPO

Let’s consider the data point x(j) in the preference ranking and its negative samples
{x(j+1), · · · ,x(m)}. When using the Group Pairwise DPO, the preference of data point x(k) over
its negative samples is reflected in the pairwise comparison:

log
(
PGP-DPO(x

(j) > x(k),∀k ∈ {j + 1, · · · ,m})
)
= log

(
Πm

k=j+1σ(r(c,x
(j))− r(c,x(k)))

)
.

For simplicity, we omit the expectation over c and x
(1;m)
0:T in our analysis. With the notation we

stated before, s(i)θ :=
pθ(x

(i)
0:T |c)

pref(x
(i)
0:T |c)

, we can find

m∑
k=j+1

log σ
(
β log s(j) − β log s(k)

)
=

m∑
k=j+1

[
β log s(j) − log

(
(s(j))β + (s(k))β

)]

∝ β log s(j) − 1

m− j + 1

m∑
k=j+1

log
(
(s(j))β + (s(k))β

)
.
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Here, by scaling it with the scalar 1/(m−j+1), we can easily check the effect of pairwise preference
optimization over a sub-list {x(j), · · · ,x(m)} in our setting.

For Diffusion-LPO in (3), we can find that the advantage of x(j) over its negative samples is clearly
characterized by a softmax function

log
(
PDiffusion-LPO(x

(j) > x(k),∀k ∈ {j + 1, · · · ,m})
)
= β log s(j) − log

m∑
k=j

exp
(
β log s(k)

)
= β log s(j) − log

m∑
k=j

(s(k))β .

Up to now, we have explicitly characterized how GP-DPO and Diffusion-LPO optimize the sub-list
preference {x(j), · · · ,x(m)}.

C EXPERIMENT SETTINGS

C.1 EVALUATION DATA DETAILS

We provide the dataset details we used as follows:

Pick-a-Pic dataset : Pick-a-Pic is a large-scale, publicly available dataset of human preferences
for text-to-image generation (Kirstain et al., 2023). It is collected via a web application where users
submit prompts, receive images from multiple diffusion backbones, and indicate their preferences
between pairs of images. Version 1 (v1) contains over 500,000 examples, while the updated Version
2 (v2) extends this to more than one million. Each entry includes a prompt, two generated images,
and a label for the preferred image (or a tie). In our experiments, as the Pick-a-Pic v2 is currently
not available online, we use Pick-a-Pic v1 for training and its held-out test set for evaluation.

Parti-Prompts : The Parti-Prompts dataset (Yu et al., 2022) was introduced to evaluate compo-
sitional and semantic capabilities of large-scale text-to-image models. It contains carefully curated
prompts spanning diverse categories, such as objects, attributes, styles, and complex multi-object re-
lations. The prompts are designed to systematically probe generation fidelity, compositionality, and
visual grounding, making it a widely used benchmark for assessing the generalization of diffusion-
based models. We adopt Parti-Prompts for standardized evaluation of text-to-image generation qual-
ity.

HPSV2 : The Human Preference Score v2 (HPS v2) dataset (Wu et al., 2023) is built from over
25,000 prompts and 98,000 images generated by Stable Diffusion, accompanied by 25,205 human
preference annotations collected from the Stable Foundation Discord community. Each annotation
compares multiple candidate images for the same prompt, with the user selecting a preferred image.
This dataset was used to train a preference classifier fine-tuned from CLIP, which defines the HPS
metric—a strong predictor of human judgments. We use the HPS v2 test set to benchmark how well
our aligned diffusion models capture human preferences.

InstructPix2Pix : InstructPix2Pix (Brooks et al., 2023) is a large-scale dataset for instruction-
based image editing. It was synthetically generated by combining GPT-3 for producing editing
instructions and Stable Diffusion with Prompt-to-Prompt for creating paired before/after images.
The resulting dataset comprises over 450,000 examples of input images, natural language editing
instructions, and corresponding edited outputs. Models trained on this dataset can generalize to
real-world user-written instructions at inference time. In our evaluation, we use a standardized
subset of 1,000 test samples to assess performance on instruction-guided image editing.

C.2 IMPLEMENTATION DETAILS

Hyperparameters. We adopt AdamW for training SD1.5 and Adafactor for training SDXL. The
learning rate is set to 1 × 10−8 with linear warmup, scaled by effective batch size. The global
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batch size is 2048: for pairwise methods, the effective batch contains 2048 pairs, and for listwise
methods, it contains 2048 groups. For SD1.5, we set β = 2000 for Diffusion-DPO, Diffusion-
LPO, and β = 0.001 for DSPO and DSPO-LPO. For SDXL, we set β = 5000 for Diffusion-DPO,
Diffusion-LPO, and β = 3000 for DSPO and DSPO-LPO, following previous work.

C.3 PERSONALIZED PREFERENCE IMAGE GENERATION

We introduce the pipeline of our personalized preference alignment tasks here. The setting is adapted
from Dang et al. (2025).

Personalized Preference Alignment PPD is a framework designed to align diffusion models
with individual-level human preferences. Personalization would lead to better generalization per-
formance across different individuals (Yu et al., 2025). The pipeline operates in two stages. In the
first stage, a vision–language model (VLM) summarizes each user’s historical pairwise preference
data into a dense user embedding. This embedding captures stylistic and semantic signals specific
to the user, derived from only a few examples. In the second stage, the diffusion model is fine-tuned
with these user embeddings as additional conditioning, injected via cross-attention layers. Train-
ing uses a variant of the Diffusion-DPO objective, which optimizes the model to generate images
aligned with each user’s preferences while maintaining regularization against a reference model.

User Embedding Generation Each user is represented using a small set of 4-shot preference pairs
(caption, preferred image, dispreferred image). These examples are processed by the multimodal
VLM LLaVA-OneVision (with a Qwen2 language backbone and multi-image capability). The final
user embedding is obtained by extracting the hidden state of the last token of this profile from the
Qwen2 encoder. A Chain-of-Thought (CoT) prompting is used: the VLM describes and compares
each preference pair, then generates a textual user profile. The template of prompting can be found
in 5.

D ADDITIONAL QUALITATIVE ANALYSIS

D.1 TEXT TO IMAGE QUALITATIVE RESULTS

We show more examples of images generated by Diffusion-LPO. Figure 6 provides examples for
Diffusion-LPO over other baselines for SD1.5. From the top to the bottom, the prompts are:

• Beautiful girl;
• Woman Argentina;
• Realistic owl;
• mechanical bee flying in nature, electronics, motors, wires, buttons, lcd;
• beautiful, tranquil garden of love and peace;
• JEM doll 80s in a fur coat in the snow, thick outlines, bright colors, digital art, hard edges,

detailed, anime style, dynamic pose, character design, art by sora kim, rinotuna, ilya ku-
vshinov;

• Duck.

Figure 7 shows more examples for Diffusion-LPO over other baselines for SDXL. From the top to
the bottom, the prompts are:

• A blue airplane in a blue, cloudless sky;
• Portrait of an anime maid by Krenz Cushart, Alphonse Mucha, and Ilya Kuvshinov;
• Two Somali friends sitting and watching a Studio Ghibli movie;
• A jellyfish sleeping in a space station pod;
• A painting by Raffaello Sanzi portraying Kajol and symbiots Riot during the Renaissance

era, showcased on Artstation;
• A person holding a very small slice on pizza between their fingers.
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SD 1.5 Diff.-DPO DSPO Diff-.LPO

Figure 6: Qualitative illustrations for Diffusion-LPO over other baselines for SD1.5.
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SDXL Diff.-DPO DSPO Diff-.LPOSFT

Figure 7: Qualitative illustrations for Diffusion-LPO over other baselines for SDXL.
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D.2 IMAGE EDIT QUALITATIVE RESULTS

0 20 40 60 80 100

Pick Score 65.5Diff.-DPO

Pick Score 74.6Diff.-LPO
0 20 40 60 80 100

HPS 68.7 SDXL

HPS 83.1 SDXL

Original SD 1.5 Diff.-DPO Diff.-LPO

Edit instruction: make it a photo

Edit instruction: make the cottage a castle

Figure 8: We evaluate the Pick Score and HPS for the generated images, where Diffusion-LPO
shows consistent improvement. For qualitative results, Diffusion-LPO faithfully follows the edit in-
structions while producing high-quality pictures. Diffusion-LPO produces more faithful and higher-
quality edits. In the first example, only Diffusion-LPO successfully transforms a paint-like image
into a realistic photograph, accurately reflecting the edit instruction. In the second example, while all
methods modify the cottage into a castle as instructed, Diffusion-LPO generates a visually sharper
and more coherent castle with realistic architectural details, underscoring its superior ability to han-
dle fine-grained edits. More results are available in Figure 9.

We show more qualitative results for image editing in Figure 9. Edit prompts and original images
are from the InstructPix2Pix dataset.

E GENERALIZATION FROM OTHER DPO FRAMEWORKS

The idea of switching from pairwise to listwise can be applied to most of the families of Diffu-
sion DPO works. Here, we show one example of adapting Listwise preference into a DPO work,
DSPO (Zhu et al., 2025). DSPO leverages score matching from human preference, and its original
objective is,

min
θ

ω(t)||∇xt
log pθ(xt|c)− (∇xt

log p(xt|c) + γ∇xt
log pθ(y|xt, c))||22, (12)

where ω(t) is the time-dependent function for score matching Song et al. (2021). DSPO model hu-
man preference with p(y|xt, c) = p(xt ≻ xl

t|xl
t, c) = σ(r(c,xt)− r(c,xl

t)) and reward calculated
by r(c,xt) ∝ −(||ϵθ(xt+1, t + 1, c) − ϵt+1)||22 − ||ϵref(xt+1, t + 1, c) − ϵt+1)||22). Plug into the
objective(Equation 12), their loss function becomes,

LDSPO = A(t)||ϵθ,t+1 − ϵt+1 − λγ(1− σ(r(c,xt)− r(c,xl
t))(ϵθ,t+1 − ϵref,t+1)). (13)
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Original SD 1.5 Diff.-DPO Diff.-LPO

Edit instruction: have her wear a cape

Edit instruction: make it a painting

Edit instruction: make it a space ship

Edit instruction: make it a stormy night

Figure 9: Qualitative results for image edit using SD1.5, finetuned over Diffusion-LPO and other
baselines.
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To extend DSPO into listwise preference modeling, given a list of images with preferences (x(1) ≻
x(2) ≻ · · · ≻ x(m)) we can score-match the human preference through

p(y|xt, c) = p(x
(i)
t ≻ x

(i+1)
t ≻ ... ≻ x

(m)
t |x(i+1)

t ≻ ... ≻ x
(m)
t , c) =

exp
(
r(c, x(i))

)∑m
k=i exp

(
r(c, x(k))

) .
(14)

Therefore, a listwise preference optimization for DSPO(we denoted as DSPO-LPO) is,

LDSPO-LPO = A(t)||ϵθ,t+1 − ϵt+1 − λγ
(
1−

exp
(
r(c, x(i))

)∑m
k=i exp

(
r(c, x(k))

))(ϵθ,t+1 − ϵref,t+1)). (15)

In practice, we choose the highest rank image, x(1), as the target of score matching (i = 1). A
detailed derivation can be found at Appendix E.1.

E.1 DSPO-LPO OBJECTIVE

We start with the original objective of Equation 12. By modeling pθ(y|xt, c) as
exp(r(c,x(i)))∑m

k=i exp(r(c,x(k)))
,

we convert Equation 12 into:

min
θ

ω(t)||∇xt
log

pθ(xt|c)
p(xt|c)

− γ∇xt
log

exp
(
r(c,x(i))

)∑m
k=i exp

(
r(c,x(k))

) ||22 (16)

=min
θ

ω(t)||∇xt log
pθ(xt|c)
p(xt|c)

− γ(1−
exp
(
r(c,x(i))

)∑m
k=i exp

(
r(c,x(k))

) )∇xtr(c,xt)||22 (17)

From the derivation in (Zhu et al., 2025), we can write the first term as:

∇xt
log

pθ(xt|c)
p(xt|c)

≈ ϵθ,t+1 − ϵt+1, (18)

and that ∇xt
r(c,xt) can be expressed in terms of the reference model:

∇xt
r(c,xt) ≈ ϵθ,t+1 − ϵref,t+1. (19)

Thus the objective simplifies to:

LDSPO = A(t)
∥∥∥ϵθ,t+1 − ϵt+1 − λγ

(
1− σ(r(c,xt)− r(c,x(j)))

)(
ϵθ,t+1 − ϵref,t+1

)∥∥∥2
2
, (26)

where A(t) absorbs the timestep-dependent weight and λ is a constant factor arising from the Gaus-
sian parameterization.

E.2 TEXT-TO-IMAGE ALIGNMENT OF DSPO-LPO

We show the quantitative result of DSPO and DSPO-LPO in Table 4. We can observe that, by
incorporating listwise preference optimization with DSPO, we further boost the performance across
all metrics.

Table 4: Winrate results over original SDXL for Diffusion-LPO compared with DSPO, both fine-
tuned on SDXL.

Dataset Method PS↑ HPS ↑ CLIP ↑ IM ↑ AES ↑

Pick-a-Pic DSPO 59.2% 77.4% 56.6% 62.9% 45.9%
DSPO+LPO 77.1% 87.1% 64.0% 73.7% 51.5%

Parti-Prompts DSPO 55.5% 78.1% 54.2% 65.5% 55.4%
DSPO+LPO 72.8% 82.9% 60.1% 73.1% 59.7%

HPSV2 DSPO 58.4% 77.3% 47.8% 63.7% 48.2%
DSPO+LPO 74.6% 85.0% 56.3% 72.3% 51.9%

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

System Prompt
You are an expert in image aesthetics and have been asked to predict which image a user would
prefer based on the examples provided.
COT Assistant Prompt
You will be shown a few examples of preferred and dispreferred images that a user has labeled.

Here is Pair 1:
Here is the caption: [Caption for Pair 1]
Here is Image 1: [Image 1]
Here is Image 2: [Image 2]
Prediction of user preference: [1 or 2]

[...]

Here is Pair 4:
Here is the caption: [Caption for Pair 1]
Here is Image 1: [Image 1]
Here is Image 2: [Image 2]
Prediction of user preference: [1 or 2]

1. Describe each image in terms of style, visual quality, and image aesthetics.
2. Explain the differences between the two images in terms of style, visual quality, and image
aesthetics.
3. After you have described all of the images, summarize the differences between the preferred
and dispreferred images into a user profile.

Format your response as follows for the four pairs of images:

Pair 1:
Image 1: [Description]
Image 2: [Description]
Differences: [Description]

[...]

Pair 4:
Image 1: [Description]
Image 2: [Description]
Differences: [Description]

User Profile: [Description]
Additional Assistant Prompt for User Preference Prediction
Finally, you are provided with a new pair of images, unlabeled by the user. Your task is to predict
which image the user would prefer based on the previous examples you have seen.
Format your response as follows:
Prediction of user preference: [1 or 2]

Table 5: Instructions for Embedding Generation and User Preference Prediction

F THE USE OF LARGE LANGUAGE MODELS

The paper is primarily written by the authors, with only minor assistance from large language models
(LLMs). In particular, LLMs were used for light editing tasks such as polishing grammar, refining
phrasing, and suggesting alternative wordings. All technical content, derivations, and experimental
design were conceived and carried out by the authors. No LLMs were used for generating research
ideas, implementing methods, or conducting experiments.
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G ETHICS STATEMENTS

We build on publicly available datasets and models, following established practices in prior work
(Wallace et al., 2024; Podell et al., 2023; Rombach et al., 2022; Kirstain et al., 2023). All models are
obtained from official repositories such as HuggingFace, and we respect associated licenses. While
the Pick-a-Pic dataset may contain potentially unsafe content (e.g., depictions of violence or nudity),
our use is strictly limited to research purposes within the dataset’s intended scope. No additional
human annotation was conducted in this study.

We are mindful of the broader societal impacts of generative models. Our work is intended to ad-
vance alignment techniques so that diffusion models better capture user preferences in a transparent
and responsible manner. We do not release user-identifiable data and take care to avoid privacy
risks. We also emphasize that preference alignment should be deployed in ways that respect di-
versity, minimize potential harm, and promote accessibility. All experiments were conducted in
accordance with ethical and legal standards, with a commitment to openness, reproducibility, and
integrity in reporting results.

H REPRODUCIBILITY STATEMENT

We use 8 H100-80G for our experiments, with GPU hours around 50 hours for finetuning SDXL for
each experiment. We will release the model checkpoint and code source in the future.

I LIMITATION

In this work, the maximum list size is restricted to 8. We believe further exploration with larger
lists and a systematic study of how list size influences optimization can provide additional insights.
Moreover, evaluating Diffusion-LPO on a broader range of preference datasets would help further
verify its effectiveness and generality.
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