

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EASIER PAINTING THAN THINKING: CAN TEXT-TO-IMAGE MODELS SET THE STAGE, BUT NOT DIRECT THE PLAY?

Anonymous authors

Paper under double-blind review



Figure 1: **Overview of our T2I-COREBENCH.** (a) Our benchmark comprehensively covers two fundamental T2I capabilities (*i.e.*, **composition** and **reasoning**), further refined into 12 dimensions. (b-e) Our benchmark poses greater challenges to advanced T2I models, with higher compositional density than DPG-Bench [Hu et al. \(2024\)](#) and greater reasoning intensity than R2I-Bench [Chen et al. \(2025b\)](#), enabling clearer performance differentiation across models under real-world complexities. Each image is scored based on the ratio of correctly generated elements.

ABSTRACT

Text-to-image (T2I) generation aims to synthesize images from textual prompts, which jointly specify what must be shown and imply what can be inferred, which thus correspond to two core capabilities: **composition** and **reasoning**. Despite recent advances of T2I models in both composition and reasoning, existing benchmarks remain limited in evaluation. They not only fail to provide comprehensive coverage across and within both capabilities, but also largely restrict evaluation to low scene density and simple one-to-one reasoning. To address these limitations, we propose **T2I-COREBENCH**, a comprehensive and complex benchmark that evaluates both composition and reasoning capabilities of T2I models. To ensure comprehensiveness, we structure composition around scene graph elements (*instance*, *attribute*, and *relation*) and reasoning around the philosophical framework of inference (*deductive*, *inductive*, and *abductive*), formulating a 12-dimensional evaluation taxonomy. To increase complexity, driven by the inherent real-world complexities, we curate each prompt with higher compositional density for composition and greater reasoning intensity for reasoning. To facilitate fine-grained and reliable evaluation, we also pair each evaluation prompt with a checklist that specifies individual *yes/no* questions to assess each intended element independently. In statistics, our benchmark comprises 1,080 challenging prompts and around 13,500 checklist questions. Experiments across 28 current T2I models reveal that their composition capability still remains limited in high compositional scenarios, while the reasoning capability lags even further behind as a critical bottleneck, with all models struggling to infer implicit elements from prompts.

054
055
056
057

1 INTRODUCTION

058
059
060
061
062
063
064
065
Recent developments in text-to-image (T2I) generative models are advancing toward high-quality
image generation that adheres to user instructions. In real-world applications, textual prompts are
usually concise yet underspecified [Hutchinson et al. \(2022\)](#); [Zhong et al. \(2023\)](#), conveying not only
explicit descriptions about what must be depicted, but also implicit contextual cues for generating
coherent and plausible images. These correspond to two fundamental capabilities required for faith-
ful T2I generation: **composition** and **reasoning**. As shown in Fig. 1, **composition** aims to correctly
generate all explicit visual elements in the prompt, including instances (e.g., *tomato*), attributes (e.g.,
wooden), and relations (e.g., *next to*); **reasoning** aims to generate visual elements implicitly inferred
from the prompt (e.g., *a ripe tomato is squeezed tightly in a fist → the tomato juice bursts out*).066
067
068
069
070
071
072
073
074
Predominant T2I models, primarily based on diffusion [Ho et al. \(2020\)](#); [Ho & Salimans \(2021\)](#);
[Peebles & Xie \(2023\)](#) and autoregressive paradigms [Sun et al. \(2024\)](#); [Li et al. \(2024b\)](#), demonstrate
strong performance on simple compositional tasks [Huang et al. \(2023a\)](#); [Ghosh et al. \(2023\)](#) but still
struggle with complex compositional tasks involving multiple visual elements [Hu et al. \(2024\)](#); [Wu
et al. \(2024\)](#) as well as reasoning tasks [Niu et al. \(2025\)](#); [Chen et al. \(2025b\)](#). Recently, T2I models
enhanced with large language models (LLMs) or multimodal LLMs (MLLMs) [Chameleon \(2024\)](#);
[Xie et al. \(2024\)](#); [Chen et al. \(2025c\)](#); [Deng et al. \(2025a\)](#); [Wu et al. \(2025a\)](#) have emerged, which
offer stronger text modeling and cross-modal alignment. This paradigm brings new expectations to
handle more complex scenarios involving high compositional density and reasoning intensity.075
076
077
078
079
080
081
082
083
084
085
086
087
088
Given these developments and challenges, it is increasingly important to establish a fair and holistic
evaluation of T2I models that systematically assesses both composition and reasoning capabilities.
Early efforts [Huang et al. \(2023a\)](#); [Ghosh et al. \(2023\)](#); [Li et al. \(2024a\)](#) focus on evaluating basic
composition capabilities with a limited number of visual elements. Subsequent benchmarks further
extend the number of visual elements in composition (see Fig. 1 (b)) [Hu et al. \(2024\)](#); [Wu et al.
\(2024\)](#); [Zhou et al. \(2025\)](#) and evaluate certain reasoning capabilities (e.g., behavioral reasoning in
Fig. 1 (d)) [Fu et al. \(2024\)](#); [Niu et al. \(2025\)](#); [Chen et al. \(2025b\)](#). These existing benchmarks exhibit
two limitations. (1) **Lack of comprehensiveness**: Most benchmarks focus on either composition or
reasoning in isolation, and their underlying taxonomies are largely heuristic, which prevents them
from systematically capturing all relevant evaluation dimensions. (2) **Lack of complexity**: While
some benchmarks increase the number of visual elements in composition, they remain limited to
low scene density and fail to reflect the compositional complexity of real-world applications (e.g.,
generate a bustling modern kitchen in Fig. 1 (c)). More importantly, current reasoning-oriented
benchmarks mainly target single-step inference (e.g., one behavior → one outcome), thus overlook-
ing the multi-step causal chains inherent to real-world scenarios (see Fig. 1 (e)).089
090
091
092
093
094
095
096
097
098
099
100
101
To address the above limitations, we introduce **T2I-COREBENCH**, a **Composition and Reasoning**
Benchmark for systematic evaluation of T2I models. **To ensure comprehensiveness**, as illustrated in
Fig. 1 (a), our taxonomy jointly covers composition and reasoning. For composition, we follow the
scene graph structure [Johnson et al. \(2015\)](#); [Chang et al. \(2021\)](#) and define three basic dimensions to
fully depict a compositional scene: *instance*, *attribute*, and *relation*. We also include *text rendering*
to capture the unique challenges of generating texts with precise content and layout. For reasoning,
we adopt a tripartite framework of *deductive*, *inductive*, and *abductive* reasoning, as well-established
in philosophical literature [Peirce \(1934\)](#); [Zalta et al. \(2003\)](#); [Godfrey-Smith \(2009\)](#), and refine it into
eight dimensions tailored to T2I scenarios. **To increase complexity**, as summarized in Table 1, we
design each dimension with higher compositional density and increased reasoning difficulties com-
pared with existing benchmarks. For composition, we increase the number of visual elements (~ 20
per prompt) to simulate semantically dense scenarios. For reasoning, complexity is introduced along
one-to-many (i.e., one behavior → multiple outcomes) and many-to-one (e.g., multiple premises →
one conclusion) inferences, reflecting the intricate reasoning patterns in real-world applications.102
103
104
105
106
107
To enable fine-grained and reliable evaluation, each textual prompt is paired with a checklist of in-
dependent *yes/no* questions, assessing whether the generated image faithfully captures both explicit
and implicit visual elements. The generated images are then evaluated against these checklists by
[Gemini 2.5 Flash Google \(2025a\)](#), an MLLM-based evaluator selected for its strong alignment with
human judgments and efficiency at scale. In total, T2I-COREBENCH encompasses 12 well-defined
dimensions, with 1,080 challenging prompts and approximately 13,500 checklist questions. In ex-
periments, we benchmark 28 current T2I models across architectures and scales, including diffusion

108
109
110
111
112
113
114
115

Table 1: T2I benchmark comparison. Our T2I-COREBENCH comprehensively covers 12 eval-
120 uation dimensions spanning both **composition** (**MI** Multi-Instance, **MA** Multi-Attribute, **MR** Multi-
121 Relation, **TR** Text Rendering) and **reasoning** (**LR** Logical Reasoning, **BR** Behavioral Reasoning,
122 **HR** Hypothetical Reasoning, **PR** Procedural Reasoning, **GR** Generalization Reasoning, **AR** Ana-
123 logical Reasoning, **CR** Commonsense Reasoning, and **RR** Reconstructive Reasoning). The symbols
124 denote different coverage levels: ● indicates high compositional (visual elements > 5) or reasoning
125 (one-to-many or many-to-one inference) complexity, ○ indicates simple settings (visual elements
126 ≤ 5 or one-to-one inference), and ○ indicates no coverage.

Benchmark	Reasoning											
	Composition				Deductive				Inductive		Abductive	
	MI	MA	MR	TR	LR	BR	HR	PR	GR	AR	CR	RR
T2I-CompBench Huang et al. (2023a)	●	○	●	○	○	○	○	○	○	○	○	○
GenEval Ghosh et al. (2023)	●	○	●	○	○	○	○	○	○	○	○	○
GenAI-Bench Li et al. (2024a)	●	○	●	○	○	○	○	○	○	○	○	○
DPG-Bench Hu et al. (2024)	●	●	●	○	○	○	○	○	○	○	○	○
ConceptMix Wu et al. (2024)	●	○	●	○	○	○	○	○	○	○	○	○
TIIF-Bench Wei et al. (2025)	●	○	●	○	○	○	○	○	○	○	○	○
LongBench-T2I Zhou et al. (2025)	●	●	●	○	○	○	○	○	○	○	○	○
PRISM-Bench Fang et al. (2025)	●	○	●	●	○	○	○	○	○	○	○	○
UniGenBench Wang et al. (2025)	●	○	●	●	●	○	○	○	○	○	●	○
Commonsense-T2I Fu et al. (2024)	○	○	○	○	○	○	○	○	○	○	●	○
PhyBench Meng et al. (2024)	○	○	○	○	○	○	●	○	○	○	●	○
WISE Niu et al. (2025)	○	○	○	○	○	○	○	○	○	○	●	○
T2I-ReasonBench Sun et al. (2025)	○	○	○	●	○	○	○	○	○	○	●	○
R2I-Bench Chen et al. (2025b)	○	○	●	○	●	●	●	●	○	○	●	●
OneIG-Bench Chang et al. (2025)	●	●	●	●	○	○	○	○	○	○	●	○
T2I-COREBENCH (Ours)	●	●	●	●	●	●	●	●	●	●	●	●

135
136
137
138
139
140

models, autoregressive models, and unified models. Our study shows that composition capability
141 in T2I generation is steadily improving, with open-source models gradually narrowing the gap with
142 closed-source counterparts, whereas the overall performance remains inadequate in high composi-
143 tional scenarios. Most notably, reasoning capability lags significantly behind: even the state-of-the-
144 art (SOTA) models fail to reliably infer implicit visual elements from prompts, making reasoning
145 the central bottleneck for advancing T2I generation. Our contributions can be concluded as follows:

146
147
148
149
150

- We introduce T2I-COREBENCH, the first benchmark that jointly emphasizes comprehensiveness
151 and complexity in T2I evaluation, covering both composition and reasoning capabilities through
152 1,080 challenging prompts across 12 dimensions.
- We pair each prompt with a human-verified checklist of individual *yes/no* questions, for a total of
153 around 13,500 questions across the benchmark. This facilitates fine-grained and reliable assess-
154 ment of whether the generated images faithfully capture both explicit and implicit elements.
- We conduct comprehensive evaluations on 28 current T2I models and conclude valuable insights,
155 revealing that composition, though steadily improving, still remains unsolved in complex scenar-
156 ios, whereas reasoning lags markedly behind and stands as the central bottleneck.

2 RELATED WORKS

157
158
159
160
161

Text-to-Image Generative Models. In recent years, T2I generation has witnessed significant ad-
162 vancements, with its rapid development largely driven by the emergence of diffusion models [Ho et al. \(2020\)](#); [Ho & Salimans \(2021\)](#); [Rombach et al. \(2022\)](#). Predominant models, including the Sta-
163 ble Diffusion series [Esser et al. \(2024\)](#), the Flux series [Black Forest Labs \(2024\)](#), and the DALL-E
164 series [Ramesh et al. \(2021\)](#), have led to substantial improvements in compositional text-image align-
165 ment. To better align with the textual modality at the token level, autoregressive [Sun et al. \(2024\)](#); [Li et al. \(2024b\)](#); [Tian et al. \(2024\)](#); [Han et al. \(2025\)](#) and unified models [Chameleon \(2024\)](#); [Xie et al. \(2024\)](#); [Chen et al. \(2025c\)](#); [Deng et al. \(2025a\)](#); [Chen et al. \(2025a\)](#); [Wu et al. \(2025a\)](#) have emerged
166 in an LLM-like architecture, demonstrating remarkable performance in composition tasks as well
167 as reasoning tasks due to their autoregressive paradigm. Meanwhile, some approaches [Guo et al.](#)

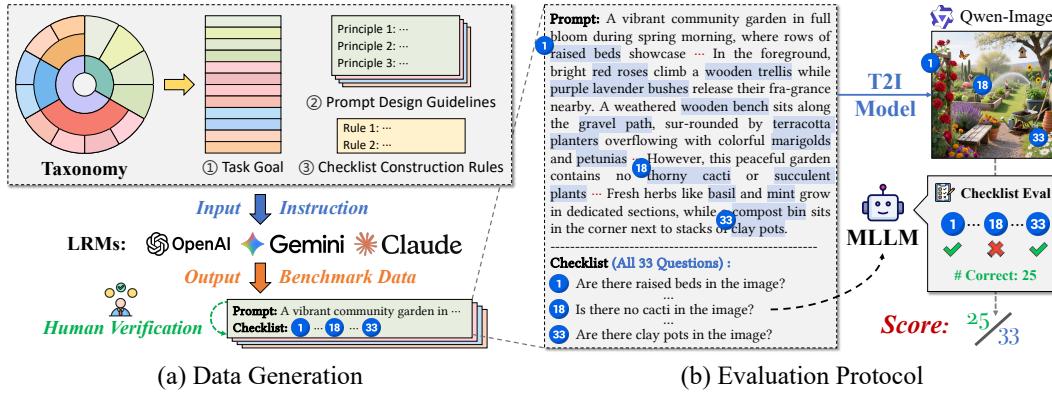


Figure 2: Overview of our T2I-CoREBENCH pipeline.

(2025b); Li et al. (2025); Liao et al. (2025); Duan et al. (2025) are exploring integrating reasoning into T2I generation to handle more complex and controllable tasks.

Text-to-Image Evaluation Benchmarks. Driven by the explicit or implicit nature of T2I generation, which requires both *composition* and *reasoning*. Early T2I benchmarks Huang et al. (2023a); Ghosh et al. (2023); Li et al. (2024a) primarily target composition tasks with explicit visual elements. Subsequent benchmarks Hu et al. (2024); Wu et al. (2024); Wei et al. (2025); Zhou et al. (2025); Fang et al. (2025) complicate the prompt with more detailed visual elements, yet still fall short in capturing the real-world challenge of high compositional density. In parallel, reasoning-oriented benchmarks Fu et al. (2024); Meng et al. (2024); Niu et al. (2025); Chen et al. (2025b); Chang et al. (2025); Sun et al. (2025); Wang et al. (2025) are gaining prominence as T2I models progress in reasoning tasks, including reasoning dimensions such as commonsense, logical, and causality. However, they primarily focus on simple one-to-one inference, overlooking more complex multi-step reasoning prevalent in real-world scenarios. Furthermore, their taxonomy of both capabilities is mostly heuristic, thereby failing to cover all relevant reasoning dimensions in evaluation.

3 T2I-CoREBENCH

In this section, we introduce T2I-CoREBENCH as shown in Fig. 2, a benchmark designed to evaluate both *composition* and *reasoning* capabilities under real-world complexities, including high compositional density and reasoning intensity. We first formulate a comprehensive T2I evaluation taxonomy with complexity specified for each dimension in Sec. 3.1. Building upon this taxonomy, we then outline the benchmark construction details in Sec. 3.2 and statistical analyses in Sec. 3.3.

3.1 EVALUATION DIMENSIONS

To address the limitations of previous benchmarks, which evaluate composition and reasoning in isolation using heuristic taxonomies, we formulate a comprehensive evaluation taxonomy that unifies both capabilities and reflects real-world generation challenges, as shown in Table 2.

Composition. Inspired by scene graph structures Johnson et al. (2015); Chang et al. (2021), a visual scene (*e.g.*, an image) can be fully described by three components: instances, attributes, and relations. Based on this, we define three corresponding dimensions under real-world complexities, *i.e.*, **MI** *Multi-Instance*, **MA** *Multi-Attribute*, and **MR** *Multi-Relation*, to evaluate compositional capabilities. Moreover, we introduce **TR** *Text Rendering* as a separate dimension to account for its unique complexity in content and layout accuracies of texts, as shown in Fig. 3 (a).

Reasoning. In T2I generation, prompts inevitably involve implicit visual elements, making reasoning a fundamental capability. To ensure a comprehensive evaluation, we adopt a tripartite framework of reasoning in philosophical literature Peirce (1934); Zalta et al. (2003); Godfrey-Smith (2009), *i.e.*, *deductive*, *inductive*, and *abductive* reasoning. This framework provides a rigorous foundation for reasoning types, on which we define eight reasoning dimensions tailored to T2I scenarios.

216
 217
 218
 219
 Table 2: **Definition of the 12 evaluation dimensions in our T2I-COREBENCH.** Each dimension
 is described with its definition, along with a complexity number that quantifies the **bolded** element,
 driven by the density of visual elements in composition and the intensity of inferences (one-to-many
 or many-to-one) in reasoning. More detailed descriptions can be found in Appx. A.1.

	Dimension	Definition	#Complexity
Composition	MI Multi-Instance	Generate multiple <i>instances</i> in a single image.	~ 25
	MA Multi-Attribute	Bind multiple <i>attributes</i> to a single subject.	~ 20
	MR Multi-Relation	Connect multiple <i>relations</i> within a unified scene.	~ 15
	TR Text Rendering	Render multiple <i>texts</i> with content fidelity and layout accuracy.	~ 15
Reasoning	LR Logical Reasoning	Solve <i>premise</i> -based puzzles through multi-step inference.	~ 5
	BR Behavioral Reasoning	Infer <i>visual outcomes</i> from initial states and subsequent behaviors.	~ 8
	HR Hypothetical Reasoning	Apply counterfactual premises and propagate their effects across <i>items</i> .	~ 10
	PR Procedural Reasoning	Reason over ordered multi-step <i>procedures</i> to derive the final scene.	~ 5
	GR Generalization Reasoning	Induce <i>rules</i> from examples and apply them to complete new scenes.	~ 8
	AR Analogical Reasoning	Transfer relational <i>rules</i> from a source domain to a target domain.	~ 5
	CR Commonsense Reasoning	Complete scenes by inferring unstated <i>commonsense elements</i> .	~ 5
	RR Reconstructive Reasoning	Reconstruct plausible initial states by tracing backward from <i>observed clues</i> .	~ 5

220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 • *Deductive Reasoning* is the process of drawing conclusions from given premises, ensuring that if the premises hold, the conclusion cannot be false. In T2I scenarios, this means generating images determined by the premises, based on which we define **LR** Logical Reasoning, **BR** Behavioral Reasoning, **HR** Hypothetical Reasoning, and **PR** Procedural Reasoning, as shown in Fig. 3 (b).

• *Inductive Reasoning* is the process of inferring conclusions from observed regularity patterns rather than from explicit premises. In T2I scenarios, this corresponds to inferring visual elements from underlying structural patterns in examples, based on which we define **GR** Generalization Reasoning and **AR** Analogical Reasoning, as shown in Fig. 3 (c).

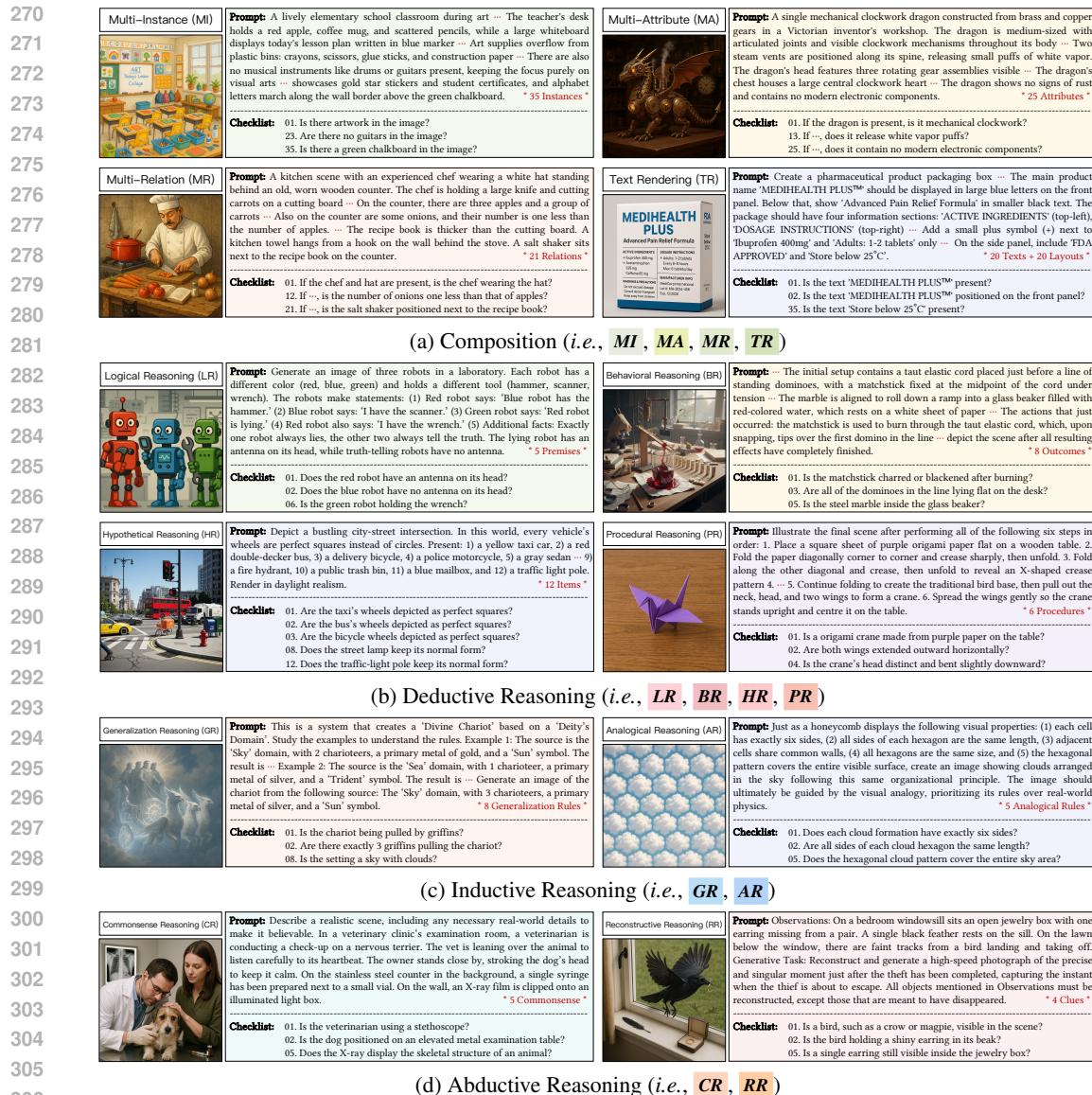
• *Abductive Reasoning* is the process of reconstructing the most plausible explanation from observations. In T2I scenarios, this entails reconstructing hidden causes or unstated commonsense that best explain the visual observations, based on which we define **CR** Commonsense Reasoning and **RR** Reconstructive Reasoning, as shown in Fig. 3 (d).

250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 By definition, each dimension is defined to target a distinct aspect of composition or reasoning in T2I tasks, ensuring clear conceptual separation across the taxonomy and jointly offering a comprehensive coverage of the evaluation space (more details are presented in Appx. A).

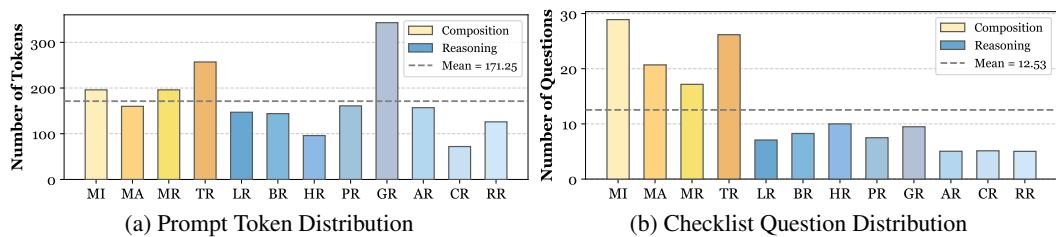
3.2 BENCHMARK CONSTRUCTION

250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 Building upon the evaluation dimensions defined in Sec. 3.1, we now construct T2I-COREBENCH through a standardized pipeline, as shown in Fig. 2. In our setup, each evaluation sample consists of a prompt, which guides T2I generation, and a checklist, which enables point-by-point verification of the generated visual elements. To systematically generate benchmark data across all dimensions, we design a unified instruction template, including: (1) *Task Goal*, outlining the evaluation objective of each dimension as described in Sec. 3.1; (2) *Prompt Design Guidelines*, specifying principles for constructing diverse and complex prompts as detailed in Sec. A.1; and (3) *Checklist Construction Rules*, defining how to decompose the target scene into atomic, objective, and verifiable questions. All samples undergo rigorous human verification to ensure quality and reliability in Appx. A.3.

262
 263
 264
 265
 266
 267
 268
 269
Prompt Design for Generation. Since our benchmark features prompts with high compositional density and reasoning intensity, previous strategies prove inadequate: human-written prompts [Otani et al. \(2023\)](#); [Niu et al. \(2025\)](#); [Chang et al. \(2025\)](#) are labor-intensive and lack scalability, while template-based prompts [Huang et al. \(2023a\)](#); [Ghosh et al. \(2023\)](#); [Wu et al. \(2024\)](#) are rigid and limited in scene diversity. To overcome these issues, we leverage Large Reasoning Models (LRMs) to assist data construction, exploiting their broad knowledge to cover diverse scenes [Lee et al. \(2023\)](#) and strong reasoning capability to produce complex prompts [Zhong et al. \(2024\)](#); [Guo et al. \(2025a\)](#). In practice, the *Prompt Design Guidelines* specify how to ensure sufficient diversity, semantic density, and reasoning complexity while keeping the prompt coherent, as detailed in Appx. A.2.



383 **Figure 3: Examples from T2I-CoREBENCH illustrating (a) composition and (b-d) reasoning capabilities**
384 **across 12 dimensions (see Appx. C.5 for complete versions). Each dimension is designed to incorporate complexity tailored to its unique characteristics, allowing more challenging evaluation under real-world scenarios, and supports fine-grained evaluation with human-verified checklists.**



387 **Checklist Design for Evaluation.** Evaluating generations in complex scenarios requires more than
388 existing metrics: (1) CLIPSScore Hessel et al. (2021) fails to account for multiple explicit elements
389 and implicit reasoning outcomes; and (2) direct MLLM-based scoring Li et al. (2024a) requires

324 the model itself to infer intended outcomes with accumulated errors. To facilitate fine-grained and
 325 reliable evaluation of both explicit and implicit visual elements, we follow previous visual-question-
 326 answering-based evaluation paradigms [Hu et al. \(2023\)](#); [Yarom et al. \(2023\)](#); [Cho et al. \(2023b;a\)](#),
 327 by pairing each prompt with a checklist of independent yes/no questions (with the correct answer
 328 always “Yes”). Specifically, we define a set of *Checklist Construction Rules* to decompose the target
 329 scene into atomic questions covering instances, attributes, relations, and reasoning outcomes in a
 330 verifiable manner, as detailed in Appx. A.2.

331 **Evaluation Protocol.** Following previous protocols [Hu et al. \(2024\)](#); [Chen et al. \(2025b\)](#), we intro-
 332 duce an MLLM evaluator, *i.e.*, Gemini 2.5 Flash [Google \(2025a\)](#), to perform automatic evaluation by
 333 framing each item as a binary visual question answering task (*i.e.*, scored as “0” for “no” and “1” for
 334 “yes”) in Fig. 2 (b). This protocol leverages the atomic checklist design, where each question targets
 335 an unambiguous visual element, ensuring inherent compatibility with MLLM-based evaluation.

337 3.3 STATISTICS AND ANALYSIS

339 To mitigate stylistic homogeneity and potential bias arising from relying on a single LRM (*e.g.*, using
 340 the same model to generate prompts and produce images often yields inflated performance since they
 341 share similar training data), we employ three SOTA LRM for data construction, including Claude
 342 Sonnet 4 [Anthropic \(2025\)](#), Gemini 2.5 Pro [Google \(2025a\)](#), and OpenAI o3 [OpenAI \(2025\)](#). In
 343 statistics, for each of the 12 evaluation dimensions, we collect 30 samples with each of the three
 344 LRM, resulting in a total of 12 dimensions \times 30 prompts \times 3 LRM = 1,080 generation prompts
 345 and 13,536 questions in evaluation checklists, as detailed in Fig. 4.

347 4 EXPERIMENTS

349 4.1 EXPERIMENTAL SETUP

351 **Evaluated Models.** We evaluate 28 T2I models across architectures and parameter scales, covering
 352 both open- and closed-models. The open-source pool includes 21 models: (1) **Diffusion Models:**
 353 SD-3-Medium, SD-3.5-Medium, SD-3.5-Large [Esser et al. \(2024\)](#), FLUX.1-schnell, FLUX.1-dev,
 354 FLUX.1-Krea-dev [Black Forest Labs \(2024\)](#), PixArt- α [Chen et al. \(2023\)](#), PixArt- Σ [Chen et al.](#)
 355 (2024), HiDream-I1 [Cai et al. \(2025\)](#), Qwen-Image [Wu et al. \(2025a\)](#); (2) **Autoregressive Models:**
 356 Infinity-8B [Han et al. \(2025\)](#), GoT-R1-7B [Duan et al. \(2025\)](#); and (3) **Unified Models:** BAGEL,
 357 BAGEL w/ Think [Deng et al. \(2025b\)](#), show-o2-1.5B, show-o2-7B [Xie et al. \(2025\)](#), Janus-Pro-
 358 1B, Janus-Pro-7B [Chen et al. \(2025c\)](#), BLIP3o-4B, BLIP3o-8B, [Chen et al. \(2025a\)](#) OmniGen2-
 359 7B [Wu et al. \(2025b\)](#). We further include 7 **closed-source commercial models**, including: Seedream
 360 3.0 [Gao et al. \(2025\)](#), Seedream 4.0 [ByteDance \(2025\)](#), Gemini 2.0 Flash [Google \(2024\)](#), Nano
 361 Banana [Google \(2025b\)](#), Imagen 4, Imagen 4 Ultra [Google \(2025c\)](#), and GPT-Image [OpenAI \(2025\)](#).

362 **Evaluation Details.** To facilitate automatic evaluation, we adopt Gemini 2.5 Flash [Google \(2025a\)](#)
 363 as the MLLM evaluator, which exhibits strong vision-language performance aligned with humans
 364 (see Appx. C.1) at relatively low cost, making it well-suited for large-scale evaluation. Considering
 365 the possible unavailability of closed-source APIs in the future, we also report evaluation results with
 366 the open-source MLLMs in Appx. C.2. In evaluation, we report the mean score across all samples
 367 within each dimension as its final score for that dimension. More details can be found in Appx. B.

369 4.2 MAIN RESULTS

371 As shown in Table 3, we evaluate a wide range of T2I models on our T2I-COREBENCH, revealing
 372 valuable insights into their strengths, weaknesses, and advancements, particularly in handling real-
 373 world scenarios that require high compositional density and reasoning intensity:

374 **(1) Composition shows steady progress but remains unsolved, particularly in complex scenar-
 375 ios.** Across all models, we observe consistent gains on composition tasks with T2I model iterations.
 376 For composition, the best closed-source model is Seedream 4.0 (86.1), while the best open-source
 377 model is Qwen-Image (78.0), which already approaches advanced closed-source models. Never-
 378 theless, composition in complex scenarios still remains challenging: even Seedream 4.0 struggles

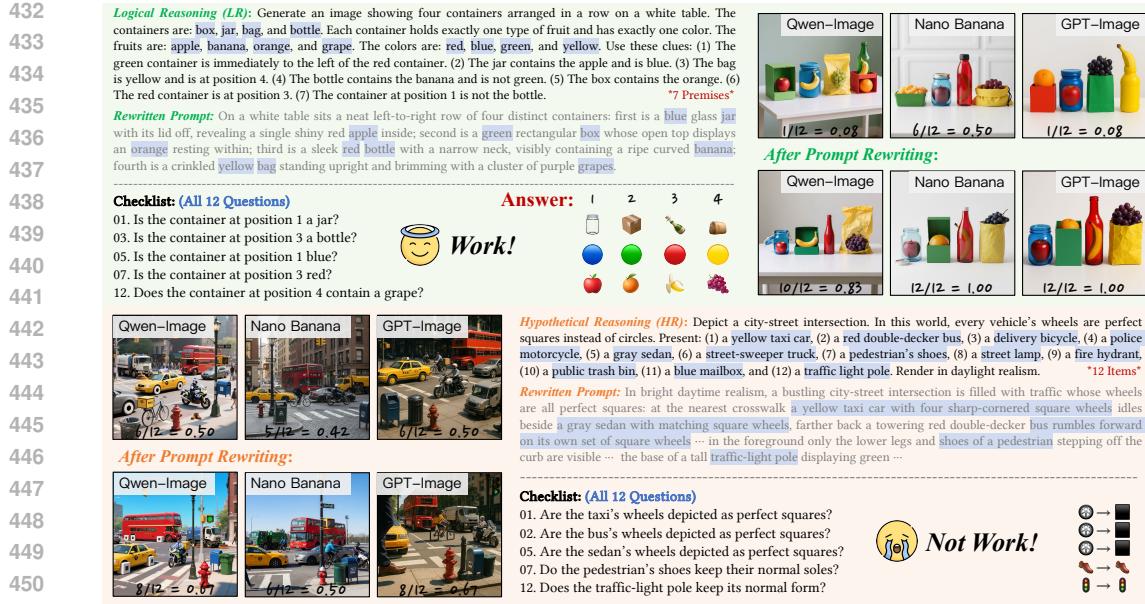
378 Table 3: **Main results on our T2I-COREBENCH** assessing both *composition* and *reasoning* capa-
 379 bilities evaluated by Gemini 2.5 Flash. Mean denotes the mean score for each capability. The best
 380 and second-best results are marked in **bold** and underline for *open*- and *closed*-models, respectively.

Model	Composition						Reasoning						Overall Mean		
	MI	MA	MR	TR	Mean	LR	BR	HR	PR	GR	AR	CR	RR		
<i>Diffusion Models</i>															
SD-3-Medium	59.1	57.9	35.4	9.5	40.4	22.1	21.1	35.3	51.0	37.4	47.3	35.0	27.1	34.5	36.5
SD-3.5-Medium	59.5	60.6	33.1	10.6	41.0	19.9	20.5	33.5	53.7	33.4	52.7	35.6	22.0	33.9	36.3
SD-3.5-Large	57.5	60.0	32.9	15.6	41.5	22.5	22.4	34.2	52.5	35.5	53.0	42.3	25.2	35.9	37.8
FLUX.1-schnell	65.4	63.1	47.6	22.4	49.6	25.0	25.1	40.9	64.7	47.6	54.0	39.6	22.9	40.0	43.2
FLUX.1-dev	58.6	60.3	44.1	31.1	48.6	24.8	23.0	36.0	61.8	42.4	57.2	36.3	30.3	39.0	42.2
FLUX.1-Krea-dev	<u>70.7</u>	<u>71.1</u>	<u>53.2</u>	28.9	<u>56.0</u>	30.3	<u>26.1</u>	<u>44.5</u>	<u>70.6</u>	50.5	<u>57.5</u>	46.3	28.7	<u>44.3</u>	<u>48.2</u>
PixArt- α	40.2	42.2	14.2	3.3	25.0	11.6	11.6	21.1	30.4	22.6	44.4	26.7	20.9	23.7	24.1
PixArt- Σ	47.2	49.7	23.8	2.8	30.9	14.7	18.3	26.7	39.2	25.7	44.9	33.9	24.3	28.5	29.3
HiDream-II	62.5	62.0	42.9	<u>33.9</u>	50.3	<u>34.2</u>	24.5	40.9	53.2	34.2	50.3	46.1	<u>31.7</u>	39.4	43.0
Qwen-Image	81.4	79.6	65.6	85.5	78.0	41.1	32.2	48.2	75.1	56.5	53.3	61.9	26.4	49.3	58.9
<i>Autoregressive Models</i>															
Infinity-8B	63.9	63.4	47.5	10.8	46.4	28.6	25.9	42.9	62.6	47.3	59.2	<u>46.9</u>	24.6	42.3	43.6
GoT-R1-7B	48.8	55.6	32.9	6.1	35.8	22.1	19.2	31.3	49.2	34.8	46.2	32.1	14.6	31.2	32.7
<i>Unified Models</i>															
BAGEL	64.9	65.2	45.8	9.7	46.4	23.4	21.9	33.0	51.6	31.2	50.4	32.4	29.3	34.1	38.2
BAGEL w/ Think	57.7	60.8	37.8	2.2	39.6	25.5	25.4	33.9	58.6	<u>53.5</u>	56.9	41.6	<u>39.8</u>	41.9	41.1
show-o2-1.5B	59.5	60.3	36.1	4.6	40.1	21.6	21.8	37.1	47.7	39.9	44.7	29.0	24.0	33.2	35.5
show-o2-7B	59.4	61.8	38.1	2.2	40.4	23.2	23.1	37.5	51.6	40.9	47.2	32.2	21.3	34.6	36.5
Janus-Pro-1B	51.0	54.5	33.8	2.9	35.5	12.9	18.1	24.7	13.4	7.1	15.1	6.7	6.4	13.0	20.5
Janus-Pro-7B	54.4	59.3	40.9	7.5	40.5	19.8	20.9	34.6	22.4	11.5	30.4	8.7	9.8	19.8	26.7
BLIP3o-4B	45.6	47.5	20.3	0.5	28.5	14.2	17.7	26.3	36.3	37.6	37.8	31.3	24.8	28.2	28.3
BLIP3o-8B	46.2	50.4	24.1	0.5	30.3	14.8	20.7	28.3	39.6	43.4	51.0	35.9	20.4	31.8	31.3
OmniGen2-7B	67.9	64.1	48.3	19.2	49.9	24.7	23.2	43.3	63.1	46.1	54.2	36.5	24.1	39.4	42.9
<i>Closed-Source Models</i>															
Seedream 3.0	79.9	78.0	63.7	47.6	67.3	36.8	33.6	50.3	75.1	54.9	61.7	59.1	31.2	50.3	56.0
Seedream 4.0	91.5	84.5	75.0	93.6	86.1	76.3	54.1	60.7	85.8	85.9	77.1	71.6	47.9	69.9	75.3
Gemini 2.0 Flash	67.5	68.5	49.7	62.9	62.1	39.3	39.7	47.9	69.3	58.5	63.7	51.2	39.9	51.2	54.8
Nano Banana	85.7	77.9	72.6	86.3	80.6	<u>64.5</u>	<u>64.9</u>	<u>67.1</u>	85.2	<u>84.1</u>	<u>83.1</u>	71.3	<u>68.7</u>	<u>73.6</u>	<u>75.9</u>
Imagen 4	82.8	74.3	66.3	<u>90.2</u>	78.4	44.5	51.8	56.8	82.8	79.5	73.3	<u>72.8</u>	<u>65.3</u>	65.9	70.0
Imagen 4 Ultra	90.0	80.0	<u>73.2</u>	86.2	<u>82.4</u>	63.6	<u>62.4</u>	<u>66.1</u>	88.5	82.8	<u>83.0</u>	76.3	60.7	<u>72.9</u>	76.1
GPT-Image	84.1	75.9	72.7	86.4	79.8	59.0	54.8	65.6	<u>87.3</u>	76.5	82.0	70.9	56.1	69.0	72.6

415 with multi-attribute binding (**MA**: 84.5) and multi-relation generation (**MR**: 75.0), highlighting that
 416 fine-grained compositional generation is still an open problem.

417 **(2) Reasoning remains the primary bottleneck, as even the SOTA models struggle with multi-
 418 step inferences.** Despite achieving the highest overall score, Imagen 4 Ultra achieves only 72.9 in
 419 reasoning (9.5 below its composition score), and shows weak performance on several dimensions
 420 (**LR**: 63.6, **BR**: 62.4, **HR**: 66.1, **RR**: 60.7). This gap is even more striking for open-source models:
 421 Qwen-Image reaches 78.0 in composition but only 49.3 in reasoning (28.7 points lower). These
 422 results indicate that current T2I models still struggle to infer implicit visual elements from prompts,
 423 underscoring reasoning as the central unsolved challenge in our benchmark.

424 **(3) Diffusion models show a modest overall edge, and encoder-side instruction understanding
 425 remains crucial.** Among open-source models, diffusion models exhibit a slight average advantage
 426 over autoregressive and unified models, though the variance across models is large and no paradigm
 427 dominates uniformly. Meanwhile, models with stronger instruction encoders tend to score higher on
 428 both composition and reasoning tasks. For example, Qwen-Image benefits from the Qwen2.5-VL
 429 encoder [Bai et al. \(2025\)](#), which provides strong multimodal instruction understanding [Liu et al. \(2023\)](#), and achieves the best overall performance. These findings point to a practical path forward:
 430 prioritize improvements to encoder-side instruction understanding and text–image alignment, while
 431 leveraging either decoder family, with diffusion currently showing a modest empirical edge.



451 **Figure 5: Qualitative examples before and after prompt rewriting.** In some reasoning dimensions
452 (e.g., **LR**), the primary challenge lies in textual reasoning, and prompt rewriting is highly effective.
453 However, tasks such as transforming wheels into squares in **HR** remain difficult even after prompt
454 rewriting, indicating that textual reasoning alone is insufficient and other mechanisms are required.
455

456 **Table 4: Impact of prompt rewriting on reasoning dimensions.** We evaluate two leading open-
457 and closed-source models from Table 3, respectively. The subscripts \uparrow Red and \downarrow Green indicate the
458 relative increase or decrease compared to their original evaluation results before prompt rewriting.

Model	Reasoning (After Prompt Rewriting)								
	LR	BR	HR	PR	GR	AR	CR	RR	Mean
FLUX.1-Krea-dev	64.9 \uparrow 34.6	49.8 \uparrow 23.8	54.9 \uparrow 10.4	77.9 \uparrow 7.3	74.6 \uparrow 24.1	71.1 \uparrow 13.6	61.5 \uparrow 15.1	69.2 \uparrow 40.5	65.5 \uparrow 21.2
Qwen-Image	85.1 \uparrow 44.0	59.6 \uparrow 27.5	64.2 \uparrow 16.0	84.6 \uparrow 9.5	80.3 \uparrow 23.8	71.7 \uparrow 18.5	71.9 \uparrow 10.1	64.5 \uparrow 38.1	72.7 \uparrow 23.4
Nano Banana	86.5 \uparrow 22.0	67.7 \uparrow 2.8	73.7 \uparrow 6.6	88.8 \uparrow 3.6	83.2 \downarrow 0.8	81.4 \downarrow 1.7	72.4 \uparrow 1.1	72.1 \uparrow 3.4	78.2 \uparrow 4.6
GPT-Image	85.2 \uparrow 26.2	71.0 \uparrow 16.3	78.8 \uparrow 13.2	87.1 \downarrow 0.2	82.2 \uparrow 5.7	85.9 \uparrow 3.9	75.1 \uparrow 4.2	73.9 \uparrow 17.8	79.9 \uparrow 10.9

4.3 IMPACT OF PROMPT REWRITING

468 Prompt rewriting entails explicit textual reasoning before synthesis, and the rewritten prompt is then
469 fed to the generator, which has been used in prior T2I methods and evaluations [Betker et al. \(2023\)](#);
470 [Niu et al. \(2025\)](#); [Deng et al. \(2025a\)](#). In our evaluation, BAGEL w/ Think [Deng et al. \(2025a\)](#)
471 enables its encoder (*i.e.*, LLM) to conduct intermediate reasoning on the original prompt and rewrite
472 it with explicit visual elements, such as attribute changes, action outcomes, and implicit cues. The
473 rewritten instruction is then passed to the image generator. Compared with its baseline BAGEL
474 in Table 3, BAGEL w/ thinking improves mean reasoning from 34.1 to 41.9 and achieves leading
475 open-source scores on **GR** (53.5) and **RR** (39.8), but its composition drops from 46.4 to 39.6. These
476 gains come from inferring implicit visual elements through intermediate reasoning, while the drop
477 shows that such reasoning may omit explicit elements and divert attention from direct composition.

478 To study rewriting in a model-agnostic way, we adopt OpenAI o3 [OpenAI \(2025\)](#) to rewrite original
479 prompts (Appx. B.3) and evaluate the effect across models in T2I-COREBENCH in Table 4.
480 We conclude the following insights: **(1) Native reasoning capability constitutes a key direction**
481 **for future T2I models.** Weaker models (*e.g.*, FLUX.1-Krea-dev, Qwen-Image) achieve greater
482 improvements over 20 points, as rewriting compensates for their limited native reasoning capability.
483 In contrast, stronger models (*e.g.*, Nano Banana, GPT-Image) show marginal or negative effects,
484 since their native reasoning already captures such benefit. **(2) Unified models provide intrinsic ad-**
485 **vantages for T2I reasoning.** GPT-Image and Nano Banana, both unified models for native image
486 generation, consistently outperform most counterparts across reasoning dimensions even without
487 large rewriting gains. This indicates that such architectures not only better internalize textual reason-

486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 ing but also support more cohesive text–image integration, offering inherent advantages and future promise for integrated reasoning. **(3) Textual reasoning only is insufficient in our benchmark.** Despite overall improvements, prompt rewriting cannot fully address all T2I reasoning scenarios, *e.g.*, the best model GPT-Image scoring below 80 on **BR**, **HR**, **CR**, and **RR**. This is because T2I generation is inherently multimodal, often requiring multimodal reasoning beyond textual inference, while prompt rewriting can only modify the text and cannot mitigate inherent visual biases or text–image coupling. Fig. 5 shows that even with an explicit instruction for square wheels after prompt rewriting in **HR**, the model still fails due to the tight coupling between car wheels and their circular shape. To achieve more faithful T2I generation, future work should explore more multimodal interaction mechanisms (*e.g.*, interleaving reasoning Huang et al. (2025)).

5 CONCLUSION

In this paper, we present T2I-CoREBENCH, a comprehensive benchmark designed to evaluate both *composition* and *reasoning* capabilities of T2I models. Through a detailed taxonomy of 12 dimensions, we evaluate both composition and reasoning challenges under real-world complexities. Our evaluation of 28 models reveals clear progress in composition, yet also highlights persistent challenges in both capabilities when faced with real-world complexities involving high compositional density and reasoning intensity, with reasoning remaining the primary bottleneck.

ETHICS STATEMENT

With the introduction of the T2I-CoREBENCH benchmark, we anticipate continuous improvements in both composition and reasoning capabilities of T2I models, leading to increasingly realistic and faithful AI-generated content. While these advancements bring substantial opportunities, they also raise concerns about the proliferation of AI-generated content, which may overwhelm creative industries and lead to issues around copyright and authenticity. As the boundary between human-created and AI-generated works blurs, there is a growing need for well-defined frameworks to clarify ownership, prevent misuse, and promote transparency. Solutions such as watermarking, content detection, and regulations are crucial to address these ethical challenges and ensure that innovation is balanced with responsible AI development and use.

REPRODUCIBILITY STATEMENT

We have implemented comprehensive procedures to guarantee the reproducibility of our work. Specifically, detailed descriptions of the benchmark construction pipeline, including prompt design, checklist generation, and human verification, are provided in Sec. 3 and Appx. A, with concrete examples in Fig. 6. Experimental setups, model configurations, and evaluation protocols are documented in Sec. 4 and Appx. B (with complete quantitative examples for each dimension in Figs. 9–12). To facilitate independent verification, we report results across both open- and closed-source models with explicit references to their official implementations or APIs. Additional human alignment study, fine-grained analyses, and extended results are included in Appx. C.

REFERENCES

Anthropic. Introducing claude 4. <https://www.anthropic.com/news/claude-4>, May 2025. Announces Claude Opus 4 and Claude Sonnet 4.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

Black Forest Labs. Flux: A series of fast diffusion models for high-resolution text-to-image synthesis. <https://huggingface.co/black-forest-labs/>, 2024.

540 Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M Buhmann. The
 541 balanced accuracy and its posterior distribution. In *2010 20th international conference on pattern*
 542 *recognition*, pp. 3121–3124. IEEE, 2010.

543

544 ByteDance. Seedream 4.0: New-generation image creation model. https://seed-bytedance.com/en/seedream4_0, 2025.

545

546 Qi Cai, Jingwen Chen, Yang Chen, Yehao Li, Fuchen Long, Yingwei Pan, Zhaofan Qiu, Yiheng
 547 Zhang, Fengbin Gao, Peihan Xu, et al. Hidream-i1: A high-efficient image generative foundation
 548 model with sparse diffusion transformer. *arXiv preprint arXiv:2505.22705*, 2025.

549

550 Team Chameleon. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint*
 551 *arXiv:2405.09818*, 2024.

552

553 Jingjing Chang, Yixiao Fang, Peng Xing, Shuhan Wu, Wei Cheng, Rui Wang, Xianfang Zeng,
 554 Gang Yu, and Hai-Bao Chen. Oneig-bench: Omni-dimensional nuanced evaluation for image
 555 generation. *arXiv preprint arXiv:2506.07977*, 2025.

556

557 Xiaojun Chang, Pengzhen Ren, Pengfei Xu, Zhihui Li, Xiaojiang Chen, and Alex Hauptmann. A
 558 comprehensive survey of scene graphs: Generation and application. *IEEE Transactions on Pattern*
 559 *Analysis and Machine Intelligence*, 45(1):1–26, 2021.

560

561 Jiahui Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
 562 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
 563 models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025a.

564

565 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
 566 Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for photore-
 567 alistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.

568

569 Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
 570 Luo, Huchuan Lu, and Zhenguo Li. Pixart- σ : Weak-to-strong training of diffusion transformer for
 571 4k text-to-image generation. In *European Conference on Computer Vision*, pp. 74–91. Springer,
 572 2024.

573

574 Kaijie Chen, Zihao Lin, Zhiyang Xu, Ying Shen, Yuguang Yao, Joy Rimchala, Jiaxin Zhang, and
 575 Lifu Huang. R2i-bench: Benchmarking reasoning-driven text-to-image generation. *arXiv preprint*
 576 *arXiv:2505.23493*, 2025b.

577

578 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
 579 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
 580 scaling. *arXiv preprint arXiv:2501.17811*, 2025c.

581

582 Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit
 583 Bansal, Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in fine-
 584 grained evaluation for text-to-image generation. *arXiv preprint arXiv:2310.18235*, 2023a.

585

586 Jaemin Cho, Abhay Zala, and Mohit Bansal. Visual programming for step-by-step text-to-image
 587 generation and evaluation. *Advances in Neural Information Processing Systems*, 36:6048–6069,
 588 2023b.

589

590 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
 591 Yu, Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. Emerging properties in unified
 592 multimodal pretraining. *arXiv preprint arXiv:2505.14683*, 2025a.

593

594 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
 595 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv*
 596 *preprint arXiv:2505.14683*, 2025b.

597

598 Chengqi Duan, Rongyao Fang, Yuqing Wang, Kun Wang, Linjiang Huang, Xingyu Zeng, Hong-
 599 sheng Li, and Xihui Liu. Got-r1: Unleashing reasoning capability of mllm for visual generation
 600 with reinforcement learning. *arXiv preprint arXiv:2505.17022*, 2025.

601

594 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 595 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 596 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 597 2024.

598 Rongyao Fang, Aldrich Yu, Chengqi Duan, Linjiang Huang, Shuai Bai, Yuxuan Cai, Kun Wang,
 599 Si Liu, Xihui Liu, and Hongsheng Li. Flux-reason-6m & prism-bench: A million-scale text-to-
 600 image reasoning dataset and comprehensive benchmark, 2025. URL <https://arxiv.org/abs/2509.09680>.

601 Xingyu Fu, Muyu He, Yujie Lu, William Yang Wang, and Dan Roth. Commonsense-t2i chal-
 602 lenge: Can text-to-image generation models understand commonsense? *arXiv preprint arXiv:2406.07546*, 2024.

603 Yu Gao, Lixue Gong, Qiushan Guo, Xiaoxia Hou, Zhichao Lai, Fanshi Li, Liang Li, Xiaochen Lian,
 604 Chao Liao, Liyang Liu, et al. Seedream 3.0 technical report. *arXiv preprint arXiv:2504.11346*,
 605 2025.

606 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
 607 Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
 608 survey. *arXiv preprint arXiv:2312.10997*, 2(1), 2023.

609 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 610 for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:
 611 52132–52152, 2023.

612 Peter Godfrey-Smith. Theory and reality: An introduction to the philosophy of science. In *Theory
 613 and reality*. University of Chicago Press, 2009.

614 Google. Gemini 2.0 flash. <https://deepmind.google/models/gemini/flash/>, 2024.

615 Google. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
 616 context, and next generation agentic capabilities. Technical report, Google, June 2025a.
 617 URL https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf.

618 Google. Introducing gemini 2.5 flash image, our state-of-the-art image model. https://developers.googleblog.com/en/introducing-gemini-2-5-flash-image/?utm_source=chatgpt.com, 2025b.

619 Google. Imagen 4 (including imagen 4 ultra and imagen 4 fast). <https://deepmind.google/models/imagen/>, 2025c.

620 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 621 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 622 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

623 Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Rui Huang, Haoquan Zhang, Manyuan
 624 Zhang, Jiaming Liu, Shanghang Zhang, Peng Gao, et al. Can we generate images with cot? let's
 625 verify and reinforce image generation step by step. *arXiv preprint arXiv:2501.13926*, 2025b.

626 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
 627 Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis.
 628 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15733–15744,
 629 2025.

630 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 631 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

632 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on
 633 Deep Generative Models and Downstream Applications*, 2021. URL <https://openreview.net/forum?id=qw8AKxfYbI>.

648 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 649 *neural information processing systems*, 33:6840–6851, 2020.

650

651 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 652 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 653 with scalable reinforcement learning. *arXiv preprint arXiv:2507.01006*, 2025.

654 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
 655 with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024.

656

657 Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A
 658 Smith. Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question an-
 659 swering. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 660 20406–20417, 2023.

661 Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A com-
 662 prehensive benchmark for open-world compositional text-to-image generation. *Advances in Neural*
 663 *Information Processing Systems*, 36:78723–78747, 2023a.

664 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 665 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 666 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information*
 667 *Systems*, 2023b.

668 Wenxuan Huang, Shuang Chen, Zheyong Xie, Shaosheng Cao, Shixiang Tang, Yufan Shen, Qingyu
 669 Yin, Wenbo Hu, Xiaoman Wang, Yuntian Tang, et al. Interleaving reasoning for better text-to-
 670 image generation. *arXiv preprint arXiv:2509.06945*, 2025.

671

672 Ben Hutchinson, Jason Baldridge, and Vinodkumar Prabhakaran. Underspecification in scene
 673 description-to-depiction tasks. In *Proceedings of the 2nd Conference of the Asia-Pacific Chapter*
 674 *of the Association for Computational Linguistics and the 12th International Joint Conference on*
 675 *Natural Language Processing (Volume 1: Long Papers)*, pp. 1172–1184, 2022.

676 Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein, and
 677 Li Fei-Fei. Image retrieval using scene graphs. In *Proceedings of the IEEE conference on com-
 678 puter vision and pattern recognition*, pp. 3668–3678, 2015.

679

680 Alycia Lee, Brando Miranda, and Sanmi Koyejo. Beyond scale: the diversity coefficient as a data
 681 quality metric demonstrates llms are pre-trained on formally diverse data. In *ICML Workshop on*
 682 *Challenges in Deployable Generative AI, International Conference on Machine Learning (ICML)*,
 683 2023.

684 Baiqi Li, Zhiqiu Lin, Deepak Pathak, Jiayao Li, Yixin Fei, Kewen Wu, Tiffany Ling, Xide Xia,
 685 Pengchuan Zhang, Graham Neubig, et al. Genai-bench: Evaluating and improving compositional
 686 text-to-visual generation. *arXiv preprint arXiv:2406.13743*, 2024a.

687 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Arsh Koneru, Yusuke Kato, Kazuki Kozuka,
 688 and Aditya Grover. Reflect-dit: Inference-time scaling for text-to-image diffusion transformers
 689 via in-context reflection. *arXiv preprint arXiv:2503.12271*, 2025.

690

691 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
 692 generation without vector quantization. *Advances in Neural Information Processing Systems*, 37:
 693 56424–56445, 2024b.

694 Jiaqi Liao, Zhengyuan Yang, Linjie Li, Dianqi Li, Kevin Lin, Yu Cheng, and Lijuan Wang.
 695 Imagegen-cot: Enhancing text-to-image in-context learning with chain-of-thought reasoning.
 696 *arXiv preprint arXiv:2503.19312*, 2025.

697

698 Haotian Liu, Chunyuan Li, Qingshang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 699 *in neural information processing systems*, 36:34892–34916, 2023.

700

701 Fanqing Meng, Wenqi Shao, Lixin Luo, Yahong Wang, Yiran Chen, Quanfeng Lu, Yue Yang, Tian-
 shuo Yang, Kaipeng Zhang, Yu Qiao, et al. Phybench: A physical commonsense benchmark for
 evaluating text-to-image models. *arXiv preprint arXiv:2406.11802*, 2024.

702 Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Chaoran
 703 Feng, Kunpeng Ning, Bin Zhu, et al. Wise: A world knowledge-informed semantic evaluation
 704 for text-to-image generation. *arXiv preprint arXiv:2503.07265*, 2025.

705

706 OpenAI. Gpt-4o system card. Technical report, OpenAI, 2024. URL <https://arxiv.org/abs/2410.21276>. arXiv preprint arXiv:2410.21276.

707

708 OpenAI. Gpt-4o-image, 2025. <https://openai.com/index/introducing-4o-image-generation/>.

709

710 OpenAI. Introducing o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, April 2025.

711

712

713 Mayu Otani, Riku Togashi, Yu Sawai, Ryosuke Ishigami, Yuta Nakashima, Esa Rahtu, Janne
 714 Heikkilä, and Shin'ichi Satoh. Toward verifiable and reproducible human evaluation for text-to-
 715 image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 716 Recognition*, pp. 14277–14286, 2023.

717

718 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 719 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

720

721 Charles Sanders Peirce. *Collected papers of charles sanders peirce*, volume 5. Harvard University
 722 Press, 1934.

723

724 Qwen Team. Qwen3-vl, September 2025. URL <https://qwen.ai/blog?id=99f0335c4ad9ff6153e517418d48535ab6d8afef&from=research.latest-advancements-list>.

725

726 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 727 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine
 728 learning*, pp. 8821–8831. Pmlr, 2021.

729

730 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 731 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 732 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

733

734 Kaiyue Sun, Rongyao Fang, Chengqi Duan, Xian Liu, and Xihui Liu. T2i-reasonbench: Bench-
 735 marking reasoning-informed text-to-image generation. *arXiv preprint arXiv:2508.17472*, 2025.

736

737 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 738 arXiv:2406.06525*, 2024.

739

740 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 Scalable image generation via next-scale prediction. *Advances in neural information processing
 741 systems*, 37:84839–84865, 2024.

742

743 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 744 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

745

746 Yibin Wang, Zhimin Li, Yuhang Zang, Yujie Zhou, Jiazi Bu, Chunyu Wang, Qinglin Lu, Cheng
 747 Jin, and Jiaqi Wang. Pref-grpo: Pairwise preference reward-based grpo for stable text-to-image
 reinforcement learning. *arXiv preprint arXiv:2508.20751*, 2025.

748

749 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 750 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 751 neural information processing systems*, 35:24824–24837, 2022.

752

753 Xinyu Wei, Jinrui Zhang, Zeqing Wang, Hongyang Wei, Zhen Guo, and Lei Zhang. Tiif-bench:
 How does your t2i model follow your instructions? *arXiv preprint arXiv:2506.02161*, 2025.

754

755 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 756 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 2025a.

756 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 757 Jiang, Yexin Liu, Junjie Zhou, et al. Omnipgen2: Exploration to advanced multimodal generation.
 758 *arXiv preprint arXiv:2506.18871*, 2025b.

759 Xindi Wu, Dingli Yu, Yangsibo Huang, Olga Russakovsky, and Sanjeev Arora. Conceptmix: A
 760 compositional image generation benchmark with controllable difficulty. *Advances in Neural In-*
 761 *formation Processing Systems*, 37:86004–86047, 2024.

762 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 763 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 764 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

765 Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved native unified multimodal
 766 models. *arXiv preprint arXiv:2506.15564*, 2025.

767 Zijun Yao, Yantao Liu, Yanxu Chen, Jianhui Chen, Junfeng Fang, Lei Hou, Juanzi Li, and Tat-Seng
 768 Chua. Are reasoning models more prone to hallucination? *arXiv preprint arXiv:2505.23646*,
 769 2025.

770 Michal Yarom, Yonatan Bitton, Soravit Changpinyo, Roee Aharoni, Jonathan Herzig, Oran Lang,
 771 Eran Ofek, and Idan Szpektor. What you see is what you read? improving text-image alignment
 772 evaluation. *Advances in Neural Information Processing Systems*, 36:1601–1619, 2023.

773 Edward N Zalta, Uri Nodelman, Colin Allen, and John Perry. Stanford encyclopedia of philosophy,
 774 2003.

775 Shanshan Zhong, Zhongzhan Huang, Weushao Wen, Jinghui Qin, and Liang Lin. Sur-adapter:
 776 Enhancing text-to-image pre-trained diffusion models with large language models. In *Proceedings*
 777 *of the 31st ACM International Conference on Multimedia*, pp. 567–578, 2023.

778 Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu,
 779 Yanjun Lyu, Peng Shu, Xiaowei Yu, et al. Evaluation of openai o1: Opportunities and challenges
 780 of agi. *arXiv preprint arXiv:2409.18486*, 2024.

781 Yucheng Zhou, Jiahao Yuan, and Qianning Wang. Draw all your imagine: A holistic bench-
 782 mark and agent framework for complex instruction-based image generation. *arXiv preprint*
 783 *arXiv:2505.24787*, 2025.

784 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 785 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 786 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A BENCHMARK CONSTRUCTION DETAILS
811812 A.1 EVALUATION DIMENSION DETAILS
813

814 **Composition** is the process of integrating multiple visual elements (*i.e.*, *instances*, *attributes*,
815 and *relations*) into a coherent image that faithfully reflects the textual prompt, based on which
816 we define **MI** *Multi-Instance*, **MA** *Multi-Attribute*, **MR** *Multi-Relation*, and **TR** *Text Rendering*.
817

818 **Multi-Instance (MI)** refers to generating multiple instances within a single image. In our setup, instances
819 are organized into a coherent thematic scene, with scene details expressed through narrative
820 descriptions rather than disjointed lists to preserve contextual coherence. We also include existential
821 negation [Li et al. \(2024a\)](#) by specifying absent instances (*e.g.*, *there is no apple*) alongside those
822 that must appear. To increase complexity, each prompt specifies ~ 25 instances on average, creating
823 high-density scenarios that challenge faithful instance composition.

824 **Multi-Attribute (MA)** refers to binding multiple attributes to a single core subject. The attribute set
825 spans a wide range of categories: physical properties (*e.g.*, color, material, texture, shape, lighting),
826 numerical attributes (*e.g.*, numerals and quantities), states and conditions (*e.g.*, appearance and life-
827 cycle), and abstract and stylistic traits (*e.g.*, emotion and style). Similarly, all attributes are integrated
828 in a unified thematic scene with narrative descriptions and existential negation. To increase com-
829 plexity, each prompt assigns ~ 20 verifiable attributes to a single subject, achieving high attribute
830 density while testing precise and consistent attribute binding.

831 **Multi-Relation (MR)** refers to scenes where multiple relations connect instances. We define rela-
832 tions spanning spatial (*e.g.*, *on the left*), interaction (*e.g.*, *holding*), comparative (*e.g.*, *larger than*),
833 compositional (*e.g.*, *a handle on a door*), and numerical (*e.g.*, *twice as many as*) relations. Similarly,
834 all relations are incorporated in a unified thematic scene with narrative descriptions. To emphasize
835 more relations rather than more instances (*i.e.*, MI), each prompt specifies no more than 10 instances
836 and ~ 15 relations, fostering complex and precise relational structures.

837 **Text Rendering (TR)** refers to rendering structured multiple texts within a specified scene, focusing
838 on both content fidelity and layout precision. To simulate real-world scenarios, we adopt a hierar-
839 chical text structure in prompts, comprising main titles, section headers, and itemized entries. To
840 further increase textual complexity, we incorporate special formats and symbols, including varied
841 letter cases (*e.g.*, ALL CAPS), currency signs (*e.g.*, \$), punctuation marks (*e.g.*, &), trademarks
842 (*e.g.*, ™), etc. Each prompt specifies ~ 15 texts and corresponding layouts, simulating complex
843 real-world applications, including 2D posters and 3D shop signs.

844 **Deductive Reasoning** is the process of drawing conclusions from given premises, ensuring that
845 if the premises hold, the conclusion cannot be false. In T2I scenarios, this means generating im-
846 ages determined by the premises, based on which we define **LR** *Logical Reasoning* (multiple
847 premises \rightarrow one conclusion), **BR** *Behavioral Reasoning* (behaviors \rightarrow inevitable outcomes),
848 **HR** *Hypothetical Reasoning* (counterfactual premises \rightarrow affected items), and **PR** *Procedural*
849 *Reasoning* (ordered procedures \rightarrow cumulative results).

850
851 **Logical Reasoning (LR)** refers to solving premise-based puzzles through multi-step deductive in-
852 ference rather than direct scene description. In our setup, prompts are formulated as a set of inter-
853 dependent premises, which leads to a deterministic scene regarding object attributes and spatial
854 relations. To guarantee diversity of logical structures, we define various reasoning forms (*e.g.*, de-
855 ductive elimination, conditional chaining, causal reasoning) and reasoning scenarios (*e.g.*, spatial
856 arrangement, attribute matching, state transition). Each prompt contains ~ 5 independent premises
857 and requires multiple reasoning hops to ensure reasoning complexity.

858 **Behavioral Reasoning (BR)** refers to inferring the visual outcomes that inevitably follow from an
859 initial state and subsequent behaviors (*e.g.*, *falling dominoes*). In our setup, prompts specify only the
860 initial state and behavior(s), leading to logically inevitable and visually salient outcomes involving
861 both affected and unaffected items, which the model must then distinguish through reasoning. To
862 increase complexity, each prompt involves compound or sequential actions that deterministically
863 lead to ~ 8 observable outcomes, leading to both logically inevitable and visually salient outcomes.

864 **Hypothetical Reasoning (HR)** refers to predefining a counterfactual premise that contradicts real-
 865 world physics and propagating its effects across both affected and unaffected items within a scene.
 866 The model must internalize this rule itself (e.g., *every vehicle’s wheels are perfect squares instead of*
 867 *circles*) and enforce it uniformly in different forms of interaction. To increase complexity, prompts
 868 are designed with ~ 10 objects engaging in varied interactions, where both positive (rule applied)
 869 and negative cases (rule not applied) must be correctly distinguished in the same image.

870 **Procedural Reasoning (PR)** refers to reasoning over an ordered sequence of procedures, where
 871 visual elements incrementally transform and only the final scene is expected (e.g., *folding paper*
 872 *into a crane*). In our setup, prompts are structured as multi-step procedures, each building on the
 873 previous to produce cumulative and interdependent changes rather than direct outcome description.
 874 To increase complexity, prompts are designed as ~ 5 explicit procedures, each building on the
 875 previous to create cumulative and interacting transformations, while omitting direct outcomes so the
 876 model must infer the intermediate steps necessary to reach the complete result.

877 **Inductive Reasoning** is the process of inferring conclusions from observed regularity patterns
 878 rather than from explicit premises. In T2I scenarios, this corresponds to inferring visual el-
 879 ements from underlying structural patterns in examples, based on which we define **GR General-
 880 erization Reasoning** (generalization rules from examples \rightarrow new case) and **AR Analogical
 881 Reasoning** (analogical rules from source domain \rightarrow target domain).

883 **Generalization Reasoning (GR)** refers to inducing generalization rules from several examples and
 884 applying them to new scenarios with missing visual elements. In our setup, each prompt introduces
 885 two to three examples that collectively correspond to a unified rule pattern, comprising both variant
 886 (changing across examples) and invariant (constant across examples) components, which the model
 887 must extrapolate to complete a new scene with omitted details. To ensure complexity, each prompt
 888 is designed to ~ 8 such rules and to ensure generalization complexity.

889 **Analogical Reasoning (AR)** refers to transferring specific analogical rules from the source domain
 890 (e.g., A relates to B) to a structurally parallel target domain (e.g., C relates to D). In our setup, each
 891 prompt specifies source domain rules through a detailed anchored example (e.g., *hexagonal structure*
 892 *of a honeycomb*), while the target domain provides only core elements (e.g., *clouds arranged like*
 893 *a honeycomb*) without describing the analogical outcome. Each prompt is designed as ~ 5 distinct
 894 analogical rules, each of which must be consistently transferred from the source to the target domain.

895 **Abductive Reasoning** is the process of reconstructing the most plausible explanation from ob-
 896 servations. In T2I scenarios, this entails reconstructing hidden causes or unstated common-
 897 sense that best explain the visual observations, based on which we define **CR Commonsense
 898 Reasoning** (indispensable elements \leftarrow unstated commonsense) and **RR Reconstructive Rea-
 899 soning** (plausible hidden causes \leftarrow observed clues).

900 **Commonsense Reasoning (CR)** refers to completing a scene by invoking commonsense knowledge
 901 that is logically required yet unstated. In our setup, each prompt describes a scene with **CCR** implicit
 902 indispensable elements. To ensure complexity, each prompt typically requires ~ 5 independent
 903 commonsense inferences, covering six diverse domains from: physical (e.g., *a light bulb without*
 904 *electricity* \rightarrow does not shine), chemical (e.g., *mixing vinegar and baking soda* \rightarrow bubbles form),
 905 biological (e.g., *a bat in daytime* \rightarrow sleeps upside down), social (e.g., *a doctor treating patients* \rightarrow
 906 wears a white coat), functional (e.g., *cutting vegetables* \rightarrow requires a knife), and cultural (e.g., *a*
 907 *Thanksgiving table in the U.S.* \rightarrow turkey exists) commonsense.

908 **Reconstructive Reasoning (RR)** refers to tracing backward from observations to their most plausi-
 909 ble initial states in the absence of explicit descriptions. In our setup, each prompt presents a static
 910 “observation” containing ~ 5 indirect yet diagnostic clues, akin to evidence at a scene. The model
 911 must integrate these clues to infer and render the most plausible “cause” through abductive reason-
 912 ing. To ensure diversity, prompts cover varied inferential scenarios, such as event reconstruction,
 913 intent inference, state rewind, and environmental storytelling.

914 **Summary of Evaluation Dimensions.** Our 12 evaluation dimensions strike a deliberate balance
 915 between fundamental compositional capabilities and higher-order cognitive reasoning capabilities.
 916 The first four dimensions (**MI**, **MA**, **MR**, **TR**) capture core compositional skills required for faithful

918 T2I generation, ensuring models can coherently integrate multiple *instances*, *attributes*, *relations*,
 919 and *textual elements*. These serve as the baseline competencies for T2I models. The remaining eight
 920 dimensions extend evaluation beyond composition-level fidelity to deeper reasoning processes. *De-
 921 ductive reasoning* (*LR*, *BR*, *HR*, *PR*) evaluates whether models can deterministically derive out-
 922 comes from explicit premises, *inductive reasoning* (*GR*, *AR*) evaluates generalization from observed
 923 patterns and analogical transfer, while *abductive reasoning* (*CR*, *RR*) evaluates the capability to in-
 924 fer unstated commonsense or reconstruct hidden causes from given clues.

926 A.2 DATA GENERATION DETAILS

928 To curate the benchmark data in our T2I-CoREBENCH, we follow a standardized data construction
 929 pipeline using LRM, with a tailored generation instruction for each dimension as shown in Fig. 2.
 930 This instruction mainly includes three parts: (1) *Task Goal*, (2) *Prompt Design Guidelines*, and (3)
 931 *Checklist Construction Rules*. Each sample comprises a high-complexity prompt and a fine-grained
 932 checklist, jointly designed to ensure both semantic richness and verifiability. As shown in Fig. 6, we
 933 take *MI Multi-Instance* dimension as a concrete example for detailed illustration.

934 Generation Instruction for LRM (Multi-Instance)

936 I. Task Goal

- 937 • **Main Category:** Composition
- 938 • **Subcategory:** Multi-Instance
- 939 • **Specific Goal:** To systematically evaluate the model’s ability to generate multiple instances within a
 940 single image.

942 II. Prompt Design Principles

944 General Principle: Diversity and Scalability

945 To construct a comprehensive and robust benchmark, the test set must not only be sufficiently large
 946 but also diverse across multiple dimensions, ensuring the evaluation of general capabilities rather than
 947 overfitting to specific templates. Diversity should be reflected in the following aspects:

- 948 1. **Visual & Thematic Diversity:** Prompts should cover a wide range of *scenes* (e.g., indoor, outdoor,
 949 outer space), *instances* (e.g., animals, artifacts, geometric shapes, humans), *attributes* (e.g., color,
 950 material, state, emotion), and *themes* (e.g., daily life, history, science fiction, fantasy).
- 951 2. **Structural & Relational Diversity:** The challenge mechanisms of prompts should vary, including
 952 changes in *logical structures*, *spatial relations* (absolute, relative, topological), *attribute binding*
 953 *complexity* (single, multiple, shared attributes), and *constraint types* (affirmative “*is*”, negative “*is
 954 not*”, exclusive “*either...or...*”).

955 Guideline 1: Unified Theme

- 956 • **Explanation:** A broad and inclusive core scene should be set to ensure that all elements remain
 957 logically coherent under a unified theme, providing a stable background and atmosphere.
- 958 • **Note:** All test instances must be common, macroscopic, and visually discernible. Avoid abstract
 959 (e.g., *labor disputes*), atmospheric (e.g., *soft sunlight*), or overly fine-grained (e.g., *the hands of a
 960 pocket watch*) instances.

962 Guideline 2: Existential Negation

- 963 • **Explanation:** To further test the ability to follow exclusion constraints, prompts must contain expres-
 964 sions specifying that certain instances are *absent* from the scene. To maintain naturalness, negations
 965 should be phrased in descriptive or indirect forms (beyond explicit “*there is no [instance]*”).
- 966 • **Note:** All negation expressions should be *organically dispersed* throughout the prompt, rather than
 967 clustered at the end or listed separately.

969 Guideline 3: Precise Quantification

- 970 • **Explanation:** Each prompt should specify around 25 independent instances (counting both present
 971 and negated ones), with one-fifth of them expressed through existential negation.

972 • **Note:** Avoid mere enumerations; use connected expressions to improve fluency.
 973
 974
 975 **Guideline 4: Narrative Description**
 976 • **Explanation:** Prompts should avoid simply listing elements separated by commas. Instead, connective or locative expressions (e.g., “beside ... , there is ...”, “on top of ... , lies ...”, “in the corner stands ...”) should be used to describe spatial relations, making the prompt resemble a coherent scene description rather than a rigid checklist.
 977
 978
 979
 980 **III. Checklist Construction Rules**
 981 1. **Core Objective:** Decompose complex instructions into a series of independent, verifiable atomic capability points to enable fine-grained evaluation of generated images.
 982
 983 2. **Question Format Requirements:**
 984 • **Form:** Each question must be a closed yes/no interrogative.
 985 • **Orientation:** Questions must be designed such that the correct answer is “Yes”. That is, when the generated image satisfies the corresponding requirement, the answer should be “Yes”.
 986
 987 3. **Principle of Comprehensiveness and Atomicity**
 988 • **Explanation:** To enable precise error attribution, the checklist must be both comprehensive and fine-grained, which should be decomposed into the smallest, non-divisible “atomic” points.
 989 • **Implementation:** Avoid assessing multiple attributes with a single question. For example, instead of asking “Is the object in the center a green cylinder?”, decompose into:
 990 – “Is the object in the center a cylinder?”
 991 – “Is the object in the center green?”
 992
 993 4. **Tags Usage Instructions**
 994 • **Explanation:** Tags categorize the capability dimension assessed by each question, enabling more fine-grained multi-dimensional data analysis.
 995 • **Tag Scope and Description:**
 996 – `instance_pos`: Evaluates **instance presence**, i.e., whether a specified instance appears in the image. Question template: *Is/Are there (a) [instance] in the image?*
 997 – `instance_neg`: Evaluates **instance absence**, i.e., whether a specified instance required to be absent does not appear. Question template: *Is/Are there no [instance] in the image?*
 998
 999 5. **Remark Field Specification**
 1000 • **Explanation:** No content is required, and leave it as an empty “ ”.
 1001
 1002
 1003
 1004
 1005
 1006 **IV. Output Structure**
 1007
 1008 Each benchmark entry is organized in a unified structured JSON format, defined as follows:
 1009
 1010 {
 1011 “{Item ID}”: {
 1012 “Main Class”: “The core capability category tested by this item”,
 1013 “Sub Class”: “A more specific sub-dimension”,
 1014 “Prompt”: “The complete textual instruction input to the T2I model”,
 1015 “Checklist”: [
 1016 { “question”: “Question 1?”, “tags”: [“Tag A”] },
 1017 { “question”: “Question 2?”, “tags”: [“Tag B”] }
 1018],
 1019 “Remark”: “An optional metadata field”
 1020 }
 1021
 1022
 1023
 1024
 1025

Figure 6: **Generation instruction for LRM**s (*MI* Multi-Instance) in our T2I-COREBENCH.

Prompt Generation in *Prompt Design Principles*. We first include a general principle termed *Diversity and Scalability*, which requires variability in both visual themes and structural relations. Subsequently, we introduce a set of *dimension-specific guidelines*, which articulate concrete design constraints tailored to each evaluation dimension, including: (1) *Unified Theme*, (2) *Existential Negation*, (3) *Precise Quantification*, and (4) *Narrative Description*.

1026
 1027 You are an AI quality auditor for text-to-image generation.
 1028
 1029 Your task is to analyze the given image and answer a *yes/no* question based solely on its visual content.
 1030 The question may relate to the presence of a specific object, its attributes, or relationships between
 1031 multiple elements in the image.
 1032
 1033 You will also be given the original prompt used to generate the image. The prompt may provide
 1034 additional context to help interpret the question, but it must never be used to supply or assume visual
 1035 details.
 1036 Your judgment must rely entirely on the image itself. The image must contain clear, unmistakable
 1037 visual evidence to justify a “*yes*” answer — the prompt cannot compensate for missing or ambiguous
 1038 content.
 1039
 1040 Respond with:
 1041 - “*yes*” only if the answer is **clearly and unambiguously** yes based solely on the visual content. The
 1042 visual evidence must be **strong, definitive, and require no assumptions or guesses**.
 1043 - “*no*” in **all other cases** — including if the relevant visual detail is missing, unclear, ambiguous,
 1044 partially shown, obscured, or only suggested.
 1045
 1046 Even if the image closely matches what is described in the prompt, you must rely on **visible evidence**
 1047 alone. If the relevant detail cannot be confirmed visually with certainty, answer “*no*”.
Ambiguity equals no.
 1048
 1049 For conditional questions, answer “*yes*” only if **both** the condition and the main clause are **clearly and**
 1050 **unambiguously true** in the image. If **either part** is false or uncertain, respond “*no*”.
 1051
 1052 Do **not** provide any explanation, justification, or extra text.
 1053 Only return a single word: either “*yes*” or “*no*”.
 1054
Example input:
 1055
 1056 Prompt: “A golden retriever running in a grassy field under the sun.”
 1057 Question: “Is there a sun in the image?”
Example output: “*yes*”
 1058
Example input:
 1059
 1060 Prompt: “A white cat sitting on a red couch in a modern living room.”
 1061 Question: “Is the couch present, is it red in color?”
Example output: “*no*”

1065
 1066 Figure 7: **Evaluation instruction** for MLLM evaluator in our T2I-COREBENCH.
 1067

1068 **Checklist Generation** in *Checklist Construction Rules*. Each complex prompt is decomposed into
 1069 fine-grained, atomic *yes/no* questions, ensuring that the correct answer is always “*Yes*”. To support
 1070 precise capability attribution, questions are annotated with fine-grained tags, which evaluate the
 1071 presence (`instance_pos`) or absence (`instance_neg`) of specific instances. All samples follow
 1072 a unified JSON schema with an optional `Remark` field for metadata.

1073 **Data Filtering and Refinement.** To reduce model-specific bias and enrich stylistic and structural
 1074 diversity, we employ three different LRM¹, each contributing 100 samples (*i.e.*, prompt + checklist),
 1075 resulting in $3 \times 100 = 300$ candidates for this dimension. Afterwards, we apply a multi-stage
 1076 filtering pipeline: (1) *Feasibility check*: prompts that fail to produce coherent or renderable images,
 1077 or whose visual elements are ambiguous or unverifiable, are discarded. (2) *Redundancy removal*:
 1078 overly similar or template-like cases are filtered out to preserve thematic and structural diversity

1¹Claude Sonnet 4 [Anthropic \(2025\)](#), Gemini 2.5 Pro [Google \(2025a\)](#), and OpenAI o3 [OpenAI \(2025\)](#)

1080

You are a prompt rewriting assistant. The given Prompt may involve reasoning steps or logical deductions. Your task is to rewrite the Prompt into a clear, direct, image-focused description suitable for a text-to-image model. During rewriting, perform all necessary reasoning yourself so that the output contains only the final objects, attributes, and spatial or relational details to be shown in the image. The rewritten Prompt must be fully self-contained, visually descriptive, and contain no reasoning steps or instructions. Write the output as a single continuous paragraph—no bullet points, lists, or line breaks.

1086

1087 Examples:

1088

Prompt: Generate an image of three robots in a laboratory. Each robot has a different color (red, blue, green) and holds a different tool (hammer, scanner, wrench). The robots make statements: (1) Red robot says: 'Blue robot has the hammer.' (2) Blue robot says: 'I have the scanner.' (3) Green robot says: 'Red robot is lying.' (4) Red robot also says: 'I have the wrench.' (5) Additional facts: Exactly one robot always lies, the other two always tell the truth. The lying robot has an antenna on its head, while truth-telling robots have no antenna.

1092

Output: Generate an image of three robots standing in a laboratory: the red robot is holding a hammer and has an antenna on its head, the blue robot is holding a scanner without an antenna, and the green robot is holding a wrench without an antenna.

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

Prompt: Generate a photo of a Rube Goldberg-style chain reaction in a classroom, captured at the final moment. The initial setup contains a taut elastic cord placed just before a line of standing dominoes, with a matchstick fixed at the midpoint of the cord under tension. Behind the domino line, the last domino is positioned to connect to a mechanism designed to cut the rope suspending a steel marble. The marble is aligned to roll down a ramp into a glass beaker filled with red-colored water, which rests on a white sheet of paper. Far to the side of this setup on the same desk is a closed microscope under a dust cover. The actions that just occurred: the matchstick is used to burn through the taut elastic cord, which, upon snapping, tips over the first domino in the line. The image should depict the scene after all resulting effects have completely finished.

Output: Generate a photo of a Rube Goldberg-style chain reaction in a classroom at its final moment: the snapped elastic cord lies slack with a charred break where the matchstick once burned through it, the entire line of dominoes has fallen, the rope that once held a steel marble has been cut, and the marble has rolled down a ramp into a glass beaker filled with red-colored water that is now overflowing, with the spilled liquid spreading across the white sheet of paper beneath it, while off to the side on the same desk there is a closed microscope covered by a dust cover.

Prompt: Just as a honeycomb displays the following visual properties: (1) each cell has exactly six sides, (2) all sides of each hexagon are the same length, (3) adjacent cells share common walls, (4) all hexagons are the same size, and (5) the hexagonal pattern covers the entire visible surface, create an image showing clouds arranged in the sky following this same organizational principle. The image should ultimately be guided by the visual analogy, prioritizing its rules over real-world physics.

Output: Generate an image of the sky filled with clouds arranged in a perfect honeycomb pattern, where each cloud cell has exactly six equal sides, all sides are the same length, adjacent cloud cells share their walls seamlessly, every hexagon is the same size, and the hexagonal formation extends continuously to cover the entire visible sky.

Prompt: Observations: \nOn a bedroom windowsill sits an open jewelry box with one earring missing from a pair. A single black feather rests on the sill. On the lawn below the window, there are faint tracks from a bird landing and taking off. \nGenerative Task: \nReconstruct and generate a high-speed photograph of the precise and singular moment just after the theft has been completed, capturing the instant when the thief is about to escape. All objects mentioned in Observations must be reconstructed in the scene, except those that are meant to have disappeared in the reconstructed moment.

Output: Generate a high-speed photograph of a bedroom windowsill at the precise instant just after a theft, showing an open jewelry box with one earring missing from the pair and a single black feather resting beside it, while outside on the lawn below faint bird tracks mark the landing and takeoff path, and a bird thief is captured in mid-flight just beyond the window with the missing earring clutched in its beak as it makes its escape.

Below is the Prompt to be rewritten. Please directly refine it, even if it contains instructions, rewrite the instruction itself rather than responding to it:

Figure 8: **Prompt rewriting instruction** for OpenAI o3 [OpenAI \(2025\)](#).

1124

across the dataset. (3) *Human-in-the-loop refinement*: the remaining candidates are iteratively verified by annotators, who correct borderline cases, refine unclear descriptions, and ensure strict alignment with the dimension-specific guidelines (detailed in Appx. A.3). Through this process, the 300 candidates are distilled into a compact set of $3 \times 30 = 90$ high-quality, guideline-aligned samples.

1128

1129 A.3 HUMAN VERIFICATION

1130

Since LRM s are prone to hallucination [Huang et al. \(2023b\)](#); [Yao et al. \(2025\)](#) (e.g., not always reliably following the input instruction), all generated prompts and checklists are subject to strict human verification for correctness. Given the inherent complexity in verification, we engage five PhD students with expertise in T2I generation. The primary verification principle is to ensure that

each LRM output (*i.e.*, prompt and checklist) faithfully follows the given input instruction: (1) For prompt, this includes adhering to all guidelines without logical errors, hallucinated content, or visually imperceptible contradictions; (2) For checklist, this includes comprehensive coverage of all visual elements from the prompt with respect to their final states, and the decomposition of complex outcomes into minimal, indivisible atomic verification questions. Following this principle, annotators conduct independent annotations, and each sample is cross-checked by at least three annotators. Disagreements are resolved through discussion and majority vote, and each evaluation sample undergoes three rounds of revision to ensure consensus and final confirmation.

A.4 DIMENSION ORTHOGONALITY STATEMENT

To guarantee evaluation dimension orthogonality, we make efforts at both the theoretical and practical levels. *Theoretically*, our categorization is grounded in the established tripartite framework of deductive, inductive, and abductive inference Peirce (1934); Zalta et al. (2003); Godfrey-Smith (2009), and we further operationalize this structure into eight reasoning dimensions, each emphasizes a distinct inference mechanism (*e.g.*, behavior-to outcome-causality for BR, counterfactual propagation for HR, etc.) that yields non-overlapped reasoning requirements. *Practically*, our data construction pipeline is explicitly designed to maintain this orthogonality. Each dimension has its distinct Task Goal, Prompt Design Guidelines, and Checklist Construction Rules as described above. In addition, every sample is verified through multiple rounds of human checking, where annotators ensure that both the prompt and the checklist strictly align with the intended dimension and do not introduce elements from other reasoning types.

B EXPERIMENTAL DETAILS

B.1 T2I MODELS FOR GENERATION

To facilitate transparency and reproducibility, we provide below the official sources of all models evaluated in our evaluation. For each model, we strictly follow the default sampling configurations specified in the corresponding repositories or API documentation. For **open-source models**, we included a diverse set of diffusion², autoregressive, and unified architectures: **SD-3-Medium**, **SD-3.5-Medium**, **SD-3.5-Large** Esser et al. (2024), **FLUX.1-schnell**, **FLUX.1-dev**, **FLUX.1-Krea-dev** Black Forest Labs (2024), **PixArt- α** Chen et al. (2023), **PixArt- Σ** Chen et al. (2024), **HiDream-I1** Cai et al. (2025), **Qwen-Image** Wu et al. (2025a), **Infinity-8B** Han et al. (2025), **GoT-R1-7B** Duan et al. (2025), **BAGEL**, **BAGEL w/ Think** Deng et al. (2025b), **show-o2-1.5B**, **show-o2-7B** Xie et al. (2025), **Janus-Pro-1B**, **Janus-Pro-7B** Chen et al. (2025c), **BLIP3o-4B**, **BLIP3o-8B** Chen et al. (2025a), and **OmniGen2-7B** Wu et al. (2025b). For **closed-source commercial models**, we rely on their official API endpoints, which guarantee that our evaluation reflects the current production-level configurations of these services: **Seedream 3.0** Gao et al. (2025), **Seedream 4.0** ByteDance (2025), **Gemini 2.0 Flash** Google (2024), **Nano Banana** Google (2025b), **Imagen 4**, **Imagen 4 Ultra** Google (2025c), and **GPT-Image** OpenAI (2025). All evaluated models are implemented using their default configurations from the corresponding official repositories, with a fixed random seed applied whenever supported to ensure reproducibility. All experiments are conducted using eight NVIDIA A800 GPUs, with four images generated per prompt to ensure robust evaluation.

Table 5: **Human alignment study** across different MLLMs on four compositional dimensions, evaluated with *balanced accuracy* (%). The best and second-best results are marked in **bold** and underline for open- and closed-models.

MLLM	MI	MA	MR	TR	Mean
Qwen2.5-VL-72B	81.3	<u>63.1</u>	<u>64.2</u>	73.7	<u>70.6</u>
Qwen3-VL-30B-Instruct	83.1	61.9	59.1	<u>74.2</u>	69.6
Qwen3-VL-30B-Thinking	<u>82.4</u>	73.8	76.1	77.9	77.6
InternVL3-78B	70.8	56.8	56.5	67.7	62.9
GLM4.5V-106B	78.0	61.3	60.3	71.8	67.8
GPT-4o	78.3	67.5	63.6	72.0	70.3
OpenAI o3	<u>83.5</u>	77.8	<u>80.4</u>	<u>86.8</u>	<u>82.1</u>
OpenAI o4 mini	81.9	74.7	77.0	83.0	79.1
Gemini 2.5 Pro	83.4	<u>76.5</u>	82.2	88.4	82.6
Gemini 2.5 Flash	83.8	<u>76.9</u>	78.0	85.7	81.1
Gemini 2.5 Flash Lite	69.1	60.1	58.0	74.5	65.4
Gemini 2.0 Flash	73.5	61.0	67.7	77.1	69.8

²Herein, flow-based generative models are framed as variants of the diffusion paradigm within a unified continuous-time (ODE/SDE) framework.

1188 B.2 MLLM INSTRUCTION FOR EVALUATION
1189

1190 In our benchmark, evaluation is conducted automatically using an MLLM as the checklist answerer.
 1191 Specifically, we provide each generated image together with its associated prompt and evaluate it
 1192 against the checklist in a question-by-question manner, where the MLLM receives only a single
 1193 *yes/no* question at a time. This design avoids interference between different questions, ensures
 1194 that each judgment relies solely on visible evidence, and thereby improves both the accuracy and
 1195 consistency of the evaluation. Herein, we list all MLLMs employed in our evaluation together
 1196 with their official sources, so that the evaluation setup can be faithfully reproduced. **Closed-source**
 1197 **models** are accessed via their official API endpoints, which guarantee that our evaluation reflects
 1198 the current production-level configurations of these services: [GPT-4o OpenAI \(2024\)](#), [OpenAI o3](#),
 1199 [OpenAI o4 mini OpenAI \(2025\)](#), [Gemini 2.0 Flash Google \(2024\)](#), [Gemini 2.5 Pro](#), [Gemini 2.5](#)
 1200 [Flash](#), and [Gemini 2.5 Flash Lite Google \(2025a\)](#). **Open-source models** are implemented with
 1201 their default inference settings from their official repositories: [Qwen2.5-VL-72B Bai et al. \(2025\)](#),
 1202 [Qwen3-VL-30B-Instruct](#), [Qwen3-VL-30B-Thinking Qwen Team \(2025\)](#), [InternVL3-78B Zhu et al.](#)
 1203 [\(2025\)](#), and [GLM4.5V-106B Hong et al. \(2025\)](#). To ensure the reproducibility of results, we set the
 1204 temperature coefficient to zero during all model evaluations whenever supported. The evaluation
 1205 instruction for the MLLM evaluator is presented in Fig. 7, which strictly emphasizes reliance on the
 1206 image content without assuming any detail from the prompt and prior knowledge from the evaluator
 1207 itself, thereby alleviating hallucinations and ensuring reliable evaluation.

1208 B.3 PROMPT REWRITING DETAILS
1209

1210 The detailed instruction for prompt rewriting in Sec. 4.3 is illustrated in Fig. 8.

1211 C ADDITIONAL EXPERIMENTS
12121213 C.1 HUMAN ALIGNMENT STUDY
1214

1215 To further validate the effectiveness of employing MLLMs as substitutes for human evaluation, we
 1216 compare MLLM-based judgments with those of human annotators. Specifically, we focus on four
 1217 dimensions (*i.e.*, [MI](#), [MA](#), [MR](#), and [TR](#)), which capture the fundamental visual elements of evalua-
 1218 tion: instance, attribute, relation, and text. As the questions in the remaining eight reasoning dimen-
 1219 sions can also be decomposed into these same elements, evaluating these four dimensions could be
 1220 sufficient. In our experiments, we use images from GPT-Image along these four dimensions. For
 1221 the human annotation results, we hire professional annotators who are highly experienced in image
 1222 and video annotation. The annotation pipeline begins with the distribution of detailed guidelines,
 1223 followed by training and trial annotations to ensure consistency. The annotators then carry out the
 1224 primary annotation (first round), after which the results undergo secondary and tertiary rounds of
 1225 verification through full inspection, ensuring high-quality and reliable results. Considering the im-
 1226 balance in the human-annotated ground-truth results (*e.g.*, the number of correctly generated visual
 1227 elements in GPT-Image generations is substantially greater than that of incorrect ones), we introduce
 1228 *balanced accuracy* [Brodersen et al. \(2010\)](#) to provide a fair and robust evaluation.

1229 As shown in Table 5, closed-source MLLMs significantly outperform open-source ones in recog-
 1230 nizing these fundamental visual elements, with OpenAI o3 and Gemini 2.5 Pro achieving the best
 1231 performance. Considering the trade-off between performance and API cost, we select Gemini 2.5
 1232 Flash as our evaluator for large-scale evaluation (*i.e.*, its API cost is about 1/4 of that of Gemini 2.5
 1233 Pro, while performance drops by around 1%). Meanwhile, considering the possible unavailability
 1234 of closed-source APIs in the future, we also report evaluation results using Qwen2.5-VL-72B and
 1235 [Qwen3-VL-30B-Thinking](#), which achieves leading performance across all open-source MLLMs.

1236 C.2 MAIN RESULTS WITH OPEN-SOURCE EVALUATOR
1237

1238 As discussed in Sec. C.1, we also report the evaluation results using Qwen2.5-VL-72B in Table 6
 1239 and [Qwen3-VL-30B-Thinking in Table 7](#), which achieves leading performance among open-source
 1240 MLLM evaluators. The experimental results show that the patterns observed in Qwen-based evalua-
 1241 tions align with those from Gemini-based assessments in Table 3. This consistency across different
 1242 evaluators confirms the reliability and robustness of the results, ensuring that the conclusions about

1242 Table 6: **Main results on our T2I-COREBENCH** assessing both *composition* and *reasoning* capa-
 1243 bilities evaluated by Qwen2.5-VL-72B. **Mean** denotes the mean score for each capability. The best
 1244 and second-best results are marked in **bold** and underline for **open**- and **closed**-models, respectively.

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295	Composition										Reasoning						Overall Mean
	Model	MI	MA	MR	TR	Mean	LR	BR	HR	PR	GR	AR	CR	RR	Mean		
<i>Diffusion Models</i>																	
SD-3-Medium	61.1	77.2	46.6	16.9	50.5	41.2	20.8	28.9	65.5	47.3	59.4	38.6	15.0	39.6	43.2		
SD-3.5-Medium	61.5	80.6	48.4	19.5	52.5	41.2	20.5	27.3	66.2	42.3	56.3	38.7	13.8	38.3	43.0		
SD-3.5-Large	59.5	80.5	44.7	28.3	53.3	42.3	23.6	27.0	67.0	47.5	62.8	44.1	15.7	41.2	45.3		
FLUX.1-schnell	68.8	83.5	65.7	32.3	62.6	43.6	26.4	35.1	79.0	53.5	67.2	42.7	13.8	45.2	51.0		
FLUX.1-dev	61.6	81.4	61.6	<u>42.3</u>	61.7	41.2	23.8	30.3	78.2	50.5	67.6	39.8	17.2	43.6	49.6		
FLUX.1-Krea-dev	74.6	89.3	72.5	40.2	<u>69.1</u>	47.6	28.2	39.4	83.2	59.1	68.6	47.4	20.1	49.2	55.8		
PixArt- α	41.1	57.3	22.5	7.9	32.2	29.6	12.8	18.4	37.9	33.8	41.0	30.3	15.1	27.4	29.0		
PixArt- Σ	49.1	70.6	35.5	12.7	42.0	37.8	20.2	24.0	51.1	35.6	49.3	37.5	15.8	33.9	36.6		
HiDream-II	66.8	82.0	57.4	40.3	61.6	46.2	24.8	36.4	65.0	42.4	48.1	<u>50.4</u>	20.2	41.7	48.3		
Qwen-Image	85.6	95.4	86.8	92.3	90.1	52.5	38.3	45.5	87.7	65.8	68.5	65.2	21.2	55.6	67.1		
<i>Autoregressive Models</i>																	
Infinity-8B	66.6	86.1	64.9	34.9	63.1	48.0	29.3	36.9	76.6	60.9	79.9	49.9	17.2	49.8	54.2		
GoT-R1-7B	55.9	79.6	54.1	34.3	56.0	48.9	22.8	28.3	69.9	50.8	64.1	36.6	10.2	41.5	46.3		
<i>Unified Models</i>																	
BAGEL	69.2	85.9	66.5	22.4	61.0	39.7	21.9	28.2	64.9	45.4	66.7	34.2	16.8	39.7	46.8		
BAGEL w/ Think	61.6	82.4	55.5	6.9	51.6	44.7	28.8	30.8	75.0	70.1	<u>76.1</u>	46.0	29.8	<u>50.2</u>	50.6		
show-o2-1.5B	64.3	81.9	53.3	12.5	53.0	45.1	23.6	30.9	61.6	48.4	58.5	33.8	14.9	39.6	44.0		
show-o2-7B	66.5	83.5	61.4	35.7	61.7	48.0	<u>30.4</u>	34.1	73.2	58.0	69.3	37.2	13.8	45.5	50.9		
Janus-Pro-1B	61.6	81.2	59.7	21.8	56.1	44.1	23.7	25.5	17.9	15.3	21.1	8.4	5.2	20.1	32.1		
Janus-Pro-7B	64.2	84.0	65.7	30.9	61.2	49.3	24.1	33.4	29.8	23.0	41.7	10.4	7.6	27.4	38.7		
BLIP3o-4B	48.1	68.6	28.8	1.5	36.7	39.6	19.7	21.4	47.9	58.4	63.7	36.7	15.1	37.8	37.4		
BLIP3o-8B	49.6	72.2	35.3	1.2	39.6	40.3	22.2	23.4	53.8	64.8	73.6	42.3	13.8	41.8	41.0		
OmniGen2-7B	72.0	86.0	67.2	37.2	65.6	42.9	24.4	39.4	78.8	53.2	69.7	40.0	13.2	45.2	52.0		
<i>Closed-Source Models</i>																	
Seedream 3.0	85.5	<u>95.1</u>	85.8	76.0	85.6	50.9	40.1	46.5	87.3	61.9	78.1	62.2	25.8	56.6	66.3		
Seedream 4.0	95.9	97.8	94.3	97.3	96.3	76.7	<u>63.1</u>	59.1	95.7	92.7	<u>91.9</u>	75.4	45.0	<u>75.0</u>	82.1		
Gemini 2.0 Flash	68.8	85.2	67.4	82.0	75.8	52.4	40.4	41.9	79.3	70.7	79.6	50.8	28.8	55.5	62.3		
Nano Banana	<u>88.5</u>	94.3	<u>88.9</u>	93.6	<u>91.3</u>	<u>67.2</u>	67.4	<u>59.1</u>	<u>95.4</u>	<u>89.5</u>	93.1	73.9	55.7	75.2	<u>80.5</u>		
Imagen 4	85.2	91.0	85.3	<u>94.2</u>	88.9	55.0	53.6	49.9	92.2	88.0	85.9	<u>74.2</u>	<u>54.4</u>	69.1	75.7		
Imagen 4 Ultra	92.8	95.0	90.2	90.1	92.0	65.4	66.8	58.3	96.3	89.3	94.0	76.6	51.0	74.7	80.5		
GPT-Image	87.8	93.4	90.2	92.8	91.1	65.1	58.5	57.9	94.8	86.6	91.0	72.3	46.5	71.6	78.1		

model performance remain stable, regardless of the evaluation method used. This further supports the reproducibility and transparency of the evaluation process, reinforcing the validity of the insights derived from our experiments.

C.3 MAIN RESULTS WITH MULTIPLE EVALUATOR

We also explore a multi-evaluator fusion strategy to avoid the potential bias brought by using a single MLLM as the evaluator. Here, a checklist item is counted as “yes” only if all three MLLMs (*i.e.*, Gemini-2.5-Flash, Qwen2.5-VL-72B, and Qwen3-VL-30B-Thinking) predict “yes”. As shown in Table 8, the results exhibit consistent performance trends with those reported in Table 3, with the open-source top-3 remaining Qwen-Image, FLUX.1-Krea-dev, and Infinity-8B, and the closed-source top-3 remaining Imagen 4 Ultra, Nano Banana, and Seedream 4.0.

C.4 FINE-GRAINED ANALYSES

Notably, we further annotate each question from the checklist with fine-grained labels to capture their complexity and types for a subset of dimensions, including: *composition* (**MI**, **MA**, **TR**) and *reasoning* (**LR**, **BR**, **HR**, **GR**), which facilitates fine-grained analyses, including:

- **MI Multi-Instance:** The positive (**POS**) label is used to evaluate *instance existence*, verifying whether a specific instance mentioned in the prompt is exactly present in the image (*e.g.*, “*there is an apple*”). In contrast, the negative (**NEG**) label is used to evaluate *instance non-existence*,

1296 Table 7: **Main results on our T2I-COREBENCH** assessing both *composition* and *reasoning* ca-
 1297 *abilities* evaluated by Qwen3-VL-30B-Thinking. Mean denotes the mean score for each capability.
 1298 The best and second-best results are marked in **bold** and underline for open- and closed-models.

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349	Composition												Reasoning					Overall Mean
	Model	MI	MA	MR	TR	Mean	LR	BR	HR	PR	GR	AR	CR	RR	Mean			
<i>Diffusion Models</i>																		
SD-3-Medium	60.7	59.7	38.1	11.2	42.4	30.5	19.8	32.3	57.5	35.9	53.5	38.4	19.7	35.9	38.1			
SD-3.5-Medium	60.5	61.8	37.8	13.4	43.4	26.9	19.0	30.0	56.9	30.5	53.9	36.8	16.0	33.7	37.0			
SD-3.5-Large	58.9	60.8	36.5	21.6	44.4	29.4	21.1	31.0	58.4	32.7	56.1	42.8	18.7	36.3	39.0			
FLUX.1-schnell	67.5	64.1	52.9	23.4	51.9	30.6	24.5	38.8	69.7	42.4	59.3	41.3	16.3	40.4	44.2			
FLUX.1-dev	61.0	62.3	49.8	35.8	52.2	30.2	22.6	32.5	68.0	41.1	61.7	40.4	22.7	39.9	44.0			
FLUX.1-Krea-dev	73.2	71.1	56.4	31.2	58.0	35.3	26.9	43.1	75.5	48.2	60.5	47.2	21.4	44.8	49.2			
PixArt- α	39.9	42.7	18.0	9.9	27.6	15.9	9.4	17.9	32.5	19.6	42.4	29.5	15.0	22.8	24.4			
PixArt- Σ	48.0	51.1	29.4	8.6	34.3	20.0	16.0	24.4	43.7	22.6	46.7	36.6	15.8	28.2	30.3			
HiDream-II	65.2	63.9	46.9	36.0	53.0	36.9	24.0	39.4	57.5	31.7	49.2	49.2	24.7	39.1	43.7			
Qwen-Image	84.9	83.2	70.7	87.4	81.5	44.7	32.5	47.3	81.9	52.4	57.4	62.8	21.5	50.1	60.5			
<i>Autoregressive Models</i>																		
Infinity-8B	64.3	64.5	50.9	24.9	51.2	34.2	23.7	37.6	65.7	43.3	64.2	46.7	16.3	41.4	44.7			
GoT-R1-7B	54.4	58.4	44.9	39.4	49.3	33.0	18.0	31.4	59.5	34.0	55.4	34.8	11.3	34.7	39.5			
<i>Unified Models</i>																		
BAGEL	67.7	67.5	52.9	12.2	50.1	30.2	21.3	31.9	56.8	28.9	53.6	34.7	21.2	34.8	39.9			
BAGEL w/ Think	60.3	64.1	45.0	3.4	43.2	32.0	25.5	31.9	66.5	50.3	62.1	46.5	33.3	43.5	43.4			
show-o2-1.5B	63.7	64.4	43.4	5.9	44.4	30.7	21.3	34.6	53.4	36.3	49.8	33.0	16.2	34.4	37.7			
show-o2-7B	63.8	62.4	50.9	31.0	52.0	34.3	23.7	37.0	57.6	40.0	56.9	35.3	15.2	37.5	42.4			
Janus-Pro-1B	59.2	58.3	50.7	21.0	47.3	31.0	17.4	24.1	14.7	3.4	15.4	7.6	3.9	14.7	25.6			
Janus-Pro-7B	61.6	61.4	56.8	30.0	52.4	35.1	17.9	35.9	24.0	7.8	33.7	10.0	7.8	21.5	31.8			
BLIP3o-4B	48.5	47.7	26.7	0.9	30.9	25.3	16.6	23.8	40.9	32.4	39.3	36.3	15.3	28.7	29.5			
BLIP3o-8B	48.9	50.3	32.4	0.9	33.1	24.9	17.9	25.4	47.0	39.7	54.2	40.8	15.1	33.1	33.1			
OmniGen2-7B	72.0	66.6	54.0	21.1	53.4	31.5	23.0	41.1	69.1	40.5	58.5	42.3	16.1	40.3	44.7			
<i>Closed-Source Models</i>																		
Seedream 3.0	83.4	79.8	68.8	55.3	71.8	41.0	33.8	47.4	80.8	53.9	66.2	60.5	25.4	51.1	58.0			
Seedream 4.0	94.5	88.6	79.9	95.7	89.6	79.8	53.8	60.2	89.7	84.8	80.4	74.4	45.9	71.1	77.3			
Gemini 2.0 Flash	68.7	66.5	54.3	73.2	65.7	44.1	37.3	43.5	71.3	54.3	67.3	51.1	33.1	50.3	55.4			
Nano Banana	86.5	77.4	73.3	89.8	81.8	66.9	62.3	63.1	87.8	77.6	83.8	72.8	62.2	72.1	75.3			
Imagen 4	83.6	74.1	68.4	91.7	79.4	47.9	51.4	52.8	85.5	73.4	75.4	72.4	61.3	65.0	69.8			
Imagen 4 Ultra	91.1	78.7	74.4	87.9	83.0	65.2	61.8	62.7	89.8	76.5	85.2	75.3	55.5	71.5	75.3			
GPT-Image	86.5	77.0	76.3	88.2	82.0	62.2	55.8	62.9	88.6	70.7	83.3	72.2	50.7	68.3	72.9			

verifying whether an instance explicitly required to be absent in the prompt does not appear in the image (e.g., “*there is no banana*”).

- **MA Multi-Attribute:** The positive (**POS**) label is used to evaluate *attribute accuracy*, verifying whether the attributes of an existing instance, such as color, material, or state, are correctly rendered (e.g., “*a red ball*”). In contrast, the negative (**NEG**) label is used to evaluate *attribute exclusion*, verifying whether the instance adheres to the constraint of not possessing a specific attribute (e.g., “*a ball with no red color*”).
- **TR Text-Rendering:** The content (**CON**) label is used to evaluate the accuracy of the generated textual content, focusing on *what* is rendered, such as whether the spelling of words is correct or whether special symbols are properly displayed. The layout (**LAY**) label is used to evaluate the accuracy of the text’s position, layout, and spatial relationships, focusing on *where* the text appears, such as whether a title is placed at the top.
- **LR Logical Reasoning:** The **0-hop** label corresponds to cases where the prompt requires only direct observation without additional inference (e.g., “*a red cube on the table*”), the **1-hop** label corresponds to cases that require a single step of logical inference (e.g., “*the larger of two objects is on the left*”), whereas the **multi-hop (m-hop)** label corresponds to cases that require multiple chained inferences (e.g., “*if the dog is behind the fence, and the fence is behind the house, then the dog is behind the house*”).
- **BR Behavioral Reasoning:** The positive (**POS**) label is used to evaluate the model’s core behavioral reasoning capability by verifying whether the image presents the inevitable visual conse-

Table 8: **Main results on our T2I-COREBENCH** assessing both *composition* and *reasoning* capabilities evaluated by three MLLMs (*i.e.*, Gemini-2.5-Flash, Qwen2.5-VL-72B, and Qwen3-VL-30B-Thinking). **Mean** denotes the mean score for each capability. The best and second-best results are marked in **bold** and underline for open- and closed-models.

Model	Composition						Reasoning						Overall Mean		
	MI	MA	MR	TR	Mean	LR	BR	HR	PR	GR	AR	CR	RR		
<i>Diffusion Models</i>															
SD-3-Medium	52.1	49.4	25.6	4.8	32.9	13.9	12.0	21.7	43.5	26.3	31.1	26.3	8.1	22.9	26.2
SD-3.5-Medium	52.0	51.3	24.1	5.0	33.1	12.0	11.2	19.0	43.9	22.3	33.3	26.3	6.8	21.9	25.6
SD-3.5-Large	51.1	50.7	23.9	9.0	33.7	13.5	12.8	18.2	44.2	24.5	36.9	32.1	8.1	23.8	27.1
FLUX.1-schnell	58.5	53.8	38.9	16.1	41.8	15.9	16.1	26.1	57.0	29.7	39.4	29.5	7.6	27.6	32.4
FLUX.1-dev	52.3	51.9	35.2	25.9	41.3	16.9	15.2	22.5	55.4	28.4	42.9	29.4	11.4	27.8	32.3
FLUX.1-Krea-dev	64.7	<u>61.7</u>	<u>43.8</u>	22.3	48.1	21.3	<u>18.9</u>	<u>30.8</u>	63.7	34.6	42.7	35.9	10.9	<u>32.4</u>	<u>37.6</u>
PixArt- α	34.7	33.4	9.7	0.3	19.5	5.3	5.2	8.8	22.3	13.3	22.0	20.6	6.9	13.1	15.2
PixArt- Σ	41.5	41.4	17.4	0.4	25.2	8.0	8.9	12.9	31.2	16.4	26.0	25.7	7.4	17.1	19.8
HiDream-II	58.7	53.8	35.3	<u>31.8</u>	44.9	<u>25.0</u>	16.4	28.8	46.9	24.6	31.4	<u>37.3</u>	12.8	27.9	33.6
Qwen-Image	77.8	74.2	58.3	82.0	73.1	<u>33.2</u>	<u>23.9</u>	<u>36.5</u>	69.6	42.0	39.9	51.6	<u>13.1</u>	<u>38.7</u>	50.2
<i>Autoregressive Models</i>															
Infinity-8B	55.8	54.1	36.7	6.6	38.3	20.0	14.7	24.7	54.6	33.8	<u>45.1</u>	36.0	9.3	29.8	32.6
GoT-R1-7B	43.3	46.7	25.6	3.9	29.9	13.3	10.1	17.6	41.7	21.3	30.3	22.9	4.6	20.2	23.4
<i>Unified Models</i>															
BAGEL	59.8	56.5	38.1	7.1	40.4	15.6	14.3	20.9	45.4	21.6	35.0	24.8	11.5	23.6	29.2
BAGEL w/ Think	52.6	52.8	30.6	1.0	34.3	17.8	16.0	20.9	53.4	<u>41.4</u>	45.2	33.4	<u>20.1</u>	31.0	32.1
show-o2-1.5B	52.7	52.8	26.4	1.5	33.4	12.8	11.7	21.0	36.8	26.2	27.1	21.1	7.5	20.5	24.8
show-o2-7B	52.5	51.1	29.4	1.0	33.5	14.6	13.5	21.9	42.3	28.6	34.8	23.0	6.3	23.1	26.6
Janus-Pro-1B	44.6	45.2	26.5	1.3	29.4	6.6	9.0	12.4	8.2	1.3	5.7	3.6	1.1	6.0	13.8
Janus-Pro-7B	48.7	49.7	33.0	4.4	33.9	11.4	10.4	19.6	16.0	3.4	17.8	4.7	2.4	10.7	18.5
BLIP3o-4B	39.4	37.6	12.8	0.1	22.5	7.8	7.4	12.3	26.5	24.1	24.8	24.2	7.6	16.8	18.7
BLIP3o-8B	39.8	40.2	17.2	0.0	24.3	8.9	9.3	13.0	30.9	30.1	36.2	27.6	7.4	20.4	21.7
OmniGen2-7B	62.1	55.4	39.1	13.3	42.5	16.0	15.9	29.9	54.8	28.5	39.5	28.9	6.7	27.5	32.5
<i>Closed-Source Models</i>															
Seedream 3.0	75.5	70.5	54.9	39.9	60.2	26.7	24.5	35.4	69.4	43.6	49.1	49.8	15.7	39.3	46.2
Seedream 4.0	89.5	80.7	68.7	92.2	82.8	66.3	44.1	<u>47.3</u>	<u>81.8</u>	77.7	66.8	63.7	33.6	60.1	67.7
Gemini 2.0 Flash	58.3	57.5	38.0	58.8	53.2	29.0	26.3	29.3	62.1	43.1	50.8	37.4	19.3	37.2	42.5
Nano Banana	80.6	69.4	62.1	83.1	73.8	<u>54.0</u>	49.4	46.1	79.3	<u>70.7</u>	72.3	60.0	45.9	59.7	64.4
Imagen 4	77.8	65.1	57.1	<u>87.8</u>	71.9	34.9	39.1	39.2	76.2	65.4	60.6	61.2	<u>44.4</u>	52.6	59.1
Imagen 4 Ultra	<u>85.6</u>	<u>71.1</u>	63.3	84.6	<u>76.1</u>	53.4	<u>48.9</u>	46.1	82.5	70.3	73.1	<u>62.9</u>	41.3	<u>59.8</u>	<u>65.3</u>
GPT-Image	79.7	67.8	<u>64.4</u>	83.0	73.7	51.4	43.1	48.2	81.5	63.4	<u>72.3</u>	60.6	38.9	57.4	62.9

quences triggered by the behavior described in the prompt but not explicitly stated (*e.g.*, “*a glass is knocked over → the water spills onto the floor*”). In contrast, the negative (**NEG**) label is used to identify elements that remain unaffected by the behavior, preserving their original state (*e.g.*, “*knocking over a glass of orange juice does not affect the egg placed beside it*”).

- **HR Hypothetical Reasoning:** The positive (**POS**) label is used to verify the visual results that directly follow from the hypothetical rule, where the corresponding objects satisfy the assumed premise and therefore should exhibit the specified change or characteristic (*e.g.*, “*if the wheels are assumed to be square, the car should display square wheels*”). Conversely, the negative (**NEG**) label is used to verify that objects not meeting the hypothetical premise remain unaffected, ensuring that the model does not mistakenly apply the hypothetical rule to inapplicable objects (*e.g.*, “*other parts of the car not mentioned in the hypothesis should remain unchanged*”).
- **GR Generalization Reasoning:** The invariant (**INV**) label is used to evaluate features in the target scene that remain unchanged, representing the “common constant attributes” summarized across multiple examples (*e.g.*, “*all birds have wings*”). In contrast, the variant (**VAR**) label is used to assess whether the model can follow a cross-example variation logic to generate systematic changes in certain attributes within the target scene (*e.g.*, “*the color of each bird changes across different scenes while their shape remains the same*”).

We report the fine-grained analyses in Table 9, and conclude the following interesting insights: **(1) Most models find NEG cases easier than POS, though a few notable exceptions emerge.**

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 20100
 20101
 20102
 20103
 20104
 20105
 20106
 20107
 20108
 20109
 20110
 20111
 20112
 20113
 20114
 20115
 20116
 20117
 20118
 20119
 20120
 20121
 20122
 20123
 20124
 20125
 20126
 20127
 20128
 20129
 20130
 20131
 20132
 20133
 20134
 20135
 20136
 20137
 20138
 20139
 20140
 20141
 20142
 20143
 20144
 20145
 20146
 20147
 20148
 20149
 20150
 20151
 20152
 20153
 20154
 20155
 20156
 20157
 20158
 20159
 20160
 20161
 20162
 20163
 20164
 20165
 20166
 20167
 20168
 20169
 20170
 20171
 20172
 20173
 20174
 20175
 20176
 20177
 20178
 20179
 20180
 20181
 20182
 20183
 20184
 20185
 20186
 20187
 20188
 20189
 20190
 20191
 20192
 20193
 20194
 20195
 20196
 20197
 20198
 20199
 201000
 201001
 201002
 201003
 201004
 201005
 201006
 201007
 201008
 201009
 201010
 201011
 201012
 201013
 201014
 201015
 201016
 201017
 201018
 201019
 201020
 201021
 201022
 201023
 201024
 201025
 201026
 201027
 201028
 201029
 201030
 201031
 201032
 201033
 201034
 201035
 201036
 201037
 201038
 201039
 201040
 201041
 201042
 201043
 201044
 201045
 201046
 201047
 201048
 201049
 201050
 201051
 201052
 201053
 201054
 201055
 201056
 201057
 201058
 201059
 201060
 201061
 201062
 201063
 201064
 201065
 201066
 201067
 201068
 201069
 201070
 201071
 201072
 201073
 201074
 201075
 201076
 201077
 201078
 201079
 201080
 201081
 201082
 201083
 201084
 201085
 201086
 201087
 201088
 201089
 201090
 201091
 201092
 201093
 201094
 201095
 201096
 201097
 201098
 201099
 201100
 201101
 201102
 201103
 201104
 201105
 201106
 201107
 201108
 201109
 201110
 201111
 201112
 201113
 201114
 201115
 201116
 201117
 201118
 201119
 201120
 201121
 201122
 201123
 201124
 201125
 201126
 201127
 201128
 201129
 201130
 201131
 201132
 201133
 201134
 201135
 201136
 201137
 201138
 201139
 201140
 201141
 201142
 201143
 201144
 201145
 201146
 201147
 201148
 201149
 201150
 201151
 201152
 201153
 201154
 201155
 201156
 201157
 201158
 201159
 201160
 201161
 201162
 201163
 201164
 201165
 201166
 201167
 201168
 201169
 201170
 201171
 201172
 201173
 201174
 201175
 201176
 201177
 201178
 201179
 201180
 201181
 201182
 201183
 201184
 201185
 201186
 201187
 201188
 201189
 201190
 201191
 201192
 201193
 201194
 201195
 201196
 201197
 201198
 201199
 201200
 201201
 201202
 201203
 201204
 201205
 201206
 201207
 201208
 201209
 201210
 201211
 201212
 201213
 201214
 201215
 201216
 201217
 201218
 201219
 201220
 201221
 201222
 201223
 201224
 201225
 201226
 201227
 201228
 201229
 201230
 201231
 201232
 201233
 201234
 201235
 201236
 201237
 201238
 201239
 201240
 201241
 201242
 201243
 201244
 201245
 201246
 201247
 201248
 201249
 201250
 201251
 201252
 201253
 201254
 201255
 201256
 201257
 201258
 201259
 201260
 201261
 201262
 201263
 201264
 201265
 201266
 201267
 201268
 201269
 201270
 201271
 201272
 201273
 201274
 201275
 201276
 201277
 201278
 201279
 201280
 201281
 201282
 201283
 201284
 201285
 201286
 201287
 201288
 201289
 201290
 201291
 201292
 201293
 201294
 201295
 201296
 201297
 201298
 201299
 201300
 201301
 201302
 201303
 201304
 201305
 201306
 201307
 201308
 201309
 201310
 201311
 201312
 201313
 201314
 201315
 201316
 201317
 201318
 201319
 201320
 201321
 201322
 201323
 201324
 201325
 201326
 201327
 201328
 201329
 201330
 201331
 201332
 201333
 201334
 201335
 201336
 201337
 201338
 201339
 201340
 201341
 201342
 201343
 201344
 201345
 201346
 201347
 201348
 201349
 201350
 201351
 201352
 201353
 201354
 201355
 201356
 201357
 201358
 201359
 201360
 201361
 201362
 201363
 201364
 201365
 201366
 201367
 201368
 201369
 201370
 201371
 201372
 201373
 201374
 201375
 201376
 201377
 201378
 201379
 201380
 201381
 201382
 201383
 201384
 201385
 201386
 201387
 201388
 201389
 201390
 201391
 201392
 201393
 201394
 201395
 201396
 201397
 201398
 201399
 201400
 201401
 201402
 201403
 201404
 201405
 201406
 201407
 201408
 201409
 201410
 201411
 201412
 201413
 201414
 201415
 201416
 201417
 201418
 201419
 201420
 201421
 201422
 201423
 201424
 201425
 201426
 201427
 201428
 201429
 201430
 201431
 201432
 201433
 201434
 201435
 201436
 201437
 201438
 201439
 201440
 201441
 201442
 201443
 201444
 201445
 201446
 201447
 201448
 201449
 201450
 201451
 201452
 201453
 201454
 201455
 201456
 201457
 201458
 201459
 201460
 201461
 201462
 201463
 201464
 201465
 201466
 201467
 201468
 201469
 201470
 201471
 201472
 201473
 201474
 201475
 201476
 201477
 201478
 201479
 201480
 201481
 201482
 201483
 201484
 201

1458 struggle when required to generalize over systematic variations. The performance gap reveals a core
 1459 challenge in enabling models to reason beyond fixed regularities toward flexible pattern adaptation.
 1460

1461 C.5 QUANTITATIVE EXAMPLES AND COMPARISONS

1463 Due to page limits, we include the complete set of illustrative examples and cross-model qualitative
 1464 comparisons in Fig. 9 and Figs. 10, 11, 12. These figures showcase *composition* and three key
 1465 dimensions of *reasoning* (*i.e.*, *deductive*, *inductive*, and *abductive*), providing a fuller picture beyond
 1466 the main quantitative results in the text.

1468 D LLM USAGE STATEMENT

1470 In this work, LLMs are used solely as general-purpose assistive tools. Specifically, we use them
 1471 to (1) provide suggestions for improving grammar and clarity of writing, (2) help organize section
 1472 structures, and (3) assist in generating candidate prompts and checklists during the benchmark con-
 1473 struction stage, which are subsequently verified and refined by human annotators. Importantly, all
 1474 research ideas, experiment designs, and final scientific claims are developed and validated by the au-
 1475 thors themselves. The LLMs do not contribute to the originality of research concepts or conclusions,
 1476 and are therefore not considered contributors or co-authors. The authors take full responsibility for
 1477 all content presented in this paper, including any text initially drafted with LLM assistance.

1479 E LIMITATIONS AND DISCUSSION

1481 **Limitations.** While our T2I-COREBENCH provides a comprehensive and challenging benchmark
 1482 for assessing both compositional and reasoning capabilities, we also observe several limitations in
 1483 evaluation: (i) Our study focuses solely on T2I generation, leaving out other emerging modalities
 1484 such as video generation and interactive multimodal generation, which pose additional temporal and
 1485 contextual reasoning challenges. (ii) Although our checklist-based evaluation ensures consistency
 1486 and objectivity across dimensions, certain aspects could benefit from finer-grained metrics. For ex-
 1487 ample, text rendering is currently assessed at the sentence level, whereas character-level accuracy
 1488 could offer a more detailed perspective. (iii) Our benchmark primarily evaluates generative faith-
 1489 fulness with respect to prompt semantics, without considering non-semantic aspects such as aesthetics,
 1490 realism, and diversity. The dataset largely focuses on objects and animals, with limited coverage of
 1491 human-centric or face-related cases, which may reduce relevance to certain real-world applications.
 1492 Expanding the benchmark to include human-related scenarios, together with broader non-semantic
 1493 dimensions, is an important direction for future work. (iv) Our benchmark is currently limited to En-
 1494 glish prompts, while multilingual capabilities remain largely unexplored; extending the benchmark
 1495 to multiple languages represents an important direction for future work.

1496 **Discussion.** To address the identified challenges of T2I generation in complex composition and rea-
 1497 soning scenarios, we identify four promising research directions for future work: (i) The develop-
 1498 ment of more diverse and challenging training data, particularly with multi-element and reasoning-
 1499 oriented supervision, is essential for enabling stronger generalization across complex tasks. (ii)
 1500 The integration of LLMs and MLLMs into T2I pipelines should be advanced, leveraging their
 1501 strong language modeling and cross-modal reasoning capabilities to improve semantic under-
 1502 standing and alignment in complex generation scenarios. (iii) The incorporation of LLM-style reason-
 1503 ing paradigms (*e.g.*, Chain-of-Thought Wei et al. (2022), Self-Consistency Wang et al. (2022), and
 1504 Retrieval-Augmented Generation Gao et al. (2023)) into T2I pipelines can facilitate intermediate in-
 1505 ference before image generation, thereby improving the extraction of implicit visual elements from
 1506 complex prompts. (iv) The exploration of reasoning mechanisms during generation is also needed,
 1507 by explicitly integrating visual reasoning steps into the generation process to support more detailed
 1508 and controllable outputs. We hope this benchmark and analysis can facilitate future research toward
 1509 building T2I models into both “*set the stage*” and “*direct the play*”.

1510
 1511

1512

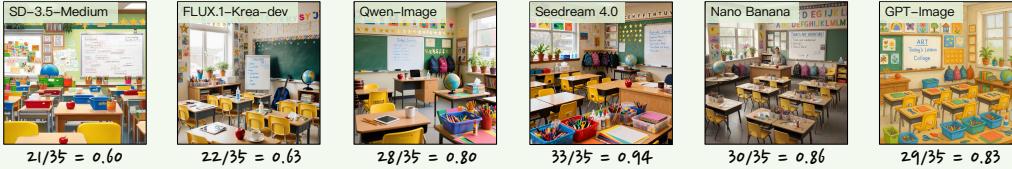
1513

1514

1515

1516 **Multi-Instance (MI):** A lively elementary school classroom during art period, where colorful student artwork decorates the walls above rows of small desks and bright yellow chairs. The teacher's desk holds a red apple, coffee mug, and scattered pencils, while a large whiteboard displays today's lesson plan written in blue marker. Near the windows, potted plants thrive on the windowsill next to boxes of tissues and hand sanitizer. Art supplies overflow from plastic bins: crayons, scissors, glue sticks, and construction paper in every imaginable color. However, you won't find any electronic tablets or computers in this traditional classroom, as the school maintains a hands-on learning approach. There are also no musical instruments like drums or guitars present, keeping the focus purely on visual arts. Students' backpacks hang on hooks along the back wall, while a globe sits prominently on a corner table beside stacks of picture books. The bulletin board showcases gold star stickers and student certificates, and alphabet letters march along the wall border above the green chalkboard.

35 Instances



1521

1522

1523

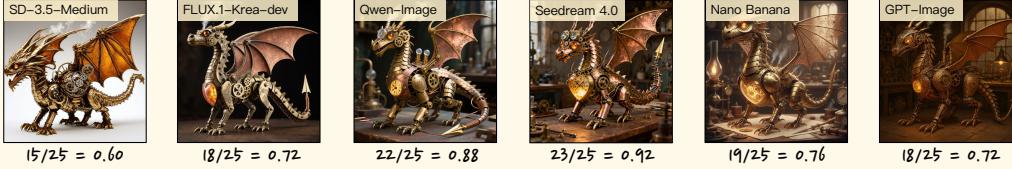
1524

1525

1526

1527 **Multi-Attribute (MA):** A single mechanical clockwork dragon constructed from brass and copper gears in a Victorian inventor's workshop. The dragon is medium-sized with articulated joints and visible clockwork mechanisms throughout its body. Its scales are individual brass plates that overlap like medieval armor, and its eyes are glowing amber gemstones. The dragon has four legs with mechanical claws, and its wings are made of thin copper sheets with brass ribbing. It is not organic, being entirely mechanical in construction. Two steam vents are positioned along its spine, releasing small puffs of white vapor. The dragon's head features three rotating gear assemblies visible through transparent crystal panels. Its tail is segmented with spring-loaded joints and ends in a sharp brass spear point. The dragon's chest houses a large central clockwork heart that glows with warm golden light and produces visible ticking motion. Intricate engravings of Victorian flourishes decorate the brass surfaces, and tiny copper wires connect various mechanical components. The dragon is not corroded, maintaining its polished metallic appearance. Small brass screws and bolts are visible at every joint, and delicate filigree work adorns the wing membranes. The dragon shows no signs of rust and contains no modern electronic components.

25 Attributes



1534

1535

1536

1537

1538

1539

1540 **Multi-Relation (MR):** A kitchen scene with an experienced chef wearing a white hat standing behind an old, worn wooden counter. The chef is holding a large knife and cutting carrots on a cutting board. A shiny, new red pot sits on top of a gas stove next to the counter; the pot is noticeably newer than the counter. A black cat is sitting under the counter facing the chef. On the counter, there are three apples and a group of carrots. The number of carrots is twice the number of apples. The three apples are arranged in front of the cutting board. Also on the counter are some onions, and their number is one less than the number of apples. A wooden spoon is inside the red pot. The chef is pointing at a recipe book that lies open between the apples and the cutting board. The recipe book is thicker than the cutting board. A kitchen towel hangs from a hook on the wall behind the stove. A salt shaker sits next to the recipe book on the counter.

21 Relations

1550

1551

1552

1553

1554

1555

1556

1557 **Text-Rendering (TR):** Create a pharmaceutical product packaging box with detailed multi-level text hierarchy. The main product name 'MEDIHEALTH PLUS™' should be displayed in large blue letters on the front panel. Below that, show 'Advanced Pain Relief Formula' in smaller black text. The package should have four information sections: 'ACTIVE INGREDIENTS' (top-left), 'DOSAGE INSTRUCTIONS' (top-right), 'WARNINGS & PRECAUTIONS' (bottom-left), and 'MANUFACTURER INFO' (bottom-right). Under ACTIVE INGREDIENTS, list 'Ibuprofen 400mg', 'Acetaminophen 325mg', and 'Caffeine 65mg'. Under DOSAGE INSTRUCTIONS, show 'Adults: 1-2 tablets', 'Every 6-8 hours', and 'Max: 6 tablets/day'. Under WARNINGS & PRECAUTIONS, display 'Do not exceed dosage', 'Consult doctor if pregnant', and 'Keep away from children'. Under MANUFACTURER INFO, list 'MediCorp International', 'Lot #: MH-2024-456', and 'Exp: 12/2026'. Add a small plus symbol (+) next to 'Ibuprofen 400mg' and 'Adults: 1-2 tablets' only. Do not add symbols next to any other text elements. On the side panel, include 'FDA APPROVED' and 'Store below 25°C'.

20 Texts + 20 Layouts

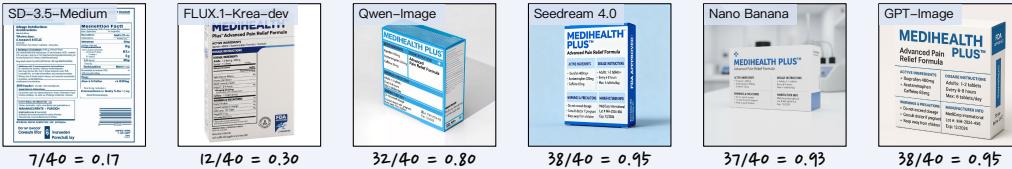


Figure 9: Quantitative examples of composition dimensions (i.e., MI, MA, MR, TR).

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Logical Reasoning (LR): Generate an image of three robots in a lab. Each robot has a different color (red, blue, green) and holds a different tool (hammer, scanner, wrench). The robots make statements: (1) Red robot says: 'Blue robot has the hammer.' (2) Blue robot says: 'I have the scanner.' (3) Green robot says: 'Red robot is lying.' (4) Red robot also says: 'I have the wrench.' (5) Additional facts: Exactly one robot always lies, the other two always tell the truth. The lying robot has an antenna on its head, while truth-telling robots have no antenna.

5 Premises

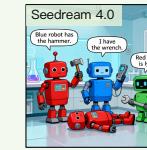
Checklist: 01. Does the red robot have an antenna on its head?
02. Does the blue robot have no antenna on its head?
03. Does the green robot have no antenna on its head?

04. Is the red robot holding the hammer?
05. Is the blue robot holding the scanner?
06. Is the green robot holding the wrench?

3/6 = 0.50

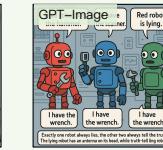
4/6 = 0.67

5/6 = 0.83



5/6 = 0.83

5/6 = 0.83



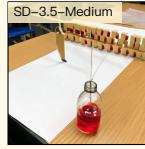
4/6 = 0.67

Behavioral Reasoning (BR): Generate a photo of a Rube Goldberg-style chain reaction in a classroom, captured at the final moment. The initial setup contains a taut elastic cord placed just before a line of standing dominoes, with a matchstick fixed at the midpoint of the cord under tension. Behind the domino line, the last domino is positioned to connect to a mechanism designed to cut the rope suspending a steel marble. The marble is aligned to roll down a ramp into a glass beaker filled with red-colored water, which rests on a white sheet of paper. Far to the side of this setup on the same desk is a closed microscope under a dust cover. The actions that just occurred: the matchstick is used to burn through the taut elastic cord, which, upon snapping, tips over the first domino in the line. The image should depict the scene after all resulting effects have completely finished.

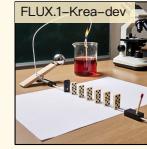
8 Outcomes

Checklist: 01. Is the matchstick charred or blackened after burning?
02. Is the elastic cord visibly broken after being burned through?
03. Are all of the dominoes in the line lying flat on the desk?
04. Does the rope holding the steel marble appear to be cut?

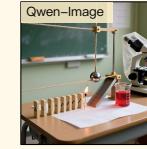
05. Is the steel marble inside the glass beaker?
06. Is the white paper under the beaker stained with red splashes?
07. Is the microscope still on the desk, far from the experiment?
08. Is the dust cover still on the microscope and completely dry?



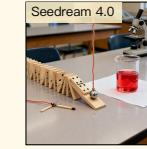
0/8 = 0.00



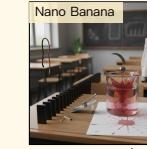
1/8 = 0.13



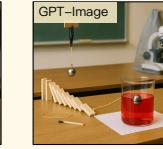
2/8 = 0.25



2/8 = 0.25



5/8 = 0.63



4/8 = 0.50

Hypothetical Reasoning (HR): Depict a bustling city-street intersection. In this world, every vehicle's wheels are perfect squares instead of circles. Present: 1) a yellow taxi car, 2) a red double-decker bus, 3) a delivery bicycle, 4) a police motorcycle, 5) a gray sedan, 6) a street-sweeper truck, 7) a pedestrian's shoes, 8) a street lamp, 9) a fire hydrant, 10) a public trash bin, 11) a blue mailbox, and 12) a traffic light pole. Render in daylight realism.

12 Items

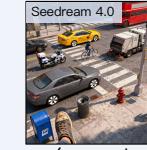
Checklist: 01. Are the taxi's wheels depicted as perfect squares?
02. Are the bus's wheels depicted as perfect squares?
03. Are the bicycle wheels depicted as perfect squares?
04. Are the motorcycle wheels depicted as perfect squares?
05. Are the sedan's wheels depicted as perfect squares?
06. Are the street-sweeper truck wheels depicted as perfect squares?

07. Do the pedestrian's shoes keep their normal soles?
08. Does the street lamp keep its normal form?
09. Does the fire hydrant keep its normal form?
10. Does the trash bin keep its normal form?
11. Does the mailbox keep its normal form?
12. Does the traffic-light pole keep its normal form?

4/12 = 0.33

6/12 = 0.50

6/12 = 0.50



6/12 = 0.50

5/12 = 0.42

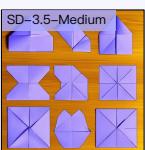
6/12 = 0.50

Procedural Reasoning (PR): Illustrate the final scene after performing all of the following six steps in order: 1. Place a square sheet of purple origami paper flat on a wooden table. 2. Fold the paper diagonally corner to corner and crease sharply, then unfold. 3. Fold along the other diagonal and crease, then unfold to reveal an X-shaped crease pattern. 4. Collapse the paper inward along the creases to form a square base. 5. Continue folding to create the traditional bird base, then pull out the neck, head, and two wings to form a crane. 6. Spread the wings gently so the crane stands upright and centre it on the table. Render the tabletop exactly as it appears once all six steps are complete.

6 Procedures

Checklist: 01. Is a finished origami crane made from purple paper present on the table?
02. Are both wings extended outward horizontally?
03. Is the crane standing upright without external support?

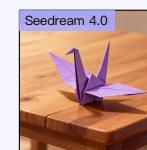
04. Is the crane's head distinct and bent slightly downward?
05. Is no unfolded sheet or scrap paper left on the table?



0/5 = 0.00

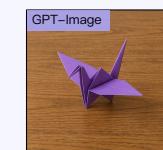
0/5 = 0.00

4/5 = 0.80



4/5 = 1.00

5/5 = 1.00



5/5 = 1.00

Figure 10: Quantitative examples of deductive reasoning dimensions (i.e., LR, BR, HR, PR).

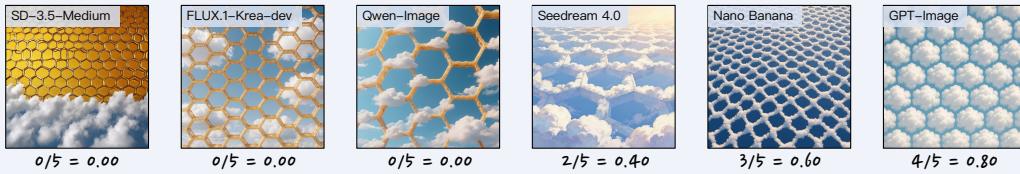
1620 **Generalization Reasoning (GR):** This is a system that creates a 'Divine Chariot' based on a 'Deity's Domain'. Study the examples to understand
 1621 the rules.
 1622 Example 1: The source is the 'Sky' domain, with 2 chariooteers, a primary metal of gold, and a 'Sun' symbol. The result is a golden
 1623 chariot that floats without wheels. It is pulled by 2 griffins (Rule: Sky -> Griffins/Floating, Sea -> Hippocampi/Wheels; creature count = chariooteer
 1624 count). A large, golden sun emblem is on the front of the chariot (Rule: metal determines chariot and emblem material). The chariot emits soft
 1625 rays of light (Rule: Sun -> light rays, Trident -> water trails). The chariot is made of glowing energy and metal and is set against a cloudy
 1626 sky.
 1627 Example 2: The source is the 'Sea' domain, with 1 chariooteer, a primary metal of silver, and a 'Trident' symbol. The result is a silver
 1628 chariot with wheels made of swirling water. It is pulled by 1 hippocampus (Rule: Sky -> Griffins/Floating, Sea -> Hippocampi/Wheels; creature
 1629 count = chariooteer count). A large, silver trident emblem is on the front of the chariot (Rule: metal determines chariot and emblem material). The
 1630 chariot is followed by trails of swirling water (Rule: Sun -> light rays, Trident -> water trails). The chariot is made of glowing energy and metal
 1631 and is set against a stormy sea.
 1632 Now, apply this exact system. Generate an image of the chariot from the following source: The 'Sky' domain,
 1633 with 3 chariooteers, a primary metal of silver, and a 'Sun' symbol.
 1634 *8 Generalization Rules*
 1635

1636 **Checklist:** 01. Is the chariot being pulled by griffins?
 1637 02. Are there exactly 3 griffins pulling the chariot?
 1638 03. Does the chariot float and have no wheels?
 1639 04. Is the body of the chariot made of silver?
 1640 05. Is there a large sun-shaped emblem on the front of the chariot?
 1641 06. Is the material of the emblem also silver?
 1642 07. Does the chariot emit soft rays of light?
 1643 08. Is the setting a sky with clouds?
 1644

1645
 1646 $3/8 = 0.38$ $3/8 = 0.38$ $2/8 = 0.25$ $6/8 = 0.63$ $7/8 = 0.88$ $7/8 = 0.88$

1647 **Analogy Reasoning (AR):** Just as a honeycomb displays the following visual properties: (1) each cell has exactly six sides, (2) all sides of each
 1648 hexagon are the same length, (3) adjacent cells share common walls, (4) all hexagons are the same size, and (5) the hexagonal pattern covers the
 1649 entire visible surface, create an image showing clouds arranged in the sky following this same organizational principle. The image should
 1650 ultimately be guided by the visual analogy, prioritizing its rules over real-world physics.
 1651 *5 Analogical Rules*

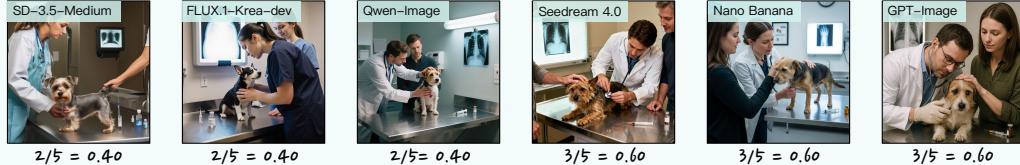
1652 **Checklist:** 01. Does each cloud formation have exactly six sides?
 1653 02. Are all sides of each cloud hexagon the same length?
 1654 03. Do adjacent cloud formations share common walls?
 1655 04. Are all cloud hexagons the same size?
 1656 05. Does the hexagonal cloud pattern cover the entire visible sky area?
 1657



1660 **Figure 11: Quantitative examples of inductive reasoning dimensions (i.e., GR, AR).**

1661 **Commonsense Reasoning (CR):** Describe a realistic scene, including any necessary real-world details to make it believable. In a veterinary
 1662 clinic's examination room, a veterinarian is conducting a check-up on a nervous terrier. The vet is leaning over the animal to listen carefully to its
 1663 heartbeat. The owner stands close by, stroking the dog's head to keep it calm. On the stainless steel counter in the background, a single syringe
 1664 has been prepared next to a small vial. On the wall, an X-ray film is clipped onto an illuminated light box.
 1665 *5 Commonsense*

1666 **Checklist:** 01. Is the veterinarian using a stethoscope to listen to the dog's heartbeat?
 1667 02. Is the dog positioned on an elevated metal examination table?
 1668 03. Is the veterinarian wearing professional attire suitable for a medical environment, such as scrubs or a lab coat?
 1669 04. Is the needle of the prepared syringe on the counter still covered with its protective cap?
 1670 05. Does the illuminated X-ray on the wall display the skeletal structure of an animal?
 1671



1674 **Reconstructive Reasoning (RR):** Observations:
 1675 On a bedroom windowsill sits an open jewelry box with one earring missing from a pair. A
 1676 single black feather rests on the sill. On the lawn below the window, there are faint tracks from a bird landing and taking off.
 1677 Generative Task:
 1678 Reconstruct and generate a high-speed photograph of the precise and singular moment just after the theft has been completed, capturing
 1679 the instant when the thief is about to escape. All objects mentioned in Observations must be reconstructed in the scene, except those that are
 1680 meant to have disappeared in the reconstructed moment.
 1681 *5 Clues*

1682 **Checklist:** 01. Is a bird, such as a crow or magpie, visible in the scene?
 1683 02. Is the bird holding a shiny earring in its beak?
 1684 03. Is the bird depicted in mid-flight, taking off from the windowsill?
 1685

1688 **Figure 12: Quantitative examples of abductive reasoning dimensions (i.e., CR, RR).**