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Abstract: Solving complex long-horizon robotic manipulation problems requires
sophisticated high-level planning capabilities, the ability to reason about the physi-
cal world, and reactively choose appropriate motor skills. Vision-language models
(VLMs) pretrained on Internet data could in principle offer a framework for tack-
ling such problems. However, in their current form, VLMs lack both the nuanced
understanding of intricate physics required for robotic manipulation and the ability
to reason over long horizons to address error compounding issues. In this paper, we
introduce a novel test-time computation framework that enhances VLMs’ physical
reasoning capabilities for multi-stage manipulation tasks. At its core, our approach
iteratively improves a pretrained VLM with a “reflection” mechanism - it uses a
generative model to imagine future world states, leverages these predictions to
guide action selection, and critically reflects on potential suboptimalities to refine
its reasoning. Experimental results demonstrate that our method significantly out-
performs several state-of-the-art commercial VLMs as well as other post-training
approaches such as Monte Carlo Tree Search (MCTS).

Keywords: Vision-Language Models, Long-Horizon Manipulation

1 Introduction
Complex multi-stage manipulation tasks remain a fundamental challenge in robotics [1, 2, 3], espe-
cially when they require reasoning about sophisticated physical interactions across extended time
horizons. These tasks often involve intricate action sequences where each step must account for
physical constraints and potential consequences, making them particularly challenging for planning
systems. Success hinges on understanding both the immediate effects of actions and their long-term
implications, adapting plans based on execution outcomes, and generalizing to novel scenarios.

While classical planning approaches, such as task and motion planning (TAMP) [4, 5], can in
principle address such problems, their reliance on predefined symbolic representations and explicit
state estimation makes them difficult to apply in settings without known models that require visual
perception [6, 7]. This limitation has motivated the search for more flexible approaches to robotic
planning. Recent advances in vision-language models (VLMs) have shown remarkable capabilities in
processing visual scenes and natural language instructions by leveraging internet-scale knowledge [8,
9, 10, 11, 12]. These models can effectively parse complex visual environments and comprehend
high-level task descriptions expressed in natural language, making them promising candidates for
robotic planning problems [13, 14, 15, 16, 17]. However, state-of-the-art VLMs still struggle with
complex physical reasoning tasks, and this limitation becomes particularly pronounced when precise
physics concepts and long-horizon planning are involved [18, 19].

In this paper, we study how to effectively leverage VLMs’ Internet-scale knowledge while addressing
their limitations in physical reasoning and long-horizon planning. We focus on a challenging class of
robotic manipulation problems that involve sequentially manipulating interlocking objects to achieve
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Given the current and goal images, what action should be taken next?

Pick up purple Insert purple

…

Given the imagined future, reflect and revise original action if necessary.

Pick up yellow.

Diffusion 
Model

Figure 1. Reflective planning. Our method uses a VLM to propose actions and a diffusion dynamics
model to imagine the future state of executing the plan. The imagined future helps the VLM reflect
on the initial plan and propose better action.

desired configurations, as illustrated in Fig. 4. These tasks are particularly difficult as they require
precise understanding of physical constraints, careful reasoning about action sequences, and the
ability to plan over extended horizons while maintaining physical feasibility at each step.

To address these challenges, we present a novel test-time computation framework that significantly
enhances VLMs’ capabilities for multi-stage robotic manipulation tasks. The key insight of our
method, ReflectVLM, is that by combining VLMs with a reflection mechanism and targeted post-
training, we can create a system that better understands physical constraints and their implications
for action planning. We use the term “reflection” to refer to a process where a VLM iteratively
refines its decisions by critically examining the predicted outcomes of its proposed actions, akin
to self-critique methods in large language models [20, 21, 22]. Our approach introduces two key
components: (1) a look-ahead mechanism that uses a diffusion-based dynamics model to generate
visual predictions of future states resulting from planned actions, and (2) a reflection process that
allows the VLM to critique and refine its planned actions by analyzing these predicted outcomes.
This combination of visual prediction and iterative refinement allows the VLM to develop a more
sophisticated understanding of physical constraints and improve its decision-making capabilities
without requiring extensive retraining.

Experimental results demonstrate that our approach significantly outperforms both the latest commer-
cial state-of-the-art VLM models and traditional planning approaches like Monte Carlo Tree Search
(MCTS) on this class of problems. Notably, our method achieves superior performance compared
to post-training techniques such as supervised fine-tuning (SFT) while using the same amount of
labeled data and maintaining computational efficiency. The success of our approach suggests that
enhancing VLMs with structured reasoning mechanisms at test time can be a powerful strategy for
improving their performance on physically-grounded tasks.

Our primary contribution is the mentioned test-time computation framework that enhances VLMs’
physical reasoning capabilities for multi-stage manipulation tasks. Through extensive experiments,
we demonstrate that our approach not only outperforms existing methods but also maintains computa-
tional efficiency. Importantly, while we demonstrate our framework’s effectiveness on manipulation
tasks, it is designed to be general and can be readily extended to other domains requiring visual
understanding and sequential decision-making. This generality suggests broader applications in
robotics and autonomous systems where physical reasoning and long-horizon planning are essential.

2 Related Work
Our framework incorporates a VLM with the reflection mechanism to solve long-horizon robotic
planning problems. We therefore survey reflection techniques in the broader context in large models,
VLM for robotic planning, as well as existing techniques for solving robot task and motion planning.

2.1 Reflection
Recent work has shown that large language models benefit from reflection mechanisms where models
iteratively refine their outputs through self-critique and revision [23, 24, 25, 22, 26, 21, 20]. For
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example, Madaan et al. [22] introduced an iterative refinement approach where models critique and
improve their own outputs through self-feedback. Chain-of-thought prompting and its variants [27,
28, 29] demonstrated that guiding models to show their reasoning process leads to better performance.
Such reflection mechanisms have also been extended to vision-language models [30, 31].

However, these approaches focus primarily on language-only or visual comprehension tasks, without
addressing physical reasoning or robotics applications. Our work extends reflection to long-horizon
robotic planning by incorporating a diffusion model that generates imagined future visual states. This
allows the VLM to reflect on and revise its plans based on concrete visual predictions rather than
relying solely on symbolic reasoning.

2.2 VLM for Robotic Planning
In robotics, several recent works have explored using VLMs for planning [13, 14, 15, 32, 33, 34,
35, 17, 16, 36]. However, these approaches either rely on symbolic state representations or make
decisions in a single-step manner based only on current observations, without explicitly reasoning
about future consequences or utilizing reflection mechanisms.

While ReplanVLM [37] and GameVLM [38] use VLMs to replan robot actions based on execution
feedback, they still rely on symbolic state representations rather than visual imagination of future
states. Black et al. [39] utilized a diffusion model to generate future visual states and executed them
with a low-level goal-conditioned policy, but did not leverage these predictions for plan reflection
or revision. Du et al. [40] combines a VLM with video prediction for beam search, but suffers from
prediction error accumulation and struggles with physics-based reasoning tasks.

Our framework addresses these limitations by enabling VLMs to imagine and evaluate potential
future states through a diffusion-based dynamics model. This allows for sophisticated multi-step
planning while maintaining the benefits of VLMs’ pre-trained visual-language understanding. The
reflection mechanism further enables the VLM to critique and refine its plans based on these imagined
futures, leading to more robust long-horizon manipulation.

2.3 Robotic Task and Motion Planning
Robotic Task and Motion Planning (TAMP) has been extensively studied [4, 5, 41]. Traditional
approaches often combine symbolic planning with motion planning but struggle with real-world
physical interactions and visual inputs. Learning-based methods [7, 6] show promise in handling
uncertainty and complex dynamics but typically require significant task-specific engineering.

Our approach bridges this gap by leveraging VLMs’ broad knowledge while adding structured
physical reasoning through visual imagination and reflection. This enables robust long-horizon
planning without requiring extensive task-specific engineering or large amounts of training data.

3 Preliminaries and Problem Statement
We formulate the multi-stage robotic manipulation planning problem as a partially observable
Markov decision process (POMDP), defined by the tuple (S,A, T ,O,Z). Here, S is the state space
containing the full physical state of the environment, including object poses and physical properties;
A is the action space consisting of high-level manipulation primitives {pick up, insert, reorient,
put down} × {objects}, assuming a failure rate ϵ for each primitive; T (st+1|st, at) represents the
transition dynamics capturing physical interactions; O is the observation space of RGB images; and
Z(ot|st) is the observation model mapping states to image observations.

The objective is to find a policy π that generates actions to reach a goal state sg. Due to partial
observability, the policy only has access to image observations, taking the form π(at|It, Ig), where It
is the current observation and Ig is the goal image. The policy is instantiated as a VLM agent πVLM,
which takes a multi-modal input of images and text, and outputs textual action primitives.

Our framework includes pre-training and post-training phases, with the latter building on the frame-
work of interactive imitation learning [42, 43] to learn a policy through environment interaction and
real-time expert supervision. Thus under the standard assumption, we assume access to an interactive
expert policy πE that generates near-optimal actions a∗ = πE(s) for any state s at training time.
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Figure 2. Training data generation. Training data for the reflection mechanism is collected by
relabeling the rollouts. For each timestep, two training examples are generated: (Q1, A1) for action
proposal and (Q2, A2) for reflection. a∗t is the action label given by the expert policy. H is the
imagination horizon, and h is the history length. We use H = 5 and h = 10 in experiments.

In this paper, we instantiated such an expert policy with access to the full state of the environment
to generate optimal actions, though it could be obtained via other formats as well, e.g., human
demonstrations. However, the VLM policy will only have access to image observations.

4 Reflective Planning with Vision Language Models
To address the challenges of physical interaction and long-horizon reasoning, we present a framework
that incorporates VLMs with reflective planning. Our approach combines two key components: (1) a
diffusion-based dynamics model that enables the VLM to imagine and evaluate future states, and (2)
an interactive learning mechanism that allows the VLM to reflect on and revise its decisions based on
these imagined outcomes. As shown in Fig. 1, these components work together to enable more robust
manipulation planning while preserving the benefits of pre-trained VLMs.

4.1 Interactive VLM Policy Post-Training

Algorithm 1 Interactive VLM Post-Training

Require: initial state distribution ρ0, goal state distri-
bution ρg, numbef of iterations K, number of tra-
jectories per iteration N , episode length T , imagi-
nation horizon H , expert policy πE , expert demon-
strations D∗

1: train base policy πVLM on D∗

2: D ← D∗

3: for i← 1 to K do
4: Di ← ∅
5: // rollout out policy πVLM to collect data Di

6: for n← 1 to N do
7: s0 ∼ ρ0; I0 ← Z(s0)
8: sg ∼ ρg; Ig ← Z(sg)
9: for t← 0 to T − 1 do

10: a†t ∼ πVLM(Ig, It); a∗t ∼ πE(sg, st)

11: at ← a†t if random() < p else a∗t
12: st+1 ← T (st, at); It+1 ← Z(st+1)
13: end for
14: Di←Di∪{((Ig, It), a∗t )}
15: Di←Di ∪ {((Ig, It, It+H , at:t+H−1), a

∗
t )}

16: end for
17: D ← D ∪Di

18: finetune πVLM on D
19: end for

While VLMs can generate actions based on
visual inputs, they may hallucinate physi-
cally implausible solutions without actual
interaction experience. To overcome this
and enable long-horizon reasoning, we intro-
duce an interactive learning algorithm that
teaches the VLM to reflect on and improve
its decisions through direct interaction with
the physical environment. This process fur-
ther enhances a base VLM policy, which
is initially trained on a fixed set of expert
demonstrations. Similar to DAgger [42], we
iteratively collect new data by rolling out the
VLM policy in the environment and finetune
the VLM policy with the aggregated data.
As formulated in Algorithm 1, N trajecto-
ries are collected in each iteration. At each
timestep, we generate a learner action a†t by
prompting the VLM with the images of the
goal and current states, as well as an expert
action a∗t from the expert policy. The pairs
((Ig, It), a

∗
t ) are then added to the dataset

for finetuning. To facilitate convergence, we
execute the learner action a†t with a proba-
bility of p and the expert action a∗t with a
probability of 1− p, instead of always following the actions from the learner.

To generate training data for reflection, we can simply relabel a trajectory after it is terminated, as
also illustrated in Fig. 2. Specifically, the image It+H , which is a future observation following the
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action sequence at:t+H−1, is added to the context for reflection at timestep t, and the VLM is still
supervised to output the same expert action a∗t . Intuitively, this image provides additional information
about the effect of executing the action sequence as a feedback, which can be leveraged by the VLM
to decide whether the initially proposed action sequence leads to a promising future state.

In essence, we are generating two forms of question answering examples from interaction with the
environment. The first is to predict an optimal action given images of the goal and current state, and
the second is to reflect and revise an initial action sequence proposal by looking into an additional
future image. Since a VLM can flexibly take any text and images as input, these two tasks can be
handled by a single VLM with two different prompt templates, as summarized in Fig. 2. See App. I
for full prompts, and App. H.1 for detailed VLM architecture. The VLM is trained to generate actions
aligned with expert actions in the dataset with a cross entropy loss:

min
πVLM

ED

[
LCE(π

propose
VLM (at|Ig, It), a∗t ) + LCE(π

reflect
VLM (at|Ig, It, It+H , at:t+H−1), a

∗
t )
]
. (1)

4.2 Diffusion Dynamics Model
A key component in reflective planning is predicting future states accurately when evaluating potential
action sequences. While our interactive learning mechanism enables the VLM to learn from physical
interactions, we need an additional capability during inference—the ability to imagine and evaluate
hypothetical futures without actually executing actions in the environment. To address this, we develop
a diffusion-based dynamics model (DDM) that efficiently generates predicted visual observations by
conditioning on the current observation and a proposed action sequence. This allows the VLM to
simulate the consequences of its actions before committing to them.

Building on advances in diffusion-based generative models [44, 45, 46], we formulate the forward
dynamics prediction as an image-to-image translation task. Our diffusion dynamics model takes
the current observation It and action at as input to predict the next observation It+1. Rather than
training a diffusion model from scratch, which would require substantial computational resources
and training data, we leverage the pretrained Instructpix2pix model [47] that has been trained on
large-scale image editing datasets as our base model.

“pick up purple”

frozen trainable

Latent
Encoder Text 

Encoder

Diffusion
UNet

concat.

It+1It

zt zt +1N

at

+

Latent
Decoder

Figure 3. Architecture of Diffusion Dynamics
Model. The latent encoder and text encoder are
frozen during training, while Diffusion UNet and
latent decoder are finetuned on our task data. N :
random noise.

Data. We curate a dataset for training the diffusion
model. To encourage broader coverage of visisted
states, the data collection policy is a noised version
of the expert policy. Due to the difficulty of this
task, we also include a few test data points to
improve the fidelity and accuracy of the DDM.
Details can be found in App. H.2.

Architecture. The model architecture is shown
in Fig. 3. For the input (It, at), we first encode
them into latent representation zt and zat

with pre-
trained latent encoder and text encoder. Then we
feed zt, a sampled noise N and the action con-
dition zat into the diffusion UNet for de-noising.
Finally, we decode the predicted zt+1 into a future
observation It+1 with a latent decoder.

Training. The training of DDM consists of two separate phases: UNet training and decoder training.
The UNet training phase is to learn transformations from zt to zt+1 conditioned on zat

, while the
latent decoder training is to adapt the pretrained VAE models into our task domain because our task
requires precise reconstruction of small pieces on the table. Since we keep the latent encoder frozen,
we can train the two phases in parallel.

4.3 Reflective Planning
With the VLM policy trained via interactive learning and the diffusion model serving as a dynamics
proxy to imagine future outcomes, we now introduce our reflective planning mechanism for decision
making at inference time. Alg. 2 shows the detailed process. We use Ĩ and ã to denote the generated
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Algorithm 2 Reflective Planning (Infer-
ence)

Require: current image It, goal image
Ig , imagination horizon H

1: Ĩt ← It
2: for k ← 0 to H − 1 do
3: ãt+k ← πpropose

VLM (Ig, Ĩt+k)

4: Ĩt+k+1 ← T̃ (Ĩt+k, ãt+k)
5: end for
6: at ← πreflect

VLM (Ig, It, Ĩt+H , ãt:t+H−1)

7: Output: at

image and action, which are not actually observed or ex-
ecuted in the environment. To get the future image after
H steps, where H is the planning horizon, we perform
H iterations of action proposal and diffusion genera-
tion. At each iteration, the VLM policy is prompted by
the goal image Ig and the generated image Ĩt+k at the
previous iteration to propose an action ãt+k. The diffu-
sion model T̃ then generates the future image Ĩt+k+1

conditioned on the previous image Ĩt+k and the action
ãt+k. For the first iteration, the input image Ĩt is just
the current observation It. After this process of imag-
ination, the generated future image Ĩt+H and the plan
ãt:t+H−1 are concatenated with the goal and current
observation, and fed into the VLM policy for reflection. The VLM policy will then output the final
action at to be executed. Action proposal and reflection are performed by the same VLM policy with
two different prompt templates, as indicated by the superscripts “propose” and “reflect”.

5 Multi-Stage Robotic Manipulation Planning Tasks
Inspired by Luo et al. [48], we procedurally generated a suite of multi-stage long-horizon manipulation
tasks that require understanding of physical interactions and reasoning about the effects of long-term
action sequences. The task is initialized with a board and a set of small pieces randomly placed on
a table. The goal is to fully assemble the board by inserting the pieces into the board one by one.
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(a) (b)

Dependency graph

Figure 4. Task examples. (a) Two generated multi-
stage manipulation tasks with interlocking pieces.
Top: initial configurations. Bottom: goal configu-
rations. See App. D for more examples. (b) The
graph shows the dependencies between the objects
in the blue assembly board on the left. Each node
represents an object, and each directed edge indi-
cates the predecessor object should be assembled
before the successor object.

Examples of the initial and goal configurations
are shown in Fig. 4. Detailed task generation
process is included in App. C. Notably, most
tasks include inter-locking pieces so that they
can be inserted into the board only in a spe-
cific order. As an example, Fig. 4(b) shows
the dependencies between the pieces in one of
the tasks. This design tests an agent’s ability
to strategically select manipulation targets and
recover from failures through replanning.

We focus on the high-level planning of this
long-horizon manipulation task. We define a
set of actions in the form of “[act] [obj]”,
where [act] ∈ {pick up, insert, reorient,
put down} is an action primitive, and [obj]
denotes the object to be manipulated. See App. F
for details of the action primitives. Each action
primitive is implemented as a rule-based script controller; however, integrating other low-level
controllers, such as learning-based policies like behavior cloning, is also possible. We also designed
an expert policy with the mentioned motor primitives; see App. G for implementation details.

6 Experiments
Our experiments evaluate the effectiveness of our method and analyze its key components. We
aim to answer three key research questions. First, how well does our method perform in long-term
planning, particularly when handling complex physical interactions? Second, how effectively does
our method generalize across different object configurations while maintaining the ability to reason
and plan reactively in dynamic environments? Third, what is the impact of the reflection mechanism
on the overall performance of our method? To address these questions, we conduct comprehensive
experiments comparing ReflectVLM against: (1) state-of-the-art VLM models tested in zero-shot
fashions, (2) model-based planning approaches like MCTS, and (3) ablation studies examining the
reflection mechanism.
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Figure 5. Performance of our method and baselines. Success rate (%) on 100 tasks. For the
zero-shot test of state-of-the-art VLMs and MCTS, the experiments were conducted once; for other
methods, the results are the average of five seeds.

6.1 Experiment Setup and Policy Training
To evaluate the generalization capabilities of different models, we generate two distinct task sets:
a training set using the procedure described in Sec. 5, and a separate evaluation set containing
previously unseen configurations. The evaluation tasks are specifically designed to test generalization
across varying object configurations, colors, and spatial arrangements. We particularly emphasize
challenging scenarios that require sophisticated physical reasoning and multi-step planning. For
instance, some tasks begin with objects in physically obstructing positions that prevent direct task
completion - requiring the policy to first remove the obstructing pieces and then develop a new plan
for the original objective. Specifically, the training set contains 1000 different tasks, each generated
task was randomized to five different initial spatial arrangements, these tasks are used to pre-train the
VLM policy. At each iteration of post-training, we randomly sample 200 out of these 1000 tasks to
further train the VLM policy with the reflection mechanism. The evaluation set contains 100 different
tasks that are unseen in the training set; see App. E for statistics of the evaluation tasks.

As mentioned in Sec. 3, our method utilizes an oracle policy operating in the environment’s symbolic
state space to generate expert demonstrations for training. This oracle achieves a 97% success rate
across tasks, but importantly, it operates with access to ground-truth state information. In contrast,
our VLM policy must rely solely on visual observations. While alternative data sources like human
demonstrations could be used for training, we chose this oracle-based approach to systematically
study our method’s capabilities under controlled conditions.

During the policy pre-training phase, we utilize the oracle policy to provide action labels, then
finetune an LLaVa-1.5-13B model [12, 49] with standard supervised learning loss. This pre-training
used 5,000 expert demonstrations (1,000 unique tasks × 5 initial configurations per task). In the
post-training phase, we use the same oracle policy to further train the VLM policy from the previous
stage using the procedure described in Alg. 1. For each iteration of post-training, we collect 1k
trajectories by rolling out the VLM policy in the environment to generate examples for fine-tuning.
We perform fine-tuning with LoRA [50]. See App. H for training details.

6.2 Experiment Results
In this subsection, we report the results of different methods, and discuss their implications. Unless
otherwise noted, numbers are reported across five runs, for some commercial VLMs such as GPT-o1,
we only report one run due to cost consideration.

VLM zero-shot To evaluate the capabilities of state-of-the-art vision-language models, we tested
several leading VLMs including LLaVAOneVision [51], Gemini-2.0-flash [11], Gemini-2.0-flash-
thinking [11], GPT-4o [10], and GPT-o1 [52], with particular focus on Gemini-2.0-flash-thinking and
GPT-o1 as they have demonstrated superior reasoning capabilities across various VLM benchmarks.
As shown in Fig. 5, all models achieved notably low success rates on our tasks. While Gemini-
2.0-flash-thinking and GPT-o1 showed marginally better performance compared to other models,
indicating some improved reasoning capabilities, their performance remains insufficient for solving
our complex manipulation tasks. Even the best-performing model, GPT-o1, succeeded in only 15 out
of 100 tasks, primarily on simpler cases that did not require sophisticated physical reasoning. This
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Table 1. Post-training performance. Success
rates (%) of post-training variants over the num-
ber of iterations.

Method Iter. 1 Iter. 2 Iter. 3

w/o reflect 58.2 74.4 77.8
w/o reflect@test 64.4 76.0 82.2
reflect w/ diffusion 66.2 75.8 82.4
reflect w/ sim 66.8 75.4 85.4

Table 2. Inference computation cost. Infer-
ence wall clock time per step. MCTS result is
averaged over 100 tasks and 1 seed; the others
are averaged over 100 tasks and 5 seeds. All
experiments are done on a single A100 GPU.

Method Inference time (s)

Ours w/o reflect@test 0.45
Ours w/ diffusion 11.10
Ours w/ sim 6.05
MCTS 391.42

significant performance gap confirms the necessity of our proposed method for handling physically-
grounded reasoning tasks. Detailed evaluation procedures and results can be found in App. J.

MCTS To compare with model-based planning approaches, we implemented a VLM-based MCTS
policy. It uses our pretrained VLM policy to generate candidate actions when expanding tree nodes,
with heuristic value estimation from the simulator. See App. J for implementation details. As shown
in Fig. 5, MCTS achieves a 24.0% success rate—higher than zero-shot VLMs but lower than our
method. Notably, while the pretrained VLM policy alone achieves a 47.8% success rate, adding
MCTS actually degrades performance. Our analysis revealed that although MCTS helped with some
challenging tasks, it would sometimes incorrectly override valid plans from the base VLM policy.
We found MCTS to be particularly challenging to tune effectively for our domain for several reasons:
(1) it is highly sensitive to value function quality, (2) our tasks require nuanced physical reasoning
that is difficult to capture in a value function, and (3) the possibility of succeeding from any state
(by clearing the board and starting over) creates minimal value differences between states. These
limitations highlight the advantages of our proposed method, which offers a lightweight, flexible
approach that requires minimal tuning and can be readily integrated with any VLM policy.

ReflectVLM Our full method outlined in Alg. 1 and 2 incorporates reflection mechanisms in both
training and inference phases. To systematically evaluate the impact of reflection, we conducted
ablation experiments across several variants. As reported in Fig. 5, the variant without reflection in
both training and inference achieved the lowest performance, though it still significantly outperformed
the pretrained VLM baseline. The full method using a simulator during inference achieves the highest
success rate, serving as an upper bound for our method’s performance. When using a diffusion
model instead of a simulator during inference, performance degrades slightly. This is unsurprising, as
our tasks require nuanced understanding of physics and temporal dynamics—areas where current
generative models still face challenges [53, 54]. We expect our method’s performance to improve as
generative models advance. We also report the post-training dynamics in Table 1. It’s observed that
the performance of all variants increases as more training is performed and the full method did achieve
the highest performance as mentioned above. While the absolute performance gap between variants
may appear modest, the additional tasks solved by including reflection are qualitatively significant;
see App. A for performance grouped by task difficulty, which demonstrates the significance of
the reflection mechanism in solving hard tasks. These are typically complex scenarios requiring
multiple replanning attempts, such as removing previously placed objects to explore alternative
solutions—tasks the pretrained VLM consistently failed to solve. Notably, even without reflection
during inference, our method achieves higher success rates than the pretrained baseline. This
suggests that the natural language reflection prompts during training help the VLM policy develop
better implicit reasoning capabilities. See Fig. 6 in App. B for a representative example, where
reflection mechanism iteratively revised suboptimal actions initially proposed by the VLM policy by
identifying potentially unfavorable future states. This reflection capability proved crucial for success,
as the long-horizon nature of the task required reactive planning and continuous adjustment of the
solution strategy. Another point to consider is computation efficiency. Table 2 shows the wall-clock
time required per inference step. Compared to MCTS, our method requires only a fraction of the
computation time while achieving substantially higher performance, making it particularly appealing
as a lightweight and flexible solution for real-world applications.
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7 Limitations
In this work, we presented a novel post-training strategy with reflection to improve VLM policies
for long-horizon manipulation tasks, demonstrating superior planning capabilities with significantly
less compute than traditional approaches like MCTS. Meanwhile, several open problems remain.
Our current implementation only uses final outcomes for reflection due to VLM context constraints,
hindering fine-grained credit assignment. Future architectures with expanded context windows could
enable richer intermediate feedback for more precise action refinement. It is also possible to extend
our single-round reflection approach to multiple rounds for iterative refinement while maintaining
computational efficiency. Another limitation is the compounding error of the diffusion dynamics
model. Incorporating physical constraints and improved architectures could enhance prediction
stability over longer horizons. Lastly, our current experiments are limited to a simulated environment.
While the tasks are already designed to be extensive, capturing objects of various shapes, sizes, colors,
and initial poses, and challenging interlocking structures, an important future step is adapting and
validating our reflection mechanism in real-world robotic scenarios. In practice, this would involve
human-in-the-loop supervision, where expert interventions provide corrective feedback when the
VLM fails. The large-scale simulated data can also be used to augment real-world trajectories in
training, thereby mitigating the challenge of collecting real-world data. We believe our method would
benefit from continued advances in VLMs and generative models, and we hope it could establish
a new foundation with broad applicability to sequential decision-making domains requiring visual
understanding, physical reasoning, and long-horizon planning.

References
[1] J. Luo, C. Xu, X. Geng, G. Feng, K. Fang, L. Tan, S. Schaal, and S. Levine. Multistage cable

routing through hierarchical imitation learning. IEEE Transactions on Robotics, 40:1476–1491,
2024. doi:10.1109/TRO.2024.3353075.

[2] O. Kroemer, S. Niekum, and G. Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms, 2020. URL https://arxiv.org/abs/1907.
03146.

[3] J. Cui and J. Trinkle. Toward next-generation learned robot manipulation. Science Robotics, 6,
2021.
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A Performance grouped by task difficulty
We group the tasks by their difficulty and aggregate the performance in different groups to demonstrate
the significance of the reflection mechanism in solving hard tasks. Specifically, we divide the 100
test tasks into 3 groups (24 easy, 60 medium, and 16 hard tasks) according to the number of steps
required to solve these tasks with an oracle policy. Note that the search space grows exponentially as
the number of steps increases. As shown in Table 3, although the performance is similar between
different methods on medium-level tasks, the success rate of adopting reflection is significantly higher
than without reflection on hard tasks.

Table 3. Post-training performance grouped by task difficulty. Success rates (%) of post-training
variants grouped by the number of steps required to solve a task. Mean of 5 seeds. Easy: 0-9 steps,
medium: 10-14 steps, hard: ≥15 steps (max 22 steps).

Method Easy Medium Hard

w/o reflect 83.3 86.3 37.5
w/o reflect@test 85.8 88.7 52.5
reflect w/ diffusion 93.3 82.7 65.0
reflect w/ sim 97.5 85.0 68.8

B Qualitative example

pick up purpleinsert yellowpick up yellowinsert orangepick up orangeput down yellowpick up yellowput down bluepick up blueInitialGoal

insert redreorient redpick up redinsert pinkreorient pinkpick up pinkinsert brownpick up browninsert bluepick up blueinsert yellow

pick up yellowinsert purplepick up purpleput down yellowpick up yellowinsert yellowpick up yellowput down yellowpick up yellowput down purplereorient purple
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put down yellowpick up yellowput down purpleinsert purplepick up purple

22 23 24 25 26 27 28 29 30 3121

insert yellow

insert purple pick up purple insert yellow

Diffusion generated images

Figure 6. Filmstrip of our method solving a complicated assembly task. Frames are indexed by
timestep. The goal image is in the top-left corner (with a green border). Each frame is the observation
after executing the action (in black) above it. The other action in gray is the original action proposed
by the VLM if it is revised after reflection. We highlight the reflection process at timestep 15, where
the VLM first proposes an action to pick up the purple brick, but after reflection, it chooses to pick
up the yellow brick instead as the generated future state (red-bordered image) shows little progress
towards the goal.
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C Task generation
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Figure 7. Example of task generation. (a) Voxel representation of the board. (b) Generating a base
board. (c) Generating a red brick. (d) Generating another blue brick. (e) Critical voxels (highlighted
in purple) at the intersection of the two bricks. (f) Handling intersection by assigning the critical
voxels to the red brick. (g) Explosion view of the board consisting of three interlocking pieces.

We here describe the procedure to generate assembly boards in detail with an example. A board is
discretized into voxels and can be represented by a 3d array, where each value indicates the piece the
voxel belongs to. Initially none of the voxels is occupied, so they are all set to an empty value 0, as
shown in Fig. 7(a). Then we iteratively add pieces to the board. We first sample the size of the base
board, which is (12, 12, 3) in this example (Fig. 7(b)). Then we set these voxels to 1 to indicate they
belong to the base board. We also maintain a variable max height, which represents the highest
layer that contains non-zero voxels. To generate a brick, we sample its size and position subject to
some constraints (Fig. 7(c)). The first two constraints ensure that this brick is within the range of
the base board, and the third constraint makes sure this brick will intersect with some previously
generated brick. As before, we set the value of the red voxels to 2 to indicate they are from the new
brick. Note that the voxels in the lower layer previously have a value of 1 since they belonged to the
base board, but now their value is rewritten to 2. This also creates a hole on the base board. After
generating this brick, we also update max height to 4 since we have 4 layers now. Fig. 7(d) shows
the process of generating another brick. As the new blue brick intersects with the old red brick at the
four critical voxels highlighted in purple (Fig. 7(e)), we can assign the value of these critical voxels
to either that of the red one or the blue one. For example, keep these voxels to the red brick results in
an opening on the blue one (Fig. 7(f)). Stopping the generation process here gives us a board with
three interlocking pieces, as shown in Fig. 7(g).

D Samples of generated tasks

In
iti
al

G
oa
l

Figure 8. Samples of generated tasks. We procedurally generate a variety of multi-stage manip-
ulation tasks, ranging from simple peg insertion to complex assembly tasks that contains multiple
interlocking pieces. Top: initial configurations. Bottom: goal configurations.
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E Task statistics
We provide the statistics of the 100 evaluation tasks in Table 4.

Table 4. Experimental task statistics.
Min Max Median Average

Number of pieces 5 8 5 5.53
Number of actions required 4 22 13 12.13

F Low-level action primitives
We implemented four action primitives: {pick up, insert, reorient, put down}. Specifically,
“pick up” grasps a piece that is not in hand and picks it up. It can then be inserted into the board
using the “insert” action, or put back on the table using “put down”. By invoking “reorient”,
the object in hand can be reoriented with the black fixture if necessary, so that it is in a suitable pose
for insertion. Table 5 shows the success rates of each action primitive.

Table 5. Success rates of action primitives.
Action primitive pick up reorient insert put down

Success rate (%) 98.4 90.4 90.1 97.5

G Expert policy

Algorithm 3 Expert Policy

Require: task status statusglobal, object in hand objhand,
1: if objhand is not None then
2: if all predecessors of objhand are DONE then
3: if objhand is in BAD D state then
4: return “reorient objhand”
5: else if objhand is in BLOCKED S state then
6: return “put down objhand”
7: else
8: return “insert objhand”
9: end if

10: else
11: return “put down objhand”
12: end if
13: else
14: if statusglobal == READY then
15: choose an object obj in READY or BAD D state
16: return “pick up obj”
17: else if statusglobal == BAD B then
18: choose an object obj in BAD B state
19: return “pick up obj”
20: else
21: return “done”
22: end if
23: end if

The expert policy assumes access to the states of the objects in the simulator, such as the position and
orientation of each piece. It is also provided with the dependency graph of the task, as discussed in
Sec. 5. We define the status of each piece to be one of the following:

• DONE: if it is properly inserted into board;
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• READY: if it is not inserted yet but ready to be manipulated;
• BAD B: if it is in bad state since it is blocking other bricks, implying it needs to be removed;
• BAD D: if it is in bad state since it is down, implying it needs to be reoriented;
• BLOCKED P: if it is blocked since some predecessor brick(s) should be inserted before;
• BLOCKED S: if it is blocked since some successor brick(s) is inserted before.

Based on the status of each piece, we can also define a set of possible statuses for the entire assembly
task:

• DONE: if the board is fully assembled, i.e., all pieces are in DONE state;
• READY: if some brick is in READY or BAD D state;
• BAD B: if we need to reset some brick(s) to proceed as it is blocking other bricks.

When queried, the expert policy first checks the status of each piece according to the simulation
states, and decide the status of the whole task based on the statuses of all pieces. Then it decides the
action to take following Algorithm 3.

H Training details
H.1 VLM Policy
Architecture. As shown in Fig. 9, the architecture of our VLM consists of a vision encoder and a
Large Language Model (LLM). By default, we use clip-vit-large-patch14-336 1 as the vision
encoder, and vicuna-13b-v1.5 2 as the LLM. We initialize our VLM with LLaVA-v1.5 weights 3

that are pre-trained on general visual instruction tuning datasets. Since our task prompts consist
of interleaved images and text (refer to Sec. I), we use a shared vision encoder to extract latent
embeddings and concatenate them back to an input sequence.

Large Language Model

text image text image text

text

Vision
Encoder

Vision
Encoder

shared vision encoder

LoRA

Figure 9. Architecture of our VLM. The model consists of a vision encoder and an LLM. We also
add Low-Rank Adaptation (LoRA) [50] layers to LLM for efficient adaptation. The input sequence
contains interleaved images and text, where images are encoded into latent embeddings with a shared
vision encoder. Finally, the concatenation of text and image embeddings are fed into VLM for
multimodal reasoning.

Training Parameters. The full training parameters are listed in Table 6. For efficient adaptation of
VLM to our task, we only finetune newly added LoRA [50] layers. The rank of LoRA layers is 128
by default.

Table 6. Training parameters of VLM.

Res. LoRA Training Batch Optimizer Warmup Learning rate Weight LR
Rank Epoch Size Epoch BC Iter. 1,2,3 Decay Schedule

336px 128 1 128 AdamW 0.03 5e-5 1e-5 0.0 Cosine

1https://huggingface.co/openai/clip-vit-large-patch14-336
2https://huggingface.co/lmsys/vicuna-13b-v1.5
3https://huggingface.co/liuhaotian/llava-v1.5-13b
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H.2 Diffusion Dynamics Model
Data Generation. We generate 10K different boards and use sub-optimal policies to collect transi-
tions. The sub-optimal policies are implemented by setting a probability p = {0.2, 0.5, 0.7, 0.9, 1.0}
to replace the expert action by a random action. We collect 50K trajectories; each has a maximum
length of 50 and is terminated upon success. In total, we have about 1M transitions. We randomly
sample 50K transitions for evaluation, and the rest is used for training.

Training Parameters. The full training parameters are listed in Table 7. We initialize the Diffusion
Dynamics Model with pretrained Instructpix2pix [47] 4.

Table 7. Training parameters of Diffusion Dynamics Models.
UNet Decoder

Resolution 512px 512px
Training steps 20K 4K
Batch size 640 160
Optimizer AdamW AdamW
Warmup steps 2K 1K
Learning rate 1e-4 1e-7
Weight decay 0.01 0.01
Beta1, Beta2 0.9, 0.999 0.9, 0.999
Grad norm 1.0 1.0
LR schedule Cosine Cosine

I Prompts
I.1 Action proposal prompt

There is a puzzle consisting of a board and several pieces with different colors on the table.
The goal is to assemble the puzzle with the robot arm. In each step, one of the following four
actions can be taken: pick up [obj], put down [obj], reorient [obj], and insert [obj], where [obj]
refers to the piece to be manipulataed. The image of the goal state is: <image>. The image
of the current state is: <image>. The most recently executed actions are: {history}. What
action should be taken next? Note that [obj] should be a color chosen from the following list:
{colors}.

I.2 Reflection prompt

There is a puzzle consisting of a board and several pieces with different colors on the table.
The goal is to assemble the puzzle with the robot arm. In each step, one of the following four
actions can be taken: pick up [obj], put down [obj], reorient [obj], and insert [obj], where
[obj] refers to the piece to be manipulataed. The image of the goal state is: <image>. The
image of the current state is: <image>. The most recently executed actions are: {history}.
The next five steps planned by the model is {init plan}, from which we are going to only
execute the first action. Note that if the full plan was executed sequentially, the future state
would be: <image>. What action should be taken for the immediate next step? Note that
[obj] should be a color chosen from the following list: {colors}. You can modify the initial
plan if it leads to an undesired future state.

4https://huggingface.co/timbrooks/instruct-pix2pix
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J Baseline details
J.1 Zero-shot VLMs
We prompt state-of-the-art close-sourced and open-sourced VLMs for zero-shot evalua-
tion, including LLaVA-Onevision, Gemini-2.0 (gemini-2.0-flash-exp), Gemini-2.0-thinking
(gemini-2.0-flash-thinking-exp-1219), GPT-4o and GPT-o1. We resize all input images to
336×336 pixels for fair comparisons with our model. We set the generation temperature and max
planing step to 0 and 50. The evaluation prompt is:

You are an intelligent robot equipped with cameras and robotic arms, your primary task is to
observe and interact with the objects on the desktop.

{Action proposal prompt (Sec. I.1)}

You can only output the action, e.g., pick up red. Do not output anything else.

Since the instruction following capability of LLaVA-Onevision is quite limited, we cannot extract
valid actions from its response. For other close-sourced VLMs, we list the detailed evaluation results
in Table 8. We also visualize some success cases in Figures 10 and 11, and failure cases in Figures 12
to 15.

Table 8. Detailed evaluation results of zero-shot VLMs.

Model Success Trajectory ID / Planning Steps Max Min Avg
Steps Steps Steps

Gemini-2.0 5/6, 12/4, 16/18, 47/11, 60/4, 86/6 18 4 8.2

Gemini-2.0- 5/6, 12/4, 40/20, 47/16, 50/8, 60/8, 86/10, 90/11 20 4 10.4Thinking

GPT-4o 12/15, 16/5, 19/4, 47/10, 60/4, 90/6 15 4 7.3

GPT-o1 12/9, 16/6, 17/15, 47/8, 50/16, 58/18, 60/14, 62/33, 33 4 13.166/6, 67/12, 72/32, 77/9, 85/9, 86/6, 90/4

J.2 MCTS
We implemented MCTS similar to AlphaGo Zero [55] but with a VLM policy for action proposal and
a heuristic value estimator. States and actions are represented by nodes and edges, respectively. The
algorithm iteratively expands the search tree and estimates the value for different actions. We store
the visit count N(s, a), total action value W (s, a), and action value Q(s, a) = W (s, a)/N(s, a) on
edges. Each iteration consists of three phases: (1) select, (2) expand, and (3) backup.

In select phase, it traverses the tree by selecting the edge that has the largest action value Q(s, a)
plus an upper confidence bound U(s, a) = cexplore

√∑
a′ N(s, a′)/(1 +N(s, a)), where cexplore is

the factor to balance exploring less visited edges and exploiting edges with high value. We use
cexplore = 0.5 in our experiments. If there is no actions associated to a node yet, it samples 5
top-likelihood actions with the VLM, with duplicates removed, and adds them to the node.

In expand phase, it expands the selected edge by simulating the action in the simulator, getting the
next state, and adding the new state to the tree as a new node. It then estimates the value of the new
state by rolling out the expert policy from that state. The estimated value is V = exp(−λS), where
S is the number of steps the expert policy takes to reach the goal from the new state, and λ = 0.1 is a
scaling factor.

In backup phase, it updates the statistics of the edges on the path from the root to the expanded node:
N(s, a)← N(s, a) + 1, W (s, a)←W (s, a) + V , and Q(s, a)←W (s, a)/N(s, a).

The search completes after 50 iterations. Among all actions connected to the root node, the action
with the highest Q value is chosen to execute. We replan with MCTS at each timestep.

18



Figure 10. Success cases of zero-shot VLMs. Top: Gemini-2.0; Middle: Gemini-2.0-Thinking;
Bottom: GPT-4o.
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Figure 11. Success cases of zero-shot VLMs (GPT-o1).
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Figure 12. Failure case of Gemini-2.0.
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Figure 13. Failure case of Gemini-2.0-Thinking.
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Figure 14. Failure case of GPT-4o.
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Figure 15. Failure case of GPT-o1.
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Figure 16. Examples of Diffusion Dynamic Models.
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