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Abstract

Large Language Models (LLMs) have shown001
impressive capabilities, yet they still struggle002
with math reasoning. In this work, we pro-003
pose CoT-Influx, a novel approach that pushes004
the boundary of few-shot Chain-of-Thoughts005
(CoT) learning to improve LLM mathemati-006
cal reasoning. Motivated by the observation007
that adding more concise CoT examples in the008
prompt can improve LLM reasoning perfor-009
mance, CoT-Influx employs a coarse-to-fine010
pruner to maximize the input of effective and011
concise CoT examples. The pruner first se-012
lects as many crucial CoT examples as pos-013
sible and then prunes unimportant tokens to014
fit the context window. A math reasoning015
dataset with diverse difficulty levels and rea-016
soning steps is used to train the pruner, along017
with a math-specialized reinforcement learn-018
ing approach. As a result, by enabling more019
CoT examples with double the context win-020
dow size in tokens, CoT-Influx significantly out-021
performs various prompting baselines across022
various LLMs (LLaMA2-7B, 13B, 70B) and023
5 math datasets, achieving up to 4.55% abso-024
lute improvements. Remarkably, without any025
fine-tuning, LLaMA2-70B with CoT-Influx sur-026
passes GPT-3.5 and a wide range of larger027
LLMs (PaLM, Minerva 540B, etc.) on the028
GSM8K. CoT-Influx serves as a plug-and-play029
module for LLMs and is compatible with most030
existing reasoning prompting techniques, such031
as self-consistency and self-verification.032

1 Introduction033

Large Language Models (LLMs) have demon-034

strated remarkable capabilities across a range of035

tasks (Brown et al., 2020; OpenAI, 2023a). How-036

ever, it remains a significant challenge to improve037

LLM performance on reasoning tasks, especially038

for smaller LLMs like LLaMA (Touvron et al.,039

2023a) on math reasoning.040

While existing efforts focus on optimizing041

Chain-of-Thought (CoT) prompts (Wei et al., 2022;042

Wang et al., 2023d; Yao et al., 2023) and fine-tuning 043

LLMs (Luo et al., 2023) under the zero-shot set- 044

ting, the potential of few-shot learning in improv- 045

ing LLM reasoning has not been fully explored. 046

Inspired by the human reasoning process, we pro- 047

pose the hypothesis: if LLMs are exposed to more 048

step-by-step problem-solving examples (i.e., CoTs) 049

before answering questions, it could potentially 050

improve LLMs reasoning capability to generate a 051

correct solution. This leads to our question: what’s 052

the boundary of LLM reasoning capability achiev- 053

able through inputting more CoT examples? 054

However, we face two major obstacles. First, the 055

limited token length of LLMs’ context window re- 056

stricts the number of few-shot examples. Extending 057

the context window is one solution, but it requires 058

expensive fine-tuning and increases inference over- 059

head (Chen et al., 2023a; Peng et al., 2023a). While 060

prompt compression (Li et al., 2023b; Jiang et al., 061

2023) is another approach, it underperforms in 062

math reasoning. Tokens like numerical and for- 063

mat ones, though identified redundant, are crucial 064

for few-shot math problem solving. 065

Second, it’s challenging to select helpful CoT 066

examples. Section 3 reveals that random choices 067

can even harm reasoning performance. Existing 068

retrieval-based methods (Liu et al., 2021; Scarlatos 069

and Lan, 2023) are not tailored for math reason- 070

ing, making them suboptimal. These retrieved ex- 071

amples are model-agnostic, while we found that 072

different LLMs favor CoT examples of varying 073

characteristics (e.g., diverse difficulty levels). 074

In this work, we propose CoT-Influx, which ad- 075

dresses all the above challenges and pushes the 076

boundaries of utilizing few-shot learning to im- 077

prove LLM math reasoning capability. CoT-Influx 078

is motivated by the observation that current LLM 079

context window has not been fully utilized due to 080

redundancy at both the example and token levels in 081

natural language input. As such, these redundant 082

inputs can be pruned to free up space for more in- 083
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formative context. The central idea of CoT-Influx is084

to input long lengthy CoT examples, select the cru-085

cial examples for the target LLM, and then prune086

redundant tokens to fit within the original LLM087

context window. As a result, by inputting much088

more helpful CoT examples, each composed solely089

of informative tokens and with a shorter length, we090

greatly improve LLM ability to solve math prob-091

lems. Moreover, as all these inputs remain within092

the context window, we do not increase any infer-093

ence overhead. This stands in stark contrast to other094

methods (Hao et al., 2022; Chen et al., 2023a).095

CoT-Influx treats the target LLM as a black box,096

and serves as a plug-and-play module for LLMs as097

shown in Fig. 3. The key module is a coarse-to-fine098

pruner involving two steps: (i) a shot pruner first099

selects the most helpful CoT examples from a large100

batch of shots, and (ii) a token pruner then removes101

unimportant tokens from these selected CoT exam-102

ples. To effectively train the pruner module tailored103

for math reasoning, CoT-Influx is built upon the104

following novel techniques.105

First, CoT-Influx requires a CoT dataset for train-106

ing and inference. Existing CoT examples, heavily107

reliant on costly human engineering, often struggle108

with diversity and quality. To address this, we em-109

ploy GPT-4 (OpenAI, 2023a) and Evol-Instruct (Xu110

et al., 2023) to create a math reasoning dataset,111

called MRD3. With problems of varying difficulty112

and reasoning steps, MRD3 enables CoT-Influx to113

generalize across a wide range of math problems.114

Second, training the pruner presents two chal-115

lenges: (1) since we identify discrete tokens before116

the LLM tokenizer, the loss gradient cannot be117

backpropagated through the tokenizer to update118

the pruner; (2) The high difficulty of many math119

problems, which consistently yield incorrect an-120

swers regardless of the quality of compressed few-121

shot examples, poses a challenge to the effective122

training of the pruner. To this end, we introduce a123

novel training approach with reinforcement learn-124

ing to mitigate the gradient issue. We design a125

reward function to measure the LLM loss, few-shot126

math reasoning effectiveness, and token length con-127

straints. Then, we design a difficulty-aware dat-128

aloader filtering appropriate problems and intro-129

duce two techniques to stabilize the RL training.130

Extensive experiments on various LLMs and131

five math datasets demonstrate the effectiveness of132

CoT-Influx. CoT-Influx significantly boosts LLM133

reasoning capability, achieving 1.36%-14.09% ab-134

solute improvements over SOTA baselines, and 135

establishes a new prompting-based benchmark in 136

math reasoning accuracy without any fine-tuning or 137

additional inference costs. Remarkably, LLaMA2- 138

70B with CoT-Influx outperforms a broad range 139

of larger LLMs and surpasses GPT-3.5 by 2.5% 140

on GSM8K. Moreover, CoT-Influx excels over re- 141

trieval and prompt compression baselines in exam- 142

ple selection and identifying crucial tokens. 143

2 Related Works 144

LLMs for Math Reasoning. Drawing from the 145

Chain-of-Thought (CoT) (Wei et al., 2022), recent 146

research has greatly improved the reasoning capa- 147

bilities of LLMs by providing step-by-step reason- 148

ing paths. The main efforts are twofold: enhancing 149

CoT prompts, such as Program-of-Thoughts (Chen 150

et al., 2023b), Tree-of-Thoughts (Yao et al., 2023), 151

and Everything-of-Thoughts (Ding et al., 2023), 152

and innovating CoT-based training data for fine- 153

tuning LLMs like WizardMath (Luo et al., 2023). 154

However, most works focus on the zero-shot set- 155

ting with only task instruction or CoT prompts, 156

leaving the potential of few-shot CoT largely un- 157

tapped. We explore leveraging few-shot CoT learn- 158

ing to improve LLMs’ math reasoning capabilities. 159

Prompt Compression. To address the challenge of 160

limited few-shot examples due to restricted context 161

window length, one related work involves prompt 162

compression. Key approaches include: (1) token 163

pruning (Kim et al., 2022; Li et al., 2023a); (2) 164

soft prompt compression methods (Wingate et al., 165

2022; Mu et al., 2023; Chevalier et al., 2023; Ge 166

et al., 2023); and (3) information-entropy-based 167

approaches (Li et al., 2023b; Jiang et al., 2023). 168

However, they do not effectively solve our prob- 169

lem for two reasons. First, they prune tokens based 170

on designed metrics, often failing to remove re- 171

dundancy of the entire CoT examples. Second, 172

some tokens such as numerical and format tokens, 173

although redundant, are crucial for math reasoning. 174

Prompt Retrieval optimizes task performance by 175

selecting high-quality few-shot examples using 176

either heuristics or a supervised retriever model. 177

Heuristic methods, such as the widely used TopK 178

retrieval (Liu et al., 2021; Gao et al., 2021), 179

BM25 (Robertson et al., 2009), VoteK (Hongjin 180

et al., 2022), and entropy (Lu et al., 2022), select 181

examples based on semantic similarity. Recently, 182

supervised-based methods like EPR (Rubin et al., 183

2021), LLM-R (Wang et al., 2023b), and IDS (Qin 184

et al., 2023) have been proposed, which train a 185
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Figure 1: LLaMA2-7B reasoning accuracy under an
increasing number of TopK retrieved CoT examples.

retrieval model to learn better example selection.186

However, these methods are sub-optimal for187

math reasoning, as they retrieve model-agnostic188

examples. In contrast, LLMs with different capabil-189

ities favor CoT examples of varying complexities.190

Moreover, they don’t account for token redundancy,191

which restricts the number of retrieved examples.192

3 Pilot Study193

This section presents our key observations of few-194

shot learning in improving LLMs math reasoning,195

upon which the CoT-Influx design is based. Note196

that experiments are done with our proposed CoT197

dataset, MRD3, as introduced in Sec. 4.1.198

Observation 1: LLMs can improve reasoning with199

more helpful CoT examples, but the current context200

window restricts the number of CoT examples.201

A standard practice for evaluating LLMs’ math202

reasoning capability is the use of 8-shot manually-203

designed CoTs (Wei et al., 2022). We increase the204

number of CoT shots to see if reasoning accuracy205

improves. To avoid poor-quality examples, we use206

the TopK method (Liu et al., 2021) to select the207

k most relevant CoT examples for each question.208

Given LLaMA2’s context window limit of 4096209

tokens, we could only input up to 20 CoT exam-210

ples1. As Fig. 1 shows, increasing CoT examples211

improves LLaMA2-7B’s reasoning accuracy on the212

GSM8K dataset, significantly outperforming the213

standard 8-shot setting. However, the limited LLM214

context window hinders the full potential of few-215

shot CoT learning for improving math reasoning.216

For instance, even with 20 CoTs not hitting the to-217

ken limit, accuracy drops as the large input context218

limits the LLM’s response space.219

Observation 2: CoT example selection is crucial220

for math reasoning. Simply adding CoT examples221

randomly doesn’t boost performance.222

The prior study suggests that more CoT exam-223

ples can improve LLM reasoning performance.224

1The input token length is less than the context window
token limit, as the answer generation also shares this limit.

However, the quality of CoT examples is crucial 225

to the final performance. As shown in Table 1, 226

even with up to 16 CoT shots, random selection 227

underperforms the standard 8-shot setting, which 228

is manually curated for quality. 229

Table 1: The selection of CoT examples heavily impacts
LLM reasoning performance.

Model Manual 8 Shots Method (16 Shots)

Random 1 Random 2

LLaMA2-7B 13.79 12.36 13.27
LLaMA2-13B 27.82 23.04 23.28

Observation 3: A CoT example contains redundant 230

tokens for math reasoning, which can be pruned to 231

free up space for more informative content. 232

Observation 2 indicates that few-shot CoT ex- 233

amples contain useless or even harmful examples 234

that can be pruned. We further observe that a CoT 235

example often has redundant tokens. For instance, 236

the blue tokens in Fig. 2 can be removed without 237

affecting LLM performance. However, identifying 238

redundant tokens for math reasoning poses a chal- 239

lenge. Simply using existing prompt compression 240

methods (Jiang et al., 2023; Li et al., 2023b) leads 241

to a significant performance decline. Fig. 2 shows 242

a compressed example using LLMLingua (Jiang 243

et al., 2023). Some numerical and format tokens 244

(colored in red), while identified as redundant, are 245

crucial for LLM to comprehend the context for 246

solving a math problem. 247

Figure 2: A compressed CoT example using the prompt
compression tool of LLMLingua (Jiang et al., 2023).
The pruned tokens contain truly redundant tokens (col-
ored in blue) and crucial tokens (colored in red).

4 CoT-Influx Methodology 248

Motivated by our observations, this section intro- 249

duces CoT-Influx, which maximizes CoT examples 250

within the LLM context window by identifying 251

the most important CoT examples and tokens from 252

long lengthy input contexts. 253

4.1 CoT Dataset Collection 254

We start by collecting a high-quality math reason- 255

ing dataset, comprising diverse CoT examples with 256
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…

Q: Jason has six fish in his aquarium. He realizes that every day the number of 

fish doubles. On the third day he takes out one-third of the fish. On the fifth 

day he takes out one-fourth of the fish. On the seventh day he adds 15 more 

fish. How many fish in total does he have? 

A: Let’s think step by step. Day 1: Jason has 6 fish. Day 2: Jason has 6 x 2 = 

12 fish . Day 3: Jason has 12 x 2 = 24 fish . Day 4: Jason has 24 x 2 = 48 fish . 
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6, which is 1.5 fish, rounded up to 2 fish)Day 6: Jason has 96 x 2 = 192 fish . 

Day 7: Jason has 192 + 15 = 207 fish . Therefore, the answer is 207.
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48. Day 5: Jason 48 x 2 = 96 (out 1/4 of the fish from 6 1.5 fish, rounded 2) Day 6: Jason has 

96 x 2 = 192 fish. Day 7: Jason has 192 + 15 = 207 fish. Therefore, the answer is 207.
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Figure 3: Above: The overview procedure of CoT-Influx; Below: an example illustrating the use of CoT-Influx to
first prune entire CoT examples and then prune tokens.

varying steps and difficulties. We merge the train-257

ing set of GSM8K (Cobbe et al., 2021), MAWPS,258

MAWPS-single (Koncel-Kedziorski et al., 2016),259

and 1000 random examples from AQuA (Ling et al.,260

2017) to create an initial dataset of 9.7K question-261

answer pairs. Then, we prompt GPT-4 to generate262

formatted CoT reasoning steps. Notably, it’s cru-263

cial to maintain a consistent format for each exam-264

ple in few-shot learning. Our dataset also assigns265

a difficulty score from 1 to 10 for each question,266

based on GPT-4’s evaluation, where 1 signifies the267

easiest questions and 10 is the most difficult.268

We observe that most questions in this initial269

dataset score between 2-4. To improve difficulty270

diversity, we use GPT-4 to mutate questions, gener-271

ating corresponding CoTs with varied difficulty lev-272

els. We apply 5 mutation schemes, three to increase273

reasoning difficulty and two to simple questions.274

The final dataset is referred to as Math Reasoning275

Dataset with Diverse Difficulty (MRD3).276

4.2 Problem Formulation277

Let D denote the CoT dataset (i.e., the MRD3),278

and D̂ = {xcot
i }ki=1 be a subset of k CoT examples,279

each composed of a question, reasoning steps, and280

an answer. The total number of tokens in these k281

CoT examples far exceeds the LLM context win-282

dow length limit of T . CoT-Influx is designed to283

perform a two-step pruning process:284

D̂ = {xcot
i }ki=1

Shot Pruner−−−−−−→ {xcot
j }k′j=1

Token Pruner−−−−−−−→ {x̂cot
j }k′j=1 (1)285

Initially, non-useful CoT examples are pruned from 286

D̂, resulting in a reduced set of k′ examples. Then, 287

for each retained CoT example xcot, redundant to- 288

kens are pruned, yielding a shorter example, ˆxcot. 289

Let xquestion denote the question that LLM is 290

tasked to solve. For final input xinput, we concate- 291

nate all tokens from {x̂cot
j }k′j=1 and place them be- 292

fore xquestion. Our goal is to optimize the input 293

xinput, so that LLM can correctly answer the ques- 294

tion under xinput. Meanwhile, the token count of 295

xinput, t, must be less than the LLM context win- 296

dow limit T . Formally, we optimize the following: 297

298
min
D̂⊆D

LLLM
(
xinput) , max

D̂⊆D
RAcc

(
yLLM

(
xinput) , yanswer) ,

s.t. t
(
xinput) = k′∑

1

|x̂cot|+ |xquestion| ≤ T
(2) 299

where LLLM is LLM loss, and RAcc evaluates if 300

LLM’s answer yLLM(xinput) matches the correct 301

answer yanswer, this will be elaborated in Sec. 4.4. 302

Overview. Fig. 3 illustrates our approach. The 303

core component is a lightweight, plug-and-play 304

module (Sec. 4.3), which consists of a small text 305

embedding extractor and a coarse-to-fine pruner. 306

To train the pruner, we face the challenge of 307

gradient backpropagation when pruning discrete 308

tokens outside the LLM. The LLM loss gradient 309

cannot be backpropagated through the tokenizer. 310

To address this, we design a multi-objective reward 311

function and use reinforcement learning for effec- 312

tive training (Sec. 4.4). The overall training process 313

is outlined in Algorithm 1. 314
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4.3 Coarse-to-fine Pruner Design315

Text embedding extractor. As CoT-Influx serves316

as an external module, we need to extract text em-317

bedding as prediction features. However, it’s non-318

trivial to extract features for long inputs beyond the319

LLM context window. To address this, we use a320

small encoder model, BERT-Large (Devlin et al.,321

2018), to extract sentence-level (i.e., a CoT exam-322

ple) embedding instead of extracting token embed-323

ding from the entire long context. For a batch of k324

CoT examples, each example is padded to N=512325

tokens. BERT then inferences these examples to326

obtain the final layer of text embedding, denoted as327

Hsshot ∈ Rk×N×DBERT , where DBERT is BERT’s328

hidden dimension size.329

State. As shown in Fig. 3, we define state sshot ∈330

Rk×N for the first shot pruner, representing the331

input batch of k CoT examples ∈ D̂. For the sec-332

ond token pruner, we define state stoken ∈ Rk′×N ,333

which represents all remaining tokens after the shot334

pruner. k′ is the number of retained examples.335

Action. Let ashot and atoken denote the actions pre-336

dicted by the shot and token pruner, respectively.337

The action space is defined as {0, 1}, where 1338

signifies retention and 0 indicates pruning. ashot339

determines whether each CoT example should be340

pruned, while atoken predicts the pruning of each341

token in the retained CoT examples.342

Two-stage policy network. The pruner module is a343

two-stage policy network, each stage is a two-layer344

feed-forward network (MLP) with GELU activa-345

tion. This module outputs a continuous categorical346

distribution π, used for sampling discrete actions347

(i.e., {0, 1}). Let θ denote the MLP’s trainable348

parameters and σ(·) the sigmoid function. Based349

on the current states {sshot, sshot} and the hidden350

states {Hsshot , Hstoken}, the policy network sequen-351

tially make two action predictions as follows:352

π(ashot|sshot; θ) = σ
(
MLP

(
Hsshot

))
(3)353

354 π(atoken|stoken; θ) = σ
(
MLP

(
Hstoken

))
, (4)355

where ashot and atoken are the predicted actions,356

sequentially predicting whether to prune each of357

the k CoT examples and each token within the358

retained examples, respectively. We predict the359

discrete action by sampling from the categorical360

distribution π with a softmax function.361

4.4 End-to-end RL Optimization362

Multi-objective Reward. Our objective in Eq. 2 is363

to train the pruner module to identify the most cru-364

Algorithm 1 Pruner Training and Inference
Input: target LLM, dataset D, number of CoTs k, token limit
T , manual few-shot cot xfew-shot, repeat trepeat

1: ▶ Phase 1: MRD3 preperation
2: Perform evolution and difficulty evaluation to get D;
3: Use the difficulty filter and split D into questions set

Dquestion and CoT candidates set Dcot
4: ▶ Phase 2: Training the two-stage pruner (1 epoch)
5: for (xquestion, yanswer) in Dquestion do
6: Retrieve Top-k examples D̂ = {xcot}ki=1 from Dcot

7: Hsshot = BERT
(
{xcot}ki=1

)
8: for j=1 to trepeat do
9: Get π (ashot|sshot; θ) with Eq. 3, sample ashot

10: {xcot}ki=1 −→ {xcot}k
′

i=1

11: Hstoken = BERT
(
{xcot}k

′
i=1

)
12: Get π (atoken|stoken; θ) with Eq. 4, sample atoken

13: {xcot}k
′

i=1 −→ {x̂cot}k
′

i=1

14: xinput =
(
{x̂cot}k

′
i=1, x

few-shot, xquestion
)

15: Output LLM(xinput); Compute R with Eq. 5
16: end for
17: Compute policy gradient using Eq. 6, update θ
18: end for
19: ▶ Phase 3: LLM reasoning with pruner and MRD3

20: Retrieve Top-k shots {xcot
q }k ∈ D for target question q

21: Do pruning: {xcot
q }k θ−→ {x̂cot

q }k
′
, reconstruct {x̂cot

q }k
′

22: xinput
q =

(
{x̂cot

q }k
′
, xfew-shot, xquestion

q

)
23: Get LLM reasoning output LLM(xinput

q )

cial CoT examples and useful tokens for math prob- 365

lem solving, while keeping the final tokens within 366

the original LLM context window. To achieve this, 367

we design a multi-objective reward. 368

Let xinput be the final input to LLM, which in- 369

cludes the retained CoT tokens from the policy 370

network and the target question. t represents the 371

token count of xinput, and T is the token count limit. 372

The reward R is defined as follows: 373

R
(
xinput

)
= (

1

1 + LLLM
+RAcc)×

[
t

T

]w

(5) 374

where the first term evaluates the effectiveness of 375

inputted CoT tokens, and the second term ensures 376

they are within the LLM context window. LLLM is 377

LLM’s prediction loss under xinput, RAcc evaluates 378

the reasoning accuracy (to be discussed later). w 379

is a hyperparameter that penalizes the token count 380

t for being too short (i.e., w < 0) or exceeding 381

(i.e.,w > 0 ) the token limit T . 382

In addition to LLLM, we introduce RAcc to evalu- 383

ate math reasoning accuracy. This is because LLLM, 384

the average loss of generated tokens, doesn’t fully 385

reflect LLM’s ability to generate correct answers. 386

Specifically, RAcc is set to 1 for a correct answer 387

and 0 for an incorrect one. Notably, we found that if 388

the format or crucial tokens are pruned, LLM strug- 389

gles to interpret the input context correctly, leading 390
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to irrelevant answers for math problem solving. In391

such cases, we penalize RAcc with a value of -0.1.392

Optimization with REINFORCE. We employ re-393

inforcement learning to maximize the reward and394

train the two-stage policy network. According to395

REINFORCE (Williams, 1992), the network pa-396

rameters are updated by the gradients:397

R · ∇θlogπ(ashot|sshot)π(atoken|stoken) (6)398

Notably, as shown in Fig. 3, only the parame-399

ters of the policy network require training. The400

embedding extractor and LLM are frozen, thus, the401

overall training overhead is lightweight.402

Difficulty-aware data filter. Existing LLMs, par-403

ticularly smaller ones, underperform in math rea-404

soning. If the question is too challenging for LLMs,405

the answer will always be incorrect, regardless of406

the quality of compressed few-shot CoT examples,407

making it challenging to effectively train our pruner408

module. To address it, we use a difficulty filter to409

sample a math question set Dquestion from D, which410

includes only easy questions with a difficulty score411

below a threshold dthr. During training, each ques-412

tion in Dquestion samples a batch of k CoT examples413

from Dcot, where Dcot is the CoT candidate set sam-414

pled from D.415

Stabilize the training. Another challenge is that416

pruning CoT and tokens during training introduces417

instability, making it difficult for effective training.418

First, despite the optimization of question set419

Dquestion through the filter, LLM performance for420

a randomly sampled question under different few-421

shot prompts can still be unpredictable. This un-422

predictability, where a question might yield correct423

results under low-quality pruned prompts and a424

complex question might fail under carefully pruned425

prompts, can affect the pruner’s training effective-426

ness. To address this, we continuously repeat a427

sampled question multiple times, trepeat, each time428

with a different pruned few-shot prompt from the429

pruner. Moreover, we use exponential moving av-430

erage (EMA) to smooth reward RAcc in Eq. 5.431

Second, during the early training, our pruner432

module makes random decisions, leading to arbi-433

trary removal of CoT examples and tokens. These434

randomly pruned few-shot prompts can cause insta-435

bility in RL training. Empirically, we append the436

manually-designed 8-shot CoTs (Wei et al., 2022)437

to the pruned prompts. This ensures a good lower438

bound and stabilizes the training.439
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Figure 4: EM(%) accuracy on GSM8K with inputting
different number of CoT examples for CoT-Influx.

5 Evaluation 440

Models, datasets and metric. We evaluate 441

CoT-Influx on LLaMA2-7B, LLaMA2-13B, and 442

LLaMA2-70B. The mathematical datasets for eval- 443

uation include GSM8K (Cobbe et al., 2021), 444

AddSub (Hosseini et al., 2014), Multiarith (Roy 445

and Roth, 2015), Svamp (Patel et al., 2021), and 446

Singleeq (Koncel-Kedziorski et al., 2015). For eval- 447

uation metric, we report Exact Match (EM) accu- 448

racy of the predicted answers. 449

Baselines We set three baselines for comparison: 450

• CoT and few-shot CoT prompting: We compare 451

with widely-used prompts for LLM reasoning, 452

including zero-shot, zero-shot-CoT (Kojima et al., 453

2022), and the standard few-shot-CoT (Wei et al., 454

2022) with 8 shots. 455

• Prompt retrieval: we also compare with retrieval 456

baselines, specifically using random, TopK (Liu 457

et al., 2021), and BM25 (Robertson et al., 2009) 458

methods. We select as many CoT examples as 459

possible using each method, without exceeding 460

LLM context window. Random retrieval is to 461

reflect the average quality of our CoT dataset. 462

• Prompt compression: To evaluate the effective- 463

ness of identifying crucial tokens, we compare 464

the resulting compressed prompts from the same 465

batch of CoT shots with state-of-the-art prompt 466

compression baselines: Selective Context (Li 467

et al., 2023b), LLMLingua (Jiang et al., 2023), 468

and compression through GPT-4. 469

5.1 Main Results 470

Effectiveness of enabling more few-shot CoTs. 471

We first evaluate how far the boundary of few-shot 472

learning can be pushed using CoT-Influx. For com- 473

parison, we set up two baselines: (i) Few-shot CoT, 474

using 8 manual-designed CoT shots as the default 475

LLM evaluation setting on GSM8K. (ii) TopK re- 476

trieves 20 CoT shots from our dataset, denoting the 477
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Table 2: Comparison of EM (%) accuracy on GSM8K with state-of-the-art baselines. Note that the 20 CoT shots of
retrieval baselines are the max number, given that the context window limit of LLaMA2 is 4096 tokens.

Method #Input CoT shots #Average tokens LLaMA2-7B LLaMA2-13B LLaMA2-70B

Zero-shot 0 - 4.25 5.84 11.45
Zero-shot-CoT (Kojima et al., 2022) 0 - 1.74 12.28 21.91
Few-shot-CoT (Wei et al., 2022) 8 655 13.79 27.82 55.42

Random retrieval 20 3379.8 12.51 22.21 53.07
TopK retrieval (Liu et al., 2021) 20 3535.4 14.56 23.65 54.59
BM25 retrieval (Zhenyu et al., 2023) 20 3816.1 13.42 25.17 54.21

TopK+GPT4 Compression 40 1376.0 7.08 11.01 25.17
TopK+Selective Context (Li et al., 2023b) 40 2262.4 0.45 0.76 2.50
TopK+LLMLingua (Jiang et al., 2023) 40 2048.0 5.38 8.34 22.74

CoT-Influx 48 2037.0 15.92 32.37 59.59

Table 3: Comparison of EM (%) accuracy on Addsub,
Multiarith, Svamp, and Singleeq math reasoning dataset
Model Method AddSub Multiarith Svamp Singleeq Avg.

Zero-shot 58.73 5.50 32.2 62.79 39.81
Few-shot-CoT 56.96 43.67 38.1 66.54 51.32

LLaMA2-7B TopK retrieval 46.08 34.50 38.1 46.46 41.29
TopK+LLMLingua 12.91 10.50 19.5 19.49 15.60
CoT-Influx 62.28 47.00 40.2 72.05 55.38

Zero-shot 70.13 6.50 43.8 71.07 47.88
Few-shot-CoT 65.82 72.83 42.7 77.36 64.68

LLaMA2-13B TopK retrieval 60.76 57.00 50.2 68.50 59.12
TopK+LLMLingua 22.28 22.33 27.5 25.20 24.33
CoT-Influx 69.62 73.87 50.5 83.07 69.26

max shot number within LLaMA2 context window.478

For CoT-Influx, we test LLaMA2 7B and 13B on479

GSM8K, adjusting the number of CoT shots from480

16 to 64 examples, which corresponds to 0.7× to481

2.8× the token count of LLaMA2 context window.482

As shown in Fig. 4, we make two observations: (1)483

More CoT shots, facilitated by CoT-Influx, indeed484

boosts LLM math reasoning performance, partic-485

ularly for larger LLMs. On LLaMA2-13B, by in-486

putting 48 CoTs, we significantly outperform the487

standard few-shot CoT and TopK by 4.55% and488

8.72%, respectively. (2) There is an optimal num-489

ber of CoT shots for CoT-Influx. Its peak perfor-490

mance on LLaMA2 7B and 13B are at 40 and 48491

shots, respectively. We attribute this to two poten-492

tial reasons. First, an extremely large number of493

shots complicates CoT-Influx’s optimization. Sec-494

ond, there may be an upper limit to improving LLM495

reasoning capability through few-shot learning.496

Comparison with state-of-the-art baselines. Ta-497

ble 2 and Table 3 present the comparison results498

of CoT-Influx with state-of-the-art baselines across499

LLaMA2 family and 5 mathematical datasets, high-500

lighting the following observations: (1) by utiliz-501

ing more few-shot CoTs that are twice the LLM502

context window, CoT-Influx significantly outper-503

forms all baselines, with 2.13% to 4.55% absolute504

improvements. (2) Despite using fewer input to-505

Table 4: Comparison of EM (%) accuracy on GSM8K
with larger LLMs under the few-shot-CoT setting.

Model Parameters EM (%)

Finetuned GPT-3 (Wei et al., 2022) 175B 34.0
Chinchilla (Hoffmann et al., 2022) 70B 43.7
Text-davinci-002 (Kojima et al., 2022) 175B 51.5
PaLM (Chowdhery et al., 2022) 540B 56.5
GPT-3.5 (OpenAI, 2023a) - 57.1
Minerva (Lewkowycz et al., 2022) 540B 58.8

LLaMA2-70B+CoT-Influx 70B 59.6

kens, CoT-Influx consistently outperforms retrieval 506

baselines by 1.36% to 14.09% absolute improve- 507

ments. This is because our compressed tokens in- 508

dicate more informational CoT examples without 509

redundancy. In contrast, they select entire exam- 510

ples, which may contain redundant tokens, based 511

on semantic similarity between the target question 512

and CoT examples, without considering the differ- 513

ent CoT preference of the target LLM. (3) CoT- 514

Influx significantly outperforms prompt compres- 515

sion baselines in preserving the most crucial tokens 516

for math reasoning, while methods like Selective 517

Context and LLMLingua suffer accuracy declines 518

due to difficulties in maintaining few-shot prompt 519

structure. GPT-4 tends to prune essential reasoning 520

steps, which negatively impacts CoT effectiveness. 521

We further demonstrate the effectiveness of CoT- 522

Influx by comparing LLaMA2-70B with larger 523

size LLMs on GSM8K. As shown in Table 4, 524

CoT-Influx significantly boosts LLM reasoning ca- 525

pabilities. Remarkably, without any fine-tuning, 526

LLaMA2-70B with CoT-Influx outperform much 527

larger LLMs. LLaMA2-70B surpasses GPT-3.5 528

with an absolute improvement of 2.5%. 529

Compatible with existing reasoning prompts. 530

As a method to improve LLM reasoning capabil- 531

ity, CoT-Influx is complementary with other ad- 532

vanced reasoning-based prompts. To prove this, 533

we apply self-consistency (Wang et al., 2023d) and 534
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Table 5: CoT-Influx is compatible with advanced prompt
techniques like self-consistency (i.e., maj@20) and self-
verification (i.e., verify@20).

Method LLaMA2-13B LLaMA2-70B

CoT-Influx 32.37 59.59
CoT-Influx+maj@20 33.43 60.73
CoT-Influx+verify@20 34.04 61.79

Table 6: Comparison of EM(%) on GSM8K using CoT-
Influx pruner across different CoT datasets.

CoT dataset LLaMA2-7B LLaMA2-13B LLaMA2-70B

MRD3 15.92 32.37 59.59
MRD3 w/o evolution 14.94 30.55 57.70
GSM8K training set 14.18 29.64 56.71

self-verification (Weng et al., 2023) to compressed535

prompts generated by CoT-influx. For evaluation536

efficiency, we sampled 20 times. As Table 5 shows,537

applying self-consistency and self-verification fur-538

ther improve LLaMA2’s performance on GSM8k.539

5.2 Ablation Study and Analysis540

The effectiveness of MRD3 dataset. Beyond541

our pruner, we introduce MRD3 dataset, which is542

evolved by GPT-4 for diverse reasoning steps and543

difficulties. We compare with two baselines: (1)544

MRD3 without evolution, excluding GPT-4 evolved545

examples, and (2) the human-labeled GSM8K train-546

ing set, which excludes GPT-4’s reformatted gener-547

ation. We apply our pruner on these datasets under548

the same setting. As shown in Table 6, both GPT-4549

generated and evolved CoT examples are vital for550

improving the reasoning performance.551

Ablation study on coarse-to-fine pruner. Our552

pruner operates at both shot and token levels to553

fully exploit redundancy within CoT examples. To554

verify the effectiveness, we conduct experiments555

with only shot or token pruner under the same set-556

ting. As shown in Table 7, removing any pruning557

stage decreases performance. Notably, removing558

token-only pruning causes a larger accuracy drop559

than shot-only pruning, indicating that shot-level560

redundancy is easier for the pruner to learn.561

8751.8 tokens (48-shot)

2261.4 tokens

2045.7 tokens

3.87× Compression Ratio

4.28× Compression Ratio

Figure 5: Token length after each stage of our pruner.

Token pruning ratios. We now investigate token562

pruning ratios by our pruner. Fig. 5 shows the563

remaining token length for LLaMA2-70B after our564

pruner. In total, we achieve a 4.28× pruning ratio,565

Table 7: Comparison of EM(%) on GSM8K with differ-
ent pruning strategies.

Pruning Strategy LLaMA2
7B 13B 70B

CoT-Influx (Prune shot and token) 15.92 32.37 59.59
Prune shot only 15.69 31.08 57.77

Prune token only 12.05 25.32 49.36

Table 8: The total inference costs on GSM8K.
Method #Input-shot #Token Time GPU Memory

LLaMA2-7B 12 2108.6 2.99h 19.7GB

Selective Context 40 2262.4 4.38h 23.5GB
LLMLingua 40 2048.0 3.65h 33.0GB

CoT-Influx 40 2037.0 3.04h 21.1GB

with shot pruner contributing a 3.87× ratio. The 566

results suggest that our pruner favors pruning more 567

coarse-grained shots over fine-grained tokens. 568

Inference cost. CoT-Influx is a lightweight plug- 569

and-play module, including a 336MB BERT-Large 570

model and a tiny 4MB coarse-to-fine pruner. We 571

measure its additional inference cost. Table 8 572

shows the total inference latency and GPU memory 573

required to run LLaMA2-7B with different meth- 574

ods on GSM8K, measured on a single NVIDIA 575

A100 GPU. The results reveal that CoT-Influx in- 576

troduces a negligible 1.4GB additional memory 577

and a 1.7% increase in latency. This is more effec- 578

tive than prompt compression baselines, such as 579

Selective Context and LLMLingua, which require 580

significantly higher latency and more GPU mem- 581

ory, potentially hindering efficient deployment. 582

Implications. Our analysis of retained CoT exam- 583

ples and tokens yields the following insights: (1) 584

More capable LLMs favor harder CoT examples, 585

while smaller LLMs opt for simpler ones. (2) Nu- 586

merical and format tokens are essential for math 587

reasoning. Function words like with, the, then, and 588

irrelevant background context such as theater can 589

be pruned without affecting reasoning capability. 590

6 Conclusion 591

We present CoT-Influx, a plug-and-play module 592

that improves LLM math reasoning by pruning 593

unnecessary few-shot examples at shot and token 594

levels for a more effective input context. To train 595

the module, we use reinforcement learning to opti- 596

mize a math reasoning-specific reward with GPT- 597

4 evolved CoT dataset MRD3. Extensive exper- 598

iments on various datasets and LLMs compared 599

with state-of-the-art baselines demonstrate the ef- 600

fectiveness of our method. This paper highlights 601

the vast potential of few-shot CoT prompting in 602

augmenting LLMs’ math reasoning abilities. 603

8



Limitations604

As in-context learning with LLM heavily relies605

on the selected examples in the prompt, the per-606

formance of CoT-Influx can be influenced by the607

quality of CoT generation. Despite this, CoT-Influx608

still demonstrates strong performance on our GPT4-609

evolved dataset MRD3. We currently use BERT to610

obtain the feature embedding of a CoT example,611

which cannot handle long-sequence examples ex-612

ceeding 512 tokens. We will take these limitations613

into account and mitigate them in future work.614
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Appendix917

This appendix includes additional analysis, the evolution of MRD3, pruner training details, additional918

related works, and prompt settings. These contents are organized in separate sections as follows:919

• Sec. A provides additional analysis and case studies, including the comparison of CoT-Influx with920

context window extension methods, performance of CoT-Influx on finetuned LLMs (LLaMA2-13B-Chat921

and GPT-3.5-Turbo), ablation study on the reward design, and sensitivity analysis on hyperparameters922

of the pruner. Additional case studies on the GSM8K with different prompting methods are given to923

extensively prove the effectiveness of our method.924

• Sec. B introduces the prompt we used for the evolution of the examples in our MRD3. Both the original925

input and the evolution results are given as examples. We also analyze the difficulty and reasoning step926

distribution of different evolution methods and derive a new observation regarding difficulty preference927

for different LLMs.928

• Sec. C includes the algorithm for training data preparation as a supplement to Algorithm 1. The929

hyperparameter settings, the training dynamic of the pruner, and the detailed introduction of the evaluation930

dataset are also included.931

• Sec. D elaborates previous LLM context window extension and LLM in-context learning methods, and932

analyzes the advantage of our proposed CoT-Influx compared with various previous methods.933

• Sec. E demonstrates the prompt we used in this work for difficulty and reasoning step evaluation, and934

GPT-4 based compression on input few-shot prompts.935

A Additional Analysis and Case Study936

A.1 Comparison with context window extension methods937

While our work tackle the challenge of limited context window by pruning the redundant input few-shot938

prompts, another solution is to extend the context window of LLMs. We compare the math reasoning939

performance of LLaMA2-7B with CoT-Influx and LLaMA2-7B with 32K token context window extended940

with Positional Interpolation (PI) (Chen et al., 2023a). The results are listed in Table 9.941

Table 9: Comparsion of EM(%) on GSM8K of LLaMA2-7B with CoT-Influx and LLaMA2-7B-32K with PI.

Number of input shots 12 16 20 24 28 32 40

Average number of tokens 2108.6 2820.6 3535.4 4217.2 4929.1 5641.2 7070.8

LLaMA2-7B 13.87 15.08 14.02 - - - -
LLaMA2-7B+CoT-Influx - - - 14.33 15.09 15.92 15.77

LLaMA2-7B-32K 11.37 12.81 11.37 11.83 11.83 11.52 11.30

When the input prompt does not exceed the window token limit (the number of input shots is not more942

than 20), we compare the performance of LLaMA2-7B-32K with LLaMA2-7B. When the input prompt943

exceed the context window length, we apply our CoT-Influx to prune the prompts to make sure that they944

can be directly input to LLaMA2-7B without PI. The results show that the context window extension945

weaken the reasoning ability with the same input prompt. The limit of context window can be unlocked946

with our CoT-Influx. Moreover, our observation that LLMs can improve reasoning with more helpful CoT947

examples does not hold true for LLMs with extended context window.948

A.2 CoT-Influx on finetuned LLMs949

In Sec. 5.1, we verify the effectiveness of CoT-Influx on LLaMA2-7B, 13B, and 70B. LLaMA2-chat (Tou-950

vron et al., 2023b) and GPT-3.5-Turbo (OpenAI, 2023b) are also the widely adopted LLMs that are951

acquired after supervised instruction finetuning (SIFT) and Reinforcement Learning from Human Feed-952

back (RLHF), respectively. The different finetuning strategy and the various finetuning data result in953
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unique properties of the LLMs. For example, LLaMA2-Chat-13B perform significantly better than 954

LLaMA2-13B on math reasoning tasks with zero-shot-cot prompts. To show that our CoT-Influx can also 955

help improve the reasoning ability of these finetuned LLMs, we conduct experiments of LLaMA2-13B- 956

Chat and GPT-3.5-Turbo (gpt35-turbo-0613) on GSM8K dataset. As shown from the results listed in 957

Table 10, our CoT-Influx also surpass a wide range of prompting baselines with more input shots and 958

fewer tokens. Specifically on LLaMA2-13B-Chat, CoT-Influx achieve an absolute improvement 9.78% 959

compared to TopK retrieval baseline with only 57.6% average tokens. 960

Table 10: The EM (%) accuracy on GSM8K with CoT-Influx and other baselines. Note that the context window
limit of LLaMA2-13B-Chat and GPT-3.5-Turbo are all 4096 tokens.

Method #Input CoT shots #Average tokens LLaMA2-13B-Chat GPT-3.5-Turbo

Few-shot-CoT (Fu et al., 2023) 8 655 27.82 72.55
TopK retrieval (Liu et al., 2021) 20 3535.4 31.16 70.74
TopK+LLMLingua (Jiang et al., 2023) 40 2048.0 10.69 49.96

CoT-Influx 48 2037.0 40.94 73.31

A.3 Ablation study on reward design 961

The reward of our CoT-Influx pruner are made up of three parts: math reasoning accuracy reward RAcc, 962

LLM loss reward RLoss =
1

1+LLLM
, and context window token limit reward RLimit =

[
t
T

]w. Each part of 963

the full reward function are important for the effective learning of the pruner. We perform ablation study 964

on these components and the results are listed in Table 11. As can be seen from the results, whenever a 965

reward component are removed, the CoT-Influx pruner give sub-optimal prompt selection and compression 966

results, which cause a decrease compared to the full reward baseline. Among these three reward function 967

parts, the token limit reward RLimit is the most important because training without this term will cause the 968

pruner not to prune any shot or token and directly output the truncated prompt of the redundant input. 969

Table 11: The EM (%) accuracy on GSM8K of LLaMA2-7B and LLaMA2-13B with different reward function.

Reward Function LLaMA-2-7B LLaMA-2-13B

Full Reward 15.92 32.37
w/o RAcc 15.24 31.46
w/o RLoss 14.78 31.16
w/o RLimit 14.25 29.72

A.4 Sensitivity analysis on hyperparameters 970

We perform sensitivity analysis on the hyperparameters to investigate the robustness of our CoT-Influx 971

pruner training. The most important setting in the training of our CoT-Influx pruner is the token target 972

T and token penalty co-efficient w. Table 12 presents the results of CoT-Influx using different sets of 973

hyperparameters T and w. The results demostrate that the training of our CoT-Influx pruner are highly 974

robust as long as the token target T is not overly aggressive (token target T should not be too small). 975

Table 12: Sensitivity analysis on token target T and token penalty co-efficient w

Token target T LLaMA-2-13B

2048 32.37
1024 29.57
3072 32.37

Token penalty co-efficient w LLaMA-2-13B

(-1,1) 32.37
(-0.5,1) 31.69
(-1,0.5) 32.22
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A.5 Case Study on different prompt compression methods976

To show how different prompt compression methods prune input few-shot prompts in different manners,977

we given an example of a 8-shot prompt selected using TopK retriever. The original full few-shot prompts978

are listed in the following box:979

Original full few-shot prompt for math reasoning (1331 tokens):

Q: Dave won 11 tickets at the arcade and spent 5 on a beanie. Afterward, he won 10 more tickets. Calculate his final
ticket count by first finding the remaining tickets after his purchase and then adding the newly won tickets.
A: Let’s think step by step. Dave had 11 tickets, spent 5, leaving him with 6. Then he won 10 more, resulting in: 6 +
10 = 16 tickets. The answer is 16.

Q: At the carnival, tickets for rides cost 0.75 dollars each, or you can buy a 15-dollar armband for unlimited rides for
one night. To determine the number of rides where the armband’s cost equals that of individual tickets, set up and
solve an equation involving x, the number of rides.
A: Let’s think step by step. Let x be the number of rides. Equate the cost of x rides using individual tickets, 0.75x
dollars, to the 15-dollar armband cost: 0.75x = 15. Solve for x: x = 15/0.75, which gives x = 20. The answer is 20.

Q: Mitch, Jam, and Jay went out for a movie. Mitch paid $7 per ticket for 3 friends, Jam purchased 2 popcorn boxes
at $1.5 each, and Jay got 3 milk teas for $3 each. To equitably split the expenses, how much should each of them
contribute?
A: Let’s think step by step. The total cost of 3 tickets at $7 each, 2 popcorn boxes at $1.5 each, and 3 milk teas at $3
each is $21 + $3 + $9 = $33. Dividing the overall expenses among 3 friends results in a contribution of $33/3 = $11
per person. The answer is $11.

Q: Connor is taking his date to the movies, with tickets costing $10.00 each. They opt for the large popcorn & 2 drink
combo meal at $11.00, and each choose a box of candy at $2.50 per box. Determine the combined expenses for the
movie tickets, combo meal, and candy to find the total amount Connor will spend on his date.
A: Let’s think step by step. Calculate the cost of two movie tickets (2 x $10.00 = $20.00), the combo meal ($11.00),
and two boxes of candy (2 x $2.50 = $5.00), then sum them up ($20.00 + $11.00 + $5.00 = $36.00). The answer is
$36.00.

Q: Scott has 4 tickets. Ernest starts with 9 tickets and later discovers a stash of 72 more. Calculate the final number of
tickets Ernest possesses.
A: Let’s think step by step. Ernest initially holds 9 tickets and acquires 72 additional ones, leading to a total of 9 + 72
= 81 tickets. The answer is 81.

Q: Joseph and his friends watched two movies at his place. The first movie lasts 1 hour and 30 minutes, and the
second is 30 minutes longer. They took 10 minutes for popcorn and double that for fries. Determine, in hours, the
cumulative time spent cooking and watching movies by breaking down each component of time spent.
A: Let’s think step by step. First, find the second movie’s length (1 hour and 30 minutes + 30 minutes = 2 hours).
Then, sum both movies’ lengths (1 hour and 30 minutes + 2 hours = 3 hours and 30 minutes). Next, calculate cooking
time (10 minutes for popcorn + 20 minutes for fries = 30 minutes). Lastly, add movie and cooking times (3 hours and
30 minutes + 30 minutes = 4 hours). The answer is 4 hours.

Q: The movie theater sold a number of tickets to the horror and romance movies. The horror movie ticket sales were
18 more than three times the romance movie ticket sales. If there were 25 romance movie tickets sold, how many
tickets were sold for the horror movie, considering the given relationship?
A: Let’s think step by step. Let "h" represent the horror movie tickets sold. Given that h = 3(25) + 18, we can simplify
the equation: h = 75 + 18, resulting in h = 93. The answer is 93.

Q: On Saturday, Sara purchased 2 movie theater tickets at $10.62 each, rented a movie for $1.59, and bought another
movie for $13.95. Determine Sara’s total expenditure on movies by performing a step-by-step calculation.
A: Let’s think step by step. Firstly, calculate the movie tickets’ cost by multiplying the ticket price ($10.62) by the
quantity (2), resulting in $21.24. Secondly, combine the rental ($1.59) and purchase ($13.95) costs, equaling $15.54.
Lastly, sum the ticket cost and rental/purchase cost: $21.24 + $15.54 = $36.78. The answer is $36.78.

980

Most of the examples above have similar background and target (tickets, movie, expense, etc.) but981

the difficulty and number of reasoning steps are various. In addition, the solution of most questions are982

highly redundant. When performing math reasoning with, it is important to select the most suitable and983

concise examples considering the characteristic of the current input question. In our evaluation across984

different methods shown in Sec. 5.1, we have empirically observe the previous methods fail to retain985

the structural integrity of prompt. We show the pruned prompt with different methods and similar token986
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length in the following box. We can see that Selective Context and LLMLingua frequently discard the 987

important part including ‘Q:’, ‘A:’, ‘\n’, “Let’s think step by step”, and “The answer is” in these examples. 988

Although GPT-4 can retain majority of these tokens, the reasoning steps are systematically removed 989

because GPT-4 cannot be instructed to utilize the redundancy in both example-level and token-level. Our 990

proposed CoT-Influx, however, select the most representative examples and only remove the redundant 991

function words. 992

Pruned few-shot prompt of different methods:

Selective Context:
Q Dave won 11 tickets Afterward won: step Dave 11 tickets spent leaving Then won 10 resulting: 16 Q At tickets
rides rides where set solve x: step Let x rides Equate x rides individual tickets dollars = x 20 Q Mitch Jam went
paid per 3 friends Jam purchased equitably how: step 3 tickets + 3 friends results $ Q Connor tickets They opt the
large popcorn & 2 drink combo meal choose candy combo meal candy Connor: step combo boxes sum $ Q Scott 4
tickets starts 9 tickets discovers 72 Ernest possesses: step initially holds 9 tickets 72 additional ones leading 81 Q
Joseph watched lasts They popcorn double hours cooking breaking: step First find + Then sum both movies’ lengths
+ Next, calculate cooking time popcorn + Lastly add movie cooking times + 4 hours Q sold 25 romance movie tickets
considering the given relationship: step Let "h the horror movie tickets Given = 18 simplify 75 93 Q Sara purchased
rented movies performing: step Firstly calculate resulting Secondly combine rental Lastly sum $

LLMLingua:
: Dave won11ets the and5 a be. After he. his final count by first theets after the: Lets think. Daveets5„ in.
: the,ets 5, or a-ollarides for one. To theidesband cost equals of, equation involving r. A: think. Let.ides
using individualets, the1ollar cost5 which. :, Jam and Jay a7 ticket3 Jam2orn5 Jay3 milk. To equ the.ets
boxes53 milk each1. the overallenses3 friends a. The : Connor is his,.. They theorn & drinkbo and0. theandy
think. ofets0 theboal and two then :. Ernest and later a7. think. Ernest initially and, 9: friends at movie
the minutes They and for. the spent by think, the, calculate The a the and ticket, think.:, bought.by-step
calculation. A: Let’s think step by step. Firstly, calculate the movie tickets’ cost by multiplying the ticket price
($10.62) by the quantity (2), resulting in $21.24. Secondly, combine the rental ($1.59) and purchase ($13.95) costs,
equaling $15.54. Lastly, sum the ticket cost and rental/purchase cost: $21.24 + $15.54 = $36.78. The answer is $36.78.

GPT-4 Compression:
Q: Dave won 11, spent 5 and won 10 more. Determine final count.
A: The answer is 16.
Q: Tickets cost 0.75 per ride, armband cost 15. Determine rides that armband’s cost equals tickets.
A: The answer is 20.
Q: $7 per ticket for 3, 2 popcorn boxes at $1.5, 3 milk teas for $3. Determine each contribute.
A: The answer is $11.
Q: Tickets cost $10.00 each, meal cost $11.00, a box of candy at $2.50. Determine the expenses.
A: The answer is $36.00.
Q: Scott has 4. Ernest starts with 9 and discovers 72 more. Determine the final number.
A: The answer is 81.
Q: The first 1.5 hour, the second is 30 minutes longer. 10 minutes for popcorn. Determine the time.
A: The answer is 4 hours.
Q: Horror movie were 18 more than 3 times romance. 25 romance movie sold, Determine number of horror movie.
A: The answer is 93.
Q: Sara purchased 2 at $10.62 each, a movie for $1.59, and another $13.95. Determine total expenditure.
A: The answer is $36.78.

CoT-Influx:
Q: Mitch, Jam, and went out a. Mitch paid $7 per ticket for 3, Jam purchased 2 boxes at $1.5 each, and got 3 for $3
each. To equitably split, how much should each them contribute?
A: Let’s think step by step. The total cost 3 tickets $7 each, 2 popcorn boxes $1.5 each, and 3 milk $3 each is $21 +
$3 + $9 = $33. Dividing the overall expenses among 3 results of $33/3 = $11 per. The answer is $11.

Q: The theater sold number tickets to horror and romance movies. The horror movie ticket sales were 18 more than
three times romance ticket. If there 25 romance sold, how many tickets were sold horror movie, considering?
A: Let’s think step by step. Let "h" represent horror tickets sold. Given h = 3(25) + 18, we can simplify equation: h =
75 + 18, resulting h = . The answer is 93.

Q: On, Sara purchased 2 theater tickets $10.62 each, rented movie $1.59, and bought movie $13.95. Determine
Sara’s total expenditure movies performing a calculation.
A: Let’s think step by step. , calculate tickets’ cost price ($10.62) by quantity (2), resulting $21.24. Secondly, combine
rental ($1.59) purchase ($13.95), equaling. Lastly, sum ticket rental/purchase: $21.24 + $15.54. The answer is $36.78.
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B Evolution of MRD3994

B.1 Prompt template for evolution995

The prompt we used for evolution of the examples in our dataset are listed as follow:996

Prompt for different evolution strategies

I want you to act as a Prompt Rewriter. Your objective is to rewrite a given prompt into a more complex version to
make those famous AI systems (e.g., LLaMA, ChatGPT and GPT4) a bit harder to handle.
The prompt is made up of a math reasoning question and the corresponding answer.
The rewritten prompt must be reasonable and must be understood and responded by humans.
Your rewriting cannot omit or change the input and results in #Given Prompt#. Also, please retain the format of
’Question: ’ and ’Answer: ’ in your response.
You SHOULD complicate the given prompt using the following method:
{Evolution template}
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10
to 20 words into #Given Prompt#.
The #Rewritten Prompt# should also follow the format that the rewritten question appears after ’Question: ’ and the
rewritten answer appears after ’Answer: ’.
The rewritten answer should end up with ’The answer is [results]’.
#Given Prompt#:
Question: {Given question}
Answer: {Given answer}
#Rewritten Prompt#:

Evolution template for evolution strategy add_constraints:
Please add one more constraint/requirement to the question of #Given Prompt#

Evolution template for evolution strategy deepening:
Please increase the depth and breadth of the question and answer of #Given Prompt#

Evolution template for evolution strategy increase_reasoning:
If #Given Prompt# can be solved with just a few simple thinking processes, please rewrite it to explicitly
request multiple-step reasoning.

Evolution template for evolution strategy revise_difficulty:
Please revise the high difficulty questions to lower difficulty.

Evolution template for evolution strategy produce_easier:
Please produce a new and easier question with another different topic.

997

Most part of the prompt of different evolution strategies are similar. Based on our quantitatively analysis998

on the difficulty and reasoning step distribution, GPT-4 can effectively follow our instruction to modify999

the constraints or difficulty level of input questions.1000

B.2 Difficulty and Reasoning Steps Distribution of MRD31001

Based on the GPT-4-based estimation, we are able to quantitatively look into the distribution of difficulty1002

and reasoning step distribution in MRD3 without evolution and MRD3 with various evolution schemes.1003

The results are shown in Figure 6. The original distribution of both difficulty level and reasoning steps1004

of questions centralized between 2 to 4. More questions with higher difficulty using add_constraints,1005

deepening, and increase_reasoning. As we discuss in the reward design of our RL pruner, easy questions1006

are important for the stabilization of RL and can help effectively identify the quality of pruned prompt,1007

more easier questions are generated with revise_difficulty and produce_easier evolution scheme.1008

B.3 Additional observation on difficulty distribution1009

As shown in Figure 6, the difficulty diversity of examples in MRD3 are improved after prompt evolution.1010

We then research into the difficulty distribution of the input examples for in-context learning. The1011

observation is shown as follow in addition to the 3 main observations proposed in Sec. 3:1012

Observation 4: LLMs with different capabilities prefer CoT examples of varying difficulties.1013
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Figure 6: The difficulty distribution (first row) and the number of reasoning steps distribution (second row).

In our further exploration of the optimal selection of CoT examples for improve mathematical reasoning, 1014

we observe that LLMs of different capabilities exhibit preferences for CoT examples of varying difficulty 1015

levels. As Table 13 shows, we categorize each CoT example in the MRD3-Evol dataset by difficulty level. 1016

We then select the top 16 CoT examples from different groups as few-shot examples for LLaMA2 models. 1017

Results show LLaMA2-7b prefers CoT examples with a difficulty level of 3-4, while LLaMA2-13b, 1018

more capable, prefers those with a difficulty level of 4 or above. This aligns with intuition: for instance, 1019

when assisting a middle school student with math problems, it is more beneficial to provide examples of 1020

moderate difficulty that they can comprehend, whereas for a high school student, examples with a higher 1021

level of difficulty are more useful. 1022

Table 13: Smaller, less capable LLMs favor simpler CoT examples, while larger ones prefer more complex ones.

Model Difficulty (≤ 3) Difficulty (3-4) Difficulty (≥ 4)

LLaMA2-7B 14.49 15.39 14.86
LLaMA2-13B 23.81 25.32 25.47

In our evaluation of CoT-Influx with various LLMs, we found that the shot selection results are 1023

consistent with our observation. The average difficulty score and number of reasoning steps for the 1024

examples selected by LLaMA2-70B pruner are 3.57 and 3.04, which are higher than the results of 1025

LLaMA2-13B are 3.51 and 2.98. The empirical results further support our assumption that LLMs with 1026

larger size prefers harder examples than smaller-scale LLMs. 1027

B.4 Evolution example 1028

We give an example of a math questions and then show the evolved results of the questions and answers. 1029

The evolved results follow our instruction given in Sec. B.1. As can be seen from the evolution results, 1030

the answer of input questions can be modified (e.g. ground truth answer change from 16 to 12 in 1031

add_constraints). The whole background of the questions can also be replaced (e.g. computation target of 1032

question change from current tickets at the arcade to final points of a game in produce_easier). These 1033

modification and variation improve the diversity of our prompt candidate sets, which are the building 1034

block for the training and reasoning with CoT-Influx. 1035
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Example of prompt evolution

Input example for evolution:
Q: At the arcade Dave won 11 tickets. If he spent 5 tickets on a beanie and later won 10 more tickets, how many
would he have?
A: Dave initially had 11 tickets, spent 5 on a beanie, and later won 10 more, resulting in a total of: 11 - 5 + 10 = 16
tickets. The answer is 16.

Evolution result of add_constraints:
Q: At the arcade, Dave won 11 tickets. If he spent 5 tickets on a beanie, won 10 more tickets, and gave 4 tickets to his
friend, how many would he have?
A: Dave initially had 11 tickets, spent 5 on a beanie, won 10 more, and gave 4 to his friend, resulting in a total of: 11 -
5 + 10 - 4 = 12 tickets. The answer is 12.
Evolution result of deepening:
Q: At the arcade, Dave triumphed in a game and earned 11 tickets. He redeemed 5 of those tickets for a beanie and
subsequently won an additional 10 tickets. What is his final ticket count?
A: Dave started with 11 tickets, used 5 to acquire a beanie, and later added 10 more to his collection, resulting in: 11 -
5 + 10 = 16 tickets. The answer is 16.
Evolution result of increase_reasoning:
Q: Dave won 11 tickets at the arcade and spent 5 on a beanie. Afterward, he won 10 more tickets. Calculate his final
ticket count by first finding the remaining tickets after his purchase and then adding the newly won tickets.
A: Dave had 11 tickets, spent 5, leaving him with 6. Then he won 10 more, resulting in: 6 + 10 = 16 tickets. The
answer is 16.
Evolution result of revise_difficulty:
Q: Dave got 11 tickets at the arcade. He used 5 tickets to get a beanie and then won 10 more tickets. How many
tickets does he have now?
A: Dave started with 11 tickets, used 5 for a beanie, and won 10 more, giving him: 11 - 5 + 10 = 16 tickets. The
answer is 16.
Evolution result of produce_easier:
Q: In a game, Sarah scored 11 points. She lost 5 points in a penalty and then scored 10 more points. What is her final
score?
A: Sarah initially scored 11 points, lost 5 due to a penalty, and scored 10 more, resulting in a total of: 11 - 5 + 10 = 16
points. The answer is 16.

1036

C Pruner Training and Evaluation Details1037

C.1 Detailed algorithm for training data preparation1038

As a supplement to phase 1 in Algorithm 1, we show the algorithm for training data preparation in1039

Algorithm 2. Both the difficulty level and number of reasoning step are involved in the GPT-4-based1040

evaluation. However, we omit the reasoning step in this algorithm as we only use difficulty level in the1041

training set split.1042

Algorithm 2 Training dataset preparation
Input: CoT dataset {xcot

i }Li=1, difficulty threshold dthr,

Output: MRD3 D = {xcot
j , dj}L

MRD3

j=1 , questions set Dquestion, prompt set Dcot

1: ▶ Phase 1: MRD3-Evol Preparation
2: MRD3 dataset D = {}
3: for i = 1 to L do
4: Perform GPT-4 based prompt evolution on xcot

i to get {xcot-E
i,e }e

5: Evaluate difficulty on {xcot-E
i,e }e to get score {di,e}e using GPT-4

6: Append examples {xcot-E
i,e , di,e}e to D

7: end for
8: Prompt set Dcot = {}, question set Dquestion = {}
9: for j = 1 to LMRD3

do
10: if dj ≤ dthr then
11: Append example (xcot

j , dj) to Dquestion
12: else
13: Append example (xcot

j , dj) to Dcot
14: end if
15: end for
16: Return full dataset with evolution D, questions set Dquestion, prompt candidate set Dcot
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C.2 Detailed settings and hyperparameters 1043

The detailed hyper-parameters setting of different LLMs’ pruner are listed in Table 14. Majority of these 1044

hyperparameters are shared across different LLMs. The evolution subset as the prompt candidates for 1045

evaluation are determined by searching the performance of math reasoning on 100 random examples. 1046

Table 14: Detailed hyper-parameters for pruner training scheme of different LLMs.

Model LLaMA2-7B LLaMA2-13B LLaMA2-70B

Epoch 3 3 3
Batch Size 1 1 1

Pruner LLM Base LLaMA2-13B LLaMA2-13B LLaMA2-70B
Input Shot 40 48 48

Input Shot (TopK) 32 32 32
Input Shot (Few-shot) 8 16 16

Optimizer AdamW AdamW AdamW
Weight Decay 1e−2 1e−2 1e−2

Learning Rate 1e−5 1e−5 1e−5

Embedding Extractor BERT-Large (cased) BERT-Large (cased) BERT-Large (cased)
Embedding Size 1024 1024 1024

Tokenizer Padding 512 512 512
Difficulty Threshold dthr 2 2 2

Token Target T 2048 2048 2048
Token Penalty Coefficient w (-1,1) (-1,1) (-1,1)

Selection Repeat trepeat 10 10 5

Evol Subset add_constraints increase_reasoning increase_reasoning
temperature 0.8 0.8 0.8

top_p 0.95 0.95 0.95
top_k 40 40 40

num_beams 1 1 1
max_new_tokens 1 1 1

C.3 Training dynamics 1047

We visualize the RL training dynamics of the LLaMA2-13B pruner in Figure 7 including the LLM loss 1048

reward 1
1+LLLM

, prediction reward RAcc, moving average of the final pruner reward R, and remaining 1049

token count t. We can see from the results that reward increases steadily with the steps of RL training. 1050

The number of remaining tokens decreases rapidly in early steps and then oscillates around the token 1051

target. Since our prediction reward RAcc are discrete value of {−0.1, 0, 1}, the oscillation phenomenon 1052

are more obvious compared with other reward term. This highlight the effectiveness of question repetition 1053

and using Exponential Moving Average (EMA) of final reward to suppress this oscillation. 1054
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Figure 7: RL training dynamics of the LLaMA2-13B pruner.

C.4 Detailed introduction of dataset for evaluation 1055

We introduce the details of the datasets we used for evaluation as follows: 1056

• GSM8K (Cobbe et al., 2021) is a math reasoning dataset consisting high quality linguistically diverse 1057

grade school math word problems created by human problem writers. There are 7473 training examples 1058
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and 1319 validation examples in the dataset.1059

• SVAMP (Patel et al., 2021) representing Simple Variations on Arithmetic Math word Problems that1060

conduct question sensitivity variation, reasoning ability variation, and structural variation on existing1061

math datasets. There is a total of 1000 examples and all of them are used for evaluation in our settings.1062

• MultiArith (Roy and Roth, 2015) is a collection of multi-step arithmetic problems with 600 examples1063

and all of them are used for evaluation in our settings.1064

• AddSub (Hosseini et al., 2014) is a dataset consisting of addition and subtraction problems with 3951065

examples and all of them are used for evaluation in our settings.1066

• SingleEq (Koncel-Kedziorski et al., 2015) consists grade-school algebra word problems that map to1067

single equations with varying length. Every equation may involve multiple math operations including1068

multiplication, division, subtraction, and addition over non-negative rational numbers and only one1069

variable. There are 508 problems, 1117 sentences, and 15292 words in the dataset.1070

C.5 Rule-based prompt reconstruction1071

To make sure the input prompt for inference remain structurally intact, we apply a rule-based prompt1072

reconstruction on the input. For example, “\n [question]” will be reconstructed to “\nQ: [question]” and1073

“A: Let’s step by step” will be repaired to “A: Let’s think step by step”. While our pruner has been trained1074

to learn the importance of the structure integrity and consistency, there are still few cases when important1075

tokens are pruned, leading to incorrect reasoning results. The rule-based reconstruction can effectively1076

alleviate the influence of sub-optimal pruning strategy. The important tokens that should be reconstructed1077

include ‘Q:’, ‘A:’, ‘\n’, “Let’s think step by step”, and “The answer is”.1078

D Additional Related Works1079

LLM In-Context Learning In-context learning (ICL) are one of the emerging abilities of LLMs that1080

conduct various downstream tasks with provided few-shot demonstrations. To fully understand optimize1081

the ICL paradigm, previous research mainly focus on the underlying mechanism of ICL or the proper1082

application of ICL. Pioneering research (Von Oswald et al., 2023; Dai et al., 2023) empirically find the1083

similarity between gradient-descent (GD) and ICL, which interprets the trained LLMs are meta-optimizer1084

that can learn the examples in context in forward pass. More recently, Wang et al. (2023a) propose a1085

hypothesis that label words in examples serve as anchors in ICL, and the anchors can help aggregate and1086

distribute the task-relevant information flow. To better utilize ICL, previous research also research on the1087

input format (Yoo et al., 2022) and order of examples (Min et al., 2022). Our work falls in the second1088

category that shows the compressed examples are an optimal choice for the input of ICL.1089

LLM Context Window Extension Recently, there has been rising interests in extending the context1090

window of existing pre-trained LLMs. Common approaches include augmenting external memory1091

modules (Tworkowski et al., 2023; Wang et al., 2023c), which add extra modules to memorize long past1092

contexts but requires complex training, manipulating attention mechanisms (Han et al., 2023; Xiao et al.,1093

2023) or the positional encoding (Chen et al., 2023a; Peng et al., 2023b). However, these require LLM1094

modifications. Our method, applicable to black-box LLMs and extendable context windows, is orthogonal1095

to this direction.1096

Comparison of CoT-Influx with Previous Methods We summarize the advantage of our CoT-Influx1097

compared with previous prompting strategies in Table 15. Gradient-free indicates the methods do not1098

need to backward through LLMs. Unlimited-token represents the original input prompt for these methods1099

are not limited by the context window length of LLMs. Difficulty-aware refers to whether the method1100

take the difficulty of problems into the consideration of their prompt design. Dynamic #Shots means we1101

do not need to setup a target shot number and the pruned input shot numbers are different across various1102

questions. Our CoT-Influx demonstrate significant advantage over all previous methods.1103
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Table 15: Comparison of the advantage of different prompting strategies.

Methods Frozen LLMs Automated Gradient-free Unlimited-token Transferable Interpretable Difficulty-aware Dynamic #Shots

Fine-Tuning % ! % % % % % %

Manual Prompt ! % ! % ! ! % %

Soft Prompt Tuning ! ! % % % % % %

Prompt Retrieval ! ! ! % ! ! % %

AutoPrompt (Shin et al., 2020) ! ! % % ! ! % %

RLPrompt (Deng et al., 2022) ! ! ! % ! ! % %

Context Extension ! ! ! ! ! ! % %

LLMLingua (Jiang et al., 2023) ! ! ! ! ! ! % %

CoT-Influx(Ours) ! ! ! ! ! ! ! !

E Prompt Settings 1104

In this section, we show the prompt we used in this work for reproducibility. The prompt for evaluating 1105

the difficulty and reasoning steps of each examples are: 1106

Prompt for difficulty and reasoning steps estimation:

We would like you to evaluate and rate the difficulty and complexity of the following question. You should first give
an overall score on a scale of 1 to 10, where a higher score indicates higher difficulty and complexity. You should
then evaluate the answer and give how many reasoning steps are in the answer. You must just give the score and the
number of reasoning steps without any other reasons. The reply format should be ’Score’: [score], ’Steps: [#steps]’
## Question: {Given question}
## Answer: {Given answer}
## Evaluation:

1107

The prompt for GPT-4 Compression on prompts are shown as follow. Note that we encode the 1108

restriction of token limits in both the prompt and API by setting the max_new_token. However, the prompt 1109

compression results still fail to follow the restrictions for most cases. This disadvantages of uncontrollable 1110

token length is also discussed in previous work (Jiang et al., 2023). 1111

Prompt for GPT-4-based compression:

Please compress the following examplars for few-shot in-context learning on math reasoning. The complete examplars
could be removed if they are redundant and the tokens within each examplars can also be pruned. ’The answer is’ in
each examplar should be retained and please keep less than {Given token} tokens in total:
{Given examplars}

1112
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