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ABSTRACT

Detecting out-of-distribution (OOD) inputs is important for ensuring the safe
deployment of machine learning models in real-world scenarios. The primary
factor impacting OOD detection is the neural network’s overconfidence, where
a trained neural network tends to make overly confident predictions for OOD
samples. A naive solution to mitigate overconfidence problem is label smoothing.
However, our experimental observations show that simply using label smoothing
doesn’t work. We believe that this is because label smoothing is applied to the
original ID samples, which is the opposite of the goal of OOD detection (high
confidence for ID samples and low confidence for OOD samples). To this end, we
propose a new training strategy: smooth training (SMOT) where label smoothing is
applied to the perturbed inputs. During the smooth training process, input images
are masked with random-sized label-related regions, and their labels are softened
to varying degrees depending on the size of masked regions. With this training
approach, we make the prediction confidence of the neural network closely related
to the number of input image features belonging to a known class, thus allowing
the neural network to produce highly distinguishable confidence scores between in-
and out-of-distribution data. Extensive experiments are conducted on diverse OOD
detection benchmarks, showing the effectiveness of SMOT.

1 INTRODUCTION

Deep neural networks have achieved remarkable success thanks to the availability of large-scale
labeled data. However, it’s worth noting that most deep learning methods are designed within
closed-set environments, where models are trained under the in-distribution (ID) assumption that the
label space remains consistent during testing (Huang et al., 2017). In reality, situations may arise
where samples from new classes spontaneously emerge, thus violating this assumption. To tackle this
challenge, out-of-distribution (OOD) detection, proposed by (Bendale & Boult, 2016), is gaining
increasing attention. In OOD detection, the model is not only expected to accurately classify ID
samples but also to effectively distinguish OOD samples.

A pioneer method for detecting OOD samples is maximum softmax probability (MSP) (Hendrycks &
Gimpel, 2017), where the maximum softmax probability is used as an indicator of OOD detection.
Samples with low maximum softmax probability will be considered as OOD samples. However,
neural networks tend to yield excessively confident predictions on OOD samples (Nguyen et al.,
2015; Hein et al., 2019), making them less discriminative from ID samples. To this end, many
representative methods (Lee et al., 2018b; Liu et al., 2020) attempt to design new OOD scoring
functions to alleviate this overconfidence problem. In this paper, we consider solving this problem by
modifying the training strategy.

We first investigate how humans determine the category of an object. Typically, humans do not
always possess complete confidence in their judgment. As depicted in Figure 1, when humans
view a complete cat, they can confidently identify it as such. But when only the tail of the cat is
observed, no one can guarantee it is a cat. These conservative decisions make humans lower their
confidence when encountering unknown objects. However, this is not the case when we train a neural
network. For visual classification tasks, neural networks are typically trained with a cross-entropy
loss. As optimizing the cross-entropy loss is proven to excessively increase the magnitude of the
logits, networks tend to be insensitive to the absence of critical image region. As depicted in Figure
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Figure 1: Humans don’t always have complete confidence in their judgment, which allows them to
make rational judgments when they encounter unknown objects.

2, an empirical study on ImageNet-1k (Deng et al., 2009) also evidence that: For a neural network
pre-trained on ImageNet-1k, when we mask a portion of label-related regions of the images in the
test set and feed them to the network, the neural network still makes high-confidence predictions
for most of the masked images. These experimental observations show that neural networks trained
with cross-entropy loss function are highly sensitive to the learned features. When some of the
features belonging to a known class are observed (while not requiring all of them), the network makes
high-confidence predictions. This may lead the network to make wrong detection results when the
OOD samples have partially similar features to the ID samples.

Figure 2: The network makes high-confidence pre-
dictions for the masked images.

In the realm of neural network training, a
straightforward strategy for mitigating the over-
confidence issue entails the application of la-
bel smoothing (Szegedy et al., 2016). This
technique utilizes soft labels that are generated
by harnessing a uniform distribution to smooth
the distribution of the hard labels. However,
adopting this approach may not necessarily en-
hance the model’s capacity for detecting out-of-
distribution instances and, in some cases, may
even lead to a degradation in performance. This
unfavorable outcome can be attributed to the
fact that when the smoothing process is applied
to the original ID samples, it systematically re-
duces their associated confidence scores. Con-
sequently, these ID samples become less distin-
guishable from low-confidence OOD samples.
Empirical studies conducted on the CIFAR-10

dataset have further substantiated the presence of this phenomenon as shown in Figure 3.

In this paper, we introduce a novel training strategy that improves out-of-distribution detection
performance. In order to simulate the way humans perceive, we would like to feed the network
images with different degrees of completeness during training, while softening theirs labels differently
according to the degree of completeness. The challenge comes from getting images with different
levels of completeness. Manually cropping each image in the training set is time-consuming, while
randomly cropping or masking does not guarantee that the portion removed is label-relevant. To
this end, we use Class Activation Maps (CAMs) (Zhou et al., 2016), a technique for visualizing
neural networks that can obtain the contribution of different regions of an image to the predicted label.
During training, we randomly mask different sizes of label-related regions on the input images and
set different soft labels according to the size of the masked regions. We name our method Smooth
Training (SMOT), distinct from the traditional training approach, in which the image labels are set to
one-hot form throughout the training set (we call this training approach hard training). Intuitively,
SMOT forces the neural network to give full confidence only when complete features belonging to an
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ID class are detected, while the network adaptively outputs appropriate confidence when only some
of the features are detected. This causes the network to output lower confidence when it observes an
OOD sample with only partially the same features as ID classes, thus widening the confidence gap
between ID and OOD samples. We summarize our contribution as follows:

• We show that one of the reasons for overconfidence in neural networks is the widely used
cross-entropy loss function. Over-optimizing the cross-entropy loss function makes the
network insensitive to missing features. When the OOD samples have partially similar
features to the ID samples, the network gives overconfident predictions.

• To mitigate this problem, we propose a new training strategy: smooth training, by forcing
the network to generate appropriate confidence based on the number of ID features detected,
thus improving the ability of the model in handling OOD samples.

• Extensive experiments show that SMOT strategy greatly improves the OOD uncertainty
estimation, and an ablation study is conducted to understand the efficacy of SMOT.

2 PRELIMINARIES

Let X and Y = {1, . . . ,K} represent the input space and ID label space, respectively. We consider
the ID distribution DXIYI as a joint distribution defined over X × Y , where XI and YI are random
variables whose outputs are from spaces X and Y . During testing, there are some OOD joint
distributions DXOYO

defined over X × Yc, where XO and YO are random variables whose outputs
are from spaces X and Yc. Then following (Fang et al., 2022), OOD detection can be defined as
follows:
Problem 1 (OOD Detection). Given sets of samples called the labeled ID data

S = {(x1,y1), ..., (xn,yn)} ∼ Dn
XIYI

, i.i.d.,

the aim of OOD detection is to learn a predictor g by using S such that for any test data x:

• if x is drawn from DXI , then g can classify x into correct ID classes;

• if x is drawn from DXO , then g can detect x as OOD data.

Note that in problem 1, we use the one-hot vector to represent the label y.

Model and Risks. In this work, we utilize fθ to represent the deep model with parameters θ ∈ Θ,
where Θ denotes the parameter space. Let ℓ : RK × RK → R+ be the loss function. Then, R and R̂
are employed to denote the risk and empirical risk, respectively, i.e.,

R(fθ;DXY ) = E(x,y)∼DXY
ℓ(fθ(x),y), R̂(fθ;S) =

1

n

n∑
i=1

ℓ(fθ(x
i),yi).

Score-based Strategy. Many representative OOD detection methods (Hendrycks & Gimpel, 2017;
Liang et al., 2018; Liu et al., 2020) follow a score-based strategy, i.e., given a model fθ trained using
Dtrain

ID , a scoring function S and a threshold τ , then x is detected as ID data iff S(x; fθ) ≥ τ :

Gτ (x) = ID, if S(x; fθ) ≥ τ ; otherwise, Gτ (x) = OOD. (1)

In this paper, we use maximum softmax probability (MSP) (Hendrycks & Gimpel, 2017) as the
scoring function to design our OOD detector, i.e.,

SMSP(x; fθ) = max
k

softmaxk(fθ), (2)

where softmaxk(fθ) is the k-th coordinate function of softmax(fθ).

Training Strategy. In most score-based strategy, researchers mainly focus on designing effective
scoring functions to extract the detection potential of deep model fθ. For the score-based methods,
they follow a unified learning strategy—empirical risk minimization (ERM) principle, i.e.,

min
θ∈Θ

R̂(fθ;S). (3)

In this work, our primary focus is to design a more effective training strategy that enhances the
separation of ID and OOD data.
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3 METHODOLOGY

In this section, we primarily present the main method Smooth Training.

3.1 OVERCONFIDENCE UNDER ERM

In this section, we explore the issue of overconfidence from a theoretical perspective using the ERM
principle. Generally, the score-based OOD detection relies on a well-trained deep model, denoted as
fθ, which is trained based on the ERM principle (Eq. (3)), i.e.,

θS ∈ argmin
θ∈Θ

R̂(fθ;S).

Overconfidence for ID Data. Learning theory (Shalev-Shwartz & Ben-David, 2014) has indicated
that when the model fθ has finite complexity, the risk of empirical predictor fθS

can approximate to
the optimal risk with high probability, i.e.,

ES∼Dn
XIYI

R(fθS
;DXIYI) ≤ min

θ∈Θ
R(fθ;DXIYI) +

√
C

n
, (4)

where C is a uniform constant. With this theoretical result, one can easily demonstrate that, under
appropriate conditions, an overconfidence issue will arise for ID data. Theorem 1 provides a precise
statement regarding the overconfidence issue in ID data.
Theorem 1. Assume that the learning bound in Eq. (4) holds, and minθ∈Θ R(fθ;DXIYI

) < ϵ, then
for any (x,y) ∼ DXIYI

, with the probability at least 1− δ > 0,

ES∼Dn
XIYI

ℓ(fθS
(x),y) ≤ ϵ

δ
+

√
C

δn
.

Theorem 1 suggests that, given a sufficient amount of training data and a small optimal risk, i.e.,
minθ∈Θ R(fθ;DXIYI

), the issue of over-confidence for ID data is highly probable to arise.

Overconfidence for OOD Data. Building upon Theorem 1 and the insights from transfer learning
as discussed in (Fang et al., 2021), we initiate a theoretical investigation into the overconfidence
challenge associated with OOD data.
Theorem 2. Let d(θ) be the disparity discrepancy between DXI

and DXO
(Fang et al., 2021), i.e.,

d(θ) = supf ′ |Ex∼DXI
ℓ(fθ(x), f

′(x)) − Ex∼DXO
ℓ(fθ(x), f

′(x))|. If the conditions in Theorem 1
hold, then for any (x,y) ∈ DXO ×DYI|XI

, with the probability at least 1− δ > 0,

ES∼Dn
XIYI

ℓ(fθS
(x),y) ≤

ϵ+ ES∼Dn
XIYI

d(θS)

δ
+

√
C

δn
.

Theorem 2 implies that the issue of overconfidence in OOD data under the ERM is primarily caused
by three factors: 1) distribution discrepancy; 2) training data size; and 3) the optimal risk. When
the distributions of ID and OOD have a smaller discrepancy, the issue of overconfidence becomes
more severe. However, it is impossible to access real OOD data to reduce the distribution discrepancy
during training. Additionally, when we only utilize limited training ID data, the issue of overfitting
arises, leading to the failure of ID classification. Hence, this study primarily develops novel training
strategy to 1) achieve good performance on ID classification (challenge 1), and 2) mitigate the
overconfidence issue induced by the small optimal risk (challenge 2).

3.2 LABEL SMOOTH AND SMOOTH TRAINING

Label Smooth. Many methods attempt to address the issue of overconfidence by modifying the
output of a well-trained neural network without the necessity of retraining (Liang et al., 2018; Sun
et al., 2021; Zhu et al., 2022). Nevertheless, the effectiveness of these methods heavily relies on
the selection of hyperparameters and can lead to prolonged detection times. In this work, we draw
inspiration from a simple yet efficient method known as Label Smooth (Szegedy et al., 2016) to
design our own approach. Label Smooth generates soft labels by utilizing a uniform distribution to
smooth the distribution of the hard labels:

yϵ = (1− ϵ) · y + ϵ/K · u, (5)
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Figure 3: The MSP score distribution of training with hard target and training with soft target. Label
smooth successfully mitigates the problem of overconfidence in neural networks, but does not lead to
performance improvement on the OOD detection task.

where u is a uniform distribution across classes, and ϵ is denotes the smoothing parameter that is
usually set to 0.1 in practice. However, both empirical results (see Figure 3) indicate that the sole use
of Label Smooth cannot improve the performance of detecting OOD data.

Smooth Training. Applying Label Smooth directly to the original inputs results in low prediction
confidence for ID data, leading a low ID classification performance. This goes against our initial
purpose. Instead, we apply Label Smooth to the perturbed inputs, rather than the original inputs, and
for the original inputs, we use hard labels (one-hot labels), i.e., given a perturbation function T ,

ℓT (x,y) = (1− λ)ℓ(f(x),y) + λℓ(f(T (x)),yϵ), (6)

where yϵ = (1− ϵ) · y + ϵ/K · u is the soft label. In Eq. (6), the term ℓ(f(x),y) is used to address
challenge 1 of achieving good ID classification. Additionally, the term ℓ(f(T (x)),yϵ) is used to
address challenge 2 of mitigating the overconfidence issue induced by the small optimal risk.

The selection of the perturbation function is crucial for achieving smooth training. In the design of
the perturbation function, it is important to adhere to the following two fundamental principles:

• Effective. Perturbations to the input must be able to cause perturbations in its true label.
• Simple. The perturbation function should be simple and have a low training cost.

Perturbation by Masking. In this study, we primarily employ the masking operation as the
perturbation function. We anticipate that regions in an image with low correlation to the true label
will exhibit lower confidence compared to regions with high correlation to the true label. As such, our
primary focus is on masking those regions that have a strong correlation to the true label. To achieve
this, we employ the CAM technique (Zhou et al., 2016), which is a weakly-supervised localization
method that can identify discriminative regions.

Let Cx be the CAM of an input image x. Then we obtain a mask by applying a masking threshold t
to the CAM, i.e.,

M(x; t)[i, j] =

{
0, if Cx[i, j] ≥ t

1, otherwise.
(7)

By utilizing T t
m(x) = M(x; t) · x as the perturbation function, our loss function can be written as:

ℓT (fθ(x),y) = (1− λ)ℓce(f(x),y) + λℓce(f(T
t
m(x)),yϵ(t)), (8)

where ℓce is the cross-entropy loss, and ϵ(t) is the smoothing parameter of Label Smooth and is
designed as:

ϵ(t) = 1− exp((t− 255)/T ). (9)
where T is temperature coefficient. Then the final optimization problem is

min
θ∈Θ

∑
(x,y)∈S

ℓT (fθ(x),y). (10)
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Figure 4: An overview of SMOT. We use a pre-trained network to obtain the heat map of the input
image and then sample a threshold. The parts of the image with heat values greater than this threshold
are masked and it’s soft label is computed according to the threshold. The original image (with hard
label) and the masked image (with soft label) are used simultaneously to train the final network.

In each iteration, we sample a masking threshold from a Beta distribution: t ∼ Bata(α, β), and
compute the risk in Eq. (10), using gradient backpropagation to update our model fθ . An overview of
our method is presented in Figure 4. We refer to this training method as Smooth Training.

4 EXPERIMENTS

In this section, we present the performance comparison of the proposed method in the OOD detection
scenario.

4.1 EXPERIMENT SETUP

Datasets. Following the common benchmark used in previous work (Zhang et al., 2023), we adopt
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-200 (Deng et al., 2009) as our
major ID datasets. For CIFAR10 and CIFAR100, all the images are of size 32 × 32. We use five
common benchmarks as OOD test datasets: Textures (Cimpoi et al., 2014), SVHN (Netzer et al.,
2011), iSUN (Xu et al., 2015), Places365 (Zhou et al., 2018) and LSUN (Yu et al., 2015). For all
test datasets, the images are of size 32 × 32. And for ImageNet-200, all the image are of size 224 ×
224. Following NPOS (Tao et al., 2023b), iNaturalist (Horn et al., 2018), SUN (Xiao et al., 2010),
PLACES (Zhou et al., 2018), and TEXTURE (Cimpoi et al., 2014) are used as OOD test datasets.

Evaluation metrics. For evaluation, we follow the commonly-used metrics in OOD detection: (1)
the false positive rate of OOD samples when the true positive rate of in-distribution samples is
at 95%(FPR95), and (2) the area under the receiver operating characteristic curve (AUROC). We
also report in-distribution classification accuracy (ID-ACC) to reflect the preservation level of the
performance for the original classification task on ID data.

OOD detection baselines. We use both post-hoc inference methods and training methods as baselines.
For post-hoc methods, we take MSP score (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018),
ReAct (Sun et al., 2021) and Energy score (Liu et al., 2020) as baselines. And for training methods,
we use RegMixup (Pinto et al., 2022), VOS (Du et al., 2022), LogitNorm (Wei et al., 2022) and
NPOS (Tao et al., 2023a) as baselines. Besides, we also compares the performance of SMOT under
different OOD detection scoring functions.
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Table 1: OOD detection performance comparison between using softmax cross-entropy loss and
SMOT loss. All values are percentages. ↑ indicates larger values are better, and ↓ indicates smaller
values are better. Bold numbers are superior results.

ID datasets CIFAR10 CIFAR100

OOD datasets FPR95↓ AUROC↑ FPR95↓ AUROC↑
Cross-entropy loss / SMOT loss Cross-entropy loss / SMOT loss

Texture 58.59/23.01 88.59/96.24 83.54/73.83 77.89/79.93
SVHN 55.71/8.27 91.92/98.21 60.61/37.66 87.83/93.52
iSUN 50.80/12.27 91.80/97.89 82.52/64.10 73.52/87.49
Places 57.85/31.52 88.70/93.88 81.12/75.23 76.86/78.62
LSUN 32.71/2.04 95.33/99.56 78.89/68.88 81.72/85.73

Average 51.13/15.42 91.27/97.15 77.34/63.94 79.56/85.06

Table 2: OOD detection performance on CIFAR10 as ID. Values are percentages. Bold numbers are
superior results. ↑ indicates larger values are better, and ↓ indicates smaller values are better.

OOD Dataset
Texture SVHN iSUN Places LSUN Average

Methods
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 58.59 88.59 55.71 91.92 50.80 91.80 57.85 88.70 32.71 95.33 51.13 91.27
ODIN 51.96 88.82 48.33 92.41 41.42 92.56 49.93 89.29 21.2 96.66 42.56 91.95
ReAct 58.38 89.22 55.68 91.78 50.49 92.41 57.77 88.38 32.69 95.26 51.00 91.41
Energy 50.47 88.94 46.01 92.54 39.02 92.73 47.91 89.42 19.03 96.89 40.49 92.10

RegMixup 50.08 88.53 55.71 88.52 36.15 92.15 49.20 88.57 3.19 98.88 38.86 91.32
VOS 33.16 93.47 13.26 96.56 32.84 94.68 37.27 91.83 20.37 94.52 27.38 94.21
LogitNorm 31.98 94.28 2.94 99.31 13.24 97.67 34.88 93.56 2.45 99.43 17.10 96.85
NPOS 31.04 94.15 8.49 96.93 20.37 95.21 40.13 90.89 4.26 98.38 20.86 95.11
SMOT 23.01 96.24 8.27 98.21 12.27 97.89 31.52 93.88 2.04 99.56 15.42 97.15

Training details. For main results, we perform training with ResNet18 (He et al., 2016) on CIFAR-10,
CIFAR100 and ImageNet200. For the base model, we train 200 epochs using SGD with cross-entropy
loss, a momentum of 0.9, a weight decay of 0.0005, and a batch size of 128. We set the initial
learning rate as 0.1 and divide it by 10 after 80 and 140 epochs. Then we train the final model with
the proposed loss (Eq. (8). We train 300 epochs using SGD, a momentum of 0.9, a weight decay
of 0.0005, and a batch size of 128. The initial learning rate is 0.1, with cosine decay (Loshchilov
& Hutter, 2017). The hyperparameters α and β are set to 50 and 20. λ is set to 0.1. For CIFAR10
CIFAR100 and ImageNet-200, we set T to 10, 150, and 200, respectively. Experiments are conducted
on several NVIDIA GeForce RTX 2080, 3090 and 4090, using PyTorch.

4.2 RESULTS

How does SMOT influence OOD detection performance? In Table 1, we compare the OOD
detection performance on models trained with cross-entropy loss and SMOT loss respectively. We
keep the test-time OOD scoring function to be MSP. We observe that SMOT can effectively improve
OOD detection performance. In CIFAR10 benchmark, SMOT reduces the average FPR95 from
51.13% to 15.42%, a 35.71% of direct improvement. In CIFAR100 benchmark, SMOT also brings a
improvement of 13.40% on average FPR95.

Comparision with other baselines. We conduct comparison experiments on CIFAR10, CIFAR100
and ImageNet-200 dataset. As shown in Table 2, 3, 4, on CIFAR10 and ImageNet-200, SMOT
achieves the best average performance. On CIFAR100, SMOT also achieves good performance.
The superior performance demonstrates the effectiveness of our training strategy. Smooth training
successfully prevents overconfident predictions for OOD data, and improve test-time OOD detection.

4.3 ABLATION STUDY

SMOT with different scoring functions. In Table 5, we compare the OOD detection performance
of neural networks trained with SMOT loss and cross-entropy loss under different scoring functions.
Experimental results show that the OOD detection performance of the neural network trained with
cross-entropy loss is influenced by the scoring function, while the OOD detection performance of the

7



Under review as a conference paper at ICLR 2024

Table 3: OOD detection performance on CIFAR100 as ID. Values are percentages. Bold numbers are
superior results. ↑ indicates larger values are better, and ↓ indicates smaller values are better.

OOD Dataset
Textures SVHN iSUN Places LSUN AverageMethods

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MSP 83.53 77.89 60.61 87.83 82.52 73.52 81.12 76.86 78.89 81.72 77.34 79.56
ODIN 83.26 77.76 56.21 89.89 80.10 78.37 81.66 77.02 79.97 83.32 76.24 81.27
ReAct 77.48 81.24 59.97 88.47 81.83 70.65 76.89 79.16 67.21 86.00 72.67 81.10
Energy 82.62 77.55 51.77 90.56 75.89 79.56 82.32 76.80 80.51 83.30 74.62 82.15

RegMixup 80.62 78.37 66.79 88.45 80.72 74.93 79.92 77.03 48.28 91.78 71.26 82.11
VOS 82.64 78.93 48.52 91.53 73.26 80.83 80.49 77.45 47.92 90.57 66.56 83.62
LogitNorm 80.05 76.19 47.26 92.43 95.18 67.88 81.27 76.68 11.00 98.05 62.95 82.24
NPOS 62.93 84.21 32.58 92.17 65.27 86.57 65.48 77.63 39.26 91.82 53.10 86.48
SMOT 73.83 79.93 37.66 93.52 64.10 87.49 75.23 78.62 68.88 85.73 63.94 85.06

Table 4: OOD detection performance on ImageNet-200 as ID. Values are percentages. Bold numbers
are superior results. ↑ indicates larger values are better, and ↓ indicates smaller values are better.

OOD Dataset
iNaturalist SUN Places Textures AverageMethods

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MSP 44.05 92.22 55.31 89.26 60.39 87.31 56.77 85.58 54.13 88.59
ODIN 41.41 93.13 52.48 91.04 58.42 88.74 49.11 88.33 50.36 90.31
ReAct 43.74 92.19 44.63 92.40 50.25 90.41 58.36 87.56 49.24 90.64
Energy 43.76 92.70 55.04 90.74 60.28 88.43 47.26 88.61 51.57 90.12

RegMixup 37.89 93.12 48.82 90.28 59.93 87.26 53.27 87.32 49.98 89.49
VOS 42.83 92.78 42.62 91.94 51.73 89.85 52.46 87.93 47.41 90.62
LogitNorm 17.63 96.18 43.92 91.27 47.82 90.28 35.83 89.73 36.29 91.86
NPOS 30.89 94.52 38.53 92.38 48.37 90.39 25.71 90.82 35.88 92.03
SMOT 24.83 95.82 27.72 93.17 45.83 90.92 34.29 89.74 33.04 92.35

neural network trained with SMOT loss is basically the same under different scoring functions. With
SMOT, simply using MSP can achieve good OOD detection performance, thus saving testing time
and not bothering with the choice of which scoring function to use.

SMOT with different network architectures. We test the performace of SMOT using ResNet-
18 (He et al., 2016), WRN-40-2 (Zagoruyko & Komodakis, 2016) and DenseNet-BC (Huang et al.,
2017). As shown in Table 6, SMOT can consistently improve OOD detection performance under
different network structures, while being able to maintain the classification accuracy of ID samples.

The effect of the sampling function. In Table 7, we show how the parameters of the sampling
function affects the OOD detection performance. The analysis is based on CIFAR-10. In general, a
sampling distribution with higher variance leads to more diverse samples, and may require a larger
network and longer training time to fit the training samples.

The effect of temperature T . In Figure 5, we further ablate how the parameter T affects the OOD
detection performance. The analysis is based on CIFAR-10. On this dataset, the best OOD detection
performance is obtained when T is set as 10. For CIFAR100 and ImageNet-200, we set a larger
T . This is because when the number of classes is smaller, the neural network is more likely to be
overconfident, in which case we should give a larger penalty.
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Figure 5: The effect of the temperature.
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Table 5: SMOT with different scoring
functions. Values are percentages.

ID datasets CIFAR10

Score FPR95↓ AUROC↑
Cross-entropy loss / SMOT loss

Softmax 51.13/15.42 91.27/97.15
ODIN 42.56/14.46 91.95/97.22
Energy 40.49/16.32 92.10/97.02
ReAct 51.00/15.42 91.41/97.15

Table 6: SMOT with different network architectures.
Values are percentages.

ID datasets CIFAR10

Architecture FPR95↓ AUROC↑ ID ACC↑
Cross-entropy loss / SMOT loss

ResNet18 51.13/15.42 91.27/97.15 95.12/94.54
WRN-40-2 49.50/27.38 91.30/94.98 95.08/94.62
DenseNet 51.15/29.53 89.28/94.76 94.61/93.79

Table 7: The effect of the sampling function.
OOD Dataset

Texture SVHN iSUN Places LSUN Average
Beat(α, β)

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
w/o SMOT 58.59 88.59 55.71 91.92 50.80 91.80 57.85 88.70 32.71 95.33 51.13 91.27
(1,1) 37.76 93.09 46.04 91.99 32.58 93.47 51.66 86.94 15.58 97.12 36.72 92.52
(0.67,0.67) 45.51 92.46 49.59 91.95 45.07 93.26 56.81 88.51 11.95 98.00 41.78 92.84
(2,2) 40.83 93.65 36.54 93.51 28.97 95.58 47.98 90.98 5.64 98.93 31.99 94.53
(5,2) 26.91 95.51 19.93 96.83 24.87 96.23 42.12 92.36 11.82 98.14 25.13 95.82
(20,12) 24.38 95.86 9.74 98.06 18.23 97.04 39.65 92.49 5.89 99.04 19.57 96.50
(30,18) 34.26 94.93 28.73 95.44 29.78 94.85 45.73 91.25 6.75 98.84 29.05 95.06
(18,30) 47.97 92.40 58.58 89.67 40.24 93.83 61.64 87.35 33.71 94.78 48.43 91.61
(50,20) 23.01 96.24 8.27 98.21 12.27 97.89 31.52 93.88 2.04 99.56 15.42 97.15
(100,50) 25.83 95.84 25.93 96.48 22.83 96.36 40.37 91.73 8.53 97.98 24.69 95.68

5 RELATED WORK

Out-of-distribution detection. The goal of OOD detection is to enable the model to distinguish
between ID samples and OOD samples while maintaining the classification accuracy of ID samples.
Many works try to mitigate the overconfidence of neural networks by designing different scoring
functions, such as maximum softmax probability (Hendrycks & Gimpel, 2017), energy score (Liu
et al., 2020), ReAct (Sun et al., 2021) and GradNorm score (Huang et al., 2021). Despite their
simplicity and convenience, these methods are more like after-the-fact fixes. And, these types of
methods may result in more detection time. In addition to that, the proposed scoring functions may
have different effects in different scenarios, which sometimes need to be picked manually in practical
applications. Some other approaches try to solve OOD detection problem by modifying the training
strategy. For example, in (Lee et al., 2018a) (Hendrycks et al., 2019), the model is required to have
uniform output over outliers. RegMixup (Pinto et al., 2022) utilizes Mixup (Zhang et al., 2018) as an
additional regularizer to the standard cross-entropy loss. LogitNorm (Wei et al., 2022) enforces a
constant vector norm on the logits in training.

Confidence calibration. Many previous works have shown that neural networks tend to be overcon-
fident in their predictions (Hein et al., 2019) (Nguyen et al., 2015). To this end, some works address
this problem by post-hoc methods such as Temperature Scaling (Platt et al., 1999). In addition, some
method focus on the regularization of the model, such as weight decay (Guo et al., 2017), label
smoothing (Szegedy et al., 2016). Our approach is an extension of label smoothing. By applying
label smoothing to the perturbed inputs instead of the original inputs, the model is able to maintain a
relatively high confidence in-distribution inputs.

6 CONCLUSION

In this paper, we propose Smooth Training (SMOT), a simple training strategy to enhance OOD
detection performance. By modifying the labels of the training samples from single one-hot form to
adaptive softened labels, the model tends to output conservative predictions, allowing the network to
produce highly separable confidence scores for the ID and OOD samples. Extensive experiments
show that SMOT can significantly improve OOD detection detection performance of the model while
maintaining the classification accuracy of ID samples.
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REPRODUCIBILITY STATEMENT

We summarize our efforts below to facilitate reproducible results:

• Datasets. We use publicly available datasets, which are described in detail in Section 4.1
and Appendix B.1.

• Methodology. Our method is fully documented in Section 3 and a complete theoretical proof
is provided in Appendix A. Hyperparamters are specified in Section 4.1, with a thorough
ablation study provided in Section 4.3.

• Open Source. Code will be available upon acceptance.
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APPENDIX

A PROOF

A.1 PROOF OF THEOREM 1

Proof. Assume that Aδ ⊂ X × Y is the area satisfying that for any (x,y) ∈ Aδ

ES∼Dn
XIYI

ℓ(fθ(x),y) >
ϵ

1− δ
+ (

√
C

(1− δ)n
.

Therefore,

DXIYI
(Aδ)

( ϵ

1− δ
+

√
C

(1− δ)n

)
≤ ϵ+

√
C

n
,

which implies that DXIYI
(Aδ) ≤ 1− δ. We have completed this proof.

A.2 PROOF OF THEOREM 2

Proof. Let D′ be the joint distribution whose marginal distribution is DXI
and conditional distribution

is DYI|XI
. Then

|ES∼Dn
XIYI

R(fθS
;DXIYI

)− ES∼Dn
XIYI

R(fθS
;D′)|

≤ES∼Dn
XIYI

|R(fθS
;DXIYI)−R(fθS

;D′)| ≤ ES∼Dn
XIYI

d(θS).

Then using the same proving process of Theorem 1, we complete this proof.

B DETAILS OF DATASETS

In this section, we provide dataset details.

B.1 IMAGENET-200 BENCHMARK

Following OpenOOD (Zhang et al., 2023), we choose 200 classes from ImageNet-1k (Deng et al.,
2009) to create ImageNet-200. The chosen classes are the same as OpenOOD:

n01443537, n01484850, n01494475, n01498041, n01514859, n01518878, n01531178, n01534433,
n01614925, n01616318, n01630670, n01632777, n01644373, n01677366, n01694178, n01748264,
n01770393, n01774750, n01784675, n01806143, n01820546, n01833805, n01843383, n01847000,
n01855672, n01860187, n01882714, n01910747, n01944390, n01983481, n01986214, n02007558,
n02009912, n02051845, n02056570, n02066245, n02071294, n02077923, n02085620, n02086240,
n02088094, n02088238, n02088364, n02088466, n02091032, n02091134, n02092339, n02094433,
n02096585, n02097298, n02098286, n02099601, n02099712, n02102318, n02106030, n02106166,
n02106550, n02106662, n02108089, n02108915, n02109525, n02110185, n02110341, n02110958,
n02112018, n02112137, n02113023, n02113624, n02113799, n02114367, n02117135, n02119022,
n02123045, n02128385, n02128757, n02129165, n02129604, n02130308, n02134084, n02138441,
n02165456, n02190166, n02206856, n02219486, n02226429, n02233338, n02236044, n02268443,
n02279972, n02317335, n02325366, n02346627, n02356798, n02363005, n02364673, n02391049,
n02395406, n02398521, n02410509, n02423022, n02437616, n02445715, n02447366, n02480495,
n02480855, n02481823, n02483362, n02486410, n02510455, n02526121, n02607072, n02655020,
n02672831, n02701002, n02749479, n02769748, n02793495, n02797295, n02802426, n02808440,
n02814860, n02823750, n02841315, n02843684, n02883205, n02906734, n02909870, n02939185,
n02948072, n02950826, n02951358, n02966193, n02980441, n02992529, n03124170, n03272010,
n03345487, n03372029, n03424325, n03452741, n03467068, n03481172, n03494278, n03495258,
n03498962, n03594945, n03602883, n03630383, n03649909, n03676483, n03710193, n03773504,
n03775071, n03888257, n03930630, n03947888, n04086273, n04118538, n04133789, n04141076,
n04146614, n04147183, n04192698, n04254680, n04266014, n04275548, n04310018, n04325704,
n04347754, n04389033, n04409515, n04465501, n04487394, n04522168, n04536866, n04552348,
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Figure 6: SMOT running on CLIP. The image encoder and text encoder are frozen. We use SMOT
loss to learn the prompt.

n04591713, n07614500, n07693725, n07695742, n07697313, n07697537, n07714571, n07714990,
n07718472, n07720875, n07734744, n07742313, n07745940, n07749582, n07753275, n07753592,
n07768694, n07873807, n07880968, n07920052, n09472597, n09835506, n10565667, n12267677.

We use subsets from iNaturalist (Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al.,
2018) and Texture (Cimpoi et al., 2014) as OOD datasets, which are created by Huang et al. (Huang
& Li, 2021). The classes from OOD datasets do not overlap with ImageNet-1k. A brief description
about them is as follows:

iNaturalist contains images from natural world. It has 13 super-categories and 5089 sub-categories
covering plants, insects, birds, mammals, and so on. The subset containing 110 plant classes not
showing in ImageNet-1k are chosen as OOD test set.

SUN contains 899 categories that cover more than indoor, urban, and natural places. We use the
subset which contains 50 natural objects not overlapping with ImageNet-1k.

Places contains photos labeled with scene semantic categories from three macro-classes: Indoor,
Nature, and Urban. We use subset sampled from 50 categories that are not present in ImageNet-1k.

Texture contains images of textures and abstracted patterns. As no categories overlap with ImageNet-
1k, we use the entire dataset.

C RESULTS ON IMAGENET-1K

Training a network with SMOT loss from scratch on ImageNet-1k is too expensive. Instead, we
leverage CLIP (Radford et al., 2021). Our approach is the same as CoOp (Zhou et al., 2022), which is
known as visual prompt learning. During the training process,clip’s image encoder and text encoder
are frozen and only a small number of ID samples are used to learn the input of the text encoder. The
training process is shown in Figure 6. Each class, we use 16 samples to learn the prompt. We compare
SMOT with the following baselines, MCM (Ming et al., 2022), MSP (Fort et al., 2021), ODIN (Liang
et al., 2018), Energy (Liu et al., 2020), GradNorm (Huang et al., 2021), Vim (Wang et al., 2022),
KNN (Sun et al., 2022), VOS (Du et al., 2022), NPOS (Tao et al., 2023b) and CoOp (Zhou et al.,
2022). For convenience, we use the pre-trained ResNet-18 to obtain the heat maps. As shown in
Table 8, SMOT achieves the best performance with only a small number of training samples.
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Table 8: OOD detection performance on ImageNet-1k as ID. Except for our method SMOT, all other
experimental results are from NPOS (Tao et al., 2023b).

OOD Dataset
iNaturalist SUN Places Textures Average

Methods
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MCM 32.08 94.41 39.21 92.28 44.88 89.83 58.05 85.96 43.55 90.62
MSP 54.05 87.43 73.37 78.03 72.98 78.03 68.85 79.06 67.31 80.64
ODIN 30.22 94.65 54.04 87.17 55.06 85.54 51.67 87.85 47.75 88.80
Energy 29.75 94.68 53.18 87.33 56.40 85.60 51.35 88.00 47.67 88.90

GradNorm 81.50 72.56 82.00 72.86 80.41 73.70 79.36 70.26 80.82 72.35
Vim 32.19 93.16 54.01 87.19 60.67 83.75 53.94 87.18 50.20 87.82
KNN 29.17 94.52 35.62 92.67 39.61 91.02 64.35 85.67 42.19 90.97
VOS 31.65 94.53 43.03 91.92 41.62 90.23 56.67 86.74 43.24 90.86

VOS+ 28.99 94.62 36.88 92.57 38.39 91.23 61.02 86.33 41.32 91.19
NPOS 16.58 96.19 43.77 90.44 45.27 89.44 46.12 88.80 37.93 91.22
CoOp 30.21 94.63 33.46 93.13 40.56 90.18 56.78 87.25 40.25 91.30

SMOT 20.45 95.83 31.27 93.73 35.72 91.83 42.47 89.37 32.48 92.69

D THE EFFECT OF TEMPERATURE T ON CIFAR100.

In Figure 7, we further ablate how the parameter T affects the OOD detection performance on
CIFAR100 dataset. On this dataset, the best OOD detection performance is obtained when T is set as
150.
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Figure 7: The effect of the temperature.

E SMOT WITH OTHER PERTURBATION FUNCTION.

In the formal paper, we use mask as the perturbation function. Here, We try to perturb the image by
adding gaussian noise to it (while softening its label). In addition, we also add a set of experiments in
which the masked part is set to 1. As shown in Table 9, Using different perturbation functions can all
improve the OOD detection performance of the model.

Table 9: SMOT with different perturbation function.
OOD Dataset

Texture SVHN iSUN Places LSUN Average
Methods

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MSP 58.59 88.59 55.71 91.92 50.80 91.80 57.85 88.70 32.71 95.33 51.13 91.27
SMOT (masked as 0) 23.01 96.24 8.27 98.21 12.27 97.89 31.52 93.88 2.04 99.56 15.42 97.15
SMOT (masked as 1) 37.73 93.63 34.82 94.11 26.98 95.89 42.28 92.31 15.34 97.67 31.43 94.72
SMOT (noise) 41.40 93.05 36.78 94.64 27.91 95.87 44.64 91.40 23.4 96.77 34.68 94.35

F COMPARISON OF THE DISTRIBUTION OF MSP SCORES.

We compare the MSP scores distribution on CIFAR10 benchmark for networks trained using cross-
entropy loss, label smoothing, and SMOT loss, respectively. As shown in Figure 8, the three columns
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from left to right are the results of cross-entropy loss, label smoothing, and SMOT loss, respectively.
It can be observed that the networks trained with SMOT loss have low confidence for most of OOD
samples. Compared to cross-entropy loss and label smoothing, SMOT produces more distinguishable
confidence for ID and OOD samples.

Figure 8: The MSP score distribution of training with cross-entropy loss, label smoothing and SMOT
loss. From left to right are the results of cross-entropy loss, label smoothing, and SMOT loss.

G QUALITATIVE RESULTS.

Qualitatively, we show the t-SNE visualization of the features generated by by the networks trained
with cross-entropy loss and SMOT loss respectively. As shown in Figure 10 and Figure 11, the
network trained by SMOT loss reduces the number of OOD samples which are deep in clusters of ID
classes.
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Figure 10: t-SNE visualization of fea-
tures generated by network trained with
cross-entropy loss.

Figure 11: t-SNE visualization of fea-
tures generated by network trained with
SMOT loss.

17


	Introduction
	Preliminaries
	Methodology
	Overconfidence under ERM
	Label Smooth and Smooth Training

	Experiments
	Experiment setup
	Results
	Ablation study

	Related Work
	Conclusion
	Proof
	Proof of Theorem 1
	Proof of Theorem 2

	Details of Datasets
	ImageNet-200 Benchmark

	Results On ImageNet-1k
	The effect of temperature T on CIFAR100.
	SMOT with other perturbation function.
	Comparison of the distribution of MSP scores.
	Qualitative Results.

