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ABSTRACT

Recently, there has been a lot of progress in reducing the computation of deep
models at inference time. These methods can reduce both the computational needs
and power usage of deep models. Some of these approaches adaptively scale the
compute based on the input instance. We show that such models can be vulnerable
to a universal adversarial patch attack, where the attacker optimizes for a patch that
when pasted on any image, can increase the compute and power consumption of
the model. We run experiments with three different efficient vision transformer
methods showing that in some cases, the attacker can increase the computation to
the maximum possible level by simply pasting a patch that occupies only 8% of the
image area. We also show that a standard adversarial training defense method can
reduce some of the attack’s success. We believe adaptive efficient methods will
be necessary for the future to lower the power usage of deep models, so we hope
our paper encourages the community to study the robustness of these methods and
develop better defense methods for the proposed attack.

1 INTRODUCTION

The field of deep learning has recently made significant progress in improving the efficiency of infer-
ence time. Two broad categories of methods can be distinguished: 1) those that reduce computation
regardless of input, and 2) those that reduce the computation depending on the input (adaptively).
Most methods, such as weight pruning or model quantization, belong to the first category, which
reduces computation by a constant factor, regardless of the input. However, in many applications,
the complexity of the perception task may differ depending on the input. For example, when a self-
driving car is driving between lanes in an empty street, the perception may be simpler and require less
computation when compared to driving in a busy city street scene. Interestingly, in some applications,
simple scenes such as highway driving may account for the majority of the time. Therefore, we
believe that adaptive computation reduction will become an increasingly important research area in
the future, especially when non-adaptive methods reach the lower bound of computation.

We note that reducing computation has at least two advantages: reducing the run time and also
reducing the power consumption. We acknowledge that depending on the hardware architecture,
reducing the run-time for some input images may not be highly valuable since the system parameters
(e.g., camera frame rate) should be designed for the worst-case scenario. Additionally, it might not be
possible for other processes to effectively utilize the freed compute cores. However, we argue that
reduction of compute usually reduces power usage, which is crucial, particularly in mobile devices
that run on battery. This becomes even more important as battery storage technology is not growing
as fast as compute technology. For instance, increasing the size of the battery for a drone may lead to
a dramatic reduction in its range due to the increased battery weight.

Assuming that a perception method is reducing the computation adaptively with the input, an adversary
can trick the model by modifying the input to increase the computation and power consumption. We
are interested in designing a universal adversarial patch that when pasted on any input image, will
increase the computation of the model leading to increased power consumption. We believe this is an
important vulnerability, particularly for safety-critical mobile systems that run on battery.
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Figure 1: Energy Attack on Vision Transformers: Given a pre-trained input-dependent computation
efficient model, the adversary first attaches an adversarial patch to all images in a dataset and optimizes
this patch with our method such that it maximizes the model’s computation for each sample. During
inference, the adversary modifies the input of the victim’s model by applying the learnt patch to
it. This results in an increase in compute in the victim’s model. The attack will thus potentially
slowdown and also lead to increased energy consumption and CPU/GPU usage on the victim’s device.

As an example, a delivery robot like Starship uses a 1,200Wh battery and can run for 12 hours (sta),
so it uses almost 100 watts for compute and mobility. Hence, an adversary increasing the power
consumption of the perception unit by 20 watts, will reduce the battery life by almost 20%, which
can be significant. Note that 20 watts increase in power is realistic assuming that it uses two NVIDIA
Jetson Xavier NX cards (almost 20 watts each) to handle its 12 cameras and other sensors.

Please note that in this paper, we do not experiment with real hardware to measure the power
consumption. Instead, we report the change in FLOPs of the inference time assuming that the power
consumption is proportional to the number of FLOPs.

We design our attack, SlowFormer, for three different methods (A-VIT (Yin et al., 2022), ATS
(Fayyaz et al., 2022), and Ada-VIT (Meng et al., 2022)) that reduce the computation of vision
transformers. These methods generally identify the importance of each token for the final task and
drop the insignificant ones to reduce the computation. We show that in all three cases, our attack
can increase the computation by a large margin, returning it to the full-compute level (non-efficient
baseline) for all images in some settings. Figure 1 shows our attack.

There are some prior works that design a pixel-level perturbation attack to increase the compute of
the model. However, we believe universal patch-based attacks that do not change with the input
image (generalize from training data to test data) are much more practical in real applications. Note
that to modify the pixel values on a real robot, the attacker needs to access and manipulate the image
between the camera and compute modules, which is impossible in many applications.

Contributions: We show that efficient vision transformer methods are vulnerable to a universal patch
attack that can increase their compute and power usage. We demonstrate this through experiments
on three different efficient transformer methods. We show that an adversarial training defense can
reduce attack success to some extent.

2 RELATED WORK

Vision Transformers: The popularity of transformer (Vaswani et al., 2017) architecture in vision has
grown rapidly since the introduction of the first vision transformer (Dosovitskiy et al., 2020; Touvron
et al., 2021b). Recent works demonstrate the strength of vision transformers on a variety of computer
vision tasks (Dosovitskiy et al., 2021; Touvron et al., 2021a; Liu et al., 2021b; Zhou et al., 2021; Rao
et al., 2021b; Carion et al., 2020; Zheng et al., 2021; Cheng et al., 2021; Yu et al., 2021; Zhao et al.,
2021). Moreover, transformers are the backbone of recent Self-Supervised Learning (SSL) models
(He et al., 2021; Caron et al., 2021), and vision-language models (Radford et al., 2021). In our work,
we design an attack to target the energy and computation efficiency of vision transformers.
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Efficient Vision Transformers: Due to the recent importance and popularity of vision transformers,
many works have started to study the efficiency of vision transformers (Yu et al., 2022; Brown et al.,
2022; Keles et al., 2022). To accomplish this, some lines of work study token pruning with the
goal of removing uninformative tokens in each layer (Fayyaz et al., 2022; Rao et al., 2021a; Marin
et al., 2021; Yin et al., 2022; Meng et al., 2022). ToMe (Bolya et al., 2022) merges similar tokens in
each layer to decrease the computation. Some works address quadratic computation of self-attention
module by introducing linear attention (Lu et al., 2021; Katharopoulos et al., 2020; Shen et al., 2021;
Ali et al., 2021; Koohpayegani & Pirsiavash, 2022). Efficient architectures (Liu et al., 2021a; Ho
et al., 2019) that limit the attention span of each token have been proposed to improve efficiency. In
our paper, we attack token pruning based efficient transformers where the computation varies based
on the input samples (Meng et al., 2022; Fayyaz et al., 2022; Yin et al., 2022).

Dynamic Computation: There are different approaches to reducing the computation of vision
models, including knowledge distillation to lighter network (Hinton et al., 2015; Lu et al., 2020),
model quantization (Rastegari et al., 2016; Liu et al., 2022) and model pruning (Li et al., 2016). In
these methods, the computation is fixed during inference. In contrast to the above models, some
works address efficiency by having variable computation based on the input. The intuition behind this
direction is that not all samples require the same amount of computation. Several recent works have
developed models that dynamically exit early or skip layers (Huang et al., 2017; Teerapittayanon
et al., 2016; Bolukbasi et al., 2017; Graves, 2016; Wang et al., 2018; Veit & Belongie, 2018; Guan
et al., 2017; Elbayad et al., 2019; Figurnov et al., 2017) and selectively activate neurons, channels
or branches for dynamic width (Cai et al., 2021; Fedus et al., 2021; Yuan et al., 2020; Hua et al.,
2019; Gao et al., 2018; Herrmann et al., 2020; Bejnordi et al., 2019; Chen et al., 2019) depending on
the complexity of the input sample. Zhou et al. show that not all locations in an image contribute
equally to the predictions of a CNN model (Zhou et al., 2016), encouraging a new line of work to
make CNNs more efficient through spatially dynamic computation. Pixel-Wise dynamic architectures
(Ren et al., 2018; Fan et al., 2019; Kong & Fowlkes, 2019; Cao et al., 2019; Verelst & Tuytelaars,
2020; Xie et al., 2020; Chen et al., 2021a) learn to focus on the significant pixels for the required
task while Region-Level dynamic architectures perform adaptive inference on the regions or patches
of the input (Li et al., 2017; Fu et al., 2017). Finally, lowering the resolution of inputs decreases
computation, but at the cost of performance. Conventional CNNs process all regions of an image
equally, however, this can be inefficient if some regions are “easier" to process than others (Howard
et al., 2017). Correspondingly, (Yang et al., 2020; 2019) develop methods to adaptively scale the
resolution of images.

Transformers have recently become extremely popular for vision tasks, resulting in the release of a
few input-dynamic transformer architectures (Yin et al., 2022; Fayyaz et al., 2021; Meng et al., 2022).
Fayyaz et al. (Fayyaz et al., 2021) introduce a differentiable parameter-free Adaptive Token Sampler
(ATS) module which scores and adaptively samples significant tokens. ATS can be plugged into any
existing vision transformer architecture. A-VIT (Yin et al., 2022) reduces the number of tokens in
vision transformers by discarding redundant spatial tokens. Meng et al. (Meng et al., 2022) propose
AdaViT, which trains a decision network to dynamically choose which patch, head, and block to
keep/activate throughout the backbone.

Adversarial Attack: Adversarial attacks are designed to fool models by applying a targeted pertur-
bation or patch on an image sample during inference (Szegedy et al., 2013; Goodfellow et al., 2014;
Kurakin et al., 2018). These methods can be incorporated into the training set and optimized to fool
the model. Correspondingly, defenses have been proposed to mitigate the effects of these attacks
(Papernot et al., 2016; Xie et al., 2017; Feinman et al., 2017; Li & Li, 2017). Patch-Fool (Fu et al.,
2022) considers adversarial patch-based attacks on transformers. Most prior adversarial attacks target
model accuracy, ignoring model efficiency.

Energy Attack: Very recently, there have been a few works on energy adversarial attacks on neural
networks. In ILFO (Haque et al., 2020), Haque et al. attack two CNN-based input-dynamic methods:
SkipNet (Wang et al., 2018) and SACT (Figurnov et al., 2017) using image specific perturbation.
DeepSloth (Hong et al., 2020) attack focuses on slowing down early-exit methods, reducing their
energy efficiency by 90-100%. GradAuto (Pan et al., 2022) successfully attacks methods that are
both dynamic width and dynamic depth. NICGSlowDown and TransSlowDown (Chen et al., 2022;
2021b) attack neural image caption generation and neural machine translation methods, respectively.
All these methods primarily employ image specific perturbation based adversarial attack. SlothBomb
injects efficiency backdoors to input-adaptive dynamic neural networks (Chen et al.) and NodeAttack
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(Haque et al., 2021) attacks Neural Ordinary Differential Equation models, which use ordinary
differential equation solving to dynamically predict the output of a neural network. Our work is
closely related to ILFO (Haque et al., 2020), DeepSloth (Hong et al., 2020) and GradAuto (Pan et al.,
2022) in that we attack the computational efficiency of networks. However, unlike these methods, we
focus on designing an adversarial patch-based attack that is universal and on vision transformers. We
additionally provide a potential defense for our attack. We use a patch that generalizes from train to
test set and thus we do not optimize per sample during inference. Our patch-based attack is especially
suited for transformer architectures (Fu et al., 2022).

3 ENERGY ATTACK

3.1 THREAT MODEL:

We consider a scenario where the adversary has access to the victim’s trained deep model and modifies
its input such that the energy consumption of the model is increased. To make the setting more
practical, instead of perturbing the entire image, we assume that the adversary can modify the input
image by only pasting a patch (Brown et al., 2017; Saha et al., 2019) on it and that the patch is
universal, that is, image independent. During inference, a pretrained patch is pasted on the test image
before propagating it through the network.

In this paper, we attack three state-of-the-art efficient transformers. Since the attacker manipulates
only the input image and not the network parameters, the attacked model must have dynamic
computation that depends on the input image. As stated earlier, several recent works have developed
such adaptive efficient models and we believe that they will be more popular in the future due to the
limits of non-adaptive efficiency improvement.

3.2 ATTACK ON EFFICIENT VISION TRANSFORMERS:

Universal Adversarial Patch: We use an adversarial patch to attack the computational efficiency
of transforms. The learned patch is universal, that is, a single patch is trained and is used during
inference on all test images. The patch optimization is performed only on the train set and there
is no per-sample optimization on the test images. The patch is pasted on an image by replacing
the image pixels using the patch. We assume the patch location does not change from train to test.
The patch pixels are initialized using IID samples from a uniform distribution over [0, 255]. During
each training iteration, the patch is pasted on the mini-batch samples and is updated to increase the
computation of the attacked network. The patch values are projected onto [0, 255] and quantized
using 256 uniform levels after each iteration. Note that the parameters of the network being attacked
are not updated during patch training. During inference, the trained patch is pasted on the test images
and the computational efficiency of the network on the adversarial image is measured. Below, we
describe in detail the efficient methods under attack and the loss formulation used to update the patch.

Here, we focus on three methods employing vision transformers for the task of image classification.
All these methods modify the computational flow of the network based on the input image for faster
inference. A pretrained model is used for the attack and is not modified during our adversarial patch
training. For clarity, we first provide a brief background of each method before describing our attack.

Attacking A-ViT :

Background: A-ViT (Yin et al., 2022) adaptively prunes image tokens to achieve speed-up in
inference with minimal loss in accuracy. For a given image, a dropped token will not be used again in
the succeeding layers of the network. Let x be the input image and {tl}1:K be the corresponding K
tokens at layer l. An input-dependent halting score hl

k for a token k at layer l is calculated and the
token is dropped at layer Nk where its cumulative halting score exceeds a fixed threshold value 1− ϵ
for the first time. The token is propagated until the final layer if its score never exceeds the threshold.
Instead of introducing a new activation for hl

k, the first dimension of each token is used to predict the
halting score for the corresponding token. The network is trained to maximize the cumulative halting
score at each layer and thus drop the tokens earlier. The loss termed ponder loss, is given by:

Lponder =
1

K

K∑
k=1

(Nk + rk), rk = 1−
Nk−1∑
l=1

hl
k (1)

4



Under review as a conference paper at ICLR 2024

Additionally, A-ViT enforces a Gaussian prior on the expected halting scores of all tokens via KL-
divergence based distribution loss, Ldistr.. These loss terms are minimized along with the task-specific
loss Ltask. Thus, the overall training objective is L = Ltask + αdLdistr. + αpLponder where αd and αp

are hyperparameters.

Attack: Here, we train the patch to increase the inference compute of a trained A-ViT model.
Since we are interested in the compute and not task-specific performance, we simply use
−(αdLdistr. + αpLponder) as our loss. It is possible to preserve (or hurt) the task performance by
additionally using +Ltask (or −Ltask) in the loss formulation.

Attacking AdaViT:

Background: To improve the inference efficiency of vision transformers, AdaViT (Meng et al., 2022)
inserts and trains a decision network before each transformer block to dynamically decide which
patches, self-attention heads, and transformer blocks to keep/activate throughout the backbone. The
lth block’s decision network consists of three linear layers with parameters Wl = W p

l ,W
h
l ,W

b
l which

are then multiplied by each block’s input Zl to get m.

(mp
l ,m

h
l ,m

b
l ) = (W p

l ,W
h
l ,W

b
l )Zl (2)

The value m is then passed to sigmoid function to convert it to a probability value used to make
the binary decision of keep/discard. Gumbel-Softmax trick (Maddison et al., 2016) is used to
make this decision differentiable during training. Let M be the keep/discard mask after applying
Gumbel-Softmax on m. The loss on computation is given by:

Lusage = (
1

Dp

Dp∑
d=1

Mp
d − γp)

2 + (
1

Dh

Dh∑
d=1

Mh
d − γh)

2 + (
1

Db

Db∑
d=1

M b
d − γb)

2 (3)

where Dp, Dh, Db represent the number of total patches, heads, and blocks of the entire transformer,
respectively. γp, γh, γb denote the target computation budgets i.e. the percentage of patches/head-
s/blocks to keep. The total loss is a combination of task loss (cross-entropy) and computation loss:
L = Lce + Lusage.

Attack: To attack this model, we train the patch to maximize the computation loss Lusage. More
specifically, we set the computation-target γ values to 0 and negate the Lusage term in Eq. 3. As
a result, the patch is optimized to maximize the probability of keeping the corresponding patch
(p), attention head (h), and transformer block (b). We can also choose to attack the prediction
performance by selectively including or excluding the Lce term. Note that the computation increase
for this method is not as high as for the other methods. To investigate, we ran a further experiment
using a patch size of 224x224 (entire image size) to find the maximum possible computation. This
resulted in 4.18 GFLOPs on the ImageNet-1K validation set, which is lower than 4.6. If we use this
as an upper-bound of GFLOPs increase, our method instead achieves a 49% Attack Success.

Attacking ATS:

Background: Given N tokens with the first one as the classification token, the transformer attention
matrix A is calculated by the following dot product: A = Softmax

(
QKT /

√
d
)

where
√
d is a

scaling coefficient, d is the dimension of tokens, Q, K and V are the query, key and value matrices,
respectively. The value A1,j denotes the attention of the classification token to token j. ATS (Fayyaz
et al., 2022) assigns importance score Sj for each token j by measuring how much the classification
token attends to it:

Sj =
A1,j × ||Vj ||∑
i=2 A1,i × ||Vi||

(4)

The importance scores are converted to probabilities and are used to sample tokens, where tokens
with a lower score have more of a chance of being dropped.

Attack: Since ATS uses inverse transform sampling, it results in fewer samples if the importance
distribution is sharp. To maximize the computation in ATS, we aim to obtain a distribution of scores
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with high entropy to maximize the number of retained tokens. Therefore, we optimize the patch
so that the attention of the classification token over other tokens is a uniform distribution using the
following MSE loss:

L =

N∑
i=2

||A1,i −
1

N
||22

Note that one can optimize S to be uniform, but we found the above loss to be easier to optimize. For
a multi-head attention layer, we calculate the loss for each head and then sum the loss over all heads.
Moreover, ATS can be applied to any layer of vision transformers. For a given model, we apply our
loss at all ATS layers and use a weighted summation for optimization.

4 DEFENSE

We adopt standard adversarial training as a defense method for our attack. In the standard way, at each
iteration of training the model, one would load an image, attack it, and then use it with correct labels
in training the model. We cannot adopt this out-of-the-box since our attack generalizes across images
and is not dependent on a single image only. To do this, we maintain a set of adversarial patches, and
at each iteration sample one of them randomly (uniformly), and use it at the input while optimizing
the original loss of the efficient model to train a robust model. To adapt the set of adversarial patches
to the model being trained, we interrupt the training at every 20% mark of each epoch and optimize
for a new patch to be added to the set of patches. To limit the computational cost of training, we use
only 500 iterations to optimize for a new patch, which results in an attack with reasonable accuracy
compared to our main results.

5 EXPERIMENTS

5.1 ATTACK ON EFFICIENT VISION TRANSFORMERS

Dataset: We evaluate the effectiveness of our attack on two datasets: ImageNet-1K (Deng et al.,
2009) and CIFAR-10 (Krizhevsky, 2009). ImageNet-1K contains 1.3M images in the train set and
50K images in the validation set with 1000 total categories. CIFAR-10 has 50K images for training
and 10K images for validation with 10 total categories.

Metrics: We report Top-1 accuracy and average computation in terms of GFLOPs for both attacked
and unattacked models. Similar to Attack Success Rate in a standard adversarial attack, we introduce
a metric: Attack Success to quantify the efficacy of the attack. We define Attack Success as the
number of FLOPs increased by the attack divided by the number of FLOPs decreased by the efficient
method. Attack Success = (FLOPsattack−FLOPsmin)

(FLOPsmax−FLOPsmin)
where FLOPsmin is the compute of the efficient model

and FLOPsmax is that of the original inefficient model. Attack Success is thus capped at 100% while
a negative value denotes a reduction in FLOPs. Note that our Attack Success metric illustrates the
effectiveness of an attack in reversing the FLOPs reduction of a particular method.

Baselines: We propose three alternative approaches to SlowFormer (ours) to generate the patch.

Random Patch: A simple baseline is to generate a randomly initialized patch. We sample IID pixel
values from a uniform distribution between 0 and 255 to create the patch.

NTAP: We consider a standard adversarial patch that is trained to attack the model task performance
instead of compute. We use a non-targeted universal adversarial patch (NTAP) to attack the model.
We train the patch to fool the model by misclassifying the image it is pasted on. We use the negative
of the cross-entropy loss with the predicted and ground-truth labels as the loss to optimize the patch.

TAP: For this baseline, we train a universal targeted adversarial patch (TAP). The patch is optimized
to classify all images in the train set to a single fixed category. Similar to NTAP, the adversarial
attack here is on task performance and not computation. We experiment with ten randomly generated
target category labels and report the averaged metrics.

6



Under review as a conference paper at ICLR 2024

Table 1: Energy Attack on Efficient Vision Trans-
formers: Comparison of the effect of energy attack with
baselines: No Attack, Random Patch, targeted (TAP),
and non-targeted (NTAP) adversarial patches applied to
three input-dynamic computation efficient pre-trained
models of varying architectures. The maximum possi-
ble compute for a given architecture is provided in bold.
On A-ViT , we completely undo the efficiency gains
obtained by the efficient method through our attack,
achieving Attack Success of 100%. We achieve high
Attack Success on all approaches while the baselines
expectedly do not contribute to increase in compute.

Method Attack Model Top-1 Attack
GFLOPs Acc Success

ViT-Tiny 1.3 - -

A-ViT

No attack 0.87 71.4% -
Random Patch 0.87 70.8% -1%

TAP 0.85 0.1% -5%
NTAP 0.83 0.1% -10%

SlowFormer (ours) 1.3 4.7% 100%

ViT-Small 4.6 - -

A-ViT

No attack 3.7 78.8% -
Random Patch 3.7 78.4% -2%

TAP 3.6 0.1% -12%
NTAP 3.6 0.1% -7%

SlowFormer (ours) 4.6 2.3% 99%

ViT-Tiny 1.3 - -

ATS

No attack 0.84 70.3% -
Random Patch 0.83 69.8% -2%

TAP 0.76 0.1% -17%
NTAP 0.61 0.1% -50%

SlowFormer (ours) 1.0 1.2% 35%

ViT-Small 4.6 - -

ATS

No attack 3.1 79.2% -
Random Patch 3.1 78.6% -1%

TAP 3.0 0.1% -7%
NTAP 2.4 0.1% -47%

SlowFormer (ours) 4.0 1.0% 60%

ViT-Base 17.6 - -

ATS

No attack 12.6 81.3% -
Random Patch 12.5 81.2% -2%

TAP 12.0 0.1% -12%
NTAP 11.0 0.1% -32%

SlowFormer (ours) 15.4 0.2% 52%

ViT-Small 4.6 - -

AdaViT

No attack 2.25 77.3% -
Random Patch 2.20 76.9% -2%

TAP 2.28 0.1% 1%
NTAP 2.15 0.1% -4%

SlowFormer (ours) 3.2 0.4% 40%

Figure 2: Visualization of our Energy At-
tack on Vision Transformers: We visualize
the A-ViT-Small with and without our attack.
We use patch size of 32 for the attack (on the
top-left corner). We show pruned tokens at
layer 8 of A-ViT-Small. Our attack can re-
cover most of the pruned tokens, resulting in
increased computation and power consump-
tion. Note that although the patch is reason-
ably small and is in the corner of the view, it
can affect the whole computational flow of the
network. This is probably due to the global
attention mechanism in transformers.

Implementation Details: We use PyTorch (Paszke et al., 2019) for all experiments. Unless specified,
we use a patch of size 64× 64, train and test on 224× 224 images, and we paste the patch on the
top-left corner. Note that our patch occupies just 8% of the total area of an input image. We use
AdamW (Loshchilov & Hutter, 2019) optimizer to optimize the patches and use 4 NVIDIA RTX
3090 GPUs for each experiment. We use varying batch sizes and learning rates for each of the
computation-efficient methods.

ATS Details: For our experiments on ATS, we use the weights of the DeiT model and replace regular
attention blocks with the ATS block without training. As in ATS (Fayyaz et al., 2022), we replace
layers 3 through 9 with the ATS block and set the maximum limit for the number of tokens sampled
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Table 2: Results on CIFAR10 dataset. We
report results on CIFAR10 dataset to show
that our attack is not specific to ImageNet
alone. CIFAR-10 is a small dataset compared
to ImageNet and thus results in an extremely
efficient A-ViT model. Our attack increases
the FLOPs from 0.11 to 0.58 which restores
nearly 41% of the original reduction in the
FLOPs.

Method Model Top-1 Attack
FLOPs Acc Success

ViT-Tiny 1.26 - -
A-ViT-Tiny 0.11 95.8% -
SlowFormer (ours) 0.58 60.2% 41%

Table 3: Accuracy controlled compute adversarial
attack: We attack the the efficiency of A-ViT while
either maintaining or destroying its classification per-
formance. We observe that our attack can achieve a
huge variation in task performance without affecting the
Attack Success. The ability to attack the computation
without affecting the task performance might be crucial
in some applications.

Attack Model Attack Top-1
GFLOPs Success Acc

ViT-Tiny 1.26 - -

No attack 0.87 - 71.4%
Acc agnostic 1.26 100% 4.7%
Preserve acc 1.23 92% 68.5%
Destroy acc 1.26 100% 0.1%

to 197 for each layer. We train the patch for 2 epochs with a learning rate of 0.4 for ViT-Tiny and
lr = 0.2 for ViT-Base and ViT-Small.

A-ViT Details: We show results on ViT-Tiny and ViT-Small architectures using pretrained models
provided by the authors of A-ViT . The patches are optimized for one epoch with a learning rate of
0.2 and batch size of 128. For the training of adversarial defense, we generate 5 patches per epoch of
adversarial training and limit the number of iterations for patch generation to 500.

AdaViT Details: The authors of AdaViT provide a DeiT-S model pre-trained with their method. For
this architecture, we freeze the weights and optimize for our adversarial patch. We use a lr = 0.2
and a batch size of 128. Additional details on all three efficient approaches are provided in the
supplementary material.

Results. The results of our attack, SlowFormer , on various methods on ImageNet dataset are shown
in table 1. In A-ViT, we successfully recover 100% of the computation reduced by A-ViT . Our
attack has an Attack Success of 60% on ATS and 40% on AdaViT with ViT-Small. A random patch
attack has little effect on both the accuracy and computation of the method. Both standard adversarial
attack baselines, TAP and NTAP, reduce the accuracy to nearly 0%. Interestingly, these patches
further decrease the computation of the efficient model being attacked. This might be because of the
increased importance of adversarial patch tokens to the task and thus reduced importance of other
tokens. Targeted patch (TAP) has a significant reduction in FLOPs on the ATS method. Since the
token dropping in ATS relies on the distribution of attention values of classification tokens, a sharper
distribution due to the increased importance of a token can result in a reduction in computation.

We report the results on CIFAR-10 dataset in Table 2. The efficient model (A-ViT ) drastically
reduces the computation from 1.26 GFLOPs to 0.11 GFLOPs. Most of the tokens are dropped as
early as layer two in the efficient model. SlowFormer is able to effectively attack even in such extreme
scenarios, achieving an Attack Success of 40% and increasing the mean depth of tokens from nearly
one to five.

We additionally visualize the effectiveness of our attack in Figure 3. The un-attacked efficient method
retains only highly relevant tokens at the latter layers of the network. However, our attack results
in nearly the entire image being passed through all layers of the model for all inputs. In Fig. 3, we
visualize the optimized patches for each of the three efficient methods.

5.2 ABLATIONS:

We perform all ablations on the A-ViT approach using their pretrained ViT-Tiny architecture model.

Accuracy controlled compute adversarial attack: As we show in Table 1, our attack can not
only increase the computation, but also reduce the model accuracy. This can be desirable or hurtful
based on the attacker’s goals. A low-accuracy model might be an added benefit, similar to regular
adversaries, but might also lead to the victim detecting the attack. Here, we show that it is possible to
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Table 4: Effect of patch size: Analysis of the ef-
fect of adversarial patch size on the attack success
rate on A-ViT. Our attach is reasonably successful
even using a small patch size (32× 32), which is
only 2% of the image area. Interestingly, a small
patch on the corner of the view affects the compu-
tational flow of the entire transformer model. This
might be due to the global attention mechanism in
transformers.

Patch Size Model Top-1 Attack
(Area) GFLOPs Accuracy Success

ViT-Tiny 1.26 - -
A-ViT-Tiny 0.87 71.4% -

64 (8%) 1.26 4.7% 100%
48 (5%) 1.26 1.8% 99%
32 (2%) 1.22 17.4% 90%
16 (0.5%) 0.98 63.3% 27%

ViT-Small 4.6 - -
A-ViT-Small 3.7 78.8% -

64 (8%) 4.6 2.3% 99%
48 (5%) 4.6 5.1% 98%
32 (2%) 4.4 39.5% 78%
16 (0.5%) 3.8 78.2% 16%

Table 5: Defense using adversarial train-
ing: We propose and show the impact of our
defense for our adversarial attack on A-ViT
. Our defense is simply maintaining a set of
universal patches and training the model to be
robust to a random sample of those at each it-
eration. The defense reduces the computation
to some extent (1.26 to 1.01), but is still far
from the original unattacked model (0.87).

Method GFLOPs Top-1 Attack
Acc. Success

No attack 0.87 71.4 -
SlowFormer 1.26 4.7% 100%
Adv Defense +
SlowFormer

1.01 65.8% 34%

Figure 3: Visualization of optimized patch:
We show the learned universal patches for
each of the three efficient methods.

attack the computation of the model while either preserving or destroying the task performance by
additionally employing a task loss in the patch optimization. As seen in Table 3, the accuracy can be
significantly modified while maintaining a high Attack Success.

Effect of patch size: We vary the patch size from 64× 64 to 16× 16 (just a single token) and report
the results in Table 4. Interestingly, our attack with ViT-Small has a 73% Attack Success with a
32× 32 patch size, which occupies only 2% of the input image area.

Effect of patch location: We vary the location of the patch to study the effect of location on the
Attack Success. We randomly sample a location in the image to paste the patch on. We perform five
such experiments and observe an Attack Success of 100% for all patch locations.

5.3 ADVERSARIAL TRAINING BASED DEFENSE

Our simple defense that is adopted from standard adversarial training is explained in Section 4. The
results for defending against attacking A-ViT are shown in Table 5. The original A-ViT reduces
the GFLOPs from 1.26 to 0.87, our attack increases it back to 1.26 with 100% attack success. The
proposed defense reduces the GFLOPs to 1.01 which is still higher than the original 0.87. We hope
our paper encourages the community to develop better defense methods to reduce the vulnerability of
efficient vision transformers.

6 CONCLUSION

Recently, we have seen efficient transfer models in which the computation is adaptively modified
based on the input. We argue that this is an important research direction and that there will be more
progress in this direction in the future. However, we show that the current methods are vulnerable to
a universal adversarial patch that increases the computation and thus power consumption at inference
time. Our experiments show promising results for three SOTA efficient transformer models, where
a small patch that is optimized on the training data can increase the computation to the maximum
possible level in the testing data in some settings. We also propose a defense that reduces the
effectiveness of our attack. We hope our paper will encourage the community to study such attacks
and develop better defense methods.
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A APPENDIX

In sections C and B, we provide visualizations of our learned patches and token dropping respectively.
In Sec. D, we provide additional details on our train and test settings. We also provide the code for
our implementation with the default hyperparameters as part of the supplementary material.

B PATCH VISUALIZATION

We optimize patches for A-ViT using different initializations and visualize them in Fig. 4. All patches
achieve Attack Success close to 100%. Presence of multiple universal adversarial patches highlights
the vulnerability of the current efficient methods.

Figure 4: Optimized patches With different initializations: Here, we show the optimized patches
for A-ViT . A different initialization is used to train each of these patches. All patches achieve Attack
Success close to 100%. Presence of multiple universal adversarial patches highlights the vulnerability
of the current efficient methods.

We show the evolution of the patch as training progresses in Fig. 5. The patch is trained to attack
A-ViT approach. We observe that the patch converges quickly, requiring less than an epoch for 100%
Attack Success. The patch at 1000 iterations (0.1 epoch) is similar to that at 10000 iterations (1
epoch) in terms of both appearance and attack performance.
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Figure 5: Visualization of patch optimization: We train our patch to attack A-ViT and display the
patch at various stages of optimization. We observe that the patch converges quickly. The patch at
1000 iterations (0.1 epoch) is similar to that at 10000 iterations (1 epoch) in terms of both appearance
and attack performance.

C VISUALIZATION OF TOKEN DROPPING

In Fig. 6, we visualize dropped tokens in A-ViT-Small with and without our attack. Our attack signif-
icantly decreases the number of pruned tokens, resulting in more compute and energy consumption
for the efficient transformer model.

D IMPLEMENTATION DETAILS

ATS Details: As in ATS Fayyaz et al. (2022), we replace layers 3 through 9 of ViT net-
works with the ATS block and set the maximum limit for the number of tokens sampled to
197 for each layer. We train the patch for 2 epochs with a learning rate of 0.4 for ViT-Tiny
and lr = 0.2 for ViT-Base and ViT-Small. We use a batch size of 1024 and different loss
coefficients for each layer of ATS. For DeiT-Tiny we use [1.0, 0.2, 0.2, 0.2, 0.01, 0.01, 0.01],
for DeiT-Small we use [1.0, 0.2, 0.05, 0.01, 0.005, 0.005, 0.005], and for DeiT-Base we use
[2.0, 0.1, 0.02, 0.01, 0.005, 0.005, 0.005] The weights are vastly different at initial and final layers to
account for the difference in loss magnitudes across layers.

A-ViT Details: The patches are optimized for one epoch with a learning rate of 0.2 and a batch
size of 512 (128× 4GPUs) using AdamW Loshchilov & Hutter (2019) optimizer. We optimize the
patches for 4 epochs for patch length 32 and below. For CIFAR-10 experiments, the images are
resized from 32 × 32 to 256 × 256 and a 224 × 224 crop is used as the input. For the training of
adversarial defense, we generate 5 patches per epoch of adversarial training and limit the number of
iterations for patch generation to 500. The learning rate for patch optimization is increased to 0.8 for
faster convergence.

AdaViT Details: We use a learning rate of 0.2 and a batch size of 128 with 4GPUs for patch
optimization. We use AdamW Loshchilov & Hutter (2019) optimizer with no decay and train for 2
epochs with a patch size of 64 x 64. We train on the ImageNet-1k train dataset and evaluate it on the
test set.
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Figure 6: Visualization of our Energy Attack on Vision Transformers: Similar to Figure 2 of the
main submission, we visualize the A-ViT-Small with and without our attack. We use patch size of 32
for the attack (on the top-left corner). We show pruned tokens at layer 8 of A-ViT-Small. Our attack
can recover most of the pruned tokens, resulting in increased computation and power consumption.

18


