
Compositional Foundation Models for
Hierarchical Planning

Anonymous Author(s)
Affiliation
Address
email

Abstract

To make effective decisions in novel environments with long-horizon goals, it is1

crucial to engage in hierarchical reasoning across spatial and temporal scales. This2

entails planning abstract subgoal sequences, visually reasoning about the under-3

lying plans, and executing actions in accordance with the devised plan through4

visual-motor control. We propose Compositional Foundation Models for Hierarchi-5

cal Planning (HiP), a foundation model which leverages multiple expert foundation6

model trained on language, vision and action data individually jointly together to7

solve long-horizon tasks. We use a large language model to construct symbolic8

plans that are grounded in the environment through a large video diffusion model.9

Generated video plans are then grounded to visual-motor control, through an in-10

verse dynamics model that infers actions from generated videos. To enable effective11

reasoning within this hierarchy, we enforce consistency between the models via12

iterative refinement. We illustrate the efficacy and adaptability of our approach in13

three different long-horizon table-top manipulation tasks.14

1 Introduction15

Consider the task of making a cup of tea in an unfamiliar house. To successfully execute this task, an16

effective approach is to reason hierarchically at multiple levels: an abstract level, e.g. the high level17

steps needed to heat up the tea, a concrete geometric level e.g., how we should physically navigate18

to and in the kitchen, and at a control level e.g. how we should actuate our joints to lift a cup. It is19

further important that reasoning at each level is self-consistent with each other – an abstract plan to20

look in cabinets for tea kettles must also be physically plausible at the geometric level and executable21

given the actuations we are capable of. In this paper, we explore how we can create agents capable of22

solving novel long-horizon tasks which require hierarchical reasoning.23

Large “foundation models" have become a dominant paradigm in solving tasks in natural language24

processing [36, 47, 7], computer vision [26], and mathematical reasoning [27]. In line with this25

paradigm, a question of broad interest is to develop a “foundation model” that can solve novel and26

long-horizon decision-making tasks. Some prior works [39, 6] collected paired visual, language27

and action data and trained a monolithic neural network for solving long-horizon tasks. However,28

collecting paired visual, language and action data is expensive and hard to scale up. Another line29

of prior works [10, 28] finetune large language models (LLM) on both visual and language inputs30

using task-specific robot demonstrations. This is problematic because, unlike the abundance of31

text on the Internet, paired vision and language robotics demonstrations are not readily available32

and are expensive to collect. Furthermore, finetuning high-performing language models, such as33

GPT3.5/4 [37, 36] and PaLM [7], is currently impossible, as the model weights are not open-sourced.34

The key characteristic of the foundation model is that solving a new task or adapting to a new35

environment is possible with much less data compared to training from scratch for that task or36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Internet
Text

Task
Model

Egocentric
Images

Action
Model

Internet
Video

Prepare Sandwich

Visual
Model

Figure 1: Compositional Foundation Models for Hierarchical Planning. HiP uses a task model, represented
using a LLM, to create an abstract plan, a visual model, represented using a video model, to generate an image
trajectory plan, and an ego-centric action model to infer actions from the image trajectory.

domain. Instead of building a foundation model for long-term planning by collecting paired language-37

vision-action data, in this work we seek a scalable alternative – can we reduce the need for a costly38

and tedious process of collecting paired data across three modalities and yet be relatively efficient39

at solving new planning tasks? We propose Compositional Foundation Models for Hierarchical40

Planning (HiP), a foundation model that is a composition of different expert models trained on41

language, vision, and action data individually. Because these models are trained individually, the42

data requirements for constructing the foundation models are substantially reduced (Figure 1). Given43

an abstract language instruction describing the desired task, HiP uses a large language model to44

find a sequence of sub-tasks (i.e., planning). HiP then uses a large video diffusion model to capture45

geometric and physical information about the world and generates a more detailed plan in form46

of an observation-only trajectory. Finally, HiP uses a large pre-trained inverse model that maps a47

sequence of ego-centric images into actions. The compositional design choice for decision-making48

allows separate models to reason at different levels of the hierarchy, and jointly make expert decisions49

without the need for ever collecting expensive paired decision-making data across modalities.50

Given three models trained independently, they can produce inconsistent outputs that can lead to51

overall planning failure. For instance, a naïve approach for composing models is to take the maximum-52

likelihood output at each stage. However, a step of plan which is high likelihood under one model, i.e.53

looking for a tea kettle in a cabinet may have zero likelihood under a seperate model, i.e. if there is no54

cabinet in the house. It is instead important to sample a plan that jointly maximizes likelihood across55

every expert model. To create consistent plans across our disparate models, we propose an iterative56

refinement mechanism to ensure consistency using feedback from the downstream models [28].57

At each step of the language model’s generative process, intermediate feedback from a likelihood58

estimator conditioned on an image of the current state is incorporated into the output distribution.59

Similarly, at each step of the video model generation, intermediate feedback from the action model60

refines video generation. This iterative refinement procedure promotes consensus among the different61

models and thereby enables hierarchically consistent plans that are both responsive to the goal62

and executable given the current state and agent. Our proposed iterative refinement approach is63

computationally efficient to train, as it does not require any large model finetuning. Furthermore, we64

do not require access to the model’s weights and our approach works with any models that offer only65

input and output API access.66

In summary, we propose a compositional foundation model for hierarchical planning that leverages a67

composition of foundation models, learned separately on different modalities of Internet and ego-68

centric robotics data, to construct long-horizon plans. We demonstrate promising results on three69

long-horizon tabletop manipulation environments.70

2 Compostional Foundation Models for Hierarchical Planning71

We propose HiP, a foundation model that decomposes the problem of generating action trajectories72

for long-horizon tasks specified by a language goal g into three levels of hierarchy: (1) Task planning73

– inferring a language subgoal wi conditioned on observation xi,1 and language goal g; (2) Visual74

planning – generating a physically plausible plan as a sequence of image trajectories τ ix = {xi,1:T },75

one for each given language subgoal wi and observation at first timestep xi,1; (3) Action planning –76

2

Pack	computer	mouse,	
black	and	blue	sneakers,	
pepsi	next	box,	toy	train	

in	brown	box

LLM

Place	computer	
mouse	in	brown	

box
Place	dirty	object	
in	blue	box…

Diffusion

Place	computer	
mouse	in	brown	

box

Inverse
Dynamics

<latexit sha1_base64="5jC3rV+U5Rx6DyC9Q8QgcZ2oObw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E6WE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VNv1CtX3Ko7A1kmXk4qkKPeK391+zFLI66QSWpMx3MT9DOqUTDJJ6VuanhC2YgOeMdSRSNu/Gx26oScWKVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadkg3BW3x5mTTPqt5F9fzuvFK7zuMowhEcwyl4cAk1uIU6NIDBAJ7hFd4c6bw4787HvLXg5DOH8AfO5w9lAI3i</latexit>wk

<latexit sha1_base64="uSW0H71JUat1zrUvRTNUif2jrkk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rBfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fz2OM9A==</latexit>g

<latexit sha1_base64="Fynnce+iWGXBf9W+c5z6gBd/qc8=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmkqMeiF48V7Ae0oWy2k3bpZhN2N0oJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekAiujet+Oyura+sbm4Wt4vbO7t5+6eCwqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaLSPJYPZpygH9GB5CFn1Fip9dTLRufepFcquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7d0JOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/9jMskNSjZfFGYCmJiMv2d9LlCZsTYEsoUt7cSNqSKMmMTKtoQvMWXl0nzouJdVqr31XLtJo+jAMdwAmfgwRXU4A7q0AAGI3iGV3hzEufFeXc+5q0rTj5zBH/gfP4AAzWPXg==</latexit>wk+1
<latexit sha1_base64="G4NrL4+FchmdNAyoq1HYtt9oFXI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOejjQQ=</latexit>w <latexit sha1_base64="MbTS1h+M8tSUvbDJaAPrpe2jaBU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VMPe+WKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1buont+dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AF0Ko3s</latexit>xt

<latexit sha1_base64="MbTS1h+M8tSUvbDJaAPrpe2jaBU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VMPe+WKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1buont+dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AF0Ko3s</latexit>xt

Command<latexit sha1_base64="q6eooYNDShd6czrV7MLhjzWbJeI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9rHfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NTp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOmUbAje8surpHVR9S6rtftapX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH1EgjdU=</latexit>at

<latexit sha1_base64="rEQHB989ndWLJvo8yNfjHwIhM0A=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBAEIexKUI9BLx4jmAckS5idzCZDZh/O9AbDst/hxYMiXv0Yb/6Nk2QPmljQUFR1093lxVJotO1va2V1bX1js7BV3N7Z3dsvHRw2dZQoxhsskpFqe1RzKULeQIGSt2PFaeBJ3vJGt1O/NeZKiyh8wEnM3YAOQuELRtFIbndIMX3qpXjuZFmvVLYr9gxkmTg5KUOOeq/01e1HLAl4iExSrTuOHaObUoWCSZ4Vu4nmMWUjOuAdQ0MacO2ms6MzcmqUPvEjZSpEMlN/T6Q00HoSeKYzoDjUi95U/M/rJOhfu6kI4wR5yOaL/EQSjMg0AdIXijOUE0MoU8LcStiQKsrQ5FQ0ITiLLy+T5kXFuaxU76vl2k0eRwGO4QTOwIErqMEd1KEBDB7hGV7hzRpbL9a79TFvXbHymSP4A+vzB+tZkjU=</latexit>

ˆxt+1

Task	Planning Visual	Planning Action	Planning

Iterative	
Refinement

…

<latexit sha1_base64="rEQHB989ndWLJvo8yNfjHwIhM0A=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBAEIexKUI9BLx4jmAckS5idzCZDZh/O9AbDst/hxYMiXv0Yb/6Nk2QPmljQUFR1093lxVJotO1va2V1bX1js7BV3N7Z3dsvHRw2dZQoxhsskpFqe1RzKULeQIGSt2PFaeBJ3vJGt1O/NeZKiyh8wEnM3YAOQuELRtFIbndIMX3qpXjuZFmvVLYr9gxkmTg5KUOOeq/01e1HLAl4iExSrTuOHaObUoWCSZ4Vu4nmMWUjOuAdQ0MacO2ms6MzcmqUPvEjZSpEMlN/T6Q00HoSeKYzoDjUi95U/M/rJOhfu6kI4wR5yOaL/EQSjMg0AdIXijOUE0MoU8LcStiQKsrQ5FQ0ITiLLy+T5kXFuaxU76vl2k0eRwGO4QTOwIErqMEd1KEBDB7hGV7hzRpbL9a79TFvXbHymSP4A+vzB+tZkjU=</latexit>

ˆxt+1
<latexit sha1_base64="mFLypmOn5A468cbeCl+GUKhG/yc=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3BPUY9OIxgnlAsoTZySQZMvtwpjcYlv0OLx4U8erHePNvnCR70MSChqKqm+4uL5JCo21/W7m19Y3Nrfx2YWd3b/+geHjU1GGsGG+wUIaq7VHNpQh4AwVK3o4Up74necsb38781oQrLcLgAacRd306DMRAMIpGcrsjislTL8GLSpr2iiW7bM9BVomTkRJkqPeKX91+yGKfB8gk1brj2BG6CVUomORpoRtrHlE2pkPeMTSgPtduMj86JWdG6ZNBqEwFSObq74mE+lpPfc90+hRHetmbif95nRgH124igihGHrDFokEsCYZklgDpC8UZyqkhlClhbiVsRBVlaHIqmBCc5ZdXSbNSdi7L1ftqqXaTxZGHEziFc3DgCmpwB3VoAINHeIZXeLMm1ov1bn0sWnNWNnMMf2B9/gDs35I2</latexit>

ˆxt+2

<latexit sha1_base64="oyI3KrfMalurzQJ0QwSNXQUYkWI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXg3oMevEYwTwgWcLsZDYZMvtwpjcYlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rdzK6tr6Rn6zsLW9s7tX3D9o6ChRjNdZJCPV8qjmUoS8jgIlb8WK08CTvOkNb6d+c8SVFlH4gOOYuwHth8IXjKKR3M6AYvrUTfHsYjLpFkt22Z6BLBMnIyXIUOsWvzq9iCUBD5FJqnXbsWN0U6pQMMknhU6ieUzZkPZ529CQBly76ezoCTkxSo/4kTIVIpmpvydSGmg9DjzTGVAc6EVvKv7ntRP0r91UhHGCPGTzRX4iCUZkmgDpCcUZyrEhlClhbiVsQBVlaHIqmBCcxZeXSeO87FyWK/eVUvUmiyMPR3AMp+DAFVThDmpQBwaP8Ayv8GaNrBfr3fqYt+asbOYQ/sD6/AHuZZI3</latexit>

ˆxt+3

Iterative	
Refinement

Environment

Figure 2: Planning with HiP. Given a language goal g and current observation xt, LLM generates next subgoal
w with feedback from a visual plausibility model. Then, Diffusion uses observation xt and subgoal w to generate
observation trajectory τx with feedback from an action feasibility model. Finally, action planning uses inverse
dynamics to generate action at from current xt and generated observation ˆxt+1 (action planning).

inferring a sequence of action trajectories τ ia = {ai,1:T−1} from the image trajectories τ ix executing77

the plan. Figure 2 illustrates the model architecture and a pseudocode is provided in Algorithm 1.78

Let pΘ model this hierarchical decision-making process. Given our three levels of hierarchy, pΘ can79

be factorized into the following: task distribution pθ, visual distribution pϕ, and action distribution80

pψ. The distribution over plans, conditioned on the goal and an image of the initial state, can be81

written under the Markov assumption as:82

pΘ(W, {τ ix}, {τ ia}|g, x1,1) =

(
N∏
i=1

pθ(wi|g)

)
︸ ︷︷ ︸

task planning

(
N∏
i=1

pϕ(τ
i
x|wi, xi,1)

)
︸ ︷︷ ︸

visual planning

(
N∏
i=1

T−1∏
t=1

pψ(ai,t|xi,t, xi,t+1)

)
︸ ︷︷ ︸

action planning

(1)

We seek to find action trajectories τ ia, image trajectories τ ix and subgoals W = {wi} which maximize83

the above likelihood. Please see Appendix B for a derivation of this factorization. In the following84

sub-sections, we describe the form of each of these components, how they are trained, and how they85

are used to infer a final plan for completing the long-horizon task.86

2.1 Task Planning via Large Language Models87

Given a task specified in language g and the current observation xi,1, we use a pretrained LLM as the88

task planner, which decomposes the goal into a sequence of subgoals. The LLM aims to infer the next89

subgoal wi given a goal g and models the distribution pLLM(wi|g). As the language model is trained90

on a vast amount of data on the Internet, it captures powerful semantic priors on what steps should be91

taken to accomplish a particular task. To adapt the LLM to obtain a subgoal sequence relevant to our92

task, we prompt it with some examples of domain specific data consisting of high-level goals paired93

with desirable subgoal sequences.94

However, directly sampling subgoals using a LLM can lead to samples that are inconsistent with the95

overall joint distribution in Eqn (1), as the subgoal wi not only affects the marginal likelihood of task96

planning but also the downstream likelihoods of the visual planning model. Consider the example in97

Figure 2 where the agent is tasked with packing computer mouse, black and blue sneakers, pepsi box98

and toy train in brown box. Let’s say the computer mouse is already in the brown box. While the99

subgoal of placing computer mouse in brown box has high-likelihood under task model pθ(wi|g), the100

resulting observation trajectory generated by visual model pϕ(τ ix|wi, xi,1) will have a low-likelihood101

under pϕ given the subgoal is already completed. Next, we describe how we use iterative refinement102

to capture this dependency between language decoding and visual planning to properly sample from103

Eqn (1).104

Consistency with Visual Planning. To ensure that we sample subgoal wi that maximizes the joint105

distribution in Eqn (1), we should sample a subgoal that maximizes the following joint likelihood106

w∗
i = argmax

wi

pLLM(wi|g)pϕ(τ ix|wi, xi,1), (2)

i.e. a likelihood that maximizes both conditional subgoal generation likelihood from a LLM and the107

likelihood of sampled videos τ ix given the language instruction and current image xi,1. One way to108

determine the optimal subgoal w∗
i is to generate multiple wi from LLM and score them using the109

3

Algorithm 1 Decision Making with HiP
1: Models: Large language model pLLM, Subgoal classifier fϕ, Noise model of diffusion ϵϕ, Observation

trajectory classifier gψ , Inverse dynamics pψ
2: Hyperparameters: Guidance scales ω, ω′, Denoising diffusion steps K
3: Input: Current observation xt, Language goal g
4: # Task Planning
5: for i = 1 . . .M do
6: Generate subgoal wi ∼ pLLM (wi|g)
7: end for
8: Collect candidate subgoals W ← {wi}Mi=1

9: # Iterative Refinement from Visual Planning
10: w ← argmaxw fϕ(xt,W, g)
11: # Visual Planning
12: Initialize (τx)K ∼ N (0, I)
13: for k = K . . . 1 do
14: # Iterative Refinement from Action Planning
15: ϵ̂← ϵϕ((τx)k, xt, k) + ω(ϵϕ((τx)k, xt, w, k)− ϵϕ((τx)k, xt, k))− ω′∇(τx)k log gψ(1|(τx)k)
16: (τx)k−1 ← Denoise((τx)k, ϵ̂)
17: end for
18: # Action Planning
19: Extract (xt, ˆxt+1) from (τx)0
20: Execute at ← pψ(at|xt, ˆxt+1)

likelihood of videos sampled from our video model pϕ(τ ix|wi, xi,1). However, the video generation110

process is computationally expensive, so we take a different approach.111

The likelihood of video generation pϕ(τ
i
x|wi, xi,1) primarily corresponds to the feasibility of a112

language subgoal wi with respect to the initial image xi,1. Thus an approximation of Eqn (2) is to113

directly optimize the conditional density114

w∗
i = argmax

wi

p(wi|g, xi,1). (3)

We can rewrite Eqn (3) as115

w∗
i = argmax

wi

log pLLM(wi|g) + log

(
p(xi,1|wi, g)
p(xi,1|g)

)
We estimate the density ratio p(xi,1|wi,g)

p(xi,1|g) with a multi-class classifier fϕ(xi,1, {wj}Mi=1, g) that116

chooses the appropriate subgoal w∗
i from candidate subgoals {wj}Mj=1 generated by the LLM. The117

classifier implicitly estimates the relative log likelihood estimate of p(xi,1|wi, g) and use these logits118

to estimate the log density ratio with respect to each of the M subgoals and find w∗
i that maximizes the119

estimate [45]. We use a dataset Dclassify := {xi,1, g, {wj}Mj=1, i} consisting of observation xi,1, goal120

g, candidate subgoals {wj}Mj=1 and the correct subgoal label i to train fϕ. For further architectural121

details, please refer to Appendix C.1.122

2.2 Visual Planning with Video Generation123

Upon obtaining a language subgoal wi from task planning, our visual planner generates a plausible124

observation trajectory τ ix conditioned on current observation xi,1 and subgoal wi. We use a video125

diffusion model for visual planning given its success in generating text-conditioned videos [20, 53].126

To provide our video diffusion model with a rich prior for physically plausible motions, we pretrain127

it pϕ(τ ix|wi, xi,1) on a large-scale text-to-video dataset Ego4D [13]. We then finetune it on the128

task-specific video dataset Dvideo := {τ ix, wi} consisting of observation trajectories τ ix satisfying129

subgoal wi. For further architectural details, please refer to Appendix C.2.130

However, analogous to the consistent sampling problem in task planning, directly sampling observa-131

tion trajectories with video diffusion can lead to samples that are inconsistent with the overall joint132

distribution in Eqn (1). The observation trajectory τ ix not only affects the marginal likelihood of133

visual planning, but also the downstream likelihood of the action planning model.134

4

Consistency with Action Planning. To ensure observation trajectories τ ix that correctly maximize135

the joint distribution in Eqn (1), we optimize an observation trajectory that maximizes the following136

joint likelihood137

(τ ix)
∗ = argmax

τ i
x

pϕ(τ
i
x|wi, xi,1)

T−1∏
t=1

pψ(ai,t|xi,t, xi,t+1), (4)

i.e. an image sequence that maximizes both conditional observation trajectory likelihood from video138

diffusion and the likelihood of sampled actions τ ia given the observation trajectory τ ix.139

To sample such an observation trajectory, we could iteratively bias the denoising of video diffusion140

using the log-likelihood of the sampled actions
∏T−1
t=1 log pψ(ai,t|xi,t, xi,t+1). While this solution is141

principled, it is slow as it requires sampling of entire action trajectories and calculating the corre-142

sponding likelihoods during every step of the denoising process. Thus, we approximate the sampling143

and the likelihood calculation of action trajectory
∏T−1
t=1 pψ(ai,t|xi,t, xi,t+1) with a binary classifier144

gψ(τ
i
x) that models if the observation trajectory τ ix leads to a high-likelihood action trajectory.145

We learn a binary classifier gψ to assign high likelihood to feasible trajectories sampled from our video146

dataset τ ix ∼ Dvideo and low likelihood to infeasible trajectories generated by randomly shuffling147

the order of consecutive frames in feasible trajectories. Once trained, we can use the likelihood148

log gψ(1|τ ix) to bias the denoising of the video diffusion and maximize the likelihood of the ensuing149

action trajectory. For further details on binary classifier, please refer to Appendix D.2.150

2.3 Action Planning with Inverse Dynamics151

After generating an observation trajectory τ ix from visual planning, our action planner generates152

an action trajectory τ ia from the observation trajectory. We leverage egocentric internet images for153

providing our action planner with useful visual priors. Our action planner is parameterized as an154

inverse dynamics model [1, 38] that infers the action ai,t given the observation pair (xi,t, xi,t+1):155

ai,t ∼ pψ(ai,t|xi,t, xi,t+1)

Training. To imbue the inverse dynamics pψ with useful visual priors, we initialize it with VC-156

1 [32] weights, pretrained on ego-centric images and ImageNet. We then finetune it on dataset157

Dinv := {τ ix, τ ia} consisting of paired observation and action trajectories by optimizing:158

max
ψ

Eτ∈Dinv [log pψ(ai,t|xi,t, xi,t+1)]

For further architectural details, please refer to Appendix C.3.159

3 Experimental Evaluations160

We evaluate the ability of HiP to solve long-horizon planning tasks that are drawn from distributions161

with substantial variation, including the number and types of objects and their arrangements. We162

then study the effects of iterative refinement and of pretraining on overall performance of HiP. We163

also compare against an alternative strategy of visually grounding the LLM without any task-specific164

data. In addition, we study how granularity of subgoals affects HiP’s performance, ablate over165

choice of visual planning model and analyze sensitivity of iterative refinement to hyperparameters166

(Appendix F).167

3.1 Evaluation Environments168

We evaluate HiP on three environments, paint-block, object-arrange, and kitchen-tasks169

which are inspired by combinatorial planning tasks in Mao et al. [33], Shridhar et al. [43] and Xing170

et al. [50] respectively.171

• paint-block: A robot has to manipulate blocks in the environment to satisfy language goal172

instructions, such as stack pink block on yellow block and place green block right of them. However,173

objects of correct colors may not be present in the environment, in which case, the robot needs to174

first pick up white blocks and put them in the appropriate color bowls to paint them. After that, it175

5

“Stack green block on top of yellow block and place orange block to the right of the stack”

place white block
in yellow bowl

place yellow block
in brown box

place white block
in green bowl

place green block
on yellow block

place white block
in orange bowl

place orange block on
right of yellow blockPa

in
t
Bl

oc
k

Ta
sk

Pa
in

t
Bl

oc
k

Ta
sk

“Pack hammer, frypan, toy school bus, and butterfinger chocolate into the brown box”

place dirty object
in the clean box

place hammer
in the brown box

place frypan
in the brown box

place toy school bus
in the brown box

place butterfinger
chocolate in brown box

Re
ar

ra
ng

e
Ob

je
ct
 T

as
k

Re
ar

ra
ng

e
Ob

je
ct
 T

as
k

“Open microwave, move kettle out of the way, light the kitchen area, and open upper right drawer”

open the
microwave

move the kettle
to the back stove

turn on the
lights

slide the upper right
drawer

K
itc

he
n

Ta
sk

K
itc

he
n

Ta
sk

Figure 3: Example Executions. Example long-horizon generated plans on tasks in paint-block,
object-arrange, and kitchen-tasks domains.

should perform appropriate pick-and-place operations to stack a pink block on the yellow block176

and place the green block right of them. A new task T is generated by randomly selecting 3 final177

colors (out of 10 possible colors) for the blocks and then sampling a relation (out of 3 possible178

relations) for each pair of blocks. The precise locations of individual blocks, bowls, and boxes are179

fully randomized across different tasks. Tasks have 4 ∼ 6 subgoals.180

• object-arrange: A robot has to place appropriate objects in the brown box to satisfy language181

goal instructions such as place shoe, tablet, alarm clock, and scissor in brown box. However, the182

environment may have distractor objects that the robot must ignore. Furthermore, some objects183

can be dirty, indicated by a lack of texture and yellow color. For these objects, the robot must first184

place them in a blue cleaning box and only afterwards place those objects in the brown box. A new185

task T is generated by randomly selecting 7 objects (out of 55 possible objects), out of which 3 are186

distractors, and then randomly making one non-distractor object dirty. The precise locations of187

individual objects and boxes are fully randomized across tasks. Tasks usually have 3 ∼ 5 subgoals.188

• kitchen-tasks: A robot has to complete kitchen subtasks to satisfy language goal instructions189

such as open microwave, move kettle out of the way, light the kitchen area, and open upper right190

drawer. However, the environment may have objects irrelevant to the subtasks that the robot191

must ignore. Furthermore, some kitchen subtasks specified in the language goal might already be192

completed, and the robot should ignore those tasks. There are 7 possible kitchen subtasks: opening193

the microwave, moving the kettle, switching on lights, turning on the bottom knob, turning on194

the top knob, opening the left drawer, and opening the right drawer. A new task T is generated195

by randomly selecting 4 out of 7 possible kitchen subtasks, randomly selecting an instance of196

microwave out of 3 possible instances, randomly selecting an instance of kettle out of 4 possible197

instances, randomly and independently selecting texture of counter, floor and drawer out of 3198

possible textures and randomizing initial pose of kettle and microwave. With 50% probability, one199

of 4 selected kitchen subtask is completed before the start of the task. Hence, tasks usually have200

3 ∼ 4 subtasks (i.e. subgoals).201

Train and Test Tasks. For all environments, we sample two sets of tasks Ttrain, Ttest ∼ p(T). We202

use the train set of tasks Ttrain to create datasets Dclassify, Dvideo, Dinv and other datasets required203

for training baselines. We ensure the test set of tasks Ttest contains novel combinations of object204

colors in paint-block, novel combinations of object categories in object-arrange, and novel205

combinations of kitchen subtasks in kitchen-tasks.206

Evaluation Metrics. We quantitatively evaluate a model by measuring its task completion rate for207

paint-block and object-arrange, and subtask completion rate for kitchen tasks. We use the208

simulator to determine if the goal, corresponding to a task, has been achieved. We evaluate a model209

6

on Ttrain (seen) to test its ability to solve long-horizon tasks and on Ttest (unseen) to test its ability to210

generalize to long-horizon tasks consisting of novel combinations of object colors in paint-block,211

object categories in object-arrange, and kitchen subtasks in kitchen-tasks. We sample 1000212

tasks from Ttrain and Ttest respectively, and obtain average task completion rate on paint-block213

and object-arrange domains and average subtask completion rate on kitchen tasks domain.214

We report the mean and the standard error over those seeds in Table 1.215

3.2 Baselines216

There are several existing strategies for constructing robot manipulation policies conditioned on217

language goals, which we use as baselines in our experiments:218

• Goal-Conditioned Policy A goal-conditioned transformer model ai,t ∼ p(ai,t|xi,t, wi) that out-219

puts action ai,t given a language subgoal wi and current observation xi,t (Transformer BC) [6]. We220

provide the model with oracle subgoals and encode these subgoals with a pretrained language en-221

coder (Flan-T5-Base). We also compare against goal-conditioned policy with Gato [39] transformer222

architecture.223

• Video Planner A video diffusion model (UniPi) [12] {τ ix} ∼ p({τ ix}|g, xi,1), ai,t ∼224

p(ai,t|xi,t, xi,t+1) that bypasses task planning, generates video plans for the entire task {τ ix},225

and infers actions ai,t using an inverse model.226

• Action Planners Transformer models (Trajectory Transformer) [23] and diffusion models (Dif-227

fuser) [24, 4] {ai,t:T−1} ∼ p({ai,t:T−1}|xi,t, wi) that produce an action sequence {ai,t:T−1}228

given a language subgoal wi and current visual observation xi,t. We again provide the agents with229

oracle subgoals and encode these subgoals with a pretrained language encoder (Flan-T5-Base).230

• LLM as Skill Manager A hierarchical system (SayCan) [2] with LLM as high level policy that231

sequences skills sampled from a repetoire of skills to accomplish a long-horizon task. We use232

CLIPort [43] policies as skills and the unnormalized logits over the pixel space it produces as233

affordances. These affordances grounds the LLM to current observation for producing next subgoal.234

3.3 Results235

Paint-block Object-arrange Kitchen-tasks

Model Seen Unseen Seen Unseen Seen Unseen
Transformer BC (oracle subgoals) 8.3± 1.9 5.1± 1.6 10.2± 2.9 7.3± 1.7 48.4± 21.6 32.1± 24.2
Gato (oracle subgoals) 31.2± 2.4 28.6± 2.9 37.9± 3.3 36.5± 3.2 70.2± 10.8 66.8± 12.2
Trajectory Transformer (oracle subgoals) 22.1± 2.1 22.3± 2.5 30.5± 2.3 29.8± 2.9 66.4± 20.7 52.1± 22.3
Action Diffuser (oracle subgoals) 21.6± 2.6 18.2± 2.3 29.2± 2.4 27.6± 2.1 65.9± 23.2 55.1± 22.8
HiP (Ours, oracle subgoals) 81.2± 1.8 79.6± 1.9 91.8± 2.9 92.3± 2.3 92.8± 7.1 89.8± 7.6

UniPi 37.2± 3.8 35.3± 3.2 44.1± 3.1 44.2± 2.9 74.6± 14.8 73.4± 11.2
SayCan 67.2± 3.3 62.8± 3.7 70.3± 2.6 66.9± 2.8 - -
HiP (Ours) 74.3± 1.9 72.8± 1.7 75± 2.8 75.4± 2.6 85.8± 9.4 83.5± 10.2

Table 1: Performance on Long-Horizon tasks. HiP not only outperforms the baselines in solving seen
long-horizon tasks but its performance remains intact when solving unseen long-horizon tasks containing novel
combination of objects colors in paint-block, novel combination of objects categories in object-rearrange
and novel combination of subtasks in kitchen-tasks.

We begin by comparing the performance of HiP and baselines to solve long-horizon tasks in236

paint-block, object-arrange, kitchen-tasks environments. Table 1 shows that HiP signifi-237

cantly outperforms the baselines, although the baselines have an advantage and have access to oracle238

subgoals. HiP’s superior performance shows the importance of (i) hierarchy given it outperforms goal-239

conditioned policy (Transformer BC and Gato), (ii) task planning since it outperforms video planners240

(UniPi), and (iii) visual planning given it outperforms action planners (Trajectory Transformer, Action241

Diffuser). It also shows the importance of representing skills with video-based planners which can242

be pre-trained on Internet videos and can be applied to tasks (such as kitchen-tasks). SayCan, in243

contrast, requires tasks to be decomposed into primitives paired with an affordance function, which244

can be difficult to define for many tasks like the kitchen task. Thus, we couldn’t run SayCan on245

kitchen-tasks environment. Finally, to quantitatively show how the errors in fθ(xi,1, wi, g) affect246

the performance of HiP, we compare it to HiP with oracle subgoals. For further details on the training247

and evaluation of HiP, please refer to Appendix D. For implementation details on Gato and SayCan,248

please refer to Appendix E. For runtime analysis of HiP, please refer to Appendix G.249

7

Subgoal trajectories

Stack green block on
top of yellow block

and place
orange block to the
right of the stack

place white
block

in yellow bowl

place yellow
block

in brown box

place white
block

in green bowl

place green
block

on yellow block

place white
block

in orange bowl

place orange
block on

right of yellow
block

Initial observation

Goal

Figure 4: Execution trajectory of HiP on an novel long-horizon task in paint-block environment.

Combinatorial Generalization to Unseen Long-horizon Tasks. We also quantitatively test the250

ability of HiP to generalize to unseen long-horizon tasks, consisting of novel combinations of object251

colors in paint-block, object categories in object-arrange, and subtasks in kitchen-tasks.252

Table 1 shows that HiP’s performance remains intact when solving unseen long-horizon tasks, and253

still significantly outperforms the baselines. Figure 4 visualizes the execution of HiP in unseen254

long-horizon tasks in paint-block.255

Paint	Block Rearrange	Object

100%	Train	Data 75%	Train	Data 50%	Train	Data

20

40

60

80

Ego4D	Pre-training

Su
cc
es
s	
Ra
te

100%	Train	Data 75%	Train	Data 50%	Train	Data

100

100%	Train	Data 75%	Train	Data 50%	Train	Data

Kitchen	Tasks

100%	Train	Data 75%	Train	Data 50%	Train	Data

No	Pre-training

Paint	Block Rearrange	Object

100%	Train	Data 75%	Train	Data 50%	Train	Data

100

200

300

400

Ego4D	Pre-training

FV
D	
Sc
or
e

100%	Train	Data 75%	Train	Data 50%	Train	Data

100

200

300

400

500

100%	Train	Data 75%	Train	Data 50%	Train	Data

Kitchen	Tasks

100%	Train	Data 75%	Train	Data 50%	Train	Data

No	Pre-training

Figure 5: Pretraining video diffusion model with the Ego4D dataset consistently yields higher success rate
and lower FVD scores (lower is better), even with reduced training dataset sizes. With pretraining, the model’s
FVD score escalates less gradually and its success rate falls less steeply as the dataset size shrinks.

Pre-training Video Diffusion Model. We investigate how much our video diffusion model benefits256

from pre-training on the Internet-scale data. We report both the success rate of HiP and Fréchet257

Video Distance (FVD) score that quantifies the similarity between generated videos and ground truth258

videos, where lower scores indicate greater similarity in Figure 5. We see that pretraining video259

diffusion leads to a higher success rate and lower FVD score. If we reduce the training dataset to 75%260

and 50% of the original dataset, the FVD score for video diffusion models (both, with and without261

Ego4D dataset pretraining) increases and their success rate falls. However, the video diffusion model262

with Ego4D dataset pretraining consistently gets higher success rate and lower FVD scores across263

different dataset sizes. As we decrease the domain-specific training data, it is evident that the gap in264

performance between the model with and without the Ego4D pre-training widens. For details on how265

we process the Ego4D dataset, please refer to Appendix D.2.266

Pre-training Inverse Dynamics Model. We also analyze the benefit of pre-training our inverse267

dynamics model and report the mean squared error between the predicted and ground truth actions268

8

1000 1500 2000 2500
Number of training demonstrations

0.00

0.02

0.04

0.06

0.08

0.10

M
ea

n
Sq

ua
re

d
Er

ro
r

Paint Block
ResNet (scratch)
ViT-B (scratch)
ViT-B (VC-1, 1k)
ViT-B (scratch, 10k)

1000 1500 2000 2500
Number of training demonstrations

0.00

0.02

0.04

0.06

0.08

0.10

M
ea

n
Sq

ua
re

d
Er

ro
r

Object Arrange
ResNet-18 (scratch)
ViT-B (scratch)
ViT-B (VC-1, 1k)
ViT-B (scratch, 10k)

1000 2000 3000 4000 5000 6000
Number of training demonstrations

0.00

0.02

0.04

0.06

0.08

0.10

M
ea

n
Sq

ua
re

d
Er

ro
r

Kitchen Tasks
ResNet-18 (scratch)
ViT-B (scratch)
ViT-B (VC-1, 3.5k)
ViT-B (scratch, 10k)

Figure 6: Pretraining inverse dynamics model. In paint-block and object-arrange (kitchen-tasks),
when initialized with VC-1 weights, inverse dynamics model matches the performance of a randomly initialized
model trained on 10K trajectories with just 1K (3.5k) trajectories. Even a smaller ResNet-18 model requires
2.5K (6k) trajectories to approach the same performance.

in Figure 6. The pre-training comes in the form of initializing the inverse dynamics model with269

weights from VC-1 [32], a vision-transformer (ViT-B) [9] trained on ego-centric images with masked-270

autoencoding objective [16]. In paint-block and object-arrange, we see that the inverse271

dynamics, when initialized with weights from VC-1, only requires 1K labeled robotic trajectories272

to achieve the same performance as the inverse dynamics model trained on 10K labeled robotic273

trajectories but without VC-1 initialization. We also compare against an inverse dynamics model274

parameterized with a smaller network (ResNet-18). However, the resulting inverse dynamics model275

still requires 2.5K robotic trajectories to get close to the performance of the inverse dynamics276

model with VC-1 initialization in paint-block and object-arrange. In kitchen-tasks, inverse277

dynamics, when initialized with weights from VC-1, only requires 3.5k labeled robotic trajectories278

to achieve the same performance as the inverse dynamics model trained on 10K labeled robotic279

trajectories but without VC-1 initialization. When parameterized with ResNet-18, the inverse280

dynamics model still requires 6k robotic trajectories to get close to the performance of the inverse281

dynamics model with VC-1 initialization.282

Visually	Grounding	LLM

Paint	Block Rearrange	Object

20

40

60

80

Learned	Classifier

Pr
ed
ict
io
n	
A
cc
ur
ac
y

Frozen	VLM

Benefits	of	Iterative	Refinement

HiP HiP	without
Visual	Refinement

HiP	without
any	Refinement

20

80

Su
cc
es
s	
Ra
te

40

60

Figure 7: Ablation Studies. (Left) While task plan refinement is critical to HiP’s performance, visual plan
refinement improves HiP’s performance by a smaller margin in paint block environment. (Right) While frozen
pretrained VLM (MiniGPT4) matches the performance of a learned classifier in paint-block environment, its
performance deteriorates in a more visually complex object-arrange environment.

Importance of Task Plan and Visual Plan Refinements. We study the importance of refinement283

in task and visual planning in Figure 7. We compare to HiP without visual plan refinement and284

HiP without visual and task plan refinement in paint block environment. We see that task plan285

refinement for visual grounding of LLM is critical to the performance of HiP. Without it, the task286

plan is agnostic to the robot’s observation and predicts subgoals that lead to erroneous visual and287

action planning. Furthermore, visual plan refinement improves the performance of HiP as well, albeit288

by a small margin. For more details on the hyperparameters used, please refer to Appendix D.4.289

Exploring Alternate Strategies for Visually Grounding LLM. We use a learned classifier290

fθ(xi,1, wi, g) to visually ground the LLM. We explore if we can use a frozen pretrained Vision-291

Language Model (MiniGPT-4 [58]) as a classifier in place of the learned classifier. Although we292

didn’t use any training data, we found the prompt engineering using the domain knowledge of293

the task to be essential in using the Vision-Language Model (VLM) as a classifier (see Appendix294

D.1 for details). We use subgoal prediction accuracy to quantify the performance of the learned295

classifier and the frozen VLM. Figure 7 illustrates that while both our learned multi-class classifier296

and frozen VLM perform comparably in the paint-block environment, the classifier significantly297

outperforms the VLM in the more visually complex object-arrange environment. We detail the298

two common failure modes of the VLM approach in object-arrange environment in Appendix299

D.1. As VLMs continue to improve, it is possible that their future versions match the performance of300

learned classifiers and thus replace them in visually complex domains as well. For further details on301

the VLM parameterization, please refer to Appendix D.1.302

9

References303

[1] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking:304

Experiential learning of intuitive physics. Advances in neural information processing systems,305

29, 2016.306

[2] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,307

K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic308

affordances. arXiv preprint arXiv:2204.01691, 2022.309

[3] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. Opal: Offline primitive discovery310

for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.311

[4] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative312

modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.313

[5] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,314

M. Reynolds, et al. Flamingo: A visual language model for few-shot learning. NeurIPS, 2022.315

URL https://arxiv.org/abs/2204.14198.316

[6] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-317

man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv318

preprint arXiv:2212.06817, 2022.319

[7] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.320

Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv321

preprint arXiv:2204.02311, 2022.322

[8] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li, X. Wang, M. De-323

hghani, S. Brahma, et al. Scaling instruction-finetuned language models. arXiv preprint324

arXiv:2210.11416, 2022.325

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,326

M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for327

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.328

[10] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,329

Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint330

arXiv:2303.03378, 2023.331

[11] Y. Du, S. Li, and I. Mordatch. Compositional visual generation with energy based models. In332

Advances in Neural Information Processing Systems, 2020.333

[12] Y. Du, M. Yang, B. Dai, H. Dai, O. Nachum, J. B. Tenenbaum, D. Schuurmans, and P. Abbeel.334

Learning universal policies via text-guided video generation. arXiv e-prints, pages arXiv–2302,335

2023.336

[13] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar, J. Hamburger, H. Jiang,337

M. Liu, X. Liu, et al. Ego4d: Around the world in 3,000 hours of egocentric video. In338

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages339

18995–19012, 2022.340

[14] M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormalized statistical341

models, with applications to natural image statistics. J. Mach. Learn. Res., 13:307–361, 2012.342

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In343

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–344

778, 2016.345

[16] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable346

vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern347

Recognition, pages 16000–16009, 2022.348

[17] J. Hermans, V. Begy, and G. Louppe. Likelihood-free mcmc with amortized approximate ratio349

estimators. In International conference on machine learning, pages 4239–4248. PMLR, 2020.350

10

https://arxiv.org/abs/2204.14198

[18] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,351

2022.352

[19] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances in Neural353

Information Processing Systems, 2020.354

[20] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi,355

D. J. Fleet, et al. Imagen video: High definition video generation with diffusion models. arXiv356

preprint arXiv:2210.02303, 2022.357

[21] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:358

Extracting actionable knowledge for embodied agents. In International Conference on Machine359

Learning, pages 9118–9147. PMLR, 2022.360

[22] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,361

Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language362

models. arXiv preprint arXiv:2207.05608, 2022.363

[23] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling364

problem. In Advances in Neural Information Processing Systems, 2021.365

[24] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior366

synthesis. In International Conference on Machine Learning, 2022.367

[25] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior368

synthesis. In International Conference on Machine Learning, 2022.369

[26] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.370

Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.371

[27] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. Ramasesh, A. Slone,372

C. Anil, I. Schlag, T. Gutman-Solo, et al. Solving quantitative reasoning problems with language373

models. arXiv preprint arXiv:2206.14858, 2022.374

[28] S. Li, X. Puig, C. Paxton, Y. Du, C. Wang, L. Fan, T. Chen, D.-A. Huang, E. Akyürek,375

A. Anandkumar, et al. Pre-trained language models for interactive decision-making. Advances376

in Neural Information Processing Systems, 35:31199–31212, 2022.377

[29] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as378

policies: Language model programs for embodied control. arXiv preprint arXiv:2209.07753,379

2022.380

[30] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language381

instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.382

[31] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint383

arXiv:1711.05101, 2017.384

[32] A. Majumdar, K. Yadav, S. Arnaud, Y. J. Ma, C. Chen, S. Silwal, A. Jain, V.-P. Berges,385

P. Abbeel, J. Malik, et al. Where are we in the search for an artificial visual cortex for embodied386

intelligence? arXiv preprint arXiv:2303.18240, 2023.387

[33] J. Mao, T. Lozano-Perez, J. B. Tenenbaum, and L. P. Kaelbing. PDSketch: Integrated Domain388

Programming, Learning, and Planning. In Advances in Neural Information Processing Systems389

(NeurIPS), 2022.390

[34] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual representation391

for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.392

[35] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and393

M. Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion394

models. arXiv preprint arXiv:2112.10741, 2021.395

[36] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.396

11

[37] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,397

K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.398

Advances in Neural Information Processing Systems, 35:27730–27744, 2022.399

[38] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik,400

A. A. Efros, and T. Darrell. Zero-shot visual imitation. In Proceedings of the IEEE conference401

on computer vision and pattern recognition workshops, pages 2050–2053, 2018.402

[39] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,403

Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175,404

2022.405

[40] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis406

with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision407

and Pattern Recognition, pages 10684–10695, 2022.408

[41] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour, B. K. Ayan,409

S. S. Mahdavi, R. G. Lopes, et al. Photorealistic text-to-image diffusion models with deep410

language understanding. arXiv preprint arXiv:2205.11487, 2022.411

[42] T. Salimans and J. Ho. Progressive distillation for fast sampling of diffusion models. arXiv412

preprint arXiv:2202.00512, 2022.413

[43] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipula-414

tion. In Conference on Robot Learning, pages 894–906. PMLR, 2022.415

[44] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning416

using nonequilibrium thermodynamics. In International Conference on Machine Learning,417

2015.418

[45] A. Srivastava, S. Han, K. Xu, B. Rhodes, and M. U. Gutmann. Estimating the density ratio419

between distributions with high discrepancy using multinomial logistic regression. ArXiv,420

abs/2305.00869, 2023.421

[46] M. Sugiyama, T. Suzuki, and T. Kanamori. Density ratio estimation in machine learning.422

Cambridge University Press, 2012.423

[47] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,424

E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv425

preprint arXiv:2302.13971, 2023.426

[48] J. Urain, N. Funk, G. Chalvatzaki, and J. Peters. Se (3)-diffusionfields: Learning cost functions427

for joint grasp and motion optimization through diffusion. arXiv preprint arXiv:2209.03855,428

2022.429

[49] Z. Wang, J. J. Hunt, and M. Zhou. Diffusion policies as an expressive policy class for offline430

reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.431

[50] E. Xing, A. Gupta, S. Powers, and V. Dean. Kitchenshift: Evaluating zero-shot general-432

ization of imitation-based policy learning under domain shifts. In NeurIPS 2021 Work-433

shop on Distribution Shifts: Connecting Methods and Applications, 2021. URL https:434

//openreview.net/forum?id=DdglKo8hBq0.435

[51] M. Yang, Y. Du, B. Dai, D. Schuurmans, J. B. Tenenbaum, and P. Abbeel. Probabilistic436

adaptation of text-to-video models. arXiv preprint arXiv:2306.01872, 2023.437

[52] S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel, and D. Schuurmans. Foundation models for438

decision making: Problems, methods, and opportunities. arXiv preprint arXiv:2303.04129,439

2023.440

[53] S. Yu, K. Sohn, S. Kim, and J. Shin. Video probabilistic diffusion models in projected latent441

space. arXiv preprint arXiv:2302.07685, 2023.442

12

https://openreview.net/forum?id=DdglKo8hBq0
https://openreview.net/forum?id=DdglKo8hBq0
https://openreview.net/forum?id=DdglKo8hBq0

[54] A. Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani,443

J. Lee, V. Vanhoucke, et al. Socratic models: Composing zero-shot multimodal reasoning with444

language. arXiv preprint arXiv:2204.00598, 2022.445

[55] E. Zhang, Y. Lu, W. Wang, and A. Zhang. Lad: Language augmented diffusion for reinforcement446

learning. arXiv preprint arXiv:2210.15629, 2022.447

[56] H. Zheng, W. Nie, A. Vahdat, K. Azizzadenesheli, and A. Anandkumar. Fast sampling of448

diffusion models via operator learning. In International Conference on Machine Learning,449

pages 42390–42402. PMLR, 2023.450

[57] Z. Zhong, D. Rempe, D. Xu, Y. Chen, S. Veer, T. Che, B. Ray, and M. Pavone. Guided451

conditional diffusion for controllable traffic simulation. arXiv preprint arXiv:2210.17366, 2022.452

[58] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny. Minigpt-4: Enhancing vision-language453

understanding with advanced large language models. arXiv preprint arXiv:2304.10592, 2023.454

13

Appendix455

In this Appendix, we first discuss related work in Section A and then describe how we factorize the456

hierarchical decision-making process in Section B. In Section C, we then detail the background457

and architecture for visually grounded task planning, visual planning with video diffusion, and458

action planning with inverse dynamics model. In Section D, we discuss the training and evaluation459

details for the different levels of planning in HiP and the corresponding training hyperparameters.460

In Section E, we discuss implementation details for Gato and SayCan. In Section F, we showcase461

additional ablation studies comparing different approaches to enforce consistency across the levels of462

hierarchy, analyzing effect of granularity of subgoals on performance of HiP, ablating on the choice463

of video planning model and analyzing sensitivity of iterative refinement to hyperparameters. In464

Section G, we analyze runtime of different components of HiP. Finally, we discuss limitation and465

conclusion of our work in Section H.466

A Related Work467

The field of foundation models for decision-making [52] has seen significant progress in recent years.468

A large body of work explored using large language models as zero-shot planners [21, 22, 29, 30, 2],469

but it is often difficult to directly ground the language model on vision. To address this problem470

of visually grounding the language model, other works have proposed to directly fine-tune large471

language models for embodied tasks [28, 10]. However, such an approach requires large paired472

vision and language datasets that are difficult to acquire. Most similar to our work, SayCan [2]473

uses an LLM to hierarchically execute different tasks by breaking language goals into a sequence of474

instructions, which are then inputted to skill-based value functions. While SayCan assumes this fixed475

set of skill-based value functions, our skills are represented as video-based planners [12], enabling476

generalization to new skills.477

Another set of work has explored how to construct continuous space planners with diffusion mod-478

els [25, 4, 49, 55, 48, 57, 12]. Existing works typically assume task-specific datasets from which the479

continuous-space planner is derived [24, 3, 55]. Most similar to our work, UniPi [12] proposes to use480

videos to plan in image space and similarily relies on internet videos to train image space planners.481

We build on top of UniPi to construct our foundation model for hierarchical planning, and illustrate482

how UniPi may be combined with LLMs to construct longer horizon continuous video plans.483

Moreover, some works [28, 54, 5] explored how different foundation models may be integrated with484

each other. In Flamingo [5], models are combined through joint finetuning with paired datasets, which485

are difficult to collect. In contrast both Zeng et al. [54] and Li et al. [28] combine different models486

zero-shot using either language or iterative consensus. Our work proposes to combine language,487

video, and ego-centric action models together by taking the product of their learned distributions488

[11]. We use a similar iterative consensus procedure as in Li et al. [28] to sample from the entire joint489

distribution and use this combined distribution to construct a hierarchical planning system.490

B Factorizing Hierarchical Decision-Making Process491

We model the hierarchical decision-making process described in Section 2 with pΘ which can be492

factorized into the task distribution pθ, visual distribution pϕ, and action distribution pψ .493

pΘ(W, {τ ix}, {τ ia}|g, x1,1) =

N∏
i=1

pθ(wi|g, xi,1, w<i, τ<ix , τ<ia)

N∏
i=1

pϕ(τ
i
x|w≤i, xi,1, g, τ

<i
x , τ<ia)

N∏
i=1

pψ(τ
i
a|τ≤ix , w≤i, xi,1, g, τ

<i
a)

Here, given random variables Y i, Y <i and Y ≤i represents {Y 1, . . . , Y i−1} and {Y 1, . . . , Y i}494

respectively. Now, we apply Markov assumption: Given current observation xi,1, future variables495

(wi, τ ix, τ
i
a) and past variables (wj , τ jx, τ

j
a ∀j < i) are conditionally independent.496

pΘ(W, {τ ix}, {τ ia}|g, x1,1) =

N∏
i=1

pθ(wi|g, xi,1)
N∏
i=1

pϕ(τ
i
x|wi, xi,1, g)

N∏
i=1

pψ(τ
i
a|τ ix, wi, xi,1, g)

14

We model task distribution pθ with a large language model (LLM) which is independent of observation497

xi,1. Since the image trajectory τ ix = {xi,1:T } describes a physically plausible plan for achieving498

subgoal wi from observation xi,1, it is conditionally independent of goal g given subgoal wi and499

observation xi,1. Furthermore, we assume that an action ai,t can be recovered from observation at500

the same timestep xi,t and the next timestep xi,t+1. Thus, we can write the factorization as501

pΘ(W, {τ ix}, {τ ia}|g, x1,1) =

(
N∏
i=1

pθ(wi|g)

)(
N∏
i=1

pϕ(τ
i
x|wi, xi,1)

)(
N∏
i=1

T−1∏
t=1

pψ(ai,t|xi,t, xi,t+1)

)

C Background and Architecture502

C.1 Task Planning503

Background on Density Ratio Estimation. Let p and q be two densities, such that q is absolutely504

continuous with respect to p, denoted as q << p i.e. q(x) > 0 wherever p(x) > 0. Then, their ratio505

is defined as r(x) = p(x)/q(x) over the support of p. We can estimate this density ratio r(x) by506

training a binary classifier to distinguish between samples from p and q [46, 14, 17]. More recent507

work [45] has shown one can introduce auxiliary densities {mi}Mi=1 and train a multi-class classifier508

to distinguish samples between M classes to learn a better-calibrated and more accurate density ratio509

estimator. Once trained, the log density ratio can be estimated by log r(x) = ĥp(x)− ĥq(x), where510

ĥi(x) is the unnormalized log probability of the input sample under the ith density, parameterized by511

the model.512

Learning a Classifier to Visually Ground Task Planning. We estimate the density ratio p(xi,1|wi,g)
p(xi,1|g)513

with a multi-class classifier fϕ(xi,1, {wj}, g) trained to distinguish samples amongst the conditional514

distributions p(xi,1|wi, g), ..., p(xi,1|wM , g) and the marginal distribution p(xi,1|g). Upon conver-515

gence, the classifier learns to assign high scores to (xi,1, wi, g) if wi is the subgoal corresponding to516

the observation xi,1 and task g and low scores otherwise.517

Architecture. We parameterize fϕ as a 4-layer multi-layer perceptron (MLP) on top of an ImageNet-518

pretrained vision encoder (ResNet-18 [15]) and a frozen pretrained language encoder (Flan-T5-519

Base [8]). The vision encoder encodes the observation xi,1, and the text encoder encodes the subgoals520

wj and the goal g. The encoded observation, the encoded subgoals, and the encoded goal are521

concatenated, and passed through a MLP with 3 hidden layers of sizes 512, 256, and 128. The522

output dimension for MLP (i.e., number of classes for multi-classification) M is 6 for paint-block523

environment, 5 for object-arrange environment and 4 for kitchen-tasks environment.524

Choice of Large Language Model. We use GPT3.5-turbo [37] as our large language model.525

C.2 Visual Planning526

Background. Diffusion Probabilistic Models [44, 19] learn the data distribution h(x) from a527

dataset D := {xi}. The data-generating procedure involves a predefined forward noising process528

q(xk+1|xk) and a trainable reverse process pϕ(xk−1|xk), both parameterized as conditional Gaussian529

distributions. Here, x0 := x is a sample, x1,x2, ...,xK−1 are the latents, and xK ∼ N (0, I) for a530

sufficiently large K. Starting with Gaussian noise, samples are then iteratively generated through a531

series of “denoising” steps. Although a tractable variational lower-bound on log pϕ can be optimized532

to train diffusion models, Ho et al. [19] propose a simplified surrogate loss:533

Ldenoise(θ) := Ek∼[1,K],x0∼h,ϵ∼N (0,I)[||ϵ− ϵϕ(xk, k)||2]

The predicted noise ϵθ(xk, k), parameterized with a deep neural network, estimates the noise ϵ ∼534

N (0, I) added to the dataset sample x0 to produce noisy xk.535

Guiding Diffusion Models with Text. Diffusion models are most notable for synthesizing high-536

quality images [41, 35] and videos [20, 53] from text descriptions. Modeling the conditional data537

distribution q(x|y) makes it possible to generate samples satisfying the text description y. To enable538

conditional data generation with diffusion, Ho and Salimans [18] modified the original training setup539

to learn both a conditional ϵϕ(xk,y, k) and an unconditional ϵϕ(xk, k) model for the noise. The540

unconditional noise is represented, in practice, as the conditional noise ϵϕ(xk, ∅, k), where a dummy541

15

value ∅ takes the place of y. The perturbed noise ϵϕ(xk, ∅, k) + ω
(
ϵϕ(xk,y, k)− ϵϕ(xk, ∅, k)

)
(i.e.542

classifier-free guidance) is used to later generate samples.543

Video Diffusion in Latent Space. As diffusion models generally perform denoising in the input544

space [19], the optimization and inference become computationally demanding when dealing with545

high-dimensional data, such as videos. Inspired by recent works [40, 53], we first use an autoencoder546

venc to learn a latent space for our video data. It projects an observation trajectory τx (i.e., video) into547

a 2D tri-plane representation [53] τz = [τTz , τ
H
z , τWz] where τTz , τHz , τWz capture variations in the548

video across time, height, and width respectively. We then diffuse over this learned latent space [53].549

Latent Space Video Diffusion for Visual Planning. Our video diffusion model pϕ(τ ix|wi, xi,1)550

generates video τ ix given a language subgoal wi and the current observation xi,1. It is param-551

eterized through its noise model ϵϕ((τ iz)k, wi, xi,1, k) := ϵϕ((τ
i
z)k, lenc(wi), venc(xi,1), k) where552

τ iz := venc(τ
i
x) is the latent representation of video τ ix over which we diffuse. We condition the noise553

model ϵϕ on subgoal wi using a pretrained language encoder lenc and on current observation xi,1554

using video encoder venc. To use venc with a single observation xi,1, we first tile the observation along555

the temporal dimension to create a video.556

Architecture. We now detail the architectures of different components:557

• Video Autoencoder We borrow our architecture for venc from PVDM [53] which uses transformers558

to project video τx ∈ RT×H×W to latent codes τz = [τTz , τ
H
z , τWz] where τTz ∈ RC×H′×W ′

,559

τHz ∈ RC×T×W ′
, τWz ∈ RC×H′×T . Here, T = 50 represents the time horizon of a video, H = 48560

represents video height, W = 64 represents video width, C = 4 represents latent codebook561

dimension, H ′ = 12 represents latent height, and W ′ = 8 represents latent width.562

• Language Encoder We use Flan-T5-Base [8] as the pretrained frozen language encoder lenc.563

• Noise Model We borrow PVDM-L architecture [53] which uses 2D UNet architecture, similar to564

the one in Latent Diffusion Model (LDM) [40], to represent p(τz|τ ′z). In our case, τz = venc(τ
i
x)565

and τ ′z = venc(xi,1). To further condition noise model ϵϕ on lenc(wi), we augment the 2D UNet566

Model with cross-attention mechanism borrowed by LDM [40].567

For implementing these architectures, we used the codebase https://github.com/sihyun-yu/PVDM568

which contains the code for PVDM and LDM.569

Classifier for Consistency between Visual Planning and Action Planning. To ensure consistency570

between visual planning and action planning, we want to sample observation trajectories that maxi-571

mizes both conditional observation trajectory likelihood from diffusion and the likelihood of sampled572

actions given the observation trajectory (see equation 4). To approximate likelihood calculation of573

action trajectory, we learn a binary classifier gψ that models if the observation trajectory leads to574

a high likelihood action trajectories. Since diffusion happens in latent space and we use gradients575

from gψ to bias the denoising of the video diffusion, gψ(τ iz) takes the observation trajectory in576

latent space. The binary classifier gψ is trained to distinguish between observation trajectories in577

latent space sampled from video dataset τ iz = venc(τ
i
x), τ

i
x ∼ Dvideo (i.e. label of 1) and observa-578

tion trajectories in latent space sampled from video dataset whose frames where randomly shuffled579

(τ iz)
′ = venc(σ(τ

i
x)), τ

i
x ∼ Dvideo (i.e. label of 0). Here, σ denotes the random shuffling of frames.580

To randomly shuffle frames in an observation trajectory (of length 50), we first randomly select 5581

frames in the observation trajectory. For each of the selected frame, we randomly permute it with its582

neighboring frame (i.e. either with the frame before it or with the frame after it). Once gψ is trained,583

we use it to bias the denoising of the video diffusion584

ϵ̂ := ϵϕ((τz)k, venc(xt), k) + ω(ϵϕ((τz)k, venc(xt), lenc(w), k)− ϵϕ((τz)k, venc(xt), k))

− ω′∇(τz)k log gψ(1|(τz)k)

Here, ϵ̂ is the noise used in denoising of the video diffusion and ω, ω′ are guidance hyperparameters.585

Classifier Architecture. The classifier gψ(τz = [τTz , τ
H
z , τWz]) has a ResNet-9 encoder that converts586

τTz , τHz , and τWz to latent vectors, then concatenate those latent vectors and passes the concatenated587

vector through an MLP with 2 hidden layers of sizes 256 and 128 and an output layer of size 1.588

16

C.3 Action Planning589

To do action planning, we learn an inverse dynamics model to pψ(ai,t|xi,t, xi,t+1) predicts 7-590

dimensional robot states si,t = pψ(xi,t) and si,t+1 = pψ(xi,t+1). The first 6 dimensions of the robot591

state represent joint angles and the last dimension of the robot state represents the gripper state (i.e.,592

whether it’s open or closed). The first 6 action dimension is represented as joint angle difference593

ai,t[: 6] = si,t+1[: 6] − si,t[: 6] while the last action dimension is gripper state of next timestep594

ai,t[−1] = si,t+1[−1].595

Architecture. We use ViT-B [9] (VC-1 [32] initialization) along with a linear layer to parameterize596

pψ . ViT-B projects the observation xi,t ∈ R48×64×3 to 768 dimensional latent vector from which the597

linear layer predicts the 7 dimensional state si,t.598

D Training and Evaluation599

D.1 Task Planning600

Inability	to	recognize	uncommon	objects Hallucination	leading	to	wrong	spatial	reasoning
Is	screwdriver	in	brown	box?

Yes,	screwdriver	is	in	brown	box

Is	computer	hard	drive	in	
brown	box?

No,	the	computer	hard	drive	is	
not	in	the	brown	box

Is	scissor	in	brown	box?

Yes,	scissor	is	in	brown	box

User Vision	Language	Model

Figure 8: Failure in VLM. to recognize uncommon objects like computer hard drives and occasional hallucina-
tion of object presence, leading to incorrect visual reasoning.

Training Objective and Dataset for Learned Classifier. We use a softmax cross-entropy loss601

to train the multi-class classifier fϕ(xi,1, {wj}Mj=1, g) to classify an observation xi,1 into one of602

the M given subgoal. We train it using the classification dataset Dclassify := {xi,1, g, {wj}Mj=1, i}603

consisting of observation xi,1, goal g, candidate subgoals {wj}Mj=1 and the correct subgoal label604

i. The classification dataset for paint-block, object-arrange, and kitchen-tasks consists of605

58k, 82k and 50k datapoints respectively.606

Vision-Language Model (VLM) as a Classifier. We use a frozen pretrained Vision-Language Model607

(VLM) (MiniGPT4 [58]) as a classifier. We first sample a list of all possible subgoals W = {wi}Mi=1608

from the LLM given the language goal g. We then use the VLM to eliminate subgoals from W609

that have been completed. For each subgoal, we question the VLM whether that subgoal has been610

completed. For example, consider the subgoal "Place white block in yellow bowl". To see if the611

subgoal has been completed, we ask the VLM "Is there a block in yellow bowl?". Consider the612

subgoal "Place green block in brown box" as another example. To see if the subgoal has been613

completed, we ask the VLM "Is there a green block in brown box?". Furthermore, if the VLM614

says "yes" and the subgoal has been completed, we also remove other subgoals from W that should615

have been completed, such as "Place white block in green bowl". Once we have eliminated the616

completed subgoals, we use the domain knowledge to determine which subgoal to execute out of617

all the remaining subgoals. As an example, if the goal is to "Stack green block on top of blue block618

in brown box" and we have a green block in green bowl and a blue block in blue bowl, we should619

execute the subgoal "Place blue block in brown box" before the subgoal "Place green block on blue620

block". While this process of asking questions from VLM to determine the remaining subgoals and621

then sequencing the remaining subgoals doesn’t require any training data, it heavily relies on the622

task’s domain knowledge.623

Failure Modes of VLM. We observe two common failure modes of the VLM approach in624

object-arrange environment and visualize them in Figure 8. First, because the model is not625

trained on any in-domain data, it often fails to recognize uncommon objects, such as computer hard626

drives, in the observations. Second, it occasionally hallucinates the presence of objects at certain627

locations and thus leads to incorrect visual reasoning.628

17

VLM as a Subgoal Predictor. We also tried to prompt the VLM with 5 examples of goal g629

and subgoal candidates {wi}Mi=1 and then directly use it to generate the next subgoal wi given the630

observation xi,1 and the goal g. However, it completely failed. We hypothesize that the VLM fails to631

directly generate the next subgoal due to its inability to perform in-context learning.632

Evaluation. We evaluate the trained classifier fϕ and the frozen VLM for subgoal prediction accuracy633

on 5k unseen datapoints, consisting of observation, goal, candidate subgoals and correct subgoal,634

generated from test tasks Ttest. We average over 4 seeds and show the results in Figure 7.635

D.2 Visual Planning636

Ego4D dataset processing. We pre-train on canonical clips of the Ego4D dataset which are text-637

annotated short clips made from longer videos. We further divide each canonical clip into 10sec638

segments from which we derive 50 frames. We resize each frame to 48× 64. We create a pretraining639

Ego4D dataset of (approximately) 344k short clips, each consisting of 50 frames and a text annotation.640

We use the loader from R3M [34] codebase (https://github.com/facebookresearch/r3m) to load our641

pretraining Ego4D dataset.642

Training Objective and Dataset. We use pixel-level L1 reconstruction and negative perceptual643

similarity for training the autoencoder venc. We borrow this objective from PVDM [53] paper644

except we don’t use adversarial loss. We keep the language encoder frozen. We use denoising loss645

in video latent space Ek∼[1,K],τz,w,x∼D,ϵ∼N (O,I)[∥ϵ − ϵϕ((τz)k, lenc(w), venc(x), k)∥2] to train the646

noise model ϵϕ. We replace w with a null token so that ϵϕ learns both a text-conditional model and647

an unconditional model. We pretrain the autoencoder venc and the noise model ϵϕ on the processed648

Ego4D dataset. We then finetune it on our dataset Dvideo := {τ ix, wi} consisting of approximately649

100k observation trajectories of length T = 50 and associated text subgoals.650

Classifier Training Objective and Dataset. We use a binary cross-entropy loss to train the binary651

classifier gψ(τz) that predicts if the observation trajectory in latent space τz = venc(τx) leads to652

high-likelihood action trajectory. It is trained using trajectories from video dataset τx ∼ Dvideo.653

D.3 Action Planning654

Training Objective and Dataset. We train inverse dynamics pψ on a dataset Dinv. Since actions are655

differences between robotic joint states, we train pψ to directly predict robotic state si,t = pψ(xi,t)656

by minimizing the mean squared error between the predicted robotic state and ground truth robotic657

state. Hence, Dinv := {τ ix, τ is} consists of 1k paired observation and robotic state trajectories, each658

having a length of T = 50, in paint-block and object-arrange domains. In kitchen-tasks659

domain, it consists of 3.5k paired observation and robotic state trajectories, each having a length of660

T = 50.661

Evaluation. We evaluate the trained pψ (i.e., VC-1 initialized model and other related models in662

Figure 6) on 100 unseen paired observation and robotic state trajectories generated from test tasks663

Ttest. We use mean squared error to evaluate our inverse dynamics models. We use 4 seeds to calculate664

the standard error, represented by the shaded area in Figure 6.665

D.4 Hyperparameters666

Task Planning. We train fϕ for 50 epochs using AdamW optimizer [31], a batch size of 256, a667

learning rate of 1e− 3 and a weight decay of 1e− 6. We used one V100 Nvidia GPU for training the668

multi-class classifier.669

Visual Planning. We borrow our hyperparameters for training video diffusion from the PVDM670

paper [53]. We use AdamW optimizer [31], a batch size of 24 and a learning rate of 1e − 4 for671

training the autoencoder. We use AdamW optimizer, a batch size of 64, and a learning rate of 1e− 4672

for training the noise model. During the pretraining phase with the Ego4D dataset, we train the673

autoencoder for 5 epochs and then the noise model for 5 epochs. During the finetuning phase with674

Dvideo, we train the autoencoder for 10 epochs and then the noise model for 40 epochs. We used two675

A6000 Nvidia GPUs for training these diffusion models. We train gψ for 10 epochs using AdamW676

optimizer, a batch size of 256 and a learning rate of 1e − 4. We used one V100 Nvidia GPU for677

training the binary classifier. During classifier-free guidance, we use ω = 4 and ω′ = 1.678

18

Action Planning. We train VC-1 initialized inverse dynamics model for 20 epochs with AdamW679

optimizer [31], a batch size of 256 and a learning rate of 3e−5. We trained other randomly initialized680

ViT-B inverse dynamics models and randomly initialized ResNet-18 inverse dynamics models for 20681

epochs with AdamW optimizer, a batch size of 256, and a learning rate of 1e− 4. We used one V100682

Nvidia GPU for training these inverse dynamics models.683

E Implementation Details for Gato and SayCan684

In training the visual and action planning for HiP, we use 100k robot videos for visual planner and685

the inverse dynamics, when trained from scratch, utilizes 10k state-action trajectory pairs. In order to686

ensure fair comparison, we use 110k datapoints for training Gato [39] and SayCan [2].687

Gato. We borrow the Gato [39] architecture from Vima Codebase and use it for training a language688

conditioned policy with imitation learning. We use 110k (langauge, observation trajectory, action689

trajectory) datapoints in each of the three domains for training Gato. Furthermore, we provide oracle690

subgoals to Gato.691

SayCan. We borrow the SayCan [2] algorithm from the SayCan codebase and adapt it to our692

settings. Following the recommendations of SayCan codebase, we use CLIPort policies as primitives.693

CLIPort policies take in top-down RGBD view and outputs pick and place pixel coordinates. Then,694

an underlying motion planner picks the object from the specified pick-coordinate and places the695

object at the specified place-coordinate. We train CLIPort policies on 110k (language, observation,696

action) datapoints in paint-block and object-arrange domain. The SayCan paper uses value697

function as an affordance function to select the correct subgoal given current observation and high698

level goal. However, CLIPort policies don’t have a value function. The SayCan codebase uses a699

hardcoded scoring function which doesn’t apply to object-arrange domain. To overcome these700

issues, we use the LLM grounding strategy from ?]. It uses unnormalized logits over the pixel701

space given by CLIPort policies as affordance and uses it to ground LLM to current observation and702

thus predict the subgoal. We then compare SayCan with HiP and other baselines on paint-block703

and object-arrange domain in Table 1. While SayCan outpeforms other baselines, HiP still704

outperforms it both on seen and unseen tasks of paint-block and object-arrange domain. We705

couldn’t run SayCan on kitchen-tasks domain as there’s no clear-cut primitive in that domain.706

This points to a limitation of SayCan which requires tasks to be expressed in terms of primitives with707

each primitive paired with an affordance function.708

F Additional Ablation Studies709

F.1 Consistency between task planning and visual planning710

To make task planning consistent with visual planning, we need to select subgoal w∗
i which maximizes711

the joint likelihood (see equation 2) of LLM pLLM(wi|g) and video diffusion pϕ(τ
i
x|wi, xi,1). While712

generating videos for different subgoal candidates wi and calculating the likelihood of the generated713

video is computationally expensive, we would still like to evaluate its performance in subgoal714

prediction given it is theoretically grounded. To this end, we first sample M subgoals W = {wj}Mj=1715

from the LLM. Then, we calculate w∗
i = argmaxw∈W log pϕ(τ

i
x|w, xi,1) and use w∗

i as our predicted716

subgoal. Since log pϕ(τ
i
x|w, xi,1) is intractable, we estimate its variational lower-bound as an717

approximation. We use this approach for subgoal prediction in paint-block environment and718

compare its performance to that of the learned classifier. It achieves a subgoal prediction accuracy of719

54.3± 7.2% whereas the learned classifier achieves a subgoal prediction accuracy of 98.2± 1.5%720

in paint-block environment. Both approaches outperform the approach of randomly selecting721

a subgoal from W (i.e., no task plan refinement), which yields a subgoal prediction accuracy of722

16.67% given M = 6. The poor performance of the described approach could result from the fact723

that the diffusion model only coarsely approximates the true distribution p(τ ix|wi, xi,1), which results724

in loose variational lower-bound and thus uncalibrated likelihoods from the diffusion model. A larger725

diffusion model could better approximate p(τ ix|wi, xi,1), resulting in tighter variational lower-bound726

and better-calibrated likelihoods.727

19

F.2 Consistency between visual planning and action planning728

To make visual planning consistent with action planning, we need to select observation trajectory729

(τ ix)
∗ which maximizes joint likelihood (see equation 4) of conditional video diffusion pϕ(τ

i
x|wi, xi,1)730

and inverse model
∏T−1
t=1 pψ(ai,t|xi,t, xi,t+1). While sampling action trajectories and calculating731

their likelihoods during every step of the denoising process is computationally inefficient, we would732

still like to evaluate its effectiveness in visual plan refinements. However, we perform video diffusion733

in latent space while our inverse model is in observation space. Hence, for purpose of this experiment,734

we learn another inverse model pψ(τ
i
a|τ iz) that uses a sequence model (i.e. a transformer) to produce735

an action trajectory τ ia given an observation trajectory in latent space τ iz . We train pψ for 20736

epochs on 10k paired observation and action trajectories, each having a length of T = 50. We use737

AdamW optimizer, a batch size of 256 and a learning rate of 1e− 4 during training. To generate an738

observation trajectory that maximizes the joint likelihood, we first sample 30 observation trajectories739

from video diffusion pϕ(τ
i
x|wi, xi,1) conditioned on subgoal wi and observation xi,1. For each740

generated observation trajectory τ ix, we sample a corresponding action trajectory τ ia and calculate741

its corresponding log-likelihood log pψ(τ
i
a|venc(τ

i
x)). We select the observation trajectory τ ix with742

highest log-likelihood. Note that we only use pψ for visual plan refinement and use pψ for action743

execution to ensure fair comparison. If we use this approach for visual plan refinement with HiP, we744

obtain a success rate of 72.5±1.9 on unseen tasks in paint-block environment. This is comparable745

to the performance of HiP with visual plan refinements from learned classifier gψ which obtains a746

success rate of 72.8± 1.7 on unseen tasks in paint-block environment. In contrast, HiP without747

any visual plan refinement obtains a success rate of 71.1 ± 1.3 on unseen tasks in paint-block748

environment. These results show that gψ serves as a good approximation for estimating whether an749

observation trajectory leads to a high-likelihood action trajectory, while still being computationally750

efficient.751

Architecture for pψ. We use a transformer model to represent pψ(τa|τz = [τTz , τ
H
z , τWz]). We first752

use a ResNet-9 encoder to convert τTz , τHz , and τWz to latent vectors. We then concatenate those753

latent vectors and project the resulting vector to a hidden space of 64 dimension using a linear layer.754

We then pass the 64 dimensional vector to a trajectory transformer model [23] which generates an755

action trajectory τa of length 50. The trajectory transformer uses a transformer architecture with 4756

layers and 4 self-attention heads.757

F.3 How granularity of subgoals affects performance of HiP ?758

We conduct a study in paint-block environment to analyze how granuality of subgoals affect HiP.759

In our current setup, a subgoal in paint-block domain is of form "Place <block color> block760

in/on/to <final block location>" and involves a pick and a place operation. We refer to our761

current setup as HiP (standard). We introduce two additional level of subgoal granuality:762

• Only one pick or place operation: The subgoal will be of form "Pick <block color> block763

in/on <initial block location>" or "Place <block color> block in/on/to <final764

block location>". It will involve either one pick or one place operation. We refer to the765

model trained in this setup as HiP (more granular).766

• Two pick and place operations: The subgoal will be of form "Place <1st block color>767

block in/on/to <final 1st block location> and Place <2nd block color> block768

in/on/to <final 2nd block location>". It will involve two pick and place operations.769

We refer to the model trained in this setup as HiP (less granular).770

Model HiP (more granular) HiP (Standard) HiP (less granular) UniPi

Paint-block (Seen) 74.5± 1.8 74.3± 1.9 61.8± 3.1 37.2± 3.8
Paint-block (Unseen) 73.1± 2.1 72.8± 1.7 58.2± 3.4 35.3± 3.2

Table 2: Granularity of Subgoals. Performance of HiP as we vary the granularity of subgoals. Initially, it
doesn’t get affected but then starts to deteoriate when subgoals become too coarse.

Note that UniPi has the least granuality in terms of subgoals as it tries to imagine the entire trajectory771

from goal description. Table 2 in the rebuttal document compares HiP (standard), HiP (more granular),772

20

HiP (less granular) and UniPi on seen and unseen tasks in paint-block environment. We observe773

that HiP (standard) and HiP (more granular) have similar success rates where HiP (less granular)774

has a lower success rate. UniPi has the lowest success rate amongst these variants. We hypothesize775

that success rate of HiP remains intact when we decrease the subgoal granuality as long as the776

performance of visual planner doesn’t degrade. Hence, HiP (standard) and HiP (more granular)777

have similar success rates. However, when the performance of visual planner degrades as we further778

decrease the subgoal granuality, we see a decline in success rate as well. That’s why HiP (less779

granular) sees a decline in success rate and UniPi has the lowest success rate amongst all variants.780

F.4 Ablation on Visual Planning Model781

Paint-block Object-arrange Kitchen-tasks

Model Seen Unseen Seen Unseen Seen Unseen
HiP (RSSM) 70.2± 2.4 69.5± 1.6 59.6± 3.8 59.2± 3.9 50.6± 16.2 46.8± 19.4
HiP 74.3± 1.9 72.8± 1.7 75± 2.8 75.4± 2.6 85.8± 9.4 83.5± 10.2

Table 3: Ablating Visual Planner. While performance gap between HiP and HiP (RSSM) is small in
Paint-block, it widens in more visually complex domains, such as Object-arrange and Kitchen-tasks,
thereby showing the importance of video diffusion model.

To show the benefits of video diffusion model, we perform an ablation where we use (text-conditioned)782

recurrent state space model (RSSM), taken from DreamerV3 [?], as visual model for HiP. We borrow783

the RSSM code from dreamerv3-torch codebase. To adapt RSSM to our setting, we condition RSSM784

on subgoal (i.e. subgoal encoded into a latent representation by Flan-T5-Base) instead of actions.785

Hence, sequence model of RSSM becomes ht = f(ht−1, zt−1, w) where w is latent representation of786

subgoal. Furthermore, we don’t predict any reward since we aren’t in a reinforcement learning setting787

and don’t predict continue vector since we decode for a fixed number of steps. Hence, we remove788

reward prediction and continue prediction from the prediction loss. To make the comparisons fair,789

we pretrain RSSM with Ego4D data as well. We report the results in Table 3. We see that HiP with790

video diffusion model outperforms HiP with RSSM in all the three domains. While the performance791

gap between HiP(RSSM) and HiP (i.e. using video diffusion) is small in paint-block environment,792

it widens in object-arrange and kitchen-tasks domains as the domains become more visually793

complex.794

F.5 Analyzing sensitivity of iterative refinement to hyperparameters795

HiP ω′ = 0.5 ω′ = 0.75 ω′ = 1.0 ω′ = 1.25 ω′ = 1.5 ω′ = 1.75 ω′ = 2.0

Paint-block (Seen) 71.8± 2.3 72.3± 2.0 74.3± 1.9 73.9± 2.2 72.1± 1.7 70.4± 2.4 68.2± 1.9
Paint-block (Unseen) 71.1± 2.5 71.4± 1.8 72.8± 1.7 73.1± 1.5 71.4± 1.5 69.3± 2.7 66.8± 1.4

Table 4: Sensitivity of visual iterative refinement to guidance scale. Performance of HiP as we vary the
guidance scale ω′. HiP performs best when ω′ ∈ {1, 1.25} but performance degrades for higher values of ω′.

The subgoal classifier doesn’t introduce any test time hyperparameters and we use standard hyper-796

parameters (1e− 3 learning rate, 1e− 6 weight decay, 256 batch size, 50 epochs, Adam optimizer)797

for its training which remains fixed across all domains. We observed that the performance changes798

minimally across different hyperparameters, given a learning rate decay over training. However,799

the observation trajectory classifier gψ introduces an additional test time hyperparameter ω′ which800

appropriately weights the gradient from observation trajectory classifier. Table 4 in the rebuttal801

document varies ω′ between 0.5 and 2 in intervals of 0.25 and shows success rate of HiP. We see that802

HiP gives the best performance when ω′ ∈ {1, 1.25} but it’s performance degrades for higher values803

of ω′.804

G Analyzing Runtime of HiP805

We provide average runtime of HiP for a single episode in all the three domains in Table 5 of the806

rebuttal document. We average across 1000 seen tasks in each domain. We break the average runtime807

21

Domain
Subgoal
candidate generation

Subgoal
classification

Visual planning
per subgoal

Action planning
per subgoal

Action execution
per subgoal

Episodic
runtime

Paint-block 1.85s 0.41s 7.32s 0.91s 6.35s 80.61
Object-arrange 1.9s 0.43s 7.39s 0.89s 9.57s 78.71
Kitchen-tasks 1.81s 0.41s 7.35s 0.98s 1.28s 40.37

Table 5: Run time of HiP. Average episodic run-time of HiP, along with average run-time of its different com-
ponents for Paint-block, Object-arrange and Kitchen-tasks domains. While HiP has similar planning
times across different domains, it has different action execution times and episodic runtimes across domains due
to differences in simulation properties and average number of subgoals.

by different components: task planning (subgoal candidate generation and subgoal classification),808

visual planning, action planning and action execution. We execute the action plan for a subgoal in809

open-loop and then get observation from the environment for deciding the next subgoal. From Table 5,810

we see that majority of the planning time is taken by visual planning. Recent works [24, 42, 56] have811

proposed techniques to reduce sampling time in diffusion models, which can be incorporated into our812

framework for improving visual planning speed in the future.813

H Limitations and Conclusion814

Limitations. Our approach has several limitations. As high-quality foundation models for visual815

sequence prediction and robot action generation do not exist yet, our approach relies on smaller-scale816

models that we directly train. Once high-quality video foundation models are available, we can use817

them to guide our smaller-scale video models [51] which would reduce the data requirements of our818

smaller-scale video models. Furthermore, our method uses approximations to sample from the joint819

distribution between all the model. An interesting avenue for future work is to explore more efficient820

and accurate methods to ensure consistent samples from the joint distribution.821

Conclusion. In this paper, we have presented an approach to combine many different foundation822

models into a consistent hierarchical system for solving long-horizon robotics problems. Currently,823

large pretrained models are readily available in the language domain only. Ideally, one would train a824

foundation model for videos and ego-centric actions, which we believe will be available in the near825

future. However, our paper focuses on leveraging separate foundation models trained on different826

modalities of internet data, instead of training a single big foundation model for decision making.827

Hence, for the purposes of this paper, given our computational resource limitations, we demonstrate828

our general strategy with smaller-scale video and ego-centric action models trained in simulation,829

which serve as proxies for larger pretrained models. We show the potential of this approach in830

solving three long-horizon robot manipulation problem domains. Across environments with novel831

compositions of states and goals, our method significantly outperforms the state-of-the-art approaches832

towards solving these tasks.833

In addition to building larger, more general-purposed visual sequence and robot control models, our834

work suggests the possibility of further using other pretrained models in other modalities, such as835

touch and sound, which may be jointly combined and used by our sampling approach. Overall, our836

work paints a direction towards decision making by leveraging many different powerful pretrained837

models in combination with a tiny bit of training data. We believe that such a system will be838

substantially cheaper to train and will ultimately result in more capable and general-purpose decision839

making systems.840

22

	Introduction
	Compostional Foundation Models for Hierarchical Planning
	Task Planning via Large Language Models
	Visual Planning with Video Generation
	Action Planning with Inverse Dynamics

	Experimental Evaluations
	Evaluation Environments
	Baselines
	Results

	Related Work
	Factorizing Hierarchical Decision-Making Process
	Background and Architecture
	Task Planning
	Visual Planning
	Action Planning

	Training and Evaluation
	Task Planning
	Visual Planning
	Action Planning
	Hyperparameters

	Implementation Details for Gato and SayCan
	Additional Ablation Studies
	Consistency between task planning and visual planning
	Consistency between visual planning and action planning
	How granularity of subgoals affects performance of HiP ?
	Ablation on Visual Planning Model
	Analyzing sensitivity of iterative refinement to hyperparameters

	Analyzing Runtime of HiP
	Limitations and Conclusion

