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EASIER PAINTING THAN THINKING: CAN TEXT-TO-
IMAGE MODELS SET THE STAGE, BUT NOT DIRECT
THE PLAY?

Anonymous authors
Paper under double-blind review

Prompt: Generate the result of a ripe tomato being squeezed 
tightly in a fist.

(1 Behavior → 1 Outcome)
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Prompt: A spacious kitchen featuring a large stainless steel
refrigerator with double-door design. The refrigerator stands 
next to the sleek, dark wooden cabinets that reach up to the 
ceiling. In front of the refrigerator, there is a kitchen island with 
a white marble countertop, and hanging above are three modern
pendant lights with a brushed metal finish. 

Prompt: A bustling modern kitchen ··· where a wooden cutting
board sits prominently on the granite countertop alongside a 
sharp knife and several red tomatoes. Near the stove, a large pot 
steams while a smaller saucepan bubbles ··· However, there are 
no bananas anywhere ··· Fresh bread sits in a basket, and olive oil 
gleams in its glass bottle on the counter.

(b) Composition: DPG-Bench (c) Composition: T2I-CoReBench (Ours)

GPT-ImageSD-3.5-Medium 6/6�=�1.00

6/6�=�1.00

Easy!

GPT-ImageSD-3.5-Medium 20/33�=�0.61

28/33�=�0.85

Hard!

GPT-ImageSD-3.5-Medium 0/1�=�0.00

1/1�=�1.00

Fair!

Prompt: ··· A stuntman was supposed to swing on a thick rope 
across the room. Directly below the rope’s path is a ‘breakaway’
prop table ··· with prop food (a foam turkey, rubber fruit) 
and ··· The thick rope snapped midswing, causing the stuntman 
to fall directly onto the breakaway table below and shatter it.

(1 Behavior → 8 Outcomes)
GPT-ImageSD-3.5-Medium 1/8�=�0.125

5/8�=�0.675

Hard!

(d) Reasoning: R2I-Bench (e) Reasoning: T2I-CoReBench (Ours)(a) Evaluation Taxonomy

(33 Instances)(6 Instances)

Figure 1: Overview of our T2I-COREBENCH. (a) Our benchmark comprehensively covers two
fundamental T2I capabilities (i.e., composition and reasoning), further refined into 12 dimensions.
(b-e) Our benchmark poses greater challenges to advanced T2I models, with higher compositional
density than DPG-Bench Hu et al. (2024) and greater reasoning intensity than R2I-Bench Chen et al.
(2025b), enabling clearer performance differentiation across models under real-world complexities.
Each image is scored based on the ratio of correctly generated elements.

ABSTRACT

Text-to-image (T2I) generation aims to synthesize images from textual prompts,
which jointly specify what must be shown and imply what can be inferred, which
thus correspond to two core capabilities: composition and reasoning. Despite re-
cent advances of T2I models in both composition and reasoning, existing bench-
marks remain limited in evaluation. They not only fail to provide comprehensive
coverage across and within both capabilities, but also largely restrict evaluation to
low scene density and simple one-to-one reasoning. To address these limitations,
we propose T2I-COREBENCH, a comprehensive and complex benchmark that
evaluates both composition and reasoning capabilities of T2I models. To ensure
comprehensiveness, we structure composition around scene graph elements (in-
stance, attribute, and relation) and reasoning around the philosophical framework
of inference (deductive, inductive, and abductive), formulating a 12-dimensional
evaluation taxonomy. To increase complexity, driven by the inherent real-world
complexities, we curate each prompt with higher compositional density for com-
position and greater reasoning intensity for reasoning. To facilitate fine-grained
and reliable evaluation, we also pair each evaluation prompt with a checklist that
specifies individual yes/no questions to assess each intended element indepen-
dently. In statistics, our benchmark comprises 1, 080 challenging prompts and
around 13, 500 checklist questions. Experiments across 28 current T2I models re-
veal that their composition capability still remains limited in high compositional
scenarios, while the reasoning capability lags even further behind as a critical bot-
tleneck, with all models struggling to infer implicit elements from prompts.
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1 INTRODUCTION

Recent developments in text-to-image (T2I) generative models are advancing toward high-quality
image generation that adheres to user instructions. In real-world applications, textual prompts are
usually concise yet underspecified Hutchinson et al. (2022); Zhong et al. (2023), conveying not only
explicit descriptions about what must be depicted, but also implicit contextual cues for generating
coherent and plausible images. These correspond to two fundamental capabilities required for faith-
ful T2I generation: composition and reasoning. As shown in Fig. 1, composition aims to correctly
generate all explicit visual elements in the prompt, including instances (e.g., tomato), attributes (e.g.,
wooden), and relations (e.g., next to); reasoning aims to generate visual elements implicitly inferred
from the prompt (e.g., a ripe tomato is squeezed tightly in a fist → the tomato juice bursts out).

Predominant T2I models, primarily based on diffusion Ho et al. (2020); Ho & Salimans (2021);
Peebles & Xie (2023) and autoregressive paradigms Sun et al. (2024); Li et al. (2024b), demonstrate
strong performance on simple compositional tasks Huang et al. (2023a); Ghosh et al. (2023) but still
struggle with complex compositional tasks involving multiple visual elements Hu et al. (2024); Wu
et al. (2024) as well as reasoning tasks Niu et al. (2025); Chen et al. (2025b). Recently, T2I models
enhanced with large language models (LLMs) or multimodal LLMs (MLLMs) Chameleon (2024);
Xie et al. (2024); Chen et al. (2025c); Deng et al. (2025a); Wu et al. (2025a) have emerged, which
offer stronger text modeling and cross-modal alignment. This paradigm brings new expectations to
handle more complex scenarios involving high compositional density and reasoning intensity.

Given these developments and challenges, it is increasingly important to establish a fair and holistic
evaluation of T2I models that systematically assesses both composition and reasoning capabilities.
Early efforts Huang et al. (2023a); Ghosh et al. (2023); Li et al. (2024a) focus on evaluating basic
composition capabilities with a limited number of visual elements. Subsequent benchmarks further
extend the number of visual elements in composition (see Fig. 1 (b)) Hu et al. (2024); Wu et al.
(2024); Zhou et al. (2025) and evaluate certain reasoning capabilities (e.g., behavioral reasoning in
Fig. 1 (d)) Fu et al. (2024); Niu et al. (2025); Chen et al. (2025b). These existing benchmarks exhibit
two limitations. (1) Lack of comprehensiveness: Most benchmarks focus on either composition or
reasoning in isolation, and their underlying taxonomies are largely heuristic, which prevents them
from systematically capturing all relevant evaluation dimensions. (2) Lack of complexity: While
some benchmarks increase the number of visual elements in composition, they remain limited to
low scene density and fail to reflect the compositional complexity of real-world applications (e.g.,
generate a bustling modern kitchen in Fig. 1 (c)). More importantly, current reasoning-oriented
benchmarks mainly target single-step inference (e.g., one behavior → one outcome), thus overlook-
ing the multi-step causal chains inherent to real-world scenarios (see Fig. 1 (e)).

To address the above limitations, we introduce T2I-COREBENCH, a Composition and Reasoning
Benchmark for systematic evaluation of T2I models. To ensure comprehensiveness, as illustrated in
Fig. 1 (a), our taxonomy jointly covers composition and reasoning. For composition, we follow the
scene graph structure Johnson et al. (2015); Chang et al. (2021) and define three basic dimensions to
fully depict a compositional scene: instance, attribute, and relation. We also include text rendering
to capture the unique challenges of generating texts with precise content and layout. For reasoning,
we adopt a tripartite framework of deductive, inductive, and abductive reasoning, as well-established
in philosophical literature Peirce (1934); Zalta et al. (2003); Godfrey-Smith (2009), and refine it into
eight dimensions tailored to T2I scenarios. To increase complexity, as summarized in Table 1, we
design each dimension with higher compositional density and increased reasoning difficulties com-
pared with existing benchmarks. For composition, we increase the number of visual elements (∼ 20
per prompt) to simulate semantically dense scenarios. For reasoning, complexity is introduced along
one-to-many (i.e., one behavior → multiple outcomes) and many-to-one (e.g., multiple premises →
one conclusion) inferences, reflecting the intricate reasoning patterns in real-world applications.

To enable fine-grained and reliable evaluation, each textual prompt is paired with a checklist of in-
dependent yes/no questions, assessing whether the generated image faithfully captures both explicit
and implicit visual elements. The generated images are then evaluated against these checklists by
Gemini 2.5 Flash Google (2025a), an MLLM-based evaluator selected for its strong alignment with
human judgments and efficiency at scale. In total, T2I-COREBENCH encompasses 12 well-defined
dimensions, with 1, 080 challenging prompts and approximately 13, 500 checklist questions. In ex-
periments, we benchmark 28 current T2I models across architectures and scales, including diffusion
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Table 1: T2I benchmark comparison. Our T2I-COREBENCH comprehensively covers 12 evalu-
ation dimensions spanning both composition ( MI Multi-Instance, MA Multi-Attribute, MR Multi-
Relation, TR Text Rendering) and reasoning ( LR Logical Reasoning, BR Behavioral Reasoning,
HR Hypothetical Reasoning, PR Procedural Reasoning, GR Generalization Reasoning, AR Ana-
logical Reasoning, CR Commonsense Reasoning, and RR Reconstructive Reasoning). The symbols
denote different coverage levels: indicates high compositional (visual elements > 5) or reasoning
(one-to-many or many-to-one inference) complexity, indicates simple settings (visual elements
≤ 5 or one-to-one inference), and indicates no coverage.

Benchmark
Composition

Reasoning

Deductive Inductive Abductive

MI MA MR TR LR BR HR PR GR AR CR RR

T2I-CompBench Huang et al. (2023a)
GenEval Ghosh et al. (2023)

GenAI-Bench Li et al. (2024a)
DPG-Bench Hu et al. (2024)
ConceptMix Wu et al. (2024)
TIIF-Bench Wei et al. (2025)

LongBench-T2I Zhou et al. (2025)
PRISM-Bench Fang et al. (2025)
UniGenBench Wang et al. (2025)

Commonsense-T2I Fu et al. (2024)
PhyBench Meng et al. (2024)

WISE Niu et al. (2025)
T2I-ReasonBench Sun et al. (2025)

R2I-Bench Chen et al. (2025b)
OneIG-Bench Chang et al. (2025)

T2I-COREBENCH (Ours)

models, autoregressive models, and unified models. Our study shows that composition capability
in T2I generation is steadily improving, with open-source models gradually narrowing the gap with
closed-source counterparts, whereas the overall performance remains inadequate in high composi-
tional scenarios. Most notably, reasoning capability lags significantly behind: even the state-of-the-
art (SOTA) models fail to reliably infer implicit visual elements from prompts, making reasoning
the central bottleneck for advancing T2I generation. Our contributions can be concluded as follows:

• We introduce T2I-COREBENCH, the first benchmark that jointly emphasizes comprehensiveness
and complexity in T2I evaluation, covering both composition and reasoning capabilities through
1, 080 challenging prompts across 12 dimensions.

• We pair each prompt with a human-verified checklist of individual yes/no questions, for a total of
around 13, 500 questions across the benchmark. This facilitates fine-grained and reliable assess-
ment of whether the generated images faithfully capture both explicit and implicit elements.

• We conduct comprehensive evaluations on 28 current T2I models and conclude valuable insights,
revealing that composition, though steadily improving, still remains unsolved in complex scenar-
ios, whereas reasoning lags markedly behind and stands as the central bottleneck.

2 RELATED WORKS

Text-to-Image Generative Models. In recent years, T2I generation has witnessed significant ad-
vancements, with its rapid development largely driven by the emergence of diffusion models Ho
et al. (2020); Ho & Salimans (2021); Rombach et al. (2022). Predominant models, including the Sta-
ble Diffusion series Esser et al. (2024), the Flux series Black Forest Labs (2024), and the DALL·E
series Ramesh et al. (2021), have led to substantial improvements in compositional text-image align-
ment. To better align with the textual modality at the token level, autoregressive Sun et al. (2024); Li
et al. (2024b); Tian et al. (2024); Han et al. (2025) and unified models Chameleon (2024); Xie et al.
(2024); Chen et al. (2025c); Deng et al. (2025a); Chen et al. (2025a); Wu et al. (2025a) have emerged
in an LLM-like architecture, demonstrating remarkable performance in composition tasks as well
as reasoning tasks due to their autoregressive paradigm. Meanwhile, some approaches Guo et al.
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Prompt: A vibrant community garden in ···
Checklist: ··· ···

Output Benchmark Data

Input Instruction

Taxonomy ① Task Goal

Principle 1: ···
Principle 2: ···
Principle 3: ···

② Prompt Design Guidelines
Rule 1: ···
Rule 2: ···

③ Checklist Construction Rules

LRMs:

Human Verification

··· ···

Prompt: A vibrant community garden in full 
bloom during spring morning, where rows of
raised beds showcase ··· In the foreground, 
bright red roses climb a wooden trellis while
purple lavender bushes release their fra-grance 
nearby. A weathered wooden bench sits along 
the gravel path, sur-rounded by terracotta
planters overflowing with colorful marigolds 
and petunias ··· However, this peaceful garden 
contains no thorny cacti or succulent
plants ··· Fresh herbs like basil and mint grow 
in dedicated sections, while a compost bin sits 
in the corner next to stacks of clay pots.
------------------------------------------------------
Checklist (All 33 Questions) :

      Are there raised beds in the image?
                               ··· 
      Is there no cacti in the image?
                               ···
      Are there clay pots in the image?

Qwen-Image

T2I
Model

MLLM

Score:

# Correct: 25

25
33

Checklist Eval

(a) Data Generation (b) Evaluation Protocol
Figure 2: Overview of our T2I-COREBENCH pipeline.

(2025b); Li et al. (2025); Liao et al. (2025); Duan et al. (2025) are exploring integrating reasoning
into T2I generation to handle more complex and controllable tasks.

Text-to-Image Evaluation Benchmarks. Driven by the explicit or implicit nature of T2I genera-
tion, which requires both composition and reasoning. Early T2I benchmarks Huang et al. (2023a);
Ghosh et al. (2023); Li et al. (2024a) primarily target composition tasks with explicit visual elements.
Subsequent benchmarks Hu et al. (2024); Wu et al. (2024); Wei et al. (2025); Zhou et al. (2025);
Fang et al. (2025) complicate the prompt with more detailed visual elements, yet still fall short in
capturing the real-world challenge of high compositional density. In parallel, reasoning-oriented
benchmarks Fu et al. (2024); Meng et al. (2024); Niu et al. (2025); Chen et al. (2025b); Chang
et al. (2025); Sun et al. (2025); Wang et al. (2025) are gaining prominence as T2I models progress
in reasoning tasks, including reasoning dimensions such as commonsense, logical, and causality.
However, they primarily focus on simple one-to-one inference, overlooking more complex multi-
step reasoning prevalent in real-world scenarios. Furthermore, their taxonomy of both capabilities
is mostly heuristic, thereby failing to cover all relevant reasoning dimensions in evaluation.

3 T2I-COREBENCH

In this section, we introduce T2I-COREBENCH as shown in Fig. 2, a benchmark designed to evalu-
ate both composition and reasoning capabilities under real-world complexities, including high com-
positional density and reasoning intensity. We first formulate a comprehensive T2I evaluation tax-
onomy with complexity specified for each dimension in Sec. 3.1. Building upon this taxonomy, we
then outline the benchmark construction details in Sec. 3.2 and statistical analyses in Sec. 3.3.

3.1 EVALUATION DIMENSIONS

To address the limitations of previous benchmarks, which evaluate composition and reasoning in iso-
lation using heuristic taxonomies, we formulate a comprehensive evaluation taxonomy that unifies
both capabilities and reflects real-world generation challenges, as shown in Table 2.

Composition. Inspired by scene graph structures Johnson et al. (2015); Chang et al. (2021), a visual
scene (e.g., an image) can be fully described by three components: instances, attributes, and rela-
tions. Based on this, we define three corresponding dimensions under real-world complexities, i.e.,
MI Multi-Instance, MA Multi-Attribute, and MR Multi-Relation, to evaluate compositional capabil-
ities. Moreover, we introduce TR Text Rendering as a separate dimension to account for its unique
complexity in content and layout accuracies of texts, as shown in Fig. 3 (a).

Reasoning. In T2I generation, prompts inevitably involve implicit visual elements, making reason-
ing a fundamental capability. To ensure a comprehensive evaluation, we adopt a tripartite framework
of reasoning in philosophical literature Peirce (1934); Zalta et al. (2003); Godfrey-Smith (2009), i.e.,
deductive, inductive, and abductive reasoning. This framework provides a rigorous foundation for
reasoning types, on which we define eight reasoning dimensions tailored to T2I scenarios.
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Table 2: Definition of the 12 evaluation dimensions in our T2I-COREBENCH. Each dimension
is described with its definition, along with a complexity number that quantifies the bolded element,
driven by the density of visual elements in composition and the intensity of inferences (one-to-many
or many-to-one) in reasoning. More detailed descriptions can be found in Appx. A.1.

Dimension Definition #Complexity

C
om

po
si

tio
n MI Multi-Instance Generate multiple instances in a single image. ∼ 25

MA Multi-Attribute Bind multiple attributes to a single subject. ∼ 20

MR Multi-Relation Connect multiple relations within a unified scene. ∼ 15

TR Text Rendering Render multiple texts with content fidelity and layout accuracy. ∼ 15

R
ea

so
ni

ng

LR Logical Reasoning Solve premise-based puzzles through multi-step inference. ∼ 5

BR Behavioral Reasoning Infer visual outcomes from initial states and subsequent behaviors. ∼ 8

HR Hypothetical Reasoning Apply counterfactual premises and propagate their effects across items. ∼ 10

PR Procedural Reasoning Reason over ordered multi-step procedures to derive the final scene. ∼ 5

GR Generalization Reasoning Induce rules from examples and apply them to complete new scenes. ∼ 8

AR Analogical Reasoning Transfer relational rules from a source domain to a target domain. ∼ 5

CR Commonsense Reasoning Complete scenes by inferring unstated commonsense elements. ∼ 5

RR Reconstructive Reasoning Reconstruct plausible initial states by tracing backward from observed clues. ∼ 5

• Deductive Reasoning is the process of drawing conclusions from given premises, ensuring that if
the premises hold, the conclusion cannot be false. In T2I scenarios, this means generating images
determined by the premises, based on which we define LR Logical Reasoning, BR Behavioral
Reasoning, HR Hypothetical Reasoning, and PR Procedural Reasoning, as shown in Fig. 3 (b).

• Inductive Reasoning is the process of inferring conclusions from observed regularity patterns
rather than from explicit premises. In T2I scenarios, this corresponds to inferring visual elements
from underlying structural patterns in examples, based on which we define GR Generalization
Reasoning and AR Analogical Reasoning, as shown in Fig. 3 (c).

• Abductive Reasoning is the process of reconstructing the most plausible explanation from obser-
vations. In T2I scenarios, this entails reconstructing hidden causes or unstated commonsense that
best explain the visual observations, based on which we define CR Commonsense Reasoning and
RR Reconstructive Reasoning, as shown in Fig. 3 (d).

By definition, each dimension is defined to target a distinct aspect of composition or reasoning in
T2I tasks, ensuring clear conceptual separation across the taxonomy and jointly offering a compre-
hensive coverage of the evaluation space (more details are presented in Appx. A).

3.2 BENCHMARK CONSTRUCTION

Building upon the evaluation dimensions defined in Sec. 3.1, we now construct T2I-COREBENCH
through a standardized pipeline, as shown in Fig. 2. In our setup, each evaluation sample consists of
a prompt, which guides T2I generation, and a checklist, which enables point-by-point verification
of the generated visual elements. To systematically generate benchmark data across all dimensions,
we design a unified instruction template, including: (1) Task Goal, outlining the evaluation objective
of each dimension as described in Sec. 3.1; (2) Prompt Design Guidelines, specifying principles for
constructing diverse and complex prompts as detailed in Sec. A.1; and (3) Checklist Construction
Rules, defining how to decompose the target scene into atomic, objective, and verifiable questions.
All samples undergo rigorous human verification to ensure quality and reliability in Appx. A.3.

Prompt Design for Generation. Since our benchmark features prompts with high compositional
density and reasoning intensity, previous strategies prove inadequate: human-written prompts Otani
et al. (2023); Niu et al. (2025); Chang et al. (2025) are labor-intensive and lack scalability, while
template-based prompts Huang et al. (2023a); Ghosh et al. (2023); Wu et al. (2024) are rigid and
limited in scene diversity. To overcome these issues, we leverage Large Reasoning Models (LRMs)
to assist data construction, exploiting their broad knowledge to cover diverse scenes Lee et al. (2023)
and strong reasoning capability to produce complex prompts Zhong et al. (2024); Guo et al. (2025a).
In practice, the Prompt Design Guidelines specify how to ensure sufficient diversity, semantic den-
sity, and reasoning complexity while keeping the prompt coherent, as detailed in Appx. A.2.
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Prompt: A single mechanical clockwork dragon constructed from brass and copper
gears in a Victorian inventor's workshop. The dragon is medium-sized with
articulated joints and visible clockwork mechanisms throughout its body ··· Two
steam vents are positioned along its spine, releasing small puffs of white vapor.
The dragon's head features three rotating gear assemblies visible ··· The dragon's
chest houses a large central clockwork heart ··· The dragon shows no signs of rust
and contains no modern electronic components. * 25 Attributes *
----------------------------------------------------------------------------------------------------
Checklist: 01. If the dragon is present, is it mechanical clockwork?

13. If ···, does it release white vapor puffs?
25. If ···, does it contain no modern electronic components?

Multi-Attribute (MA)

Prompt: A kitchen scene with an experienced chef wearing a white hat standing
behind an old, worn wooden counter. The chef is holding a large knife and cutting
carrots on a cutting board ··· On the counter, there are three apples and a group of
carrots ··· Also on the counter are some onions, and their number is one less than
the number of apples. ··· The recipe book is thicker than the cutting board. A
kitchen towel hangs from a hook on the wall behind the stove. A salt shaker sits
next to the recipe book on the counter. * 21 Relations *
----------------------------------------------------------------------------------------------------
Checklist: 01. If the chef and hat are present, is the chef wearing the hat?

12. If ···, is the number of onions one less than that of apples?
21. If ···, is the salt shaker positioned next to the recipe book?

Multi-Relation (MR) Prompt: Create a pharmaceutical product packaging box ··· The main product
name 'MEDIHEALTH PLUS™' should be displayed in large blue letters on the front
panel. Below that, show 'Advanced Pain Relief Formula' in smaller black text. The
package should have four information sections: 'ACTIVE INGREDIENTS' (top-left),
'DOSAGE INSTRUCTIONS' (top-right) ··· Add a small plus symbol (+) next to
'Ibuprofen 400mg' and 'Adults: 1-2 tablets' only ··· On the side panel, include 'FDA
APPROVED' and 'Store below 25°C’. * 20 Texts + 20 Layouts *
----------------------------------------------------------------------------------------------------
Checklist: 01. Is the text 'MEDIHEALTH PLUS™' present?

02. Is the text 'MEDIHEALTH PLUS™' positioned on the front panel?
35. Is the text 'Store below 25°C' present?

Text Rendering (TR)

Prompt: A lively elementary school classroom during art ··· The teacher's desk
holds a red apple, coffee mug, and scattered pencils, while a large whiteboard
displays today's lesson plan written in blue marker ··· Art supplies overflow from
plastic bins: crayons, scissors, glue sticks, and construction paper ··· There are also
no musical instruments like drums or guitars present, keeping the focus purely on
visual arts ··· showcases gold star stickers and student certificates, and alphabet
letters march along the wall border above the green chalkboard. * 35 Instances *
----------------------------------------------------------------------------------------------------
Checklist: 01. Is there artwork in the image?

23. Are there no guitars in the image?
35. Is there a green chalkboard in the image?

Multi-Instance (MI)

(a) Composition (i.e., MI , MA , MR , TR )
Prompt: ··· The initial setup contains a taut elastic cord placed just before a line of 
standing dominoes, with a matchstick fixed at the midpoint of the cord under 
tension ··· The marble is aligned to roll down a ramp into a glass beaker filled with 
red-colored water, which rests on a white sheet of paper ··· The actions that just 
occurred: the matchstick is used to burn through the taut elastic cord, which, upon 
snapping, tips over the first domino in the line ··· depict the scene after all resulting 
effects have completely finished.       * 8 Outcomes *
----------------------------------------------------------------------------------------------------
Checklist:    01. Is the matchstick charred or blackened after burning?

      03. Are all of the dominoes in the line lying flat on the desk?
      05. Is the steel marble inside the glass beaker?

Behavioral Reasoning (BR)

Prompt: Depict a bustling city-street intersection. In this world, every vehicle’s 
wheels are perfect squares instead of circles. Present: 1) a yellow taxi car, 2) a red 
double-decker bus, 3) a delivery bicycle, 4) a police motorcycle, 5) a gray sedan ··· 9) 
a fire hydrant, 10) a public trash bin, 11) a blue mailbox, and 12) a traffic light pole. 
Render in daylight realism.                                                                         * 12 Items *
----------------------------------------------------------------------------------------------------
Checklist:    01. Are the taxi’s wheels depicted as perfect squares?

      02. Are the bus’s wheels depicted as perfect squares?
      03. Are the bicycle wheels depicted as perfect squares?
      08. Does the street lamp keep its normal form?
      12. Does the traffic-light pole keep its normal form?

Hypothetical Reasoning (HR) Prompt: Illustrate the final scene after performing all of the following six steps in 
order: 1. Place a square sheet of purple origami paper flat on a wooden table. 2. 
Fold the paper diagonally corner to corner and crease sharply, then unfold. 3. Fold 
along the other diagonal and crease, then unfold to reveal an X-shaped crease 
pattern 4. ··· 5. Continue folding to create the traditional bird base, then pull out the 
neck, head, and two wings to form a crane. 6. Spread the wings gently so the crane 
stands upright and centre it on the table.                                            * 6 Procedures *
----------------------------------------------------------------------------------------------------
Checklist:    01. Is a origami crane made from purple paper on the table?

      02. Are both wings extended outward horizontally?
      04. Is the crane’s head distinct and bent slightly downward?

Procedural Reasoning (PR)

Prompt: Generate an image of three robots in a laboratory. Each robot has a 
different color (red, blue, green) and holds a different tool (hammer, scanner, 
wrench). The robots make statements: (1) Red robot says: ‘Blue robot has the 
hammer.’ (2) Blue robot says: ‘I have the scanner.’ (3) Green robot says: ‘Red robot 
is lying.’ (4) Red robot also says: ‘I have the wrench.’ (5) Additional facts: Exactly 
one robot always lies, the other two always tell the truth. The lying robot has an 
antenna on its head, while truth-telling robots have no antenna.         * 5 Premises *
----------------------------------------------------------------------------------------------------
Checklist:    01. Does the red robot have an antenna on its head?

      02. Does the blue robot have no antenna on its head?
      06. Is the green robot holding the wrench?

Logical Reasoning (LR)

(b) Deductive Reasoning (i.e., LR , BR , HR , PR )
Prompt: Just as a honeycomb displays the following visual properties: (1) each cell
has exactly six sides, (2) all sides of each hexagon are the same length, (3) adjacent
cells share common walls, (4) all hexagons are the same size, and (5) the hexagonal
pattern covers the entire visible surface, create an image showing clouds arranged
in the sky following this same organizational principle. The image should
ultimately be guided by the visual analogy, prioritizing its rules over real-world
physics. * 5 Analogical Rules *
----------------------------------------------------------------------------------------------------
Checklist: 01. Does each cloud formation have exactly six sides?

02. Are all sides of each cloud hexagon the same length?
05. Does the hexagonal cloud pattern cover the entire sky area?

Analogical Reasoning (AR)Prompt: This is a system that creates a ‘Divine Chariot’ based on a ‘Deity’s
Domain’. Study the examples to understand the rules. Example 1: The source is the
‘Sky’ domain, with 2 charioteers, a primary metal of gold, and a ‘Sun’ symbol. The
result is ··· Example 2: The source is the ‘Sea’ domain, with 1 charioteer, a primary
metal of silver, and a ‘Trident’ symbol. The result is ··· Generate an image of the
chariot from the following source: The ‘Sky’ domain, with 3 charioteers, a primary
metal of silver, and a ‘Sun’ symbol. * 8 Generalization Rules *
----------------------------------------------------------------------------------------------------
Checklist: 01. Is the chariot being pulled by griffins?

02. Are there exactly 3 griffins pulling the chariot?
08. Is the setting a sky with clouds?

Generalization Reasoning (GR)

(c) Inductive Reasoning (i.e., GR , AR )
Prompt: Observations: On a bedroom windowsill sits an open jewelry box with one
earring missing from a pair. A single black feather rests on the sill. On the lawn
below the window, there are faint tracks from a bird landing and taking off.
Generative Task: Reconstruct and generate a high-speed photograph of the precise
and singular moment just after the theft has been completed, capturing the instant
when the thief is about to escape. All objects mentioned in Observations must be
reconstructed, except those that are meant to have disappeared. * 4 Clues *
----------------------------------------------------------------------------------------------------
Checklist: 01. Is a bird, such as a crow or magpie, visible in the scene?

02. Is the bird holding a shiny earring in its beak?
05. Is a single earring still visible inside the jewelry box?

Reconstructive Reasoning (RR)Prompt: Describe a realistic scene, including any necessary real-world details to
make it believable. In a veterinary clinic‘s examination room, a veterinarian is
conducting a check-up on a nervous terrier. The vet is leaning over the animal to
listen carefully to its heartbeat. The owner stands close by, stroking the dog’s head
to keep it calm. On the stainless steel counter in the background, a single syringe
has been prepared next to a small vial. On the wall, an X-ray film is clipped onto an
illuminated light box. * 5 Commonsense *
----------------------------------------------------------------------------------------------------
Checklist:    01. Is the veterinarian using a stethoscope?

02. Is the dog positioned on an elevated metal examination table?
05. Does the X-ray display the skeletal structure of an animal?

Commonsense Reasoning (CR)

(d) Abductive Reasoning (i.e., CR , RR )
Figure 3: Examples from T2I-COREBENCH illustrating (a) composition and (b-d) reasoning ca-
pabilities across 12 dimensions (see Appx. C.5 for complete versions). Each dimension is designed
to incorporate complexity tailored to its unique characteristics, allowing more challenging evaluation
under real-world scenarios, and supports fine-grained evaluation with human-verified checklists.
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(b) Checklist Question Distribution
Figure 4: Statistics of our T2I-COREBENCH showing (a) prompt-token lengths and (b) checklist-
question counts. Our benchmark exhibits high complexity in both composition and reasoning capa-
bilities, with an average prompt length of 170 tokens and an average of 12.5 questions per sample.

Checklist Design for Evaluation. Evaluating generations in complex scenarios requires more than
existing metrics: (1) CLIPScore Hessel et al. (2021) fails to account for multiple explicit elements
and implicit reasoning outcomes; and (2) direct MLLM-based scoring Li et al. (2024a) requires
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the model itself to infer intended outcomes with accumulated errors. To facilitate fine-grained and
reliable evaluation of both explicit and implicit visual elements, we follow previous visual-question-
answering–based evaluation paradigms Hu et al. (2023); Yarom et al. (2023); Cho et al. (2023b;a),
by pairing each prompt with a checklist of independent yes/no questions (with the correct answer
always “Yes”). Specifically, we define a set of Checklist Construction Rules to decompose the target
scene into atomic questions covering instances, attributes, relations, and reasoning outcomes in a
verifiable manner, as detailed in Appx. A.2.

Evaluation Protocol. Following previous protocols Hu et al. (2024); Chen et al. (2025b), we intro-
duce an MLLM evaluator, i.e., Gemini 2.5 Flash Google (2025a), to perform automatic evaluation by
framing each item as a binary visual question answering task (i.e., scored as “0” for “no” and “1” for
“yes”) in Fig. 2 (b). This protocol leverages the atomic checklist design, where each question targets
an unambiguous visual element, ensuring inherent compatibility with MLLM-based evaluation.

3.3 STATISTICS AND ANALYSIS

To mitigate stylistic homogeneity and potential bias arising from relying on a single LRM (e.g., using
the same model to generate prompts and produce images often yields inflated performance since they
share similar training data), we employ three SOTA LRMs for data construction, including Claude
Sonnet 4 Anthropic (2025), Gemini 2.5 Pro Google (2025a), and OpenAI o3 OpenAI (2025). In
statistics, for each of the 12 evaluation dimensions, we collect 30 samples with each of the three
LRMs, resulting in a total of 12 dimensions × 30 prompts × 3 LRMs = 1, 080 generation prompts
and 13, 536 questions in evaluation checklists, as detailed in Fig. 4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluated Models. We evaluate 28 T2I models across architectures and parameter scales, covering
both open- and closed-models. The open-source pool includes 21 models: (1) Diffusion Models:
SD-3-Medium, SD-3.5-Medium, SD-3.5-Large Esser et al. (2024), FLUX.1-schnell, FLUX.1-dev,
FLUX.1-Krea-dev Black Forest Labs (2024), PixArt-α Chen et al. (2023), PixArt-Σ Chen et al.
(2024), HiDream-I1 Cai et al. (2025), Qwen-Image Wu et al. (2025a); (2) Autoregressive Models:
Infinity-8B Han et al. (2025), GoT-R1-7B Duan et al. (2025); and (3) Unified Models: BAGEL,
BAGEL w/ Think Deng et al. (2025b), show-o2-1.5B, show-o2-7B Xie et al. (2025), Janus-Pro-
1B, Janus-Pro-7B Chen et al. (2025c), BLIP3o-4B, BLIP3o-8B, Chen et al. (2025a) OmniGen2-
7B Wu et al. (2025b). We further include 7 closed-source commercial models, including: Seedream
3.0 Gao et al. (2025), Seedream 4.0 ByteDance (2025), Gemini 2.0 Flash Google (2024), Nano
Banana Google (2025b), Imagen 4, Imagen 4 Ultra Google (2025c), and GPT-Image OpenAI (2025).

Evaluation Details. To facilitate automatic evaluation, we adopt Gemini 2.5 Flash Google (2025a)
as the MLLM evaluator, which exhibits strong vision-language performance aligned with humans
(see Appx. C.1) at relatively low cost, making it well-suited for large-scale evaluation. Considering
the possible unavailability of closed-source APIs in the future, we also report evaluation results with
the open-source MLLMs in Appx. C.2. In evaluation, we report the mean score across all samples
within each dimension as its final score for that dimension. More details can be found in Appx. B.

4.2 MAIN RESULTS

As shown in Table 3, we evaluate a wide range of T2I models on our T2I-COREBENCH, revealing
valuable insights into their strengths, weaknesses, and advancements, particularly in handling real-
world scenarios that require high compositional density and reasoning intensity:

(1) Composition shows steady progress but remains unsolved, particularly in complex scenar-
ios. Across all models, we observe consistent gains on composition tasks with T2I model iterations.
For composition, the best closed-source model is Seedream 4.0 (86.1), while the best open-source
model is Qwen-Image (78.0), which already approaches advanced closed-source models. Never-
theless, composition in complex scenarios still remains challenging: even Seedream 4.0 struggles
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Table 3: Main results on our T2I-COREBENCH assessing both composition and reasoning capa-
bilities evaluated by Gemini 2.5 Flash. Mean denotes the mean score for each capability. The best
and second-best results are marked in bold and underline for open- and closed-models, respectively.

Composition Reasoning
Model

MI MA MR TR Mean LR BR HR PR GR AR CR RR Mean
Overall

Diffusion Models

SD-3-Medium 59.1 57.9 35.4 9.5 40.4 22.1 21.1 35.3 51.0 37.4 47.3 35.0 27.1 34.5 36.5
SD-3.5-Medium 59.5 60.6 33.1 10.6 41.0 19.9 20.5 33.5 53.7 33.4 52.7 35.6 22.0 33.9 36.3
SD-3.5-Large 57.5 60.0 32.9 15.6 41.5 22.5 22.4 34.2 52.5 35.5 53.0 42.3 25.2 35.9 37.8
FLUX.1-schnell 65.4 63.1 47.6 22.4 49.6 25.0 25.1 40.9 64.7 47.6 54.0 39.6 22.9 40.0 43.2
FLUX.1-dev 58.6 60.3 44.1 31.1 48.6 24.8 23.0 36.0 61.8 42.4 57.2 36.3 30.3 39.0 42.2
FLUX.1-Krea-dev 70.7 71.1 53.2 28.9 56.0 30.3 26.1 44.5 70.6 50.5 57.5 46.3 28.7 44.3 48.2
PixArt-α 40.2 42.2 14.2 3.3 25.0 11.6 11.6 21.1 30.4 22.6 44.4 26.7 20.9 23.7 24.1
PixArt-Σ 47.2 49.7 23.8 2.8 30.9 14.7 18.3 26.7 39.2 25.7 44.9 33.9 24.3 28.5 29.3
HiDream-I1 62.5 62.0 42.9 33.9 50.3 34.2 24.5 40.9 53.2 34.2 50.3 46.1 31.7 39.4 43.0
Qwen-Image 81.4 79.6 65.6 85.5 78.0 41.1 32.2 48.2 75.1 56.5 53.3 61.9 26.4 49.3 58.9

Autoregressive Models

Infinity-8B 63.9 63.4 47.5 10.8 46.4 28.6 25.9 42.9 62.6 47.3 59.2 46.9 24.6 42.3 43.6
GoT-R1-7B 48.8 55.6 32.9 6.1 35.8 22.1 19.2 31.3 49.2 34.8 46.2 32.1 14.6 31.2 32.7

Unified Models

BAGEL 64.9 65.2 45.8 9.7 46.4 23.4 21.9 33.0 51.6 31.2 50.4 32.4 29.3 34.1 38.2
BAGEL w/ Think 57.7 60.8 37.8 2.2 39.6 25.5 25.4 33.9 58.6 53.5 56.9 41.6 39.8 41.9 41.1
show-o2-1.5B 59.5 60.3 36.1 4.6 40.1 21.6 21.8 37.1 47.7 39.9 44.7 29.0 24.0 33.2 35.5
show-o2-7B 59.4 61.8 38.1 2.2 40.4 23.2 23.1 37.5 51.6 40.9 47.2 32.2 21.3 34.6 36.5
Janus-Pro-1B 51.0 54.5 33.8 2.9 35.5 12.9 18.1 24.7 13.4 7.1 15.1 6.7 6.4 13.0 20.5
Janus-Pro-7B 54.4 59.3 40.9 7.5 40.5 19.8 20.9 34.6 22.4 11.5 30.4 8.7 9.8 19.8 26.7
BLIP3o-4B 45.6 47.5 20.3 0.5 28.5 14.2 17.7 26.3 36.3 37.6 37.8 31.3 24.8 28.2 28.3
BLIP3o-8B 46.2 50.4 24.1 0.5 30.3 14.8 20.7 28.3 39.6 43.4 51.0 35.9 20.4 31.8 31.3
OmniGen2-7B 67.9 64.1 48.3 19.2 49.9 24.7 23.2 43.3 63.1 46.1 54.2 36.5 24.1 39.4 42.9

Closed-Source Models

Seedream 3.0 79.9 78.0 63.7 47.6 67.3 36.8 33.6 50.3 75.1 54.9 61.7 59.1 31.2 50.3 56.0
Seedream 4.0 91.5 84.5 75.0 93.6 86.1 76.3 54.1 60.7 85.8 85.9 77.1 71.6 47.9 69.9 75.3
Gemini 2.0 Flash 67.5 68.5 49.7 62.9 62.1 39.3 39.7 47.9 69.3 58.5 63.7 51.2 39.9 51.2 54.8
Nano Banana 85.7 77.9 72.6 86.3 80.6 64.5 64.9 67.1 85.2 84.1 83.1 71.3 68.7 73.6 75.9
Imagen 4 82.8 74.3 66.3 90.2 78.4 44.5 51.8 56.8 82.8 79.5 73.3 72.8 65.3 65.9 70.0
Imagen 4 Ultra 90.0 80.0 73.2 86.2 82.4 63.6 62.4 66.1 88.5 82.8 83.0 76.3 60.7 72.9 76.1
GPT-Image 84.1 75.9 72.7 86.4 79.8 59.0 54.8 65.6 87.3 76.5 82.0 70.9 56.1 69.0 72.6

with multi-attribute binding (MA : 84.5) and multi-relation generation (MR : 75.0), highlighting that
fine-grained compositional generation is still an open problem.

(2) Reasoning remains the primary bottleneck, as even the SOTA models struggle with multi-
step inferences. Despite achieving the highest overall score, Imagen 4 Ultra achieves only 72.9 in
reasoning (9.5 below its composition score), and shows weak performance on several dimensions
( LR : 63.6, BR : 62.4, HR : 66.1, RR : 60.7). This gap is even more striking for open-source models:
Qwen-Image reaches 78.0 in composition but only 49.3 in reasoning (28.7 points lower). These
results indicate that current T2I models still struggle to infer implicit visual elements from prompts,
underscoring reasoning as the central unsolved challenge in our benchmark.

(3) Diffusion models show a modest overall edge, and encoder-side instruction understanding
remains crucial. Among open-source models, diffusion models exhibit a slight average advantage
over autoregressive and unified models, though the variance across models is large and no paradigm
dominates uniformly. Meanwhile, models with stronger instruction encoders tend to score higher on
both composition and reasoning tasks. For example, Qwen-Image benefits from the Qwen2.5-VL
encoder Bai et al. (2025), which provides strong multimodal instruction understanding Liu et al.
(2023), and achieves the best overall performance. These findings point to a practical path forward:
prioritize improvements to encoder-side instruction understanding and text–image alignment, while
leveraging either decoder family, with diffusion currently showing a modest empirical edge.
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Logical Reasoning (LR): Generate an image showing four containers arranged in a row on a white table. The 
containers are: box, jar, bag, and bottle. Each container holds exactly one type of fruit and has exactly one color. The 
fruits are: apple, banana, orange, and grape. The colors are: red, blue, green, and yellow. Use these clues: (1) The 
green container is immediately to the left of the red container. (2) The jar contains the apple and is blue. (3) The bag 
is yellow and is at position 4. (4) The bottle contains the banana and is not green. (5) The box contains the orange. (6) 
The red container is at position 3. (7) The container at position 1 is not the bottle.                              *7 Premises*

Rewritten Prompt: On a white table sits a neat left-to-right row of four distinct containers: first is a blue glass jar 
with its lid off, revealing a single shiny red apple inside; second is a green rectangular box whose open top displays 
an orange resting within; third is a sleek red bottle with a narrow neck, visibly containing a ripe curved banana; 
fourth is a crinkled yellow bag standing upright and brimming with a cluster of purple grapes.
-------------------------------------------------------------------------------------------------------------------------------
Checklist: (All 12 Questions)
01. Is the container at position 1 a jar?
03. Is the container at position 3 a bottle?
05. Is the container at position 1 blue?
07. Is the container at position 3 red?
12. Does the container at position 4 contain a grape?

Qwen-Image

1/12�=�0.08

Nano Banana

6/12�=�0.50

GPT-Image

1/12�=�0.08
After Prompt Rewriting:

10/12�=�0.83

Qwen-Image

12/12�=�1.00

Nano Banana

12/12�=�1.00

GPT-Image
1 2 3 4

🫙 📦 🍾 👝

🔵 🟢 🔴 🟡

🍎 🍊 🍌 🍇

Answer:

Work!

Hypothetical Reasoning (HR): Depict a city-street intersection. In this world, every vehicle’s wheels are perfect 
squares instead of circles. Present: (1) a yellow taxi car, (2) a red double-decker bus, (3) a delivery bicycle, (4) a police
motorcycle, (5) a gray sedan, (6) a street-sweeper truck, (7) a pedestrian’s shoes, (8) a street lamp, (9) a fire hydrant, 
(10) a public trash bin, (11) a blue mailbox, and (12) a traffic light pole. Render in daylight realism.        *12 Items*

Rewritten Prompt: In bright daytime realism, a bustling city-street intersection is filled with traffic whose wheels 
are all perfect squares: at the nearest crosswalk a yellow taxi car with four sharp-cornered square wheels idles 
beside a gray sedan with matching square wheels, farther back a towering red double-decker bus rumbles forward
on its own set of square wheels ··· in the foreground only the lower legs and shoes of a pedestrian stepping off the 
curb are visible ···  the base of a tall traffic-light pole displaying green ··· 

---------------------------------------------------------------------------------------------------------
Checklist: (All 12 Questions)
01. Are the taxi’s wheels depicted as perfect squares?
02. Are the bus’s wheels depicted as perfect squares?
05. Are the sedan’s wheels depicted as perfect squares?
07. Do the pedestrian’s shoes keep their normal soles?
12. Does the traffic-light pole keep its normal form?

🛞→⬛
🛞→⬛
🛞→⬛
👞→👞
🚦→🚦

Qwen-Image

6/12�=�0.50

Nano Banana

5/12�=�0.42

GPT-Image

6/12�=�0.50
After Prompt Rewriting:

8/12�=�0.67

Qwen-Image

6/12�=�0.50

Nano Banana

8/12�=�0.67

GPT-Image

Not Work!

Figure 5: Qualitative examples before and after prompt rewriting. In some reasoning dimensions
(e.g., LR ), the primary challenge lies in textual reasoning, and prompt rewriting is highly effective.
However, tasks such as transforming wheels into squares in HR remain difficult even after prompt
rewriting, indicating that textual reasoning alone is insufficient and other mechanisms are required.

Table 4: Impact of prompt rewriting on reasoning diemensions. We evaluate two leading open-
and closed-source models from Table 3, respectively. The subscripts ↑ Red and ↓ Green indicate the
relative increase or decrease compared to their original evaluation results before prompt rewriting.

Reasoning (After Prompt Rewriting)
Model

LR BR HR PR GR AR CR RR Mean

FLUX.1-Krea-dev 64.9↑34.6 49.8↑23.8 54.9↑10.4 77.9↑7.3 74.6↑24.1 71.1↑13.6 61.5↑15.1 69.2↑40.5 65.5↑21.2
Qwen-Image 85.1↑44.0 59.6↑27.5 64.2↑16.0 84.6↑9.5 80.3↑23.8 71.7↑18.5 71.9↑10.1 64.5↑38.1 72.7↑23.4
Nano Banana 86.5↑22.0 67.7↑2.8 73.7↑6.6 88.8↑3.6 83.2↓0.8 81.4↓1.7 72.4↑1.1 72.1↑3.4 78.2↑4.6
GPT-Image 85.2↑26.2 71.0↑16.3 78.8↑13.2 87.1↓0.2 82.2↑5.7 85.9↑3.9 75.1↑4.2 73.9↑17.8 79.9↑10.9

4.3 IMPACT OF PROMPT REWRITING

Prompt rewriting entails explicit textual reasoning before synthesis, and the rewritten prompt is then
fed to the generator, which has been used in prior T2I methods and evaluations Betker et al. (2023);
Niu et al. (2025); Deng et al. (2025a). In our evaluation, BAGEL w/ Think Deng et al. (2025a)
enables its encoder (i.e., LLM) to conduct intermediate reasoning on the original prompt and rewrite
it with explicit visual elements, such as attribute changes, action outcomes, and implicit cues. The
rewritten instruction is then passed to the image generator. Compared with its baseline BAGEL
in Table 3, BAGEL w/ thinking improves mean reasoning from 34.1 to 41.9 and achieves leading
open-source scores on GR (53.5) and RR (39.8), but its composition drops from 46.4 to 39.6. These
gains come from inferring implicit visual elements through intermediate reasoning, while the drop
shows that such reasoning may omit explicit elements and divert attention from direct composition.

To study rewriting in a model-agnostic way, we adopt OpenAI o3 OpenAI (2025) to rewrite orig-
inal prompts (Appx. B.3) and evaluate the effect across models in T2I-COREBENCH in Table 4.
We conclude the following insights: (1) Native reasoning capability constitutes a key direction
for future T2I models. Weaker models (e.g., FLUX.1-Krea-dev, Qwen-Image) achieve greater im-
provements over 20 points, as rewriting compensates for their limited native reasoning capability.
In contrast, stronger models (e.g., Nano Banana, GPT-Image) show marginal or negative effects,
since their native reasoning already captures such benefit. (2) Unified models provide intrinsic ad-
vantages for T2I reasoning. GPT-Image and Nano Banana, both unified models for native image
generation, consistently outperform most counterparts across reasoning dimensions even without
large rewriting gains. This indicates that such architectures not only better internalize textual reason-
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ing but also support more cohesive text–image integration, offering inherent advantages and future
promise for integrated reasoning. (3) Textual reasoning only is insufficient in our benchmark.
Despite overall improvements, prompt rewriting cannot fully address all T2I reasoning scenarios,
e.g., the best model GPT-Image scoring below 80 on BR , HR , CR , and RR . This is because T2I
generation is inherently multimodal, often requiring multimodal reasoning beyond textual infer-
ence, while prompt rewriting can only modify the text and cannot mitigate inherent visual biases
or text–image coupling. Fig. 5 shows that even with an explicit instruction for square wheels af-
ter prompt rewriting in HR , the model still fails due to the tight coupling between car wheels and
their circular shape. To achieve more faithful T2I generation, future work should explore more
multimodal interaction mechanisms (e.g., interleaving reasoning Huang et al. (2025)).

5 CONCLUSION

In this paper, we present T2I-COREBENCH, a comprehensive benchmark designed to evaluate both
composition and reasoning capabilities of T2I models. Through a detailed taxonomy of 12 dimen-
sions, we evaluate both composition and reasoning challenges under real-world complexities. Our
evaluation of 28 models reveals clear progress in composition, yet also highlights persistent chal-
lenges in both capabilities when faced with real-world complexities involving high compositional
density and reasoning intensity, with reasoning remaining the primary bottleneck.

ETHICS STATEMENT

With the introduction of the T2I-COREBENCH benchmark, we anticipate continuous improvements
in both composition and reasoning capabilities of T2I models, leading to increasingly realistic and
faithful AI-generated content. While these advancements bring substantial opportunities, they also
raise concerns about the proliferation of AI-generated content, which may overwhelm creative indus-
tries and lead to issues around copyright and authenticity. As the boundary between human-created
and AI-generated works blurs, there is a growing need for well-defined frameworks to clarify owner-
ship, prevent misuse, and promote transparency. Solutions such as watermarking, content detection,
and regulations are crucial to address these ethical challenges and ensure that innovation is balanced
with responsible AI development and use.

REPRODUCIBILITY STATEMENT

We have implemented comprehensive procedures to guarantee the reproducibility of our work.
Specifically, detailed descriptions of the benchmark construction pipeline, including prompt de-
sign, checklist generation, and human verification, are provided in Sec. 3 and Appx. A, with con-
crete examples in Fig. 6. Experimental setups, model configurations, and evaluation protocols are
documented in Sec. 4 and Appx. B (with complete quantitative examples for each dimension in
Figs. 9-12). To facilitate independent verification, we report results across both open- and closed-
source models with explicit references to their official implementations or APIs. Additional human
alignment study, fine-grained analyses, and extended results are included in Appx. C.
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A BENCHMARK CONSTRUCTION DETAILS

A.1 EVALUATION DIMENSION DETAILS

Composition is the process of integrating multiple visual elements (i.e., instances, attributes,
and relations) into a coherent image that faithfully reflects the textual prompt, based on which
we define MI Multi-Instance, MA Multi-Attribute, MR Multi-Relation, and TR Text Rendering.

Multi-Instance (MI) refers to generating multiple instances within a single image. In our setup, in-
stances are organized into a coherent thematic scene, with scene details expressed through narrative
descriptions rather than disjointed lists to preserve contextual coherence. We also include existential
negation Li et al. (2024a) by specifying absent instances (e.g., there is no apple) alongside those
that must appear. To increase complexity, each prompt specifies ∼ 25 instances on average, creating
high-density scenarios that challenge faithful instance composition.

Multi-Attribute (MA) refers to binding multiple attributes to a single core subject. The attribute set
spans a wide range of categories: physical properties (e.g., color, material, texture, shape, lighting),
numerical attributes (e.g., numerals and quantities), states and conditions (e.g., appearance and life-
cycle), and abstract and stylistic traits (e.g., emotion and style). Similarly, all attributes are integrated
in a unified thematic scene with narrative descriptions and existential negation. To increase com-
plexity, each prompt assigns ∼ 20 verifiable attributes to a single subject, achieving high attribute
density while testing precise and consistent attribute binding.

Multi-Relation (MR) refers to scenes where multiple relations connect instances. We define rela-
tions spanning spatial (e.g., on the left), interaction (e.g., holding), comparative (e.g., larger than),
compositional (e.g., a handle on a door), and numerical (e.g., twice as many as) relations. Similarly,
all relations are incorporated in a unified thematic scene with narrative descriptions. To emphasize
more relations rather than more instances (i.e., MI), each prompt specifies no more than 10 instances
and ∼ 15 relations, fostering complex and precise relational structures.

Text Rendering (TR) refers to rendering structured multiple texts within a specified scene, focusing
on both content fidelity and layout precision. To simulate real-world scenarios, we adopt a hierar-
chical text structure in prompts, comprising main titles, section headers, and itemized entries. To
further increase textual complexity, we incorporate special formats and symbols, including varied
letter cases (e.g., ALL CAPS), currency signs (e.g., $), punctuation marks (e.g., &), trademarks
(e.g., ™), etc. Each prompt specifies ∼ 15 texts and corresponding layouts, simulating complex
real-world applications, including 2D posters and 3D shop signs.

Deductive Reasoning is the process of drawing conclusions from given premises, ensuring that
if the premises hold, the conclusion cannot be false. In T2I scenarios, this means generating im-
ages determined by the premises, based on which we define LR Logical Reasoning (multiple
premises → one conclusion), BR Behavioral Reasoning (behaviors → inevitable outcomes),
HR Hypothetical Reasoning (counterfactual premises → affected items), and PR Procedural
Reasoning (ordered procedures → cumulative results).

Logical Reasoning (LR) refers to solving premise-based puzzles through multi-step deductive in-
ference rather than direct scene description. In our setup, prompts are formulated as a set of in-
terdependent premises, which leads to a deterministic scene regarding object attributes and spatial
relations. To guarantee diversity of logical structures, we define various reasoning forms (e.g., de-
ductive elimination, conditional chaining, causal reasoning) and reasoning scenarios (e.g., spatial
arrangement, attribute matching, state transition). Each prompt contains ∼ 5 independent premises
and requires multiple reasoning hops to ensure reasoning complexity.

Behavioral Reasoning (BR) refers to inferring the visual outcomes that inevitably follow from an
initial state and subsequent behaviors (e.g., falling dominoes). In our setup, prompts specify only the
initial state and behavior(s), leading to logically inevitable and visually salient outcomes involving
both affected and unaffected items, which the model must then distinguish through reasoning. To
increase complexity, each prompt involves compound or sequential actions that deterministically
lead to ∼ 8 observable outcomes, leading to both logically inevitable and visually salient outcomes.
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Hypothetical Reasoning (HR) refers to predefining a counterfactual premise that contradicts real-
world physics and propagating its effects across both affected and unaffected items within a scene.
The model must internalize this rule itself (e.g., every vehicle’s wheels are perfect squares instead of
circles) and enforce it uniformly in different forms of interaction. To increase complexity, prompts
are designed with ∼ 10 objects engaging in varied interactions, where both positive (rule applied)
and negative cases (rule not applied) must be correctly distinguished in the same image.

Procedural Reasoning (PR) refers to reasoning over an ordered sequence of procedures, where
visual elements incrementally transform and only the final scene is expected (e.g., folding paper
into a crane). In our setup, prompts are structured as multi-step procedures, each building on the
previous to produce cumulative and interdependent changes rather than direct outcome description.
To increase complexity, prompts are designed as ∼ 5 explicit procedures, each building on the
previous to create cumulative and interacting transformations, while omitting direct outcomes so the
model must infer the intermediate steps necessary to reach the complete result.

Inductive Reasoning is the process of inferring conclusions from observed regularity patterns
rather than from explicit premises. In T2I scenarios, this corresponds to inferring visual el-
ements from underlying structural patterns in examples, based on which we define GR Gen-
eralization Reasoning (generalization rules from examples → new case) and AR Analogical
Reasoning (analogical rules from source domain → target domain).

Generalization Reasoning (GR) refers to inducing generalization rules from several examples and
applying them to new scenarios with missing visual elements. In our setup, each prompt introduces
two to three examples that collectively correspond to a unified rule pattern, comprising both variant
(changing across examples) and invariant (constant across examples) components, which the model
must extrapolate to complete a new scene with omitted details. To ensure complexity, each prompt
is designed to ∼ 8 such rules and to ensure generalization complexity.

Analogical Reasoning (AR) refers to transferring specific analogical rules from the source domain
(e.g., A relates to B) to a structurally parallel target domain (e.g., C relates to D). In our setup, each
prompt specifies source domain rules through a detailed anchored example (e.g., hexagonal structure
of a honeycomb), while the target domain provides only core elements (e.g., clouds arranged like
a honeycomb) without describing the analogical outcome. Each prompt is designed as ∼ 5 distinct
analogical rules, each of which must be consistently transferred from the source to the target domain.

Abductive Reasoning is the process of reconstructing the most plausible explanation from ob-
servations. In T2I scenarios, this entails reconstructing hidden causes or unstated common-
sense that best explain the visual observations, based on which we define CR Commonsense
Reasoning (indispensable elements ← unstated commonsense) and RR Reconstructive Rea-
soning (plausible hidden causes ← observed clues).

Commonsense Reasoning (CR) refers to completing a scene by invoking commonsense knowledge
that is logically required yet unstated. In our setup, each prompt describes a scene with cCR implicit
indispensable elements. To ensure complexity, each prompt typically requires ∼ 5 independent
commonsense inferences, covering six diverse domains from: physical (e.g., a light bulb without
electricity → does not shine), chemical (e.g., mixing vinegar and baking soda → bubbles form),
biological (e.g., a bat in daytime → sleeps upside down), social (e.g., a doctor treating patients →
wears a white coat), functional (e.g., cutting vegetables → requires a knife), and cultural (e.g., a
Thanksgiving table in the U.S. → turkey exists) commonsense.

Reconstructive Reasoning (RR) refers to tracing backward from observations to their most plausi-
ble initial states in the absence of explicit descriptions. In our setup, each prompt presents a static
“observation” containing ∼ 5 indirect yet diagnostic clues, akin to evidence at a scene. The model
must integrate these clues to infer and render the most plausible “cause” through abductive reason-
ing. To ensure diversity, prompts cover varied inferential scenarios, such as event reconstruction,
intent inference, state rewind, and environmental storytelling.

Summary of Evaluation Dimensions. Our 12 evaluation dimensions strike a deliberate balance
between fundamental compositional capabilities and higher-order cognitive reasoning capabilities.
The first four dimensions ( MI , MA , MR , TR ) capture core compositional skills required for faithful
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T2I generation, ensuring models can coherently integrate multiple instances, attributes, relations,
and textual elements. These serve as the baseline competencies for T2I models. The remaining eight
dimensions extend evaluation beyond composition-level fidelity to deeper reasoning processes. De-
ductive reasoning ( LR , BR , HR , PR ) evaluates whether models can deterministically derive out-
comes from explicit premises, inductive reasoning ( GR , AR ) evaluates generalization from observed
patterns and analogical transfer, while abductive reasoning ( CR , RR ) evaluates the capability to in-
fer unstated commonsense or reconstruct hidden causes from given clues.

A.2 DATA GENERATION DETAILS

To curate the benchmark data in our T2I-COREBENCH, we follow a standardized data construction
pipeline using LRMs, with a tailored generation instruction for each dimension as shown in Fig. 2.
This instruction mainly includes three parts: (1) Task Goal, (2) Prompt Design Guidelines, and (3)
Checklist Construction Rules. Each sample comprises a high-complexity prompt and a fine-grained
checklist, jointly designed to ensure both semantic richness and verifiability. As shown in Fig. 6, we
take MI Multi-Instance dimension as a concrete example for detailed illustration.

Generation Instruction for LRMs (Multi-Instance)

I. Task Goal
• Main Category: Composition

• Subcategory: Multi-Instance

• Specific Goal: To systematically evaluate the model’s ability to generate multiple instances within a
single image.

II. Prompt Design Principles
General Principle: Diversity and Scalability
To construct a comprehensive and robust benchmark, the test set must not only be sufficiently large
but also diverse across multiple dimensions, ensuring the evaluation of general capabilities rather than
overfitting to specific templates. Diversity should be reflected in the following aspects:

1. Visual & Thematic Diversity: Prompts should cover a wide range of scenes (e.g., indoor, outdoor,
outer space), instances (e.g., animals, artifacts, geometric shapes, humans), attributes (e.g., color,
material, state, emotion), and themes (e.g., daily life, history, science fiction, fantasy).

2. Structural & Relational Diversity: The challenge mechanisms of prompts should vary, including
changes in logical structures, spatial relations (absolute, relative, topological), attribute binding
complexity (single, multiple, shared attributes), and constraint types (affirmative “is”, negative “is
not”, exclusive “either...or...”).

Guideline 1: Unified Theme
• Explanation: A broad and inclusive core scene should be set to ensure that all elements remain

logically coherent under a unified theme, providing a stable background and atmosphere.

• Note: All test instances must be common, macroscopic, and visually discernible. Avoid abstract
(e.g., labor disputes), atmospheric (e.g., soft sunlight), or overly fine-grained (e.g., the hands of a
pocket watch) instances.

Guideline 2: Existential Negation
• Explanation: To further test the ability to follow exclusion constraints, prompts must contain expres-

sions specifying that certain instances are absent from the scene. To maintain naturalness, negations
should be phrased in descriptive or indirect forms (beyond explicit “there is no [instance]”).

• Note: All negation expressions should be organically dispersed throughout the prompt, rather than
clustered at the end or listed separately.

Guideline 3: Precise Quantification
• Explanation: Each prompt should specify around 25 independent instances (counting both present

and negated ones), with one-fifth of them expressed through existential negation.
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• Note: Avoid mere enumerations; use connected expressions to improve fluency.

Guideline 4: Narrative Description
• Explanation: Prompts should avoid simply listing elements separated by commas. Instead, con-

nective or locative expressions (e.g., “beside ..., there is ...”, “on top of ..., lies ...”, “in the corner
stands ...”) should be used to describe spatial relations, making the prompt resemble a coherent
scene description rather than a rigid checklist.

III. Checklist Construction Rules
1. Core Objective: Decompose complex instructions into a series of independent, verifiable atomic

capability points to enable fine-grained evaluation of generated images.

2. Question Format Requirements:
• Form: Each question must be a closed yes/no interrogative.
• Orientation: Questions must be designed such that the correct answer is “Yes”. That is, when the

generated image satisfies the corresponding requirement, the answer should be “Yes”.

3. Principle of Comprehensiveness and Atomicity
• Explanation: To enable precise error attribution, the checklist must be both comprehensive and

fine-grained, which should be decomposed into the smallest, non-divisible “atomic” points.
• Implementation: Avoid assessing multiple attributes with a single question. For example, instead

of asking “Is the object in the center a green cylinder?”, decompose into:
– “Is the object in the center a cylinder?”
– “Is the object in the center green?”

4. Tags Usage Instructions
• Explanation: Tags categorize the capability dimension assessed by each question, enabling more

fine-grained multi-dimensional data analysis.
• Tag Scope and Description:

– instance pos: Evaluates instance presence, i.e., whether a specified instance appears in
the image. Question template: Is/Are there (a) [instance] in the image?

– instance neg: Evaluates instance absence, i.e., whether a specified instance required to
be absent does not appear. Question template: Is/Are there no [instance] in the image?

5. Remark Field Specification
• Explanation: No content is required, and leave it as an empty "".

IV. Output Structure
Each benchmark entry is organized in a unified structured JSON format, defined as follows:

{
"{Item ID}": {
"Main Class": "The core capability category tested by this item",
"Sub Class": "A more specific sub-dimension",
"Prompt": "The complete textual instruction input to the T2I model",
"Checklist": [

{ "question": "Question 1?", "tags": ["Tag A"] },
{ "question": "Question 2?", "tags": ["Tag B"] }

],
"Remark": "An optional metadata field"

}
}

Figure 6: Generation instruction for LRMs ( MI Multi-Instance) in our T2I-COREBENCH.

Prompt Generation in Prompt Design Principles. We first include a general principle termed Di-
versity and Scalability, which requires variability in both visual themes and structural relations.
Subsequently, we introduce a set of dimension-specific guidelines, which articulate concrete de-
sign constraints tailored to each evaluation dimension, including: (1) Unified Theme, (2) Existential
Negation, (3) Precise Quantification, and (4) Narrative Description.
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You are an AI quality auditor for text-to-image generation.

Your task is to analyze the given image and answer a yes/no question based solely on its visual content.
The question may relate to the presence of a specific object, its attributes, or relationships between
multiple elements in the image.

You will also be given the original prompt used to generate the image. The prompt may provide
additional context to help interpret the question, but it must never be used to supply or assume visual
details.
Your judgment must rely entirely on the image itself. The image must contain clear, unmistakable
visual evidence to justify a “yes” answer — the prompt cannot compensate for missing or ambiguous
content.

Respond with:
- “yes” only if the answer is clearly and unambiguously yes based solely on the visual content. The
visual evidence must be strong, definitive, and require no assumptions or guesses.
- “no” in all other cases — including if the relevant visual detail is missing, unclear, ambiguous,
partially shown, obscured, or only suggested.

Even if the image closely matches what is described in the prompt, you must rely on visible evidence
alone. If the relevant detail cannot be confirmed visually with certainty, answer “no”.
Ambiguity equals no.

For conditional questions, answer “yes” only if both the condition and the main clause are clearly and
unambiguously true in the image. If either part is false or uncertain, respond “no”.

Do not provide any explanation, justification, or extra text.
Only return a single word: either “yes” or “no”.

Example input:

Prompt: “A golden retriever running in a grassy field under the sun.”
Question: “Is there a sun in the image?”
Example output: “yes”

Example input:

Prompt: “A white cat sitting on a red couch in a modern living room.”
Question: “Is the couch present, is it red in color?”
Example output: “no”

Figure 7: Evaluation instruction for MLLM evaluator in our T2I-COREBENCH.

Checklist Generation in Checklist Construction Rules. Each complex prompt is decomposed into
fine-grained, atomic yes/no questions, ensuring that the correct answer is always “Yes”. To support
precise capability attribution, questions are annotated with fine-grained tags, which evaluate the
presence (instance pos) or absence (instance neg) of specific instances. All samples follow
a unified JSON schema with an optional Remark field for metadata.

Data Filtering and Refinement. To reduce model-specific bias and enrich stylistic and structural
diversity, we employ three different LRMs1, each contributing 100 samples (i.e., prompt + check-
list), resulting in 3× 100 = 300 candidates for this dimension. Afterwards, we apply a multi-stage
filtering pipeline: (1) Feasibility check: prompts that fail to produce coherent or renderable images,
or whose visual elements are ambiguous or unverifiable, are discarded. (2) Redundancy removal:
overly similar or template-like cases are filtered out to preserve thematic and structural diversity

1Claude Sonnet 4 Anthropic (2025), Gemini 2.5 Pro Google (2025a), and OpenAI o3 OpenAI (2025)
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You are a prompt rewriting assistant. The given Prompt may involve reasoning steps or logical deduc-
tions. Your task is to rewrite the Prompt into a clear, direct, image-focused description suitable for a
text-to-image model. During rewriting, perform all necessary reasoning yourself so that the output
contains only the final objects, attributes, and spatial or relational details to be shown in the image.
The rewritten Prompt must be fully self-contained, visually descriptive, and contain no reasoning steps
or instructions. Write the output as a single continuous paragraph—no bullet points, lists, or line breaks.

Examples:

Prompt: Generate an image of three robots in a laboratory. Each robot has a different color (red, blue, green) and holds a
different tool (hammer, scanner, wrench). The robots make statements: (1) Red robot says: ‘Blue robot has the hammer.’ (2)
Blue robot says: ‘I have the scanner.’ (3) Green robot says: ‘Red robot is lying.’ (4) Red robot also says: ‘I have the wrench.’
(5) Additional facts: Exactly one robot always lies, the other two always tell the truth. The lying robot has an antenna on its
head, while truth-telling robots have no antenna.
Output: Generate an image of three robots standing in a laboratory: the red robot is holding a hammer and has an antenna
on its head, the blue robot is holding a scanner without an antenna, and the green robot is holding a wrench without an
antenna.

Prompt: Generate a photo of a Rube Goldberg-style chain reaction in a classroom, captured at the final moment. The initial
setup contains a taut elastic cord placed just before a line of standing dominoes, with a matchstick fixed at the midpoint of the
cord under tension. Behind the domino line, the last domino is positioned to connect to a mechanism designed to cut the rope
suspending a steel marble. The marble is aligned to roll down a ramp into a glass beaker filled with red-colored water, which
rests on a white sheet of paper. Far to the side of this setup on the same desk is a closed microscope under a dust cover. The
actions that just occurred: the matchstick is used to burn through the taut elastic cord, which, upon snapping, tips over the
first domino in the line. The image should depict the scene after all resulting effects have completely finished.
Output: Generate a photo of a Rube Goldberg-style chain reaction in a classroom at its final moment: the snapped elastic
cord lies slack with a charred break where the matchstick once burned through it, the entire line of dominoes has fallen,
the rope that once held a steel marble has been cut, and the marble has rolled down a ramp into a glass beaker filled with
red-colored water that is now overflowing, with the spilled liquid spreading across the white sheet of paper beneath it, while
off to the side on the same desk there is a closed microscope covered by a dust cover.

Prompt: Just as a honeycomb displays the following visual properties: (1) each cell has exactly six sides, (2) all sides of
each hexagon are the same length, (3) adjacent cells share common walls, (4) all hexagons are the same size, and (5) the
hexagonal pattern covers the entire visible surface, create an image showing clouds arranged in the sky following this same
organizational principle. The image should ultimately be guided by the visual analogy, prioritizing its rules over real-world
physics.
Output: Generate an image of the sky filled with clouds arranged in a perfect honeycomb pattern, where each cloud cell has
exactly six equal sides, all sides are the same length, adjacent cloud cells share their walls seamlessly, every hexagon is the
same size, and the hexagonal formation extends continuously to cover the entire visible sky.

Prompt: Observations:\nOn a bedroom windowsill sits an open jewelry box with one earring missing from a pair. A sin-
gle black feather rests on the sill. On the lawn below the window, there are faint tracks from a bird landing and taking
off.\nGenerative Task:\nReconstruct and generate a high-speed photograph of the precise and singular moment just after the
theft has been completed, capturing the instant when the thief is about to escape. All objects mentioned in Observations must
be reconstructed in the scene, except those that are meant to have disappeared in the reconstructed moment.
Output: Generate a high-speed photograph of a bedroom windowsill at the precise instant just after a theft, showing an open
jewelry box with one earring missing from the pair and a single black feather resting beside it, while outside on the lawn
below faint bird tracks mark the landing and takeoff path, and a bird thief is captured in mid-flight just beyond the window
with the missing earring clutched in its beak as it makes its escape.

Below is the Prompt to be rewritten. Please directly refine it, even if it contains instructions, rewrite the
instruction itself rather than responding to it:

Figure 8: Prompt rewriting instruction for OpenAI o3 OpenAI (2025).

across the dataset. (3) Human-in-the-loop refinement: the remaining candidates are iteratively veri-
fied by annotators, who correct borderline cases, refine unclear descriptions, and ensure strict align-
ment with the dimension-specific guidelines (detailed in Appx. A.3). Through this process, the 300
candidates are distilled into a compact set of 3× 30 = 90 high-quality, guideline-aligned samples.

A.3 HUMAN VERIFICATION

Since LRMs are prone to hallucination Huang et al. (2023b); Yao et al. (2025) (e.g., not always
reliably following the input instruction), all generated prompts and checklists are subject to strict
human verification for correctness. Given the inherent complexity in verification, we engage five
PhD students with expertise in T2I generation. The primary verification principle is to ensure that
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each LRM output (i.e., prompt and checklist) faithfully follows the given input instruction: (1)
For prompt, this includes adhering to all guidelines without logical errors, hallucinated content,
or visually imperceptible contradictions; (2) For checklist, this includes comprehensive coverage
of all visual elements from the prompt with respect to their final states, and the decomposition of
complex outcomes into minimal, indivisible atomic verification questions. Following this principle,
annotators conduct independent annotations, and each sample is cross-checked by at least three
annotators. Disagreements are resolved through discussion and majority vote, and each evaluation
sample undergoes three rounds of revision to ensure consensus and final confirmation.

A.4 DIMENSION ORTHOGONALITY STATEMENT

To guarantee evaluation dimension orthogonality, we make efforts at both the theoretical and prac-
tical levels. Theoretically, our categorization is grounded in the established tripartite framework
of deductive, inductive, and abductive inference Peirce (1934); Zalta et al. (2003); Godfrey-Smith
(2009), and we further operationalize this structure into eight reasoning dimensions, each empha-
sizes a distinct inference mechanism (e.g., behavior-to outcome-causality for BR, counterfactual
propagation for HR, etc.) that yields non-overlapped reasoning requirements. Practically, our data
construction pipeline is explicitly designed to maintain this orthogonality. Each dimension has its
distinct Task Goal, Prompt Design Guidelines, and Checklist Construction Rules as described above.
In addition, every sample is verified through multiple rounds of human checking, where annotators
ensure that both the prompt and the checklist strictly align with the intended dimension and do not
introduce elements from other reasoning types.

B EXPERIMENTAL DETAILS

B.1 T2I MODELS FOR GENERATION

Table 5: Human alignment study across differ-
ent MLLMs on four compositional dimensions,
evaluated with balanced accuracy (%). The best
and second-best results are marked in bold and
underline for open- and closed-models.

MLLM MI MA MR TR Mean

Qwen2.5-VL-72B 81.3 63.1 64.2 73.7 70.6
Qwen3-VL-30B-Instruct 83.1 61.9 59.1 74.2 69.6
Qwen3-VL-30B-Thinking 82.4 73.8 76.1 77.9 77.6
InternVL3-78B 70.8 56.8 56.5 67.7 62.9
GLM4.5V-106B 78.0 61.3 60.3 71.8 67.8

GPT-4o 78.3 67.5 63.6 72.0 70.3
OpenAI o3 83.5 77.8 80.4 86.8 82.1
OpenAI o4 mini 81.9 74.7 77.0 83.0 79.1
Gemini 2.5 Pro 83.4 76.5 82.2 88.4 82.6
Gemini 2.5 Flash 83.8 76.9 78.0 85.7 81.1
Gemini 2.5 Flash Lite 69.1 60.1 58.0 74.5 65.4
Gemini 2.0 Flash 73.5 61.0 67.7 77.1 69.8

To facilitate transparency and reproducibility,
we provide below the official sources of all
models evaluated in our evaluation. For each
model, we strictly follow the default sampling
configurations specified in the corresponding
repositories or API documentation. For open-
source models, we included a diverse set of
diffusion2, autoregressive, and unified archi-
tectures: SD-3-Medium, SD-3.5-Medium, SD-
3.5-Large Esser et al. (2024), FLUX.1-schnell,
FLUX.1-dev, FLUX.1-Krea-dev Black Forest
Labs (2024), PixArt-α Chen et al. (2023),
PixArt-Σ Chen et al. (2024), HiDream-I1 Cai
et al. (2025), Qwen-Image Wu et al. (2025a),
Infinity-8B Han et al. (2025), GoT-R1-7B Duan
et al. (2025), BAGEL, BAGEL w/ Think Deng
et al. (2025b), show-o2-1.5B, show-o2-7B Xie
et al. (2025), Janus-Pro-1B, Janus-Pro-7B Chen et al. (2025c), BLIP3o-4B, BLIP3o-8B Chen et al.
(2025a), and OmniGen2-7B Wu et al. (2025b). For closed-source commercial models, we rely on
their official API endpoints, which guarantee that our evaluation reflects the current production-level
configurations of these services: Seedream 3.0 Gao et al. (2025), Seedream 4.0 ByteDance (2025),
Gemini 2.0 Flash Google (2024), Nano Banana Google (2025b), Imagen 4, Imagen 4 Ultra Google
(2025c), and GPT-Image OpenAI (2025). All evaluated models are implemented using their default
configurations from the corresponding official repositories, with a fixed random seed applied when-
ever supported to ensure reproducibility. All experiments are conducted using eight NVIDIA A800
GPUs, with four images generated per prompt to ensure robust evaluation.

2Herein, flow-based generative models are framed as variants of the diffusion paradigm within a unified
continuous-time (ODE/SDE) framework.
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B.2 MLLM INSTRUCTION FOR EVALUATION

In our benchmark, evaluation is conducted automatically using an MLLM as the checklist answerer.
Specifically, we provide each generated image together with its associated prompt and evaluate it
against the checklist in a question-by-question manner, where the MLLM receives only a single
yes/no question at a time. This design avoids interference between different questions, ensures
that each judgment relies solely on visible evidence, and thereby improves both the accuracy and
consistency of the evaluation. Herein, we list all MLLMs employed in our evaluation together
with their official sources, so that the evaluation setup can be faithfully reproduced. Closed-source
models are accessed via their official API endpoints, which guarantee that our evaluation reflects
the current production-level configurations of these services: GPT-4o OpenAI (2024), OpenAI o3,
OpenAI o4 mini OpenAI (2025), Gemini 2.0 Flash Google (2024), Gemini 2.5 Pro, Gemini 2.5
Flash, and Gemini 2.5 Flash Lite Google (2025a). Open-source models are implemented with
their default inference settings from their official repositories: Qwen2.5-VL-72B Bai et al. (2025),
Qwen3-VL-30B-Instruct, Qwen3-VL-30B-Thinking Qwen Team (2025), InternVL3-78B Zhu et al.
(2025), and GLM4.5V-106B Hong et al. (2025). To ensure the reproducibility of results, we set the
temperature coefficient to zero during all model evaluations whenever supported. The evaluation
instruction for the MLLM evaluator is presented in Fig. 7, which strictly emphasizes reliance on the
image content without assuming any detail from the prompt and prior knowledge from the evaluator
itself, thereby alleviating hallucinations and ensuring reliable evaluation.

B.3 PROMPT REWRITING DETAILS

The detailed instruction for prompt rewriting in Sec. 4.3 is illustrated in Fig. 8.

C ADDITIONAL EXPERIMENTS

C.1 HUMAN ALIGNMENT STUDY

To further validate the effectiveness of employing MLLMs as substitutes for human evaluation, we
compare MLLM-based judgments with those of human annotators. Specifically, we focus on four
dimensions (i.e., MI , MA , MR , and TR ), which capture the fundamental visual elements of evalua-
tion: instance, attribute, relation, and text. As the questions in the remaining eight reasoning dimen-
sions can also be decomposed into these same elements, evaluating these four dimensions could be
sufficient. In our experiments, we use images from GPT-Image along these four dimensions. For
the human annotation results, we hire professional annotators who are highly experienced in image
and video annotation. The annotation pipeline begins with the distribution of detailed guidelines,
followed by training and trial annotations to ensure consistency. The annotators then carry out the
primary annotation (first round), after which the results undergo secondary and tertiary rounds of
verification through full inspection, ensuring high-quality and reliable results. Considering the im-
balance in the human-annotated ground-truth results (e.g., the number of correctly generated visual
elements in GPT-Image generations is substantially greater than that of incorrect ones), we introduce
balanced accuracy Brodersen et al. (2010) to provide a fair and robust evaluation.

As shown in Table 5, closed-source MLLMs significantly outperform open-source ones in recog-
nizing these fundamental visual elements, with OpenAI o3 and Gemini 2.5 Pro achieving the best
performance. Considering the trade-off between performance and API cost, we select Gemini 2.5
Flash as our evaluator for large-scale evaluation (i.e., its API cost is about 1/4 of that of Gemini 2.5
Pro, while performance drops by around 1%). Meanwhile, considering the possible unavailability
of closed-source APIs in the future, we also report evaluation results using Qwen2.5-VL-72B and
Qwen3-VL-30B-Thinking, which achieves leading performance across all open-source MLLMs.

C.2 MAIN RESULTS WITH OPEN-SOURCE EVALUATOR

As discussed in Sec. C.1, we also report the evaluation results using Qwen2.5-VL-72B in Table 6
and Qwen3-VL-30B-Thinking in Table 7, which achieves leading performance among open-source
MLLM evaluators. The experimental results show that the patterns observed in Qwen-based evalua-
tions align with those from Gemini-based assessments in Table 3. This consistency across different
evaluators confirms the reliability and robustness of the results, ensuring that the conclusions about
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Table 6: Main results on our T2I-COREBENCH assessing both composition and reasoning capa-
bilities evaluated by Qwen2.5-VL-72B. Mean denotes the mean score for each capability. The best
and second-best results are marked in bold and underline for open- and closed-models, respectively.

Composition Reasoning
Model

MI MA MR TR Mean LR BR HR PR GR AR CR RR Mean
Overall

Diffusion Models

SD-3-Medium 61.1 77.2 46.6 16.9 50.5 41.2 20.8 28.9 65.5 47.3 59.4 38.6 15.0 39.6 43.2
SD-3.5-Medium 61.5 80.6 48.4 19.5 52.5 41.2 20.5 27.3 66.2 42.3 56.3 38.7 13.8 38.3 43.0
SD-3.5-Large 59.5 80.5 44.7 28.3 53.3 42.3 23.6 27.0 67.0 47.5 62.8 44.1 15.7 41.2 45.3
FLUX.1-schnell 68.8 83.5 65.7 32.3 62.6 43.6 26.4 35.1 79.0 53.5 67.2 42.7 13.8 45.2 51.0
FLUX.1-dev 61.6 81.4 61.6 42.3 61.7 41.2 23.8 30.3 78.2 50.5 67.6 39.8 17.2 43.6 49.6
FLUX.1-Krea-dev 74.6 89.3 72.5 40.2 69.1 47.6 28.2 39.4 83.2 59.1 68.6 47.4 20.1 49.2 55.8
PixArt-α 41.1 57.3 22.5 7.9 32.2 29.6 12.8 18.4 37.9 33.8 41.0 30.3 15.1 27.4 29.0
PixArt-Σ 49.1 70.6 35.5 12.7 42.0 37.8 20.2 24.0 51.1 35.6 49.3 37.5 15.8 33.9 36.6
HiDream-I1 66.8 82.0 57.4 40.3 61.6 46.2 24.8 36.4 65.0 42.4 48.1 50.4 20.2 41.7 48.3
Qwen-Image 85.6 95.4 86.8 92.3 90.1 52.5 38.3 45.5 87.7 65.8 68.5 65.2 21.2 55.6 67.1

Autoregressive Models

Infinity-8B 66.6 86.1 64.9 34.9 63.1 48.0 29.3 36.9 76.6 60.9 79.9 49.9 17.2 49.8 54.2
GoT-R1-7B 55.9 79.6 54.1 34.3 56.0 48.9 22.8 28.3 69.9 50.8 64.1 36.6 10.2 41.5 46.3

Unified Models

BAGEL 69.2 85.9 66.5 22.4 61.0 39.7 21.9 28.2 64.9 45.4 66.7 34.2 16.8 39.7 46.8
BAGEL w/ Think 61.6 82.4 55.5 6.9 51.6 44.7 28.8 30.8 75.0 70.1 76.1 46.0 29.8 50.2 50.6
show-o2-1.5B 64.3 81.9 53.3 12.5 53.0 45.1 23.6 30.9 61.6 48.4 58.5 33.8 14.9 39.6 44.0
show-o2-7B 66.5 83.5 61.4 35.7 61.7 48.0 30.4 34.1 73.2 58.0 69.3 37.2 13.8 45.5 50.9
Janus-Pro-1B 61.6 81.2 59.7 21.8 56.1 44.1 23.7 25.5 17.9 15.3 21.1 8.4 5.2 20.1 32.1
Janus-Pro-7B 64.2 84.0 65.7 30.9 61.2 49.3 24.1 33.4 29.8 23.0 41.7 10.4 7.6 27.4 38.7
BLIP3o-4B 48.1 68.6 28.8 1.5 36.7 39.6 19.7 21.4 47.9 58.4 63.7 36.7 15.1 37.8 37.4
BLIP3o-8B 49.6 72.2 35.3 1.2 39.6 40.3 22.2 23.4 53.8 64.8 73.6 42.3 13.8 41.8 41.0
OmniGen2-7B 72.0 86.0 67.2 37.2 65.6 42.9 24.4 39.4 78.8 53.2 69.7 40.0 13.2 45.2 52.0

Closed-Source Models

Seedream 3.0 85.5 95.1 85.8 76.0 85.6 50.9 40.1 46.5 87.3 61.9 78.1 62.2 25.8 56.6 66.3
Seedream 4.0 95.9 97.8 94.3 97.3 96.3 76.7 63.1 59.1 95.7 92.7 91.9 75.4 45.0 75.0 82.1
Gemini 2.0 Flash 68.8 85.2 67.4 82.0 75.8 52.4 40.4 41.9 79.3 70.7 79.6 50.8 28.8 55.5 62.3
Nano Banana 88.5 94.3 88.9 93.6 91.3 67.2 67.4 59.1 95.4 89.5 93.1 73.9 55.7 75.2 80.5
Imagen 4 85.2 91.0 85.3 94.2 88.9 55.0 53.6 49.9 92.2 88.0 85.9 74.2 54.4 69.1 75.7
Imagen 4 Ultra 92.8 95.0 90.2 90.1 92.0 65.4 66.8 58.3 96.3 89.3 94.0 76.6 51.0 74.7 80.5
GPT-Image 87.8 93.4 90.2 92.8 91.1 65.1 58.5 57.9 94.8 86.6 91.0 72.3 46.5 71.6 78.1

model performance remain stable, regardless of the evaluation method used. This further supports
the reproducibility and transparency of the evaluation process, reinforcing the validity of the insights
derived from our experiments.

C.3 MAIN RESULTS WITH MULTIPLE EVALUATOR

We also explore a multi-evaluator fusion strategy to avoid the potential bias brought by using a
single MLLM as the evaluator. Here, a checklist item is counted as “yes” only if all three MLLMs
(i.e., Gemini-2.5-Flash, Qwen2.5-VL-72B, and Qwen3-VL-30B-Thinking) predict “yes”. As shown
in Table 8, the results exhibit consistent performance trends with those reported in Table 3, with
the open-source top-3 remaining Qwen-Image, FLUX.1-Krea-dev, and Infinity-8B, and the closed-
source top-3 remaining Imagen 4 Ultra, Nano Banana, and Seedream 4.0.

C.4 FINE-GRAINED ANALYSES

Notably, we further annotate each question from the checklist with fine-grained labels to capture
their complexity and types for a subset of dimensions, including: composition ( MI , MA , TR ) and
reasoning ( LR , BR , HR , GR ), which facilitates fine-grained analyses, including:

• MI Multi-Instance: The positive (POS) label is used to evaluate instance existence, verifying
whether a specific instance mentioned in the prompt is exactly present in the image (e.g., “there
is an apple”). In contrast, the negative (NEG) label is used to evaluate instance non-existence,
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Table 7: Main results on our T2I-COREBENCH assessing both composition and reasoning capa-
bilities evaluated by Qwen3-VL-30B-Thinking. Mean denotes the mean score for each capability.
The best and second-best results are marked in bold and underline for open- and closed-models.

Composition Reasoning
Model

MI MA MR TR Mean LR BR HR PR GR AR CR RR Mean
Overall

Diffusion Models

SD-3-Medium 60.7 59.7 38.1 11.2 42.4 30.5 19.8 32.3 57.5 35.9 53.5 38.4 19.7 35.9 38.1
SD-3.5-Medium 60.5 61.8 37.8 13.4 43.4 26.9 19.0 30.0 56.9 30.5 53.9 36.8 16.0 33.7 37.0
SD-3.5-Large 58.9 60.8 36.5 21.6 44.4 29.4 21.1 31.0 58.4 32.7 56.1 42.8 18.7 36.3 39.0
FLUX.1-schnell 67.5 64.1 52.9 23.4 51.9 30.6 24.5 38.8 69.7 42.4 59.3 41.3 16.3 40.4 44.2
FLUX.1-dev 61.0 62.3 49.8 35.8 52.2 30.2 22.6 32.5 68.0 41.1 61.7 40.4 22.7 39.9 44.0
FLUX.1-Krea-dev 73.2 71.1 56.4 31.2 58.0 35.3 26.9 43.1 75.5 48.2 60.5 47.2 21.4 44.8 49.2
PixArt-α 39.9 42.7 18.0 9.9 27.6 15.9 9.4 17.9 32.5 19.6 42.4 29.5 15.0 22.8 24.4
PixArt-Σ 48.0 51.1 29.4 8.6 34.3 20.0 16.0 24.4 43.7 22.6 46.7 36.6 15.8 28.2 30.3
HiDream-I1 65.2 63.9 46.9 36.0 53.0 36.9 24.0 39.4 57.5 31.7 49.2 49.2 24.7 39.1 43.7
Qwen-Image 84.9 83.2 70.7 87.4 81.5 44.7 32.5 47.3 81.9 52.4 57.4 62.8 21.5 50.1 60.5

Autoregressive Models

Infinity-8B 64.3 64.5 50.9 24.9 51.2 34.2 23.7 37.6 65.7 43.3 64.2 46.7 16.3 41.4 44.7
GoT-R1-7B 54.4 58.4 44.9 39.4 49.3 33.0 18.0 31.4 59.5 34.0 55.4 34.8 11.3 34.7 39.5

Unified Models

BAGEL 67.7 67.5 52.9 12.2 50.1 30.2 21.3 31.9 56.8 28.9 53.6 34.7 21.2 34.8 39.9
BAGEL w/ Think 60.3 64.1 45.0 3.4 43.2 32.0 25.5 31.9 66.5 50.3 62.1 46.5 33.3 43.5 43.4
show-o2-1.5B 63.7 64.4 43.4 5.9 44.4 30.7 21.3 34.6 53.4 36.3 49.8 33.0 16.2 34.4 37.7
show-o2-7B 63.8 62.4 50.9 31.0 52.0 34.3 23.7 37.0 57.6 40.0 56.9 35.3 15.2 37.5 42.4
Janus-Pro-1B 59.2 58.3 50.7 21.0 47.3 31.0 17.4 24.1 14.7 3.4 15.4 7.6 3.9 14.7 25.6
Janus-Pro-7B 61.6 61.4 56.8 30.0 52.4 35.1 17.9 35.9 24.0 7.8 33.7 10.0 7.8 21.5 31.8
BLIP3o-4B 48.5 47.7 26.7 0.9 30.9 25.3 16.6 23.8 40.9 32.4 39.3 36.3 15.3 28.7 29.5
BLIP3o-8B 48.9 50.3 32.4 0.9 33.1 24.9 17.9 25.4 47.0 39.7 54.2 40.8 15.1 33.1 33.1
OmniGen2-7B 72.0 66.6 54.0 21.1 53.4 31.5 23.0 41.1 69.1 40.5 58.5 42.3 16.1 40.3 44.7

Closed-Source Models

Seedream 3.0 83.4 79.8 68.8 55.3 71.8 41.0 33.8 47.4 80.8 53.9 66.2 60.5 25.4 51.1 58.0
Seedream 4.0 94.5 88.6 79.9 95.7 89.6 79.8 53.8 60.2 89.7 84.8 80.4 74.4 45.9 71.1 77.3
Gemini 2.0 Flash 68.7 66.5 54.3 73.2 65.7 44.1 37.3 43.5 71.3 54.3 67.3 51.1 33.1 50.3 55.4
Nano Banana 86.5 77.4 73.3 89.8 81.8 66.9 62.3 63.1 87.8 77.6 83.8 72.8 62.2 72.1 75.3
Imagen 4 83.6 74.1 68.4 91.7 79.4 47.9 51.4 52.8 85.5 73.4 75.4 72.4 61.3 65.0 69.8
Imagen 4 Ultra 91.1 78.7 74.4 87.9 83.0 65.2 61.8 62.7 89.8 76.5 85.2 75.3 55.5 71.5 75.3
GPT-Image 86.5 77.0 76.3 88.2 82.0 62.2 55.8 62.9 88.6 70.7 83.3 72.2 50.7 68.3 72.9

verifying whether an instance explicitly required to be absent in the prompt does not appear in the
image (e.g., “there is no banana”).

• MA Multi-Attribute: The positive (POS) label is used to evaluate attribute accuracy, verifying
whether the attributes of an existing instance, such as color, material, or state, are correctly ren-
dered (e.g., “a red ball”). In contrast, the negative (NEG) label is used to evaluate attribute
exclusion, verifying whether the instance adheres to the constraint of not possessing a specific
attribute (e.g., “a ball with no red color”).

• TR Text-Rendering: The content (CON) label is used to evaluate the accuracy of the generated
textual content, focusing on what is rendered, such as whether the spelling of words is correct
or whether special symbols are properly displayed. The layout (LAY) label is used to evaluate
the accuracy of the text’s position, layout, and spatial relationships, focusing on where the text
appears, such as whether a title is placed at the top.

• LR Logical Reasoning: The 0-hop label corresponds to cases where the prompt requires only
direct observation without additional inference (e.g., “a red cube on the table”), the 1-hop label
corresponds to cases that require a single step of logical inference (e.g., “the larger of two objects
is on the left”), whereas the multi-hop (m-hop) label corresponds to cases that require multiple
chained inferences (e.g., “if the dog is behind the fence, and the fence is behind the house, then
the dog is behind the house”).

• BR Behavioral Reasoning: The positive (POS) label is used to evaluate the model’s core be-
havioral reasoning capability by verifying whether the image presents the inevitable visual conse-
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Table 8: Main results on our T2I-COREBENCH assessing both composition and reasoning ca-
pabilities evaluated by three MLLMs (i.e., Gemini-2.5-Flash, Qwen2.5-VL-72B, and Qwen3-VL-
30B-Thinking). Mean denotes the mean score for each capability. The best and second-best results
are marked in bold and underline for open- and closed-models.

Composition Reasoning
Model

MI MA MR TR Mean LR BR HR PR GR AR CR RR Mean
Overall

Diffusion Models

SD-3-Medium 52.1 49.4 25.6 4.8 32.9 13.9 12.0 21.7 43.5 26.3 31.1 26.3 8.1 22.9 26.2
SD-3.5-Medium 52.0 51.3 24.1 5.0 33.1 12.0 11.2 19.0 43.9 22.3 33.3 26.3 6.8 21.9 25.6
SD-3.5-Large 51.1 50.7 23.9 9.0 33.7 13.5 12.8 18.2 44.2 24.5 36.9 32.1 8.1 23.8 27.1
FLUX.1-schnell 58.5 53.8 38.9 16.1 41.8 15.9 16.1 26.1 57.0 29.7 39.4 29.5 7.6 27.6 32.4
FLUX.1-dev 52.3 51.9 35.2 25.9 41.3 16.9 15.2 22.5 55.4 28.4 42.9 29.4 11.4 27.8 32.3
FLUX.1-Krea-dev 64.7 61.7 43.8 22.3 48.1 21.3 18.9 30.8 63.7 34.6 42.7 35.9 10.9 32.4 37.6
PixArt-α 34.7 33.4 9.7 0.3 19.5 5.3 5.2 8.8 22.3 13.3 22.0 20.6 6.9 13.1 15.2
PixArt-Σ 41.5 41.4 17.4 0.4 25.2 8.0 8.9 12.9 31.2 16.4 26.0 25.7 7.4 17.1 19.8
HiDream-I1 58.7 53.8 35.3 31.8 44.9 25.0 16.4 28.8 46.9 24.6 31.4 37.3 12.8 27.9 33.6
Qwen-Image 77.8 74.2 58.3 82.0 73.1 33.2 23.9 36.5 69.6 42.0 39.9 51.6 13.1 38.7 50.2

Autoregressive Models

Infinity-8B 55.8 54.1 36.7 6.6 38.3 20.0 14.7 24.7 54.6 33.8 45.1 36.0 9.3 29.8 32.6
GoT-R1-7B 43.3 46.7 25.6 3.9 29.9 13.3 10.1 17.6 41.7 21.3 30.3 22.9 4.6 20.2 23.4

Unified Models

BAGEL 59.8 56.5 38.1 7.1 40.4 15.6 14.3 20.9 45.4 21.6 35.0 24.8 11.5 23.6 29.2
BAGEL w/ Think 52.6 52.8 30.6 1.0 34.3 17.8 16.0 20.9 53.4 41.4 45.2 33.4 20.1 31.0 32.1
show-o2-1.5B 52.7 52.8 26.4 1.5 33.4 12.8 11.7 21.0 36.8 26.2 27.1 21.1 7.5 20.5 24.8
show-o2-7B 52.5 51.1 29.4 1.0 33.5 14.6 13.5 21.9 42.3 28.6 34.8 23.0 6.3 23.1 26.6
Janus-Pro-1B 44.6 45.2 26.5 1.3 29.4 6.6 9.0 12.4 8.2 1.3 5.7 3.6 1.1 6.0 13.8
Janus-Pro-7B 48.7 49.7 33.0 4.4 33.9 11.4 10.4 19.6 16.0 3.4 17.8 4.7 2.4 10.7 18.5
BLIP3o-4B 39.4 37.6 12.8 0.1 22.5 7.8 7.4 12.3 26.5 24.1 24.8 24.2 7.6 16.8 18.7
BLIP3o-8B 39.8 40.2 17.2 0.0 24.3 8.9 9.3 13.0 30.9 30.1 36.2 27.6 7.4 20.4 21.7
OmniGen2-7B 62.1 55.4 39.1 13.3 42.5 16.0 15.9 29.9 54.8 28.5 39.5 28.9 6.7 27.5 32.5

Closed-Source Models

Seedream 3.0 75.5 70.5 54.9 39.9 60.2 26.7 24.5 35.4 69.4 43.6 49.1 49.8 15.7 39.3 46.2
Seedream 4.0 89.5 80.7 68.7 92.2 82.8 66.3 44.1 47.3 81.8 77.7 66.8 63.7 33.6 60.1 67.7
Gemini 2.0 Flash 58.3 57.5 38.0 58.8 53.2 29.0 26.3 29.3 62.1 43.1 50.8 37.4 19.3 37.2 42.5
Nano Banana 80.6 69.4 62.1 83.1 73.8 54.0 49.4 46.1 79.3 70.7 72.3 60.0 45.9 59.7 64.4
Imagen 4 77.8 65.1 57.1 87.8 71.9 34.9 39.1 39.2 76.2 65.4 60.6 61.2 44.4 52.6 59.1
Imagen 4 Ultra 85.6 71.1 63.3 84.6 76.1 53.4 48.9 46.1 82.5 70.3 73.1 62.9 41.3 59.8 65.3
GPT-Image 79.7 67.8 64.4 83.0 73.7 51.4 43.1 48.2 81.5 63.4 72.3 60.6 38.9 57.4 62.9

quences triggered by the behavior described in the prompt but not explicitly stated (e.g., “a glass
is knocked over → the water spills onto the floor”). In contrast, the negative (NEG) label is used
to identify elements that remain unaffected by the behavior, preserving their original state (e.g.,
“knocking over a glass of orange juice does not affect the egg placed beside it”).

• HR Hypothetical Reasoning: The positive (POS) label is used to verify the visual results that
directly follow from the hypothetical rule, where the corresponding objects satisfy the assumed
premise and therefore should exhibit the specified change or characteristic (e.g., “if the wheels are
assumed to be square, the car should display square wheels”). Conversely, the negative (NEG)
label is used to verify that objects not meeting the hypothetical premise remain unaffected, ensur-
ing that the model does not mistakenly apply the hypothetical rule to inapplicable objects (e.g.,
“other parts of the car not mentioned in the hypothesis should remain unchanged”).

• GR Generalization Reasoning: The invariant (INV) label is used to evaluate features in the target
scene that remain unchanged, representing the “common constant attributes” summarized across
multiple examples (e.g., “all birds have wings”). In contrast, the variant (VAR) label is used
to assess whether the model can follow a cross-example variation logic to generate systematic
changes in certain attributes within the target scene (e.g., “the color of each bird changes across
different scenes while their shape remains the same”).

We report the fine-grained analyses in Table 9, and conclude the following interesting insights:
(1) Most models find NEG cases easier than POS, though a few notable exceptions emerge.
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Table 9: Fine-grained analyses on our T2I-COREBENCH for both composition ( MI , MA , TR )
and reasoning ( LR , BR , HR , GR ) dimensions, evaluated by Gemini 2.5 Flash. Values highlighted
in red indicate special exceptions, which are further discussed in the analysis. The best and second-
best results are marked in bold and underline for open- and closed-models, respectively.

Composition Reasoning

MI MA TR LR BR HR GRModel
POS NEG POS NEG CON LAY 0-hop 1-hop m-hop POS NEG POS NEG INV VAR

Diffusion Models

SD-3-Medium 52.6 89.5 54.8 78.0 7.2 10.3 30.0 20.5 20.3 11.7 57.9 7.8 64.6 58.4 22.9
SD-3.5-Medium 51.6 95.8 57.3 82.0 8.1 11.5 24.9 21.8 18.2 12.2 53.4 8.3 60.3 50.0 21.9
SD-3.5-Large 49.8 93.3 56.5 83.4 13.4 16.2 28.8 24.1 21.0 14.1 56.2 11.5 58.3 53.4 23.1
FLUX.1-schnell 59.8 91.5 60.3 81.7 20.2 21.9 30.4 20.9 24.4 12.2 74.8 10.8 73.9 67.2 33.8
FLUX.1-dev 51.1 93.9 57.0 81.8 29.2 30.1 30.0 26.8 24.3 11.5 68.0 8.1 65.8 59.5 30.0
FLUX.1-Krea-dev 67.5 85.5 69.7 82.0 26.9 26.7 38.4 26.8 29.4 13.6 75.2 15.6 77.1 70.8 36.2
PixArt-α 28.2 96.9 36.7 75.8 2.7 3.9 12.7 13.2 11.4 7.9 26.3 6.3 36.0 31.9 16.2
PixArt-Σ 36.3 98.2 45.1 78.4 1.7 3.6 19.2 11.4 13.7 12.2 43.0 9.4 44.2 34.3 19.4
HiDream-I1 54.8 98.5 58.9 82.7 32.0 30.5 40.9 25.5 33.5 13.1 68.8 12.6 71.5 48.5 23.6
Qwen-Image 85.6 61.9 79.8 79.2 84.3 86.1 58.6 40.5 35.8 18.2 86.6 16.3 83.5 82.1 39.3

Autoregressive Models

Infinity-8B 57.2 94.8 60.6 82.9 7.3 12.9 40.6 31.4 24.3 14.6 70.0 16.0 72.2 66.6 34.1
GoT-R1-7B 38.3 97.3 50.9 83.6 3.8 7.2 27.6 19.1 20.3 11.2 50.8 8.3 55.2 50.5 24.2

Unified Models

BAGEL 58.2 96.4 62.5 83.6 4.3 11.3 30.1 22.3 22.0 11.0 65.3 8.6 58.0 40.3 24.3
BAGEL w/ Think 49.2 97.3 57.4 82.2 0.8 2.7 31.3 31.4 23.0 17.2 58.1 11.7 56.3 64.1 45.6
show-o2-1.5B 52.4 93.7 57.0 81.7 1.4 7.7 30.0 20.5 19.4 13.6 54.7 10.1 65.6 58.6 26.7
show-o2-7B 52.1 93.7 59.0 80.7 1.3 2.6 32.5 20.9 20.5 13.7 59.7 10.3 66.7 61.8 26.5
Janus-Pro-1B 41.5 95.7 50.0 82.3 1.7 3.4 15.4 14.1 11.9 10.7 48.3 5.4 42.6 8.3 6.3
Janus-Pro-7B 45.5 96.7 55.4 83.2 4.3 8.9 26.2 19.1 17.4 11.2 59.4 11.6 59.0 15.1 9.2
BLIP3o-4B 34.5 97.3 41.7 81.8 0.2 0.6 18.9 12.7 12.6 13.8 34.6 8.9 44.0 41.9 33.6
BLIP3o-8B 35.2 97.8 44.9 82.8 0.1 0.9 20.2 18.6 13.4 17.1 35.9 10.0 47.7 49.9 38.3
OmniGen2-7B 62.3 94.9 61.4 81.4 13.3 22.5 32.9 17.3 23.3 10.5 73.5 12.4 77.4 66.0 32.2

Closed-Source Models

Seedream 3.0 82.2 68.4 76.9 84.3 39.0 52.1 49.1 37.7 31.8 21.0 83.2 19.6 84.6 81.6 36.4
Seedream 4.0 91.0 94.0 84.5 84.9 95.2 92.6 82.2 82.7 74.4 45.9 86.6 42.6 80.5 90.9 82.2
Gemini 2.0 Flash 61.4 96.7 66.1 84.6 60.9 66.2 50.9 40.9 34.1 28.8 81.9 28.9 68.4 77.9 45.5
Nano Banana 83.0 98.7 76.5 87.6 84.7 87.4 83.9 77.7 57.3 60.2 83.1 50.6 84.7 88.6 80.6
Imagen 4 81.0 92.7 72.7 85.6 90.4 88.9 60.6 46.4 38.3 42.9 85.6 34.5 81.8 84.6 75.0
Imagen 4 Ultra 88.4 97.7 79.1 86.9 85.6 85.8 81.3 70.9 55.2 56.6 84.1 51.7 82.1 86.6 79.6
GPT-Image 80.9 99.2 74.3 86.0 85.7 87.5 77.1 65.5 52.3 46.8 85.6 54.7 76.6 80.8 72.7

Across MI , MA , BR , and HR , models consistently score higher on NEG cases than POS ones,
suggesting that it is generally easier to avoid conditions than to satisfy them. This trend is espe-
cially pronounced in reasoning tasks ( BR , HR ), where models are better at confirming the absence
of change than at predicting correct outcomes. Interestingly, a few advanced models deviate from
this pattern: Qwen-Image slightly favors POS over NEG in MI and MA , and Seedream 3.0 shows
a similar preference in MI , indicating their limitations in handling negative constraints. (2) Per-
formance on the two sub-dimensions of Text Rendering is strongly correlated, suggesting that
both content and layout must be jointly optimized. In the TR dimension, models that achieve
high accuracy in textual content (CON) also tend to perform well in layout fidelity (LAY), and vice
versa. This strong correlation implies that effective text rendering requires coordinated progress in
both semantic correctness and spatial arrangement, as deficiencies in either aspect can significantly
impair overall performance. (3) A clear stepwise effect is observed in Logical Reasoning, with
multi-hop problems being consistently more difficult than 0-hop/1-hop ones. Across models,
performance in LR declines noticeably as the number of reasoning hops increases, with multi-hop
questions scoring lower than 1-hop, which in turn score lower than 0-hop. This pattern reflects the in-
creasing complexity introduced by multi-step dependencies, indicating that current models struggle
to maintain reasoning consistency over longer inferential chains. (4) In Generalization Reasoning,
models handle invariant patterns more reliably than variant ones. Within the GR dimension,
scores on the invariant subset (INV) are consistently higher than those on the variant subset (VAR).
This indicates that models are more adept at identifying and preserving shared, stable patterns, but

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

struggle when required to generalize over systematic variations. The performance gap reveals a core
challenge in enabling models to reason beyond fixed regularities toward flexible pattern adaptation.

C.5 QUANTITATIVE EXAMPLES AND COMPARISONS

Due to page limits, we include the complete set of illustrative examples and cross-model qualitative
comparisons in Fig. 9 and Figs. 10, 11, 12. These figures showcase composition and three key
dimensions of reasoning (i.e., deductive, inductive, and abductive), providing a fuller picture beyond
the main quantitative results in the text.

D LLM USAGE STATEMENT

In this work, LLMs are used solely as general-purpose assistive tools. Specifically, we use them
to (1) provide suggestions for improving grammar and clarity of writing, (2) help organize section
structures, and (3) assist in generating candidate prompts and checklists during the benchmark con-
struction stage, which are subsequently verified and refined by human annotators. Importantly, all
research ideas, experiment designs, and final scientific claims are developed and validated by the au-
thors themselves. The LLMs do not contribute to the originality of research concepts or conclusions,
and are therefore not considered contributors or co-authors. The authors take full responsibility for
all content presented in this paper, including any text initially drafted with LLM assistance.

E LIMITATIONS AND DISCUSSION

Limitations. While our T2I-COREBENCH provides a comprehensive and challenging benchmark
for assessing both compositional and reasoning capabilities, we also observe several limitations in
evaluation: (i) Our study focuses solely on T2I generation, leaving out other emerging modalities
such as video generation and interactive multimodal generation, which pose additional temporal and
contextual reasoning challenges. (ii) Although our checklist-based evaluation ensures consistency
and objectivity across dimensions, certain aspects could benefit from finer-grained metrics. For ex-
ample, text rendering is currently assessed at the sentence level, whereas character-level accuracy
could offer a more detailed perspective. (iii) Our benchmark primarily evaluates generative faithful-
ness with respect to prompt semantics, without considering non-semantic aspects such as aesthetics,
realism, and diversity. The dataset largely focuses on objects and animals, with limited coverage of
human-centric or face-related cases, which may reduce relevance to certain real-world applications.
Expanding the benchmark to include human-related scenarios, together with broader non-semantic
dimensions, is an important direction for future work. (iv) Our benchmark is currently limited to En-
glish prompts, while multilingual capabilities remain largely unexplored; extending the benchmark
to multiple languages represents an important direction for future work.

Discussion. To address the identified challenges of T2I generation in complex composition and rea-
soning scenarios, we identify four promising research directions for future work: (i) The develop-
ment of more diverse and challenging training data, particularly with multi-element and reasoning-
oriented supervision, is essential for enabling stronger generalization across complex tasks. (ii)
The integration of LLMs and MLLMs into T2I pipelines should be advanced, leveraging their
strong language modeling and cross-modal reasoning capabilities to improve semantic understand-
ing and alignment in complex generation scenarios. (iii) The incorporation of LLM-style reason-
ing paradigms (e.g., Chain-of-Thought Wei et al. (2022), Self-Consistency Wang et al. (2022), and
Retrieval-Augmented Generation Gao et al. (2023)) into T2I pipelines can facilitate intermediate in-
ference before image generation, thereby improving the extraction of implicit visual elements from
complex prompts. (iv) The exploration of reasoning mechanisms during generation is also needed,
by explicitly integrating visual reasoning steps into the generation process to support more detailed
and controllable outputs. We hope this benchmark and analysis can facilitate future research toward
building T2I models into both “set the stage” and “direct the play”.
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Multi-Instance (MI): A lively elementary school classroom during art period, where colorful student artwork decorates the walls above rows of 
small desks and bright yellow chairs. The teacher's desk holds a red apple, coffee mug, and scattered pencils, while a large whiteboard displays 
today's lesson plan written in blue marker. Near the windows, potted plants thrive on the windowsill next to boxes of tissues and hand sanitizer. 
Art supplies overflow from plastic bins: crayons, scissors, glue sticks, and construction paper in every imaginable color. However, you won't find 
any electronic tablets or computers in this traditional classroom, as the school maintains a hands-on learning approach. There are also no musical 
instruments like drums or guitars present, keeping the focus purely on visual arts. Students' backpacks hang on hooks along the back wall, while 
a globe sits prominently on a corner table beside stacks of picture books. The bulletin board showcases gold star stickers and student certificates, 
and alphabet letters march along the wall border above the green chalkboard.                    *35 Instances*

21/35�=�0.60

SD-3.5-Medium

22/35�=�0.63

FLUX.1-Krea-dev

28/35�=�0.80

Qwen-Image

33/35�=�0.94

Seedream 4.0

30/35�=�0.86

Nano Banana

29/35�=�0.83

GPT-Image

Multi-Attribute (MA): A single mechanical clockwork dragon constructed from brass and copper gears in a Victorian inventor's workshop. The 
dragon is medium-sized with articulated joints and visible clockwork mechanisms throughout its body. Its scales are individual brass plates that 
overlap like medieval armor, and its eyes are glowing amber gemstones. The dragon has four legs with mechanical claws, and its wings are made 
of thin copper sheets with brass ribbing. It is not organic, being entirely mechanical in construction. Two steam vents are positioned along its 
spine, releasing small puffs of white vapor. The dragon's head features three rotating gear assemblies visible through transparent crystal panels. 
Its tail is segmented with spring-loaded joints and ends in a sharp brass spear point. The dragon's chest houses a large central clockwork heart 
that glows with warm golden light and produces visible ticking motion. Intricate engravings of Victorian flourishes decorate the brass surfaces, 
and tiny copper wires connect various mechanical components. The dragon is not corroded, maintaining its polished metallic appearance. Small 
brass screws and bolts are visible at every joint, and delicate filigree work adorns the wing membranes. The dragon shows no signs of rust and 
contains no modern electronic components.                               *25 Attributes*

15/25�=�0.60

SD-3.5-Medium

18/25�=�0.72

FLUX.1-Krea-dev

22/25�=�0.88

Qwen-Image

23/25�=�0.92

Seedream 4.0

19/25�=�0.76

Nano Banana

18/25�=�0.72

GPT-Image

Multi-Relation (MR): A kitchen scene with an experienced chef wearing a white hat standing behind an old, worn wooden counter. The chef is 
holding a large knife and cutting carrots on a cutting board. A shiny, new red pot sits on top of a gas stove next to the counter; the pot is 
noticeably newer than the counter. A black cat is sitting under the counter facing the chef. On the counter, there are three apples and a group of 
carrots. The number of carrots is twice the number of apples. The three apples are arranged in front of the cutting board. Also on the counter are 
some onions, and their number is one less than the number of apples. A wooden spoon is inside the red pot. The chef is pointing at a recipe book 
that lies open between the apples and the cutting board. The recipe book is thicker than the cutting board. A kitchen towel hangs from a hook on 
the wall behind the stove. A salt shaker sits next to the recipe book on the counter.                 *21 Relations *

8/21�=�0.38

SD-3.5-Medium

14/21�=�0.67

FLUX.1-Krea-dev

16/21�=�0.76

Qwen-Image

17/21�=�0.81

Seedream 4.0

17/21�=�0.81

Nano Banana

17/21�=�0.81

GPT-Image

Text-Rendering (TR): Create a pharmaceutical product packaging box with detailed multi-level text hierarchy. The main product name 
'MEDIHEALTH PLUS™' should be displayed in large blue letters on the front panel. Below that, show 'Advanced Pain Relief Formula' in smaller 
black text. The package should have four information sections: 'ACTIVE INGREDIENTS' (top-left), 'DOSAGE INSTRUCTIONS' (top-right), 
'WARNINGS & PRECAUTIONS' (bottom-left), and 'MANUFACTURER INFO' (bottom-right). Under ACTIVE INGREDIENTS, list 'Ibuprofen 
400mg', 'Acetaminophen 325mg', and 'Caffeine 65mg'. Under DOSAGE INSTRUCTIONS, show 'Adults: 1-2 tablets', 'Every 6-8 hours', and 'Max: 6 
tablets/day'. Under WARNINGS & PRECAUTIONS, display 'Do not exceed dosage', 'Consult doctor if pregnant', and 'Keep away from children'. 
Under MANUFACTURER INFO, list 'MediCorp International', 'Lot #: MH-2024-456', and 'Exp: 12/2026'. Add a small plus symbol (+) next to 
'Ibuprofen 400mg' and 'Adults: 1-2 tablets' only. Do not add symbols next to any other text elements. On the side panel, include 'FDA APPROVED' 
and 'Store below 25°C’.                            *20 Texts + 20 Layouts *

7/40�=�0.17

SD-3.5-Medium

12/40�=�0.30

FLUX.1-Krea-dev

32/40�=�0.80

Qwen-Image

38/40�=�0.95

Seedream 4.0

37/40�=�0.93

Nano Banana

38/40�=�0.95

GPT-Image

Figure 9: Quantitative examples of composition dimensions (i.e., MI , MA , MR , TR ).
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Logical Reasoning (LR): Generate an image of three robots in a lab. Each robot has a different color (red, blue, green) and holds a different tool 
(hammer, scanner, wrench). The robots make statements: (1) Red robot says: 'Blue robot has the hammer.' (2) Blue robot says: 'I have the scanner.' 
(3) Green robot says: 'Red robot is lying.' (4) Red robot also says: 'I have the wrench.' (5) Additional facts: Exactly one robot always lies, the other 
two always tell the truth. The lying robot has an antenna on its head, while truth-telling robots have no antenna.       *5  Premises*
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Checklist:  01. Does the red robot have an antenna on its head?     04. Is the red robot holding the hammer?
    02. Does the blue robot have no antenna on its head?     05. Is the blue robot holding the scanner?
    03. Does the green robot have no antenna on its head?     06. Is the green robot holding the wrench?

3/6�=�0.50

SD-3.5-Medium

4/6�=�0.67

FLUX.1-Krea-dev

5/6�=�0.83

Qwen-Image

5/6�=�0.83

Seedream 4.0

5/6�=�0.83

Nano Banana

4/6�=�0.67

GPT-Image

Behavioral Reasoning (BR): Generate a photo of a Rube Goldberg-style chain reaction in a classroom, captured at the final moment. The initial 
setup contains a taut elastic cord placed just before a line of standing dominoes, with a matchstick fixed at the midpoint of the cord under tension. 
Behind the domino line, the last domino is positioned to connect to a mechanism designed to cut the rope suspending a steel marble. The marble 
is aligned to roll down a ramp into a glass beaker filled with red-colored water, which rests on a white sheet of paper. Far to the side of this setup 
on the same desk is a closed microscope under a dust cover. The actions that just occurred: the matchstick is used to burn through the taut elastic 
cord, which, upon snapping, tips over the first domino in the line. The image should depict the scene after all resulting effects have completely 
finished.                                          *8  Outcomes*
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Checklist:   01. Is the matchstick charred or blackened after burning?       05. Is the steel marble inside the glass beaker?
     02. Is the elastic cord visibly broken after being burned through?  06. Is the white paper under the beaker stained with red splashes?
     03. Are all of the dominoes in the line lying flat on the desk?      07. Is the microscope still on the desk, far from the experiment? 
     04. Does the rope holding the steel marble appear to be cut?       08. Is the dust cover still on the microscope and completely dry?

0/8�=�0.00

SD-3.5-Medium

1/8�=�0.13

FLUX.1-Krea-dev

2/8�=�0.25

Qwen-Image

2/8�=�0.25

Seedream 4.0

5/8�=�0.63

Nano Banana

4/8�=�0.50

GPT-Image

Hypothetical Reasoning (HR): Depict a bustling city-street intersection. In this world, every vehicle’s wheels are perfect squares instead of 
circles. Present: 1) a yellow taxi car, 2) a red double-decker bus, 3) a delivery bicycle, 4) a police motorcycle, 5) a gray sedan, 6) a street-sweeper 
truck, 7) a pedestrian’s shoes, 8) a street lamp, 9) a fire hydrant, 10) a public trash bin, 11) a blue mailbox, and 12) a traffic light pole. Render in 
daylight realism.                                 *12  Items*
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Checklist:   01. Are the taxi’s wheels depicted as perfect squares?         07. Do the pedestrian’s shoes keep their normal soles?
     02. Are the bus’s wheels depicted as perfect squares?      08. Does the street lamp keep its normal form?  
     03. Are the bicycle wheels depicted as perfect squares?        09. Does the fire hydrant keep its normal form?   
     04. Are the motorcycle wheels depicted as perfect squares?        10. Does the trash bin keep its normal form?
     05. Are the sedan’s wheels depicted as perfect squares?         11. Does the mailbox keep its normal form?
     06. Are the street-sweeper truck wheels depicted as perfect squares?  12. Does the traffic-light pole keep its normal form?

4/12�=�0.33

SD-3.5-Medium

6/12�=�0.50

FLUX.1-Krea-dev

6/12�=�0.50

Qwen-Image

6/12�=�0.50

Seedream 4.0

5/12�=�0.42

Nano Banana

6/12�=�0.50

GPT-Image

Procedural Reasoning (PR): Illustrate the final scene after performing all of the following six steps in order:\n1. Place a square sheet of purple 
origami paper flat on a wooden table.\n2. Fold the paper diagonally corner to corner and crease sharply, then unfold.\n3. Fold along the other 
diagonal and crease, then unfold to reveal an X-shaped crease pattern.\n4. Collapse the paper inward along the creases to form a square base.\n5. 
Continue folding to create the traditional bird base, then pull out the neck, head, and two wings to form a crane.\n6. Spread the wings gently so 
the crane stands upright and centre it on the table.\nRender the tabletop exactly as it appears once all six steps are complete.      *6 Procedures*
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Checklist:  01. Is a finished origami crane made from purple paper present on the table?
    02. Are both wings extended outward horizontally?    04. Is the crane’s head distinct and bent slightly downward? 
    03. Is the crane standing upright without external support?     05. Is no unfolded sheet or scrap paper left on the table?   

0/5�=�0.00

SD-3.5-Medium

0/5�=�0.00

FLUX.1-Krea-dev

4/5�=�0.80

Qwen-Image

5/5�=�1.00

Seedream 4.0

5/5�=�1.00

Nano Banana

5/5�=�1.00

GPT-Image

Figure 10: Quantitative examples of deductive reasoning dimensions (i.e., LR , BR , HR , PR ).
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Generalization Reasoning (GR): This is a system that creates a 'Divine Chariot' based on a 'Deity's Domain'. Study the examples to understand 
the rules.\n\nExample 1: The source is the 'Sky' domain, with 2 charioteers, a primary metal of gold, and a 'Sun' symbol. The result is a golden 
chariot that floats without wheels. It is pulled by 2 griffins (Rule: Sky -> Griffins/Floating, Sea -> Hippocampi/Wheels; creature count = charioteer 
count). A large, golden sun emblem is on the front of the chariot (Rule: metal determines chariot and emblem material). The chariot emits soft 
rays of light (Rule: Sun -> light rays, Trident -> water trails). The chariot is made of glowing energy and metal and is set against a cloudy 
sky.\n\nExample 2: The source is the 'Sea' domain, with 1 charioteer, a primary metal of silver, and a 'Trident' symbol. The result is a silver 
chariot with wheels made of swirling water. It is pulled by 1 hippocampus (Rule: Sky -> Griffins/Floating, Sea -> Hippocampi/Wheels; creature 
count = charioteer count). A large, silver trident emblem is on the front of the chariot (Rule: metal determines chariot and emblem material). The 
chariot is followed by trails of swirling water (Rule: Sun -> light rays, Trident -> water trails). The chariot is made of glowing energy and metal 
and is set against a stormy sea.\n\nNow, apply this exact system. Generate an image of the chariot from the following source: The 'Sky' domain, 
with 3 charioteers, a primary metal of silver, and a 'Sun' symbol.                    *8 Generalization  Rules*
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Checklist:  01. Is the chariot being pulled by griffins?     05. Is there a large sun-shaped emblem on the front of the chariot?
    02. Are there exactly 3 griffins pulling the chariot?   06. Is the material of the emblem also silver?
    03. Does the chariot float and have no wheels?    07. Does the chariot emit soft rays of light?
    04. Is the body of the chariot made of silver?    08. Is the setting a sky with clouds?

3/8�=�0.38

SD-3.5-Medium

3/8�=�0.38

FLUX.1-Krea-dev

2/8�=�0.25

Qwen-Image

6/8 = 0.63

Seedream 4.0

7/8�=�0.88

Nano Banana

7/8�=�0.88

GPT-Image

Analogical Reasoning (AR): Just as a honeycomb displays the following visual properties: (1) each cell has exactly six sides, (2) all sides of each 
hexagon are the same length, (3) adjacent cells share common walls, (4) all hexagons are the same size, and (5) the hexagonal pattern covers the 
entire visible surface, create an image showing clouds arranged in the sky following this same organizational principle. The image should 
ultimately be guided by the visual analogy, prioritizing its rules over real-world physics.              *5 Analogical  Rules*
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Checklist:  01. Does each cloud formation have exactly six sides?   04. Are all cloud hexagons the same size?
    02. Are all sides of each cloud hexagon the same length?  05. Does the hexagonal cloud pattern cover the entire visible sky area?
    03. Do adjacent cloud formations share common walls?

0/5�=�0.00

SD-3.5-Medium

0/5�=�0.00

FLUX.1-Krea-dev

0/5�=�0.00

Qwen-Image

2/5�=�0.40

Seedream 4.0

3/5�=�0.60

Nano Banana

4/5�=�0.80

GPT-Image

Figure 11: Quantitative examples of inductive reasoning dimensions (i.e., GR , AR ).

Commonsense Reasoning (CR): Describe a realistic scene, including any necessary real-world details to make it believable. In a veterinary 
clinic's examination room, a veterinarian is conducting a check-up on a nervous terrier. The vet is leaning over the animal to listen carefully to its 
heartbeat. The owner stands close by, stroking the dog's head to keep it calm. On the stainless steel counter in the background, a single syringe 
has been prepared next to a small vial. On the wall, an X-ray film is clipped onto an illuminated light box.          *5 Commonsense*
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Checklist:  01. Is the veterinarian using a stethoscope to listen to the dog's heartbeat? 
    02. Is the dog positioned on an elevated metal examination table?
    03. Is the veterinarian wearing professional attire suitable for a medical environment, such as scrubs or a lab coat?
    04. Is the needle of the prepared syringe on the counter still covered with its protective cap?
    05. Does the illuminated X-ray on the wall display the skeletal structure of an animal?
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Reconstructive Reasoning (RR): Observations:\nOn a bedroom windowsill sits an open jewelry box with one earring missing from a pair. A 
single black feather rests on the sill. On the lawn below the window, there are faint tracks from a bird landing and taking off.\n\nGenerative 
Task:\nReconstruct and generate a high-speed photograph of the precise and singular moment just after the theft has been completed, capturing 
the instant when the thief is about to escape. All objects mentioned in Observations must be reconstructed in the scene, except those that are 
meant to have disappeared in the reconstructed moment.                            *5 Clues*
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Checklist:  01. Is a bird, such as a crow or magpie, visible in the scene?   04. Is there an open jewelry box on the windowsill?
    02. Is the bird holding a shiny earring in its beak?      05. Is a single matching earring still visible inside the jewelry box?
    03. Is the bird depicted in mid-flight, taking off from the windowsill?

1/5 = 0.20
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2/5 = 0.40

FLUX.1-Krea-dev

3/5= 0.60

Qwen-Image

2/5�=�0.40

Seedream 4.0

5/5�=�1.00

Nano Banana

5/5�=�1.00

GPT-Image

Figure 12: Quantitative examples of abductive reasoning dimensions (i.e., CR , RR ).
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