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Abstract

The Robust Satisficing (RS) model is an emerging
approach to robust optimization, offering stream-
lined procedures and robust generalization across
various applications. However, the statistical the-
ory of RS remains unexplored in the literature.
This paper fills in the gap by comprehensively an-
alyzing the theoretical properties of the RS model.
Notably, the RS structure offers a more straightfor-
ward path to deriving statistical guarantees com-
pared to the seminal Distributionally Robust Opti-
mization (DRO), resulting in a richer set of results.
In particular, we establish two-sided confidence
intervals for the optimal loss without the need to
solve a minimax optimization problem explicitly.
We further provide finite-sample generalization
error bounds for the RS optimizer. Importantly,
our results extend to scenarios involving distribu-
tion shifts, where discrepancies exist between the
sampling and target distributions. Our numerical
experiments show that the RS model consistently
outperforms the baseline empirical risk minimiza-
tion in small-sample regimes and under distribu-
tion shifts. Furthermore, compared to the DRO
model, the RS model exhibits lower sensitivity to
hyperparameter tuning, highlighting its practica-
bility for robustness considerations.

1. Introduction
Robust methods are optimization techniques that guaran-
tee performances even when environments vary slightly
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(Ronchetti, 2021). These methods are resilient against vari-
ations or uncertainties, ensuring consistent and reliable out-
comes. Robustness provided by these methods is particu-
larly valuable in scenarios where limited sample sizes may
not fully capture the entire distribution, or where the target
environment differs from the initial sampling distribution.

The application of robust methods spans across various do-
mains: in machine learning, they are utilized to enhance
the robustness of algorithms, ensuring they maintain strong
performance even when there are adversarial attacks in the
input data (Blanchet et al., 2019; Sim et al., 2021). In en-
ergy systems, they are adopted to optimize the operation and
planning, including bidding strategies in electricity markets,
operation scheduling of power systems, and integration of
renewable energy (Li et al., 2023; Huang et al., 2023). In
supply chains, they are employed to optimize various as-
pects such as production planning, inventory management,
logistics, and transportation. (Chen & Chen, 2023; Deng
et al., 2023; Wang et al., 2023). These examples represent
a fraction of the wide-ranging applications of robust meth-
ods. In fact, robust methods can be applied to any field that
involves optimization problems, making it a vital tool for
decision-making under uncertainty.

Among various robust methods, Distributionally Robust Op-
timization (DRO) is a pivotal approach (Hu & Hong, 2013;
Bayraksan & Love, 2015; Esfahani & Kuhn, 2015). DRO’s
significance lies in its more robust handling of ambiguity
compared to conventional stochastic programming models.
This is achieved by optimizing the worst-case performance
over a set of potential distributions rather than for a single
distribution. Specifically, the DRO problem is formulated
as follows:

min
x∈X

max
P∈Pr

EP [h(x, ξ)], (1)

where Pr = {P ∈ P : d(P, P̂N ) ≤ r}.

Above, x represents the decision variable, which is con-
tained in a non-empty decision space X , and ξ is a random
variable. The function h(x, ξ) denotes the loss associated
with x and ξ. P̂N is the empirical distribution derived from
the data1. The function d(·, ·) is a distance measure to quan-
tify discrepancies between distributions. The hyperparame-

1Other nominal distributions are also viable. For example,
when provided with a parametric distributional class, the distribu-
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ter r, referred to as the “radius”, defines the ambiguity set
Pr, a subset of P that encompasses all feasible distributions.
It plays a crucial role in controlling robustness—the larger
the value of r, the greater the robustness demanded.

Despite its strengths, DRO has a few shortcomings. First,
DRO can be overconservative in practice, as Esfahani &
Kuhn pointed out. This is because the DRO framework op-
timizes the worst-case scenario in the distribution domain,
which may be unnecessarily large to incorporate the target
distribution. Second, selecting an appropriate and inter-
pretable radius r is a challenging task in practice, as noted
by Sim et al.. This difficulty stems from the abstract nature
of the radius, which characterizes the distance within the
distributional space and is hard to be intuitively translated
into tangible, real-world values. In addition, there is a grow-
ing demand for incorporating globalized distributions–as
opposed to restricting to an ambiguity set under the DRO
framework–to further increase robustness (Liu et al., 2023).

To address these issues, the Robust Satisficing (RS) model
has been proposed (Long et al., 2023), as structured below:

kτ =min k (2)

s.t. EP [h(x, ξ)]− τ ≤ kd(P, P̂N ), ∀P ∈ P
x ∈ X , k ≥ 0.

Here, the hyperparameter is no longer the radius r of the
ambiguity set, but a reference value τ , which can be inter-
preted as an anticipated cost in practical applications. The
constraint (2) then ensures that once the expected loss un-
der a certain distribution exceeds our anticipated cost, the
excess part should not be too large: it will be controlled
by a multiple of the distribution’s distance to the empirical
distribution P̂N . Hence, the RS model compromises some
training set performance for robustness in the target distri-
bution, as it doesn’t aim for minimizing the empirical loss.
Unlike DRO that focuses on worst-case optimization, RS
follows a satisficing strategy to avoid over-conservatism,
thereby providing better generalization performance on the
target distribution. Another key aspect of the RS model is
its global consideration of probability distributions, unlike
DRO’s restriction to ambiguity set.

Current research on the RS model primarly centers around
forming tractable new optimization models and experimen-
tal analysis. Notable examples of tractable RS model en-
compass Risk-based Linear Optimization and Linear Op-
timization with Recourse (Sim, 2023; Long et al., 2023),
illustrating RS’s practical optimization and generalization
advantages compared to the DRO models. Ruan et al. pro-
posed Robust Satisficing Markov Decision Processes and
demonstrated its superiority over traditional robust MDP

tion estimated using maximum likelihood estimation can serve as
a substitute for P̂N .

through experiments. Saday et al. proposed the Robust
Bayesian Satisficing model, established upper bound on
regret and outperformed Distributionally Robust Bayesian
Optimization in experiments. Despite RS’s notable results
in the realm of optimization, to the best of our knowledge,
there are no existing studies on the statistical properties
of the RS model. This gap leads to the central research
questions of this paper:

Are there statistical guarantees for the RS model? What are
the statistical merits it holds, potentially surpassing DRO?

1.1. Contributions

Our work delves into the statistical theory of the RS model,
with a focus on deriving and analyzing its statistical prop-
erties. In particular, we provide a two-sided confidence
interval estimate for the optimal loss using the reference
value, and present non-asymptotic upper bound of the gen-
eralization error. These results fill a crucial gap in the lit-
erature, where statistical guarantees for the RS model have
been seldom studied. It is noteworthy that our results extend
beyond cases where the sampling distribution matches the
target distribution of interest, a context where robustness
still remains relevant due to potential discrepancies between
the empirical and sampling distributions, especially in small-
sample regimes; we also consider scenarios involving distri-
bution shifts, where disparities exist between the sampling
distribution and the target distribution. We highlight the
contributions of this paper as follows:

1) We obtain two-sided, non-asymptotic confidence inter-
vals for the optimal loss J∗ in the RS model, where J∗

is the minimum expected loss under the true distribu-
tion. Notably, this result does not necessitate solving a
minimax optimization problem explicitly.

2) We present finite-sample generalization error bounds
for the optimizer derived from the RS model, achieved
through an insightful and succinct derivation.

3) We demonstrate that, even under distribution shifts, our
key findings – confidence intervals and generalization
error bounds for the RS model optimizer – remain valid.
These results incorporate an additional term, a finite
multiple of the distance between the sampling and target
distributions. This adaptation highlights the RS model’s
robust generalization abilities.

4) Our numerical experiments reveal that RS model’s ad-
vantages over the empirical risk minimization baseline
becomes more pronounced in small-sample regimes or
with increasing distribution shifts. Furthermore, our anal-
ysis reveals the relationship between the RS and DRO
models under the Lipschitz loss scenarios, which also
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highlights that the RS model has lower sensitivity to
hyperparameter tuning as compared to DRO.

In all these aspects, we perform an extensive comparison
with DRO. Our analysis reveals that these advantageous
properties are closely associated with the inherent structure
of the RS model itself. It becomes evident that obtaining
statistical guarantees is more straightforward within the RS
framework compared to the DRO framework.

2. Set up
We start by describing our learning problem. Let ξ ∈ Ξ
be the m-dimensional random variable of observations and
x ∈ X be the decision variable to be learned. Let h(x, ξ)
be the loss function (which can accommodate a wide range
of machine learning problems as detailed in Appendix D).
We use J∗ to denote the minimum expected loss under the
optimal decision variable x∗:

J∗ := inf
x∈X

EP∗ [h(x, ξ)] = EP∗ [h(x∗, ξ)]. (3)

Given N observations {ξi}Ni=1 sampled from the distribu-
tion P ∗, the decision maker wants to learn a decision vari-
able such that the expected loss is minimized.

Consider the Robust Satisficing (RS) model (2), and we
focus on the Wasserstein distance for the distance measure
between distributions. Here, τ is the “reference value”,
which can be interpreted as the anticipated cost in practical
applications, and its choice will be further discussed in
Section 2.1. P is the set of all feasible distributions, on
which the RS model does not impose any constraint; this
allows the RS model to consider probability distributions
globally. P̂N denotes the empirical distribution of samples
{ξi}Ni=1, which converges to P ∗ as sample size goes to
infinity. And dW denotes the type-1 Wasserstein distance
between two distributions2:

dW(Q1, Q2) := inf
Π

{∫
Ξ×Ξ

c(ξ1, ξ2)Π(dξ1,dξ2)

}
,

where Π is a joint distribution over (ξ1, ξ2), with its
marginal distributions on ξ1 and ξ2 being Q1 and Q2 respec-
tively; the cost function c(·, ·) used for Wasserstein distance
is chosen as the type-I version, with c(x, y) = ∥x− y∥2.

Let x̂N be the solution derived from the RS model (2), the
reformulation of which will be elaborated upon in Section
2.2. Our goal is to provide statistical guarantees on x̂N and
J∗.

2We follow the literature (Long et al., 2023) and consider the
Wasserstein distance instead of f-divergence to avoid the require-
ment that P is absolute continuous with respect to P̂N , which is
impractical for continuous distribution.

2.1. Reference Value τ

The reference value τ introduced in the RS model (2) is
critical in controlling the robustness of the learned solution
x̂N . Conceptually, following the satisficing criterion, the RS
model ensures that any excess beyond the reference value τ
under a certain distribution is controlled by a multiple of the
distance between this distribution and the empirical distri-
bution of the data. A larger τ indicates increased robustness
considered in the RS model.

Choose P as P̂N in (2), we easily obtain:

τ ≥ EP̂N
[h(x, ξ)]. (4)

Inspired by this, Long et al. suggest choosing τ as:

τϵ := (1 + ϵ) inf
x

EP̂N
[h(x, ξ)], (5)

where ϵ is referred to as “tolerance rate” that the RS model
allows for excess empirical loss. This means that the refer-
ence value τ , which we choose or tolerate, is ϵ more than
the smallest cost achievable under the empirical distribu-
tion. We adopt this approach, focusing on characterizing
the role of ϵ in the statistical guarantees provided by the RS
model. Additionally, ϵ will be the primary hyperparameter
we adjust and analyze in the numerical experiments section.

2.2. Reformulation

The original RS optimization (2) requires enumerating over
all possible distributions over P, which may not be tractable.
We now reformulate the model (2), following the practice
by Long et al.. Let η and ξ be samples from P and P̂N

respectively, and let π(η|ϵ) be the conditional distribution
of η when conditioning on ξ. We have:

sup
P

{EP [h(x, η)]− kdW (P, P̂N )}

=sup
π

∫∫
[h(x, η)− kc (ξ, η)]dP̂N (ξ) dπ (η|ξ)

=EP̂N
[sup
z∈Ξ

h(x, z)− kc(ξ, z)],

(6)

where the last equation is achieved by choosing the maxi-
mizer π as the Dirac distribution, which concentrates the
mass at the point to maximize {h(x, ·) − kc(ξ, ·)}. Then
the RS model (2) can be reformulated as:

min k ≥ 0 (7)
s.t. EP̂N

[sup
z∈Ξ

h(x, z)− kc(ξ, z)] ≤ τ.

x ∈ X

With that, the optimizer x̂N of RS model can be obtained in
a hierarchical way. First, for a fixed decision variable x, let
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kτ (x) be the smallest k that satisfies the RS constraint:

kτ (x) := min k(x),

s.t. EP̂N
[sup
z∈Ξ

h(x, z)− kc(ξ, z)] ≤ τ.

Then x̂N is the minimizer of kτ (x):

x̂N := argminxkτ (x). (8)

We note that a similar reformulation technique has been em-
ployed by Blanchet & Murthy to derive tractable solutions
for DRO. However in the DRO framework, the distribution
is restricted to an ambiguity set, necessitating the use of a La-
grange multiplier for constraint conditions and the existence
of strong duality. These constraints introduce additional
assumptions, including the continuity of functions h(x, ξ)
and c(·, ·). In contrast, robust satisficing, which does not
limit the distribution set, avoids these extra assumptions.

3. Statistical Properties
This section presents our main results for the statistical
properties of the optimizer x̂N in the RS model (2). We start
by describing the assumptions required for our analysis.
Assumption 1 (Exponential tail decay in random variable).
There exists an a > 1, such that EP∗ [exp(||ξ||a)] < ∞.

Assumption 1 requires that ξ is relatively light-tailed. It
plays a key role in bounding the rate at which the empiri-
cal distribution P̂N approximates the true distribution P ∗

under the type-1 norm Wasserstein distance (Fournier &
Guillin, 2015) (see Proposition 2 for details). This assump-
tion is relatively mild and is applicable to a broad range of
distributions including sub-Gaussian random variables.
Assumption 2 (Lipschitz continuity of loss function). The
loss h(x, ξ) is Lipschitz with a uniform constant L in ξ.

Assumption 2 is essential for deriving the dual expression
form of the type-1 norm Wasserstein distance (Esfahani &
Kuhn, 2015) (see Proposition 1 for details). This assumption
holds true for a wide range of machine learning problems,
which we further elaborate in Appendix D. Note that we
don’t need the Lipschitz continuity assumption of h(x, ξ)
with respect to x, which we defer the detailed discussion in
the Appendix E.

3.1. Confidence Intervals of Optimal Loss

This section provides both non-asymptotic and asymptotic
confidence intervals for the optimal loss J∗, the smallest
attainable expected loss as defined in (3), and the true loss
of x̂N .
Theorem 1 (Confidence intervals of optimal loss). Suppose
Assumptions 1 & 2 hold. For any N , let βN be the con-
fidence level. We have with probability at least 1 − βN :

−L · rN +
τϵ

1 + ϵ
≤ J∗ ≤ EP∗ [h(x̂N , ξ)] ≤ kτϵ · rN + τϵ,

(9)

where rN , denoted as the “remainder”, is solved from the
below equation:

βN =

{
c1 exp

(
− c2NrN

max{m,2}) if rN ≤ 1,

c1 exp
(
− c2NraN

)
if rN > 1,

with c1, c2 as positive constants that only depend on expo-
nential decay rate a and dimension m.

Moreover, when choosing the confidence sequence {βN}
satisfying

∑∞
N=1 βN < ∞, we have

P
{
− L · rN +

τϵ
1 + ϵ

≤ J∗ ≤ EP∗ [h(x̂N , ξ)]

≤ kτϵ · rN + τϵ for all sufficiently large N
}
= 1. (10)

Table 1 outlines typical selections of βN and their respective
rates of decay for the remainder rN . Notably, the last two
βN options satisfy

∑∞
N=1 βN < ∞ and limN→∞ rN =

0, under which (10) suggests asymptotic consistency of
EP∗ [h(x̂N , ξ)](Note that this asymptotic interval applies to
J∗ directly by the convergence of empirical loss to the true
loss as N increases):

P
{ τϵ
1 + ϵ

≤ EP∗ [h(x̂N , ξ)] ≤ τϵ for all

sufficiently large N
}
= 1. (11)

We recognize the challenge posed by the curse of dimen-
sionality, as indicated by the exponent m in rN , which is
a common issue associated with the Wasserstein distance
(Esfahani & Kuhn, 2015; Kuhn et al., 2019), and we leave
as a promising future research question.

We also note that the upper bound in Eq. (9) includes kτϵ ,
which may be difficult to derive analytically. Fortunately,
the following lemma provides an upper bound guarantee for
kτϵ .
Lemma 1 (Fragility Upper Bound). Under Assumption 2,
we have kτ ≤ L, where kτ is solved from the RS model (2).

Lemma 1 that we prove is noteworthy on its own. As pointed
out by Long et al., kτ characterizes the fragility of the model,
with lower values indicating more robustness. Lemma 1 sets
an upper bound for kτ based on the Lipschitz constant L,
suggesting the model fragility being controlled.
Remark 1. In the proof detailed in the Appendix B.2, we
establish the following relationship:

−L · dW (P ∗, P̂N ) +
τϵ

1 + ϵ
≤ J∗ ≤ EP∗ [h(x̂N , ξ)]

≤ kτϵ · dW (P ∗, P̂N ) + τϵ.
(12)
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Equation (12) illustrates that the true loss of x̂N (the opti-
mizer obtained from the RS model), under the target distri-
bution P ∗, also falls within the confidence interval provided
by Equation (9). Furthermore, Equation (9) further facili-
tates the derivation of the upper bound of the generalization
error in Theorem 3.

Remark 2. Equation (9) provides a guideline on determin-
ing the sufficient sample size required to achieve a prede-
fined accuracy at a specified confidence level βN . This
sample size is primarily quantified by the width of the confi-
dence interval and mainly driven by rN . Table 1 illustrates
various selections of βN along with their corresponding rN
values, which allows us to explicitly compute the sample
size required for specific scenarios.

By integrating Lemma 1 with Theorem 1, we derive a sim-
pler form of confidence intervals for J∗, which depends
solely on the Lipschitz constant L and the reference value
τϵ, eliminating the need to compute kτϵ from the RS model.

Corollary 2. Suppose Assumptions 1 & 2 hold. For any N
and the confidence level βN , let rN be solved as in Theorem
1. With probability at least 1− βN , we have

−L · rN +
τϵ

1 + ϵ
≤ J∗,EP∗ [h(x̂N , ξ)] ≤ L · rN + τϵ.

The remainder rN becomes negligible for choices of βN

listed in Table 1. Thus Corollary 2 indicates that as N
approaches ∞, the expected loss EP∗h(x̂N , ξ) of the opti-
mizer x̂N will also fall within the interval [ τϵ

1+ϵ , τϵ]. This
allows us to characterize the loss value that the optimizer
can achieve and also shows that the regret of our optimizer
x̂N (the gap between EP∗h(x̂N , ξ) and the true loss) will
be controlled by the length of the interval asymptotically.

To conclude this section, we offer a brief comparison of our
confidence intervals with those derived by Esfahani & Kuhn.
In their DRO framework, they define

J̃N = inf
x∈X

sup
P∈B(P̂N ,ϵ(βN ))

EP [h(x, ξ)] ,

where B(P̂N , ϵ(βN )) represents a Wasserstein ball with its
center P̂N and radius ϵ(βN ). Under similar assumptions,
Esfahani & Kuhn show that

P{J∗ ≤ J̃N} ≥ 1− βN ,

which provides only an upper bound for the optimal loss
J∗. Moreover, this upper bound J̃N requires to solve the
minimax problem in the DRO framework. In contrast, our
confidence intervals from Corollary 2 are derived through
the relatively easier optimization of the ERM problem than
the minimax problem, and our results provide two-sided
rather than one-sided confidence intervals.

3.2. Finite-Sample Generalization Error Bound

We now focus on characterizing the generalization error of
the optimizer x̂N derived from the RS model. The general-
ization error, denoted as R(P ∗, x̂N ), is defined as follows:

R(P ∗, x̂N ) :=EP∗ [h(x̂N , ξ)]− J∗

=EP∗ [h(x̂N , ξ)]− EP∗ [h(x∗, ξ)].

Theorem 3. Suppose Assumptions 1 & 2 hold. With proba-
bility at least 1− βN , we have:

R(P ∗, x̂N ) ≤ ϵ · J∗ + (2 + ϵ) · L · rN , (13)

where rN is the reminder solved as in Theorem 1. Taking
expectation with respect to data, we have:

EP∗ [R(P ∗, x̂N )] ≤ ϵ · J∗ +O(L ·N−min{ 1
m , 12}). (14)

Remark 3. We further elaborate on the “expectation with
respect to data”. Recall that we derive the optimizer x̂N

based on sample data, which are random variables that
follow the source distribution P ∗. As a result, the x̂N and its
generalization error upper bound are also random variables.
So we take the expectation with respect to the randomness
from the sample data to derive our expected version of the
generalization error upper bound.

Theorem 3 explicitly characterizes how the generalization
error is influenced by ϵ. By reducing ϵ as the sample size
N increases — indicating less tolerance for empirical loss
excess with more data — we can bound the generalization
error more succinctly, as outlined in the following result.
Corollary 4. Suppose Assumptions 1 & 2 hold. Choose
reference value τϵN with ϵN = N−min{ 1

m , 12}. Then

EP∗ [R(P ∗, x̂N )] = O(L ·N−min{ 1
m , 12}). (15)

4. Guarantees under Distribution Shift
As discussed, the distribution selection under the RS frame-
work is globalized, eliminating the need to pre-select a
radius to restrict the distribution domain. We take this ad-
vantage further and integrate it into the earlier derivation
process, allowing us to straightforwardly derive the confi-
dence intervals and the finite-sample generalization error
bound under distribution shifts.

Consider that samples are drawn from the source distribution
P ∗, and the empirical distribution is denoted as P̂N . The
decision variable learned from the RS model (2) is x̂N .
Under distribution shifts, we evaluate the performance when
applying x̂N to another distribution P̃ , which may shift from
P ∗, resulting in a certain degree of discrepancy.

Define the optimal loss under the new distribution P̃ as J̃ :

J̃ := inf
x∈X

EP̃ [h(x, ξ)] = EP̃ [h(x̃, ξ)],
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Table 1. Choices of Confidence Level βN

Choice of βN Corresponding rN

βN ≡ β rN =


(

log(c1β
−1)

c2N

)1/max{m,2}
if N ≥ log(c1β

−1)
c2

,(
log(c1β

−1)
c2N

)1/a

if N < log(c1β
−1)

c2
.

βN = exp(−γ
√
N), γ > 0 rN =


(

log c1
c2N

+ γ

c2
√
N

)1/max{m,2}
if c2N − γ

√
N ≥ log c1,(

log c1
c2N

+ γ

c2
√
N

)1/a

if c2N − γ
√
N < log c1.

βN = N−α, α > 0 rN =


(

log c1
c2N

+ α logN
c2N

)1/max{m,2}
if c2N − α logN ≥ log c1,(

log c1
c2N

+ α logN
c2N

)1/a

if c2N − α logN < log c1.

where x̃ = argminxEP̃ [h(x, ξ)]. For the learned decision
variable x̂N , denote the corresponding generalization error
as

R(P̃ , x̂N ) := EP̃ [h(x̂N , ξ)]− J̃

= EP̃ [h(x̂N , ξ)]− EP̃ [h(x̃, ξ)].

Our goal is to derive confidence intervals for J̃ and general-
ization error bound for R(P̃ , x̂N ).

Theorem 5 (Distribution Shift). Suppose Assumptions 1 &
2 hold. For any N , let βN be some nominal confidence level.
We have with probability at least 1− βN :

−L · rN − L · dW (P ∗, P̃ ) +
τϵ

1 + ϵ
≤ J̃ ≤ EP̃h(x̂N , ξ)

≤ kτϵ · rN + kτ · dW (P ∗, P̃ ) + τϵ,

and

R(P̃ , x̂N ) ≤ ϵ · J̃ + (2 + ϵ) · L · dW (P ∗, P̃ )

+(2 + ϵ) · L · rN ,

where the reminder rN is solved as Theorem 1.

Taking the expectation on data, we have:

EP∗

[
R(P̃ , x̂N )

]
≤ ϵ · J̃ + (2 + ϵ) · L · dW (P ∗, P̃ )

+O
(
L ·N−min{ 1

m , 12}
)
.

This theorem shows that results under distribution shifts
merely require adding a multiple of the shift distance.

Remark 4. While our results face the common curse of di-
mensionality issue associated with the Wasserstein distance,
they embody a trade-off. In higher dimensions, despite the
slow decay of the remainder term rN , a greater degree of
distribution shift is tolerable. Specifically, when the distribu-
tion shift decays at the rate of N−min{ 1

m , 12}, this rate can

be integrated with the remainder term to yield the following
guarantee:

EP∗

[
R(P̃ , x̂N )

]
≤ ϵ · J̃ +O(L ·N−min{ 1

m , 12}).

This implies that the RS model can accommodate a dis-
tribution shift up to N−min{ 1

m , 12} while still maintaining
performance comparable to scenarios with no shift.

Finally, we compare our results with DRO. Under the DRO
framework, if the distribution shifts, we must require the
radius to reach a certain magnitude so that the ambiguity
set can contain the distribution after the shift. However,
as this ball expands, the worst-case expected value within
DRO’s conservative minimax framework deteriorates. In
contrast, the RS framework, benefiting from its globalized
distribution selection, only requires the inclusion of a linear
multiple of the shift distance to address the same situation.

5. Numerical Experiments
In this section, we conduct numerical evaluations of the RS
model under both the original sampling distribution and dis-
tributional shifts. We compare RS with the baseline method,
which is empirical risk minimization (ERM). Additionally,
we establish connections with DRO and demonstrate that
RS exhibits lower sensitivity to hyperparameter tuning.

All experiments are based on a data generating process
detailed below. We define the random variable ξ as ξ =
(u, y), with u ∈ Rmu representing the feature variable and
y ∈ R as the label variable. The sampling distribution P ∗

is specified as follows: the feature variable u is drawn from
a normal distribution:

u ∼ N
(
[0.5, 0.5, ..., 0.5]T , 0.5Imu

)
; (16)

and the label variable y is generated via a linear model:

y = u · x∗ + e,
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where · means the inner product, x∗ is the true model param-
eter, and e is the exogenous noise sampled from N (0, 0.1).
P ∗ satisfies Assumption 1 because Gaussian distribution
is light-tailed. Let the training data {(ui, yi)}Ni=1 be i.i.d.
samples from the distribution P ∗.

We use ℓ1 loss for model parameter x: h(u, y, x) = |y− u ·
x|, which satisfies the Lipschitz condition in Assumption
2. For the cost function used in the type-I Wasserstein
distribution, we follow (Blanchet et al., 2019) and slightly
modify its original definition of the l2 norm as follows3:

c(ξ1, ξ2) = c((u1, y1), (u2, y2)) =
{ ||u1 − u2||2 if y1 = y2,

+∞ otherwise.

The learned parameter x̂N is evaluated on the target distribu-
tion P̃ . The marginal ditribution of u under P̃ is identical to
that under P ∗, following (16). However, the label variable
y is generated under a potentially different parameter x̃:

y = u · x̃+ e.

In the following sections, we will evaluate the performances
of RS under two scenarios: when P ∗ = P̃ (i.e., x∗ = x̃),
representing settings without distribution shift, and when
P ∗ ̸= P̃ (i.e., x∗ ̸= x̃), indicating settings with distribution
shift. We focus on the mean square error (MSE) in the target
distribution as the performance metric. We will conclude
this section by drawing connections between RS and DRO.

5.1. RS Performance in the Sampling Distribution

In this section, we evaluate the RS optimizer x̂N under
the sampling distribution. Although the target distribution
aligns with the sampling distribution, discrepancies between
the empirical and sampling distributions may arise, particu-
larly in small-sample regimes for high dimensional random
variables. For this purpose, we consider a relatively high-
dimensional setting with the dimension mu = 10 and the
true model parameter x̃ = x∗ = [2.0,−1.0, ..., 2.0,−1.0]T .
We investigate the generalization performance of x̂N across
various sample sizes.

Figure 1 demonstrates how the RS model’s performance
varies with different settings of the tolerate rate ϵ and across
various sample sizes. For smaller sample sizes, the RS
model outperforms the baseline that does not incorporate
robustness; among those RS models, those configured with
a larger ϵ (indicating a greater emphasis on robustness) per-
form better. This result notes the importance of accounting
for robustness, particularly when there is a notable gap
between the sampling and empirical distributions in small-
sample regimes. As the sample size increases, the relative

3The purpose of this adjustment is to make the subsequent
exposition more concise. We leave the results under the original l2
norm in Appendix C.2

Figure 1. Performances across various sample sizes. RS outper-
forms the ERM baseline in small-sample regimes.

benefit of the RS model decreases. This trend is expected
since a larger dataset allows to better picture the sampling
distribution, making the baseline approach of empirical risk
minimization increasingly effective.

5.2. RS Performance under Distribution Shift

We now evaluate the performance of RS under distribution
shift. Let the model parameter in the sampling distribution
be x∗ = [2.0,−1.0], and the model parameter in the target
distribution be:

x̃ = [2.00− 0.05× DEGREE,−1.00 + 0.025× DEGREE],

where DEGREE is a positive number characterizing the de-
gree of distribution shift4. As DEGREE increases, the dis-
crepancy between x∗ and x̃ increases, leading to a larger
distribution shift between the sampling distribution P ∗ and
the target distribution P̃ .

Figure 2 shows how the RS model performs when con-
figured with different tolerance rates ϵ and under various
distribution shifts. For minor distribution shifts (DEGREE
less than 2), the RS model’s performance is comparable to
the baseline, deteriorating slightly at models of larger ϵ for
stronger robustness control. However, with more substantial
distribution shifts (DEGREE greater than 5), the RS model
almost consistently outperforms the baseline, presenting
stronger robustness under larger distribution shifts. This
result highlights the potential of RS framework for strong
generalization guarantee in uncertain environments.

5.3. Connection to DRO under Lipschitz loss

We proceed to compare RS and DRO. We establish explicit
correspondence between the hyperparameters of RS and

4Here our focus is on evaluating robustness in scenarios with
smoothed parameters, rather than under arbitrary perturbations of
x∗. This setup is based on the observation that both DRO and RS,
known for their robustness, typically yield smoother parameters
than those derived from direct empirical risk minimization.

7



Statistical Properties of Robust Satisficing

Figure 2. Performances across various degree of distribution shifts.
RS outperforms the ERM baseline under distribution shifts.

DRO in this type of problem. And we conduct experiments
to compare their sensitivities to hyperparameter tuning.

5.3.1. HYPERPARAMETER CORRESPONDENCE

Consider a Lipschitz loss function L(·). We reformulate the
general Lipschitz-loss learning problem following the DRO
literature (Blanchet et al., 2019; Shafieezadeh-Abadeh et al.,
2019):

min
x

1

N

N∑
i=1

L(yi − ui · x) + r · ||x||2. (17)

Building on the reformulation presented in Section 2.2, this
Lipschitz-loss learning problem under the RS framework is
equivalent to:

min
x

||x||2, (18)

s.t.
1

N

N∑
i=1

L(yi − ui · x) ≤ τ.

By applying the Lagrangian method to solve Equation (18)
and with the strong duality held, we further deduce that
Equation (18) simplifies to the following expression (see
Appendix C.1 for the proof):

sup
λ>0

inf
x

1
N

∑N
i=1 L(yi − ui · x) + λ · ||x||2 − τ

λ
. (19)

We immediately observe a clear link between RS and DRO
for the general Lipschitz-loss learning problem: given a
reference value τ , solving the RS model (19) yields the
optimizer (λ̂N , x̂N ). Then, by setting the radius r in the
DRO model (17) to λ̂N , the DRO model (17) generates the
same optimizer for the model parameter x. Recall that the

Figure 3. Correspondence between RS torelance rate parameter ϵ
and DRO radius parameter r.

reference value is set to be τϵ = (1 + ϵ) infx EP̂N
[h(x, ξ)]

throughout this paper, where ϵ is the tolerate rate that con-
trols the robustness of RS. Thus each hyperparameter ϵ in
the RS model is associated with a specific radius r(ϵ), the
hyperparameter in the DRO model.

Figure 3 illustrates the relationship between the robustness-
controlling hyperparameters of the two models: the DRO
radius r and the RS torelance rate ϵ. Notably, the function
r(ϵ) is concave with respect to ϵ, flatting as 1 + ϵ nears 1.6.
This indicates that, to achieve comparable performance, the
RS model can accommodate larger variations in ϵ compared
to variations in r for the DRO model, implying that RS is
less sensitive to hyperparameter tuning. This observation
will be further supported by the following experiments.

5.3.2. NUMERICAL SENSITIVITY ANALYSIS

We now conduct experiments to evaluate the sensitivity of
RS and DRO to hyperparameter tuning. Specifically, we
vary the tolerance rate ϵ in the RS model and the radius r in
the DRO model. We set the model parameter in the sampling
distribution to x∗ = [2.0,−1.0]T , as in Section 5.2; and set
the target environment to be x̃ = [1.80,−0.90]T .

Figure 4 shows that DRO outperforms the baseline for radius
smaller than 0.24, with the optimal r around 0.215. Figure 5
shows that RS exceeds the baseline when 1+ ϵ is below 1.4,
with the optimal 1 + ϵ around 1.285. The smallest MSEs
from both DRO and RS models are comparable.

However, there is a drastic MSE surge in response to
changes of r for DRO in Figure 4, in contrast to the milder
variation of MSE to ϵ for RS showed in Figure 5. This
difference in hyperparameter sensitivity aligns with the nu-
anced relationship between r and ϵ depicted in Figure 3.
In particular, within a 15% relative error range around the
optimal hyperparameters, the MSE for DRO may spike to

8
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Figure 4. DRO performance under distribution shifts. DRO model
shows higher sensitivity to haperparameter r.

Figure 5. RS performance under distribution shifts. RS model
shows lower sensitivity to hyperparameter ϵ.

0.30, whereas RS maintains a more stable MSE of 0.125.
This suggests that RS offers greater flexibility in setting the
tolerate rate hyperparameter ϵ, unlike DRO, which requires
more precise tuning for the radius r.

6. Conclusions
This paper focuses on exploring the statistical properties of
the RS model, a recent robust optimization framework intro-
duced in (Long et al., 2023). We provide theoretical guar-
antees for the RS model, including two-sided confidence
intervals for the optimal loss and finite-sample generaliza-
tion error bounds. These guarantees extend to scenarios
involving distribution shifts, highlighting the RS model’s
robust generalization performance. Our numerical experi-
ments reveal the superiority of the RS model compared to
the baseline empirical risk minimization method, particu-
larly in small-sample regimes and under distribution shifts.
We establish explicit connections between the RS and DRO
frameworks within specific models, showcasing that RS ex-
hibits lower sensitivity to hyperparameter tuning than DRO,
making it a more practical and interpretable choice. Future
research directions include extending our analysis of RS to
other distribution distances such as f -divergence, proving
lower bounds for generalization error, and applying RS to
various practical applications.
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A. Key Propositions
Proposition 1. For any distributions Q1, Q2 ∈ M(Ξ), we have

dW
(
Q1,Q2

)
= sup

f∈L

{ ∫
Ξ

f(ξ)Q1(dξ)−
∫
Ξ

f(ξ)Q2(dξ)
}
, (20)

where L denotes the space of all Lipschitz functions with |f(ξ)− f(ξ′)| ≤ ∥ξ − ξ′∥ for all ξ, ξ′ ∈ Ξ. and || · || is a norm

This is the dual representation of Wasserstein distance, and it needs the Assumption 2.

We will also utilize the bound of Wasserstein distance between P ∗ and P̂N , which is presented below.

Proposition 2. (Fournier & Guillin, 2015) If Assumption1 holds, we have

PN
{
dW

(
P ∗, P̂N

)
≥ r

}
≤

{
c1 exp

(
− c2Nrmax{m,2}) if r ≤ 1,

c1 exp
(
− c2Nra

)
if r > 1,

for all N ≥ 1, the dimension of ξ : m ̸= 2 and r > 0, where c1, c2 are positive constants that only depend on a and m.

B. Proof of Lemmas and Theorems
B.1. Proof of Lemma 1.

Choose x = x̂N , we have

EP [h(x̂N , ξ)]− τ ≤ kτdW (P, P̂N ) ∀P ∈ P. (21)

Moreover, by the definition of kτ , for any δ > 0, we can choose one distribution P1, which satisfies:

EP1
[h(x̂N , ξ)]− τ ≥ (kτ − δ)dW (P1, P̂N ). (22)

Then (22) minus (21), we have:

(kτ − δ)dW (P1, P̂N )−kτdW (P, P̂N ) (23)
≤ EP1

[h(x̂N , ξ)]− EP [h(x̂N , ξ)] (24)
≤ L · dW (P1, P ), (25)

for all δ > 0 and P ∈ P, Where the second inequality utilizes (20). Due to the arbitrariness of δ, we can ignore the terms of
δ and choose P̂N as P in (23), we get:

kτdW (P1, P̂N ) ≤ L · dW (P1, P̂N ). (26)

If dW (P1, P̂N ) > 0, we will complete the proof.

Now we explain why dW (P1, P̂N ) > 0 holds. Actually, dW (P1, P̂N ) = 0 if and only if P1 = P̂N , a.s. But if P1 = P̂N , then
(22) leads to that EP̂N

[h(x̂N , ξ)] ≥ τ . Meanwhile, we can also choose P = P̂N in (21) and we find EP̂N
[h(x̂N , ξ)] ≤ τ .

So EP̂N
[h(x̂N , ξ)] = τ . But it is impossible to hold because we can change ϵ in τ = τϵ randomly. ■

B.2. Proof of Theorem 1.

For the right side , J∗ = EP∗ [h(x∗, ξ)] ≤ EP∗ [h(x̂N , ξ)] ≤ kτϵ · dW (P ∗, P̂N ) + τϵ, where the second inequality is derived
from the model (2) itself and the fact that kτ (x̂N ) = kτ .
For the other side, by the definition of J∗, for any η > 0, choose xη satisfies:

EP∗ [h(xη, ξ)] ≤ J∗ + η. (27)

11
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Then

τϵ = (1 + ϵ) inf
x

EP̂N
[h(x, ξ)] (28)

≤ (1 + ϵ)EP̂N
[h(xη, ξ)] (29)

≤ (1 + ϵ)
[
L · dW (P ∗, P̂N ) + EP∗ [h(xη, ξ)]

]
(30)

≤ (1 + ϵ)L · dW (P ∗, P̂N ) + (1 + ϵ)(J∗ + η), (31)

for all η > 0. The second inequality is derived from (20) and the third inequality uses (27). Due to the arbitrariness of η, we
have τϵ ≤ (1 + ϵ)L · dW (P ∗, P̂N ) + (1 + ϵ)J∗, which can be solved:

−L · dW (P ∗, P̂N ) +
τϵ

1 + ϵ
≤ J∗.

For (9), we can simply utilize (2) :

P
{
− L · rN +

τϵ
1 + ϵ

≤ J∗ ≤ kτϵ · rN + τϵ

}
≥ P

{
dW

(
P ∗, P̂N

)
≤ rN

}
≥ 1− βN , (32)

where βN is given in (9).

Then we denote events AN =
{
− L · rN + τϵ

1+ϵ ≤ J∗ ≤ kτϵ · rN + τϵ

}
. Then P (Ac

N ) ≤ βN . Because
∑∞

N=1 βN < ∞,
we use Borel-Cantelli Lemma and the limit supremum of the sequence of events satisfies:

P ( lim
N→∞

supAc
N ) = 0. (33)

So P (limN→∞ inf AN ) = 1, which implies the consistency.

Finally, if limN→∞ rN (βN ) = 0, we can take N → ∞ and obtain (11). ■

B.3. Proof of Theorem 3.

Utilize Theorem 1 and Remark 1, we can obtain that:

J∗ ≤ AN ≤ kτϵ · dW (P ∗, P̂N ) + τϵ

≤ L · dW (P ∗, P̂N ) + τϵ

≤ (2 + ϵ) · L · dW (P ∗, P̂N ) + (1 + ϵ) · J∗,

where the second inequality utilizes Lemma 1.

Then we have the similar step to (32):

P
{
J∗ ≤ AN ≤ (1 + ϵ) · J∗ + (2 + ϵ) · L · rN

}
≥ P

{
dW

(
P, P̂N

)
≤ rN

}
≥ 1− βN .

Then we take the expectation on data and we have:

E∼Pdata
[dW (P ∗, P̂N )] =

∫ ∞

0

Pdata

{
dW

(
P, P̂N

)
≥ r

}
dr

≤
∫ 1

0

c1 exp
(
− c2Nrmax{m,2})dr + ∫ ∞

1

c1 exp
(
− c2Nra

)
dr

= N− 1
max{m,2}

∫ N
1

max{m,2}

0

c1 exp
(
− c2t

max{m,2})dt+N− 1
a

∫ ∞

N
1
a

c1 exp
(
− c2t

a
)
dt

≤ N− 1
max{m,2}

∫ ∞

0

c1 exp
(
− c2t

max{m,2})dt+N− 1
a

∫ ∞

0

c1 exp
(
− c2t

a
)
dt

= O(N−min{ 1
m , 1a , 12})).
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The first inequality is derived from (2) and we utilize the convergence of two exponential integrals. Finally, we have:Here a
can be removed: When a > 2 satisfies Assumption 1, it can be weaken for a = 2; when a < 2 in Assumption 1, here we
have 1

a > 1
2 , so 1

a can be omitted due to minimum. The result should be O(N−min{ 1
m , 12}).

J∗ ≤ E∼Pdata
AN ≤ (2 + ϵ) · E∼Pdata

[dW (P ∗, P̂N )] + (1 + ϵ) · J∗

= (1 + ϵ) · J∗ +O(
1

Nη
).

■

B.4. Proof of Theorem 5.

The proof here is very straightforward following the proof of Theorem 1 and 3. Combine with the formula (12) that was
proven earlier, we can easily obtain similar result:

−L · dW (P̃ , P̂N ) +
τϵ

1 + ϵ
≤ J̃ ≤ EP̃ [h(x̂N , ξ)] ≤ kτϵ · dW (P̃ , P̂N ) + τϵ. (34)

Then we use the triangle inequality of distance: dW (P̃ , P̂N ) ≤ dW (P ∗, P̂N ) + dW (P̃ , P ∗) and we get the extra term
dW (P̃ , P ∗). And for the term dW (P ∗, P̂N ), continue to use the tail probability (2) to get guarantees for various probabilities
and expected values. ■

C. Supplementary results for Section 5
C.1. Derivation of Equivalent Models in Section 5.1

Proof of (17). For convenience, let xa denote the augmented parameter vector (−x, 1)T . Consider Lipschitz loss
h(x, ξ) = L(xa · ξ). For DRO, under mild assumptions, Esfahani & Kuhn have shown that:

max
P∈{P :d(P,P̂N )≤r}

EP [h(x, ξ)] = inf
λ≥0

λr +
1

N

N∑
i=1

sup
ξ
(h(x, ξ)− λc(ξ, ξi)). (35)

Next, denote ∆ = u− ui, Utilizing the proof given by Shafieezadeh-Abadeh et al., we can obtain:

sup
ξ
(h(x, ξ)− λc(ξ, ξi)) = sup

ξ
(L(xa · ξ)− λc(ξ, ξi)) = sup

u
(L(x · u− yi)− λ||u− ui||2)

= sup
∆

(L((ui +∆) · x− yi)− λ||∆||2) =
{ L(ui · x− yi) ifλ ≥ ||x||2,

+∞ otherwise.

The second equality here utilizes the definition of our fine-tuned cost function: if y in ξ and yi in ξi are not equal, the
distance will become ∞, thereby making the entire expression −∞. Therefore, only the distance of the feature variable u is
retained.

Back to (35), we have:

inf
λ≥0

λr +
1

N

N∑
i=1

sup
ξ
(h(x, ξ)− λc(ξ, ξi)) = inf

λ≥||x||2
λr +

1

N

N∑
i=1

L(ui · x− yi) = r||x||2 +
1

N

N∑
i=1

L(ui · x− yi).

Then we have

min
x∈X

max
P∈{P :d(P,P̂N )≤r}

EP [h(x, ξ)] = min
x

1

N

N∑
i=1

L(yi − ui · x) + r · ||x||2. (36)

■

Proof of (18). We have already given the reformulation of the RS model(7) in Section 2.2. The constraint condition is:

1

N

N∑
i=1

[sup
z∈Ξ

h(x, z)− kc(ξi, z)] ≤ τ. (37)
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The proof will follow the proof of (17):

1

N

N∑
i=1

[sup
z∈Ξ

h(x, z)− kc(ξi, z)] =
{ 1

N

∑N
i=1 L(ui · x− yi) ifk ≥ ||x||2,

+∞ otherwise.

Since τ serves as the upper bound in (37), to ensure that the left side of (37) is not infinite, it is necessary to satisfy k ≥ ||x||2.
Therefore, in (7), taking the minimum value of k is equivalent to minimizing ||x||2 and let k = minx ||x||2, while satisfying
the constraint condition 1

N

∑N
i=1 L(ui · x− yi) ≤ τ . ■

Proof of (19). Following (18), we can express it in its dual form:

inf
x

sup
λ>0

||x||2 + λ · ( 1
N

N∑
i=1

L(yi − ui · x)− τ).

Notably, this equation represents a convex problem. As long as τ > minx
1
N

∑N
i=1 L(yi − ui · x) which is mentioned in

(4), there exists a point in the relative interior, hence the Slater’s strong duality condition holds. Subsequently, to facilitate
comparative analysis with DRO, we replace λ with 1

λ to obtain:

inf
x

sup
λ>0

1
N

∑N
i=1 L(yi − ui · x) + λ · ||x||2 − τ

λ
.

Finally, note that the above equation is convex with respect to x and concave with respect to λ. According to the Mini-max
theorem, we can interchange the order of sup and inf to obtain the desired formula. ■

C.2. Other Equivalent Conclusions

This section answers the question mentioned in the previous footnote. If we still use the l2 norm of the entire vector as the
cost function i.e. c(ξ1, ξ2) = ||ξ1 − ξ2||2, then the DRO model will be equivalent to:

min
x∈X

max
P∈{P :d(P,P̂N )≤r}

EP [h(x, ξ)] = min
x

1

N

N∑
i=1

L(yi − ui · x) + r · ||xa||2,

where xa is the augmented vector (x,−1)T . Similarly, RS model is equilvalent to:

min
x

||xa||2,

s.t.
1

N

N∑
i=1

L(yi − ui · x) ≤ τ.

And we can also write its dual equivalent form as:

sup
λ>0

inf
x

1
N

∑N
i=1 L(yi − ui · x) + λ · ||xa||2 − τ

λ
.

Therefore, after modifying the definition of the cost function, the only difference is whether one term in the model is the l2
norm of the parameter x itself or the l2 norm of the augmented vector (x,−1)T obtained by adding an element 1.

C.3. Function r(ϵ) in Ten Dimensions

In Section 5.1, we set the feature variable to be ten-dimensional. As a supplement to Section 5.2 , we also plot the τ − ϵ
relationship graph under the ten-dimensional situation of the feature variable.

Figure 6 shows similar relationship between the robustness-controlling hyperparameters of the two models: the DRO radius
r and the RS tolerance rate ϵ. The overall trend of the graph is concave. It tends to flatten when 1+ ϵ = 1.4. Moreover, when
the function tends to be flat, the corresponding radius value r is smaller than that in the two-dimensional case in Figure 3.
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Figure 6. function r-ϵ(mu = 10)

D. Some Classical Loss Functions
Here we present a few common loss functions.

L(Z) CLASSIFICATION(C) OR REGRESSION(R) LEARNING MODEL

HINGE LOSS max{0, 1− z} C SVM

SMOOTH HINGE LOSS

{ 1
2
− z ifz ≤ 0

1
2
(1− z)2 if0 < z < 1

0 z ≥ 1
C SMOOTH SVM

LOGLOSS log(1 + e−z) C LOGISTIC REGRESSION
SQUARED LOSS z2 R MSE
L1 LOSS |z| R MAE

HUBER LOSS

{
1
2
z2 if |z| ≤ δ

δ(|z| − 1
2
δ) otherwise

R HUBER REGRESSION

δ-INSENSITIVE LOSS max{0, |z| − δ} R SUPPORT VECTOR REGRESSION
PINBALL LOSS max{−δz, (1− δ)z} R QUANTILE REGRESSION

Table 2. Some Classical Loss Functions

Here we consider h(x, ξ) as a loss function for machine learning applications, where x denotes the parameters in the
classification or regression model, and ξ = (ξf , ξl)T represents the data with ξf as the feature variable and ξl as the label
variable. For binary classification problems, the loss function can be defined as follows:

h(x, ξ) = L(ξl · xT ξf ). (38)

For regression problems, the loss function can be defined as follows:

h(x, ξ) = L(ξl − xT ξf ). (39)

Here we present a few common loss functions (See Table 2). Apart from the squared loss, all other loss functions in Table 2
are Lipschitz, so our Assumption 2 is relatively weak and reasonable. Furthermore, in practical applications, x and ξ are
often bounded, so even if we use squared loss, it is Lipschitz in the case of a bounded domain.
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E. Discussion on Lipschitz continuity Assumption
In our paper, we do not need to assume the Lipschitz continuity of the loss function with respect to x, but with respect to ξ.
This assumption follows that of (Esfahani & Kuhn, 2015), with the aim of using the inequality in Proposition 1. We however
understand that it is a common condition to assume the Lipschitz continuity of parameter x. In response to this, we provide a
conservative answer: at least for the regression problem in Appendix D where h(x, ξ) = L(ξl −xT · ξf ), if both the random
variable space Ξ and the parameter space X are bounded, then as long as we assume that L(·) is a Lipschitz function, it can
be simultaneously derived that h(x, ξ) is Lipschitz with respect to both x and ξ = (ξf , ξl). In such scenarios, the Lipschitz
assumptions for x and ξ hold simultaneously.
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