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Abstract

Model-free optimization methods typically rely on cost samples gathered by per-
turbing the current solution estimate along a finite and fixed set of directions.
However, at each iteration, only the current cost samples are used, while poten-
tially informative, previously collected samples are discarded. In this work, we
challenge this conventional approach by introducing a simple yet effective memory
mechanism that maintains an auxiliary vector of iteratively updated cost samples.
By leveraging this stored information, our method estimates descent directions
through an averaging of all perturbing directions weighted by the auxiliary vector
components. This results in a faster convergence without increasing the number
of function queries. By interpreting the resulting algorithm as a time-varying dy-
namical system, we are able to establish its convergence properties in the strongly
convex case. In particular, by using tools from system theory based on timescale
separation, we are able to guarantee a linear convergence rate toward an arbitrarily
small neighborhood of the optimal solution. Numerical simulations on regres-
sion problems demonstrate that the proposed approach significantly outperforms
existing model-free optimization methods.

1 Introduction

At the core of many machine learning and deep learning tasks lie complex optimization problems
that often cannot be solved analytically. In some cases, the objective function is not even known
in closed form, allowing function evaluations but not gradient computations Liu et al. [2020]. The
class of optimization methods that operate without analytical knowledge of the objective function
(and thus without using its gradient) is referred to as model-free (or black-box) optimization. This
branch of schemes Conn et al. [2009], Snoek et al. [2012], Larson et al. [2019] is receiving increasing
attention in learning-oriented and related domains, such as signal processing Turner and Rasmussen
[2012], reinforcement learning Malik et al. [2020], Qian and Yu [2021], IoT management Chen
and Giannakis [2018], and system theory Galarza-Jimenez et al. [2022], He et al. [2023]. The most
popular model-free optimization methods are the so-called zeroth-order methods Liu et al. [2020], in
which the function evaluations are typically used to approximate its gradient. A distinction within this
field involves the way in which the cost function is sampled, which can be done by using points that
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are selected in a random or deterministic fashion Kiefer and Wolfowitz [1952], Nesterov and Spokoiny
[2017]. Another distinction is between 1-point Flaxman et al. [2005], Saha and Tewari [2011], Dekel
et al. [2015], Gasnikov et al. [2017], Roy et al. [2022] and multi-point zeroth-order methods Agarwal
et al. [2010], Duchi et al. [2015], Lian et al. [2016], Shamir [2017], Balasubramanian and Ghadimi
[2022], based on the number of points selected at each iteration for cost evaluation. Indeed, in this
field, cost function evaluations are typically expensive and, therefore, there is interest in reducing
their number without compromising the convergence properties of the algorithm. Further, multi-point
methods, besides being expensive, are often not practical, as they require simultaneous evaluations
of the cost function at different points that it is not possible in many applications, such as when the
environment is non-stationary Hazan and Levy [2014], Bubeck et al. [2015], Yang and Mohri [2016],
Zhao et al. [2021]. On the other hand, while 1-point zeroth-order methods are easily implementable
and significantly reduce the number of evaluations, they typically suffer from slow convergence Liu
et al. [2020]. To improve their performance, Chen et al. [2022] show the benefits of high-pass and
low-pass filters. Xiao et al. [2023] introduce a suitable checking mechanism to possibly skip the cost
function evaluation at each iteration. The works Zhang et al. [2022, 2024] use the residual between
two feedback points at consecutive iterations to improve the performance of a single-point method.

Our main contribution is a novel algorithmic paradigm for model-free optimization. We assume that
the unknown loss function can be evaluated by perturbing the current solution estimate along a finite,
fixed set of directions. In this setting, we associate an auxiliary variable to each direction, which stores
the corresponding cost sample as soon as it becomes available. Rather than updating the solution
estimate solely based on the cost samples gathered in the current iteration, we estimate the descent
direction by averaging all perturbation directions weighted by the auxiliary variables. This enables
faster convergence without increasing the number of cost function queries. In the strongly convex
case, by assuming a given gradient estimation technique and regular use of each perturbation direction,
we formally show that the proposed method linearly converges to a neighborhood of the optimal
solution whose radius can be made arbitrarily small by tuning the hyperparameters. Our line of proof
interprets the resulting method as a time-varying dynamical system and leverages system-theoretic
tools based on timescale separation between the memory mechanism and the solution update.

The paper unfolds as follows. In Section 2, we introduce the problem setup. In Section 3, we present
the proposed algorithm and state its convergence guarantees. In Section 4, we analyze the proposed
algorithm. Finally, in Section 5, we provide some numerical simulations on regression scenarios.

Notation The identity matrix of order n is In. The all-zero vector in Rn is denoted as 0n. The
vertical concatenation of column vectors v1, . . . , vN is COL(v1, . . . , vN ). The diagonal matrix with
diagonal entries a1, . . . , aN ∈ R is denoted as diag{a1, . . . , aN} ∈ RN .

2 Problem Setup

We consider unconstrained optimization problems of the form

min
θ∈Rn

ℓ(θ), (1)

where ℓ : Rn → R denotes the cost function. We focus on the following class of functions.
Assumption 1. The cost function ℓ is µ-strongly convex for some µ > 0. Moreover, ℓ is differentiable
and its gradient is L-Lipschitz continuous for some L > 0. □

By Assumption 1, problem (1) admits a unique solution, denoted by θ⋆ ∈ Rn. Our goal is to devise
iterative methods to address problem (1) in a model-free scenario. In detail, we assume that the
function ℓ is unknown but can be evaluated at each iteration (e.g., around the current solution estimate)
to approximate its gradient according to a given, generic estimation technique introduced below.

2.1 Gradient Estimation Technique

Existing derivative-free methods in the literature properly sample the cost function ℓ to approximate
the unavailable gradient ∇ℓ. A large part of these methods perform this sampling phase according to
a finite and fixed set of additive perturbing (or dither) directions ϵd1, . . . , ϵdD ∈ Rn, where ϵ > 0 is
a parameter tuning the perturbation amplitude, while each dj ∈ Rn characterizes the perturbation
direction. More in detail, given a generic point θ ∈ Rn, the corresponding gradient ∇ℓ(θ) is estimated
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by suitably manipulating D ∈ N cost samples ℓ(θ + ϵd1), . . . , ℓ(θ + ϵdD) gathered by perturbing θ
along these directions. The following assumption formally details the estimation capabilities of these
techniques in the ideal case in which D evaluations of ℓ can be performed simultaneously.
Assumption 2. There exist D ∈ N directions d1, . . . , dD ∈ Rn and a function gϵ : R× Rn → Rn

parametrized in ϵ > 0 such that, for all compact sets S ⊂ Rn, there exists L̃ > 0 such that∥∥∑D
j=1 g

ϵ(ℓ(θ + ϵdj), dj)−∇ℓ(θ)
∥∥ ≤ ϵL̃, (2)

for all θ ∈ S and ϵ > 0. □

Assumption 2 characterizes the estimation capabilities of
∑D

j=1 g
ϵ(ℓ(θ+ ϵdj), dj) in the ideal setting

where D queries of ℓ can be performed simultaneously. In detail, in such an ideal case, Assumption 2
ensures that the estimation technique yields an estimate of ∇ℓ(θ) (see (2)) whose accuracy can be
made arbitrarily high by tuning the amplitude parameter ϵ, which remains a free design choice in the
algorithm. As one may expect, the perturbation directions dj , their number D, the constant L̃, and
the explicit structure of gϵ depend on the specific gradient estimation method that is employed.

2.1.1 Examples of Gradient Estimation Techniques

We provide some explicit examples about estimation techniques widely used in the literature that
satisfy Assumption 2. In the schemes based on 2n-point gradient estimators, the perturbation
directions d1, . . . , d2n are given by the canonical basis ±COL(1, 0, . . . , 0), . . . ,±COL(0, . . . , 0, 1)
in Rn and the corresponding estimation technique gϵ explicitly reads as

gϵ(z, d) = zd/(2ϵ), (3)
for some z ∈ R (ideally, z = ℓ(θ + ϵd), see Assumption 2). If the function ℓ has a Lipschitz
continuous gradient, it can be shown that this technique satisfies Assumption 2 (see, e.g., Kiefer
and Wolfowitz [1952] or Tang et al. [2020]). Extremum-seeking methods (see, e.g., the recent
review Scheinker [2024] and the popular works Wittenmark and Urquhart [1995], Teel and Popovic
[2001], Choi et al. [2002], Ariyur and Krstic [2003], Krstić and Wang [2000], Tan et al. [2006]) use
sinusoidal perturbation directions. For instance, in the scalar case n = 1, we have dj = sin( 2πD j + ϕ)
for all j ∈ {1, . . . , D} where ϕ ∈ R is a phase shift. Thus, in these methods, the number of directions
D ∈ N corresponds to the period of the sinusoidal signal, while the estimation function gϵ reads as

gϵ(z, d) = 2zd/(ϵD), (4)

for some z ∈ R. If ℓ is C3 and with a proper choice of the sinusoidal functions’ frequencies, it can be
shown that this technique satisfies Assumption 2 (see, e.g., [Mimmo et al., 2024, Lemma 1]).

3 Averaged Model-Free Meta-Algorithm

In this section, we develop a novel method to address problem (1) in a model-free fashion. We
propose it as a meta-algorithm in the sense that we show the updates of the solution estimate based
on a new memory-mechanism paradigm and a generic gradient estimation oracle that can be made
explicit in a specific algorithm (e.g., by using one of the schemes described in Section 2.1.1).

3.1 Meta-Algorithm Design

We remark that, in our model-free setting, it is not possible to simultaneously use all the perturbation
directions d1, . . . , dD at each iteration. The idea behind the most popular 1-point zeroth-order
methods (see Chen et al. [2022]) is instead to use only a single sample per iteration, with the rationale
that, on average, the resulting descent direction approximately corresponds to the one characterized
by (2) in Assumption 2. Mathematically, given the iteration index t ∈ N, this would result in updating
the current estimate xt ∈ Rn about the solution to problem (1) according to the time-varying law

xt+1 = xt − γgϵ(ℓ(xt + ϵdt), dt), (5)
where dt ∈ Rn is the direction used at iteration t and γ > 0 is the step size. Instead, we pursue a
different paradigm based on a memory mechanism that stores the queries ℓ(xt+ϵd1), . . . , ℓ(xt+ϵdD)
whenever available. Namely, we use D auxiliary variables z1t , . . . , z

D
t ∈ R and update them as

zjt+1 =

{
ℓ(xt + ϵdj) if ℓ(xt + ϵdj) is gathered
zjt otherwise,

(6)
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for all j ∈ {1, . . . , D}. By introducing a selector signal sjt ∈ {0, 1} for all j ∈ {1, . . . , D} to model
whether ℓ(xt + ϵdj) is gathered or not at iteration t, we can equivalently rewrite (6) as

zjt+1 = zjt + sjt (ℓ(xt + ϵdj)− zjt ).

Then, all these variables zjt+1 are used to approximate
∑D

j=1 g
ϵ(ℓ(xt + ϵdj), dj) (which, in turn,

approximates the exact gradient ∇ℓ(xt), see Assumption 2) and update the solution estimate via

xt+1 = xt − γ

D∑
j=1

gϵ(zjt+1, d
j). (7)

The overall model-free method arising from (6) and (7) is reported in Algorithm 1. We highlight that

Algorithm 1 Averaged Model-Free Meta-Algorithm
Initialization: x0 ∈ Rn, z10 , . . . , z

D
0 ∈ R

for t = 0, 1, . . . do
for j = 1, 2, . . . , D do

if ℓ(xt + ϵdj) is gathered, i.e., sjt = 1 then
zjt+1 = ℓ(xt + ϵdj)

else
zjt+1 = zjt

end if
end for
xt+1 = xt−γ

∑D
j=1 g

ϵ(zjt+1, d
j)

end for

Algorithm 1 does not necessarily increase the number of cost queries compared to 1-point approaches
such as (5). Algorithm 1 uses the proxies gϵ(zjt+1, d

j) to mimic multiple queries at the price of an
increased memory burden due to storing the D-dimensional vector zt := COL(z1t , . . . , z

D
t ) ∈ RD.

3.2 Meta-Algorithm Convergence Properties

In this section, we state the convergence properties of Algorithm 1. To this end, we first introduce the
following condition on the sampling sequences {s1t}t∈N, . . . , {sDt }t∈N.
Assumption 3. There exists Tmax ∈ N such that, for all t ∈ N and j ∈ {1, . . . , D}, there exists
τ ∈ [t, t+ Tmax − 1] such that sjτ = 1. □

Assumption 3 imposes an essentially cyclic selection of the directions {dj}t∈N. Specifically, starting
from all t ∈ N, it ensures the existence of an upper bound Tmax (independent of t) on the number
of iterations required to select all directions at least once. We emphasize that Assumption 3 is very
general and includes, as special cases, scenarios in which a fixed number of samples is collected at
each iteration, ranging from a single sample to all D samples without loss of generality. Moreover,
our setting accommodates more challenging situations involving an irregular number of cost samples
across iterations, including extreme cases where some iterations may involve no cost samples at all.

Now, we are ready to establish a linear convergence rate for Algorithm 1 towards a neighborhood of
the optimal solution θ⋆ with an arbitrarily small radius ρ > 0.
Theorem 1. Let Assumptions 1, 2, and 3 hold. Then, for all (x0, z0) ∈ Rn × RD, ρ > 0, κ ∈ (0, 1),
and ν ∈ (0, 2µL/(µ+ L)), there exist γ̄ and ϵ̄ such that, for all γ ∈ (0, γ̄) and ϵ ∈ (0, ϵ̄), it holds

∥xt − θ⋆∥ ≤
(
1− min{γν, κ}

Tmax

) t
2√

Tmax

∥∥∥∥[ x0 − θ⋆
COL(z10 − ℓ(x0 + ϵd1), . . . , zD0 − ℓ(x0 + ϵdD))

]∥∥∥∥+ ρ,

for all t ∈ N. □

The proof of Theorem 1 is provided in Section 4.4. More in detail, the proof of Theorem 1 is based
on interpreting Algorithm 1 as a time-varying dynamical system and, then, on using system theory
tools to characterize its evolution through some preparatory steps carried out in Section 4.
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Theorem 1 ensures that for any initial conditions (x0, z0) and desired final accuracy ρ, it is possible
to tune Algorithm 1 to get the desired performance. From a system theory perspective, this means
that (θ⋆, COL(θ⋆ + ϵd1, . . . , COL(θ⋆ + ϵdD))) is a semi-globally practically exponentially stable
equilibrium point (see Definition 2 in Appendix A.1) of the dynamical system describing Algorithm 1.

4 Analysis

In this section, we interpret Algorithm 1 as a dynamical system and, then, we analyze it through
system theory tools grounded on timescale separation arguments. Indeed, in Section 4.1, we can
interpret the algorithm as a time-varying two-time-scale system (see Appendix A.1), namely, the
feedback interconnection between a fast and slow subsystem. Hence, we separately analyze the
identified subsystems by focusing on the so-called boundary-layer (cf. Section 4.2) and reduced (cf.
Section 4.3) systems, two auxiliary schemes associated to the fast and slow subsystems, respectively.
Finally, in Section 4.4, we provide the proof of Theorem 1 by suitably combining the results obtained
in the previous sections with timescale separation and Lyapunov-based arguments.

Assumptions 1, 2, and 3 hold true throughout the whole section.

Remark 1. The key tool employed in the proof of Theorem 1 is (deterministic) timescale separation. In
the case of stochastic direction selection (rather than the deterministic one imposed by Assumption 3)
our proof can be adapted by relying on stochastic timescale separation (see, e.g., Carnevale and
Notarstefano [2024]). In this case, the convergence results would be stated in an almost sure sense,
provided that the expected value E[sjt ] of each sampling selector index sjt is strictly positive. □

Remark 2. Our proof technique based on timescale separation enables an efficient extension of
the meta-algorithm analysis to more general scenarios (e.g., the nonconvex case). In particular, it
promotes modularity as it allows for only modifying the analysis of the reduced system (i.e., the
gradient method, see Lemma 2) to adapt to the specific optimization setting. For the same reasons,
this modularity paves the way for extending our meta-algorithm to more advanced variants using,
e.g., accelerated methods Lin et al. [2020] as a baseline in place of the gradient descent method. □

4.1 Two-Time-Scale System Interpretation

Let St := diag{s1t , . . . , sDt } ∈ RD×D, Gϵ
t : Rn × RD → Rn, and Lϵ : Rn → RD be defined as

Gϵ
t(θ, z) :=

D∑
j=1

gϵ(zj + sjt (ℓ(θ + γdj)− zj), dj), Lϵ(θ) :=
[
ℓ(θ + ϵd1) . . . ℓ(θ + ϵdD)

]⊤
.

With this notation at hand, we compactly rewrite Algorithm 1 as the time-varying dynamical system

xt+1 = xt − γGϵ
t(xt,zt) (8a)

zt+1 = zt + St(Lϵ(xt)− zt). (8b)

System (8) exhibits the following four peculiar features. First, subsystem (8b) admits an equilibrium
manifold of the form z̄ = Lϵ(xt), namely, that is parametrized by the other state variable xt. Second,
for arbitrarily fixed xt = x, it can be shown that the equilibrium manifold z̄ = Lϵ(x) is globally
exponentially stable for (8b) (see Definition 2 in Appendix A.1). Third, the variations of xt over t can
be made arbitrarily small by reducing the parameter γ. Fourth, in light of Assumption 2, we note that
subsystem (8a), in the ideal case in which zt = Lϵ(xt), would approximate a gradient descent method
applied to (1) with an error characterized in (2). Neglecting this error, we observe that systems with
these four features are typically referred to as two-time-scale systems in the literature and are widely
studied in system theory, see the survey Abdelgalil et al. [2023] and the dedicated Appendix A.1. The
key idea is that subsystem (8a) can be made arbitrarily slow via γ, allowing the other subsystem (8b)
to stay close to the current equilibrium Lϵ(xt) and, in turn, allowing subsystem (8a) to evolve
approximately as a gradient descent method. Accordingly, we refer to (8a) as the slow subsystem,
while (8b) is termed the fast subsystem. To conveniently exploit this two-time-scale interpretation,
we temporarily disregard the approximation error by considering an auxiliary system that serves as
“nominal” version of the original system (8). Essentially, in this nominal system, we explicitly include
an additive perturbation in the slow dynamics (8a) that allows for exactly recovering the gradient
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descent method applied to problem (1) when zt = Lϵ(xt). Hence, this nominal system is given by
xt+1 = xt − γ(Gϵ

t(xt, zt)− eϵt(xt)) (9a)
zt+1 = zt + St(Lϵ(xt)− zt), (9b)

where eϵt(xt) := Gϵ
t(xt,Lϵ(xt))−∇ℓ(xt). Finally, since we want to base our analysis on Theorem 2

(cf. Appendix A.1) about generic two-time-scale systems, we rewrite (9) to shift the equilibrium
point (cf. Definition 1 in Appendix A.1) of subsystem (9a) and match condition (36) in Theorem 2.
To this end, we introduce the novel coordinate x̃ := x− θ⋆ ∈ Rn and rewrite (9) as

x̃t+1 = x̃t − γ(G̃ϵ
t(x̃t, zt)− ẽϵt(x̃t)) (10a)

zt+1 = zt + St(L̃ϵ(x̃t)− zt), (10b)

where G̃ϵ
t : Rn × RD → Rn, L̃ϵ : Rn → RD and ẽϵt : Rn → Rn are defined as

G̃ϵ
t(x̃, z) := Gϵ

t(x̃+ θ⋆, z), L̃ϵ(x̃) := Lϵ(x̃+ θ⋆), ẽϵt(x̃) := eϵt(x̃+ θ⋆). (11)
With this nominal system at hand, the following sections adopt the customary approach in the analysis
of two-time-scale systems (see Theorem 2 in Appendix A.1). In detail, we separately study the
stability of the fast dynamics (10b) and the slow one (10a) in two idealized scenarios giving rise to
the so-called boundary-layer and reduced systems, respectively (cf. Sections 4.2 and 4.3). Then,
in Section 4.4, we leverage these steps to establish the stability and convergence properties of the
interconnected system (10), for sufficiently small values of γ, that is, when there is a sufficiently
large timescale separation between the identified subsystems. Finally, we conclude the proof of
Theorem 1 by showing that the original system (8) evolves closely to the nominal system (10), with a
discrepancy governed by eϵt(xt) and, thus, tunable by the parameter ϵ (cf. (2) in Assumption 2).

4.2 Boundary-Layer System Analysis

Now, we analyze the so-called boundary-layer system associated to (10), which is obtained by
considering the fast dynamics (10b) with an arbitrarily fixed slow state x̃t = x̃ ∈ Rn for all t ∈ N (or,
equivalently, by setting γ = 0 in (10a)). Hence, by using the error variable z̃t := zt − L̃ϵ(x̃) ∈ RD

with respect to the parametrized equilibrium L̃ϵ(x̃), the boundary-layer system reads as
z̃t+1 = (ID − St)z̃t. (12)

The next lemma ensures that the origin is a globally exponentially stable equilibrium of (12).
Lemma 1. Consider (12). Then, there exists a continuous function U : RD × N → R such that

∥z̃∥2 ≤ U(z̃, t) ≤ Tmax ∥z̃∥2 (13a)

U((ID − St)z̃, t+ 1)− U(z̃, t) ≤ −∥z̃∥2 (13b)

U(z̃, t)− U(z̃′, t) ≤ Tmax ∥z̃ − z̃′∥ (∥z̃∥+ ∥z̃′∥) , (13c)
for all z̃, z̃′ ∈ RD and t ∈ N. □

The proof of Lemma 1 is provided in Appendix A.2.

4.3 Reduced System Analysis

In a mirrored way, we now analyze the so-called reduced system of the interconnection (10), which
is obtained by considering the slow dynamics (10a) with the fast state in the equilibrium manifold at
each iteration t, namely, with zt = L̃ϵ(x̃t) for all t ∈ N. Therefore, the reduced system reads as

x̃t+1 = x̃t − γ(G̃ϵ
t(x̃t, L̃ϵ(x̃t))− ẽϵt(x̃t)). (14)

In light of the definitions of G̃ϵ
t , L̃ϵ, and ẽϵt (cf. (11)), system (14) can be equivalently expressed as

x̃t+1 = x̃t − γ∇ℓ(x̃t + θ⋆). (15)
Namely, the reduced system corresponds to the gradient descent method applied to problem (1). In
the next lemma, we ensure that the origin is a globally exponentially stable equilibrium of (15).
Lemma 2. Consider (15). Then, for all γ ∈ (0, 2

µ+L ], it holds

∥x̃− γ∇ℓ(x̃+ θ⋆)∥2 − ∥x̃∥2 ≤ −γ
2µL

µ+ L
∥x̃∥2 , (16)

for all x̃ ∈ Rn. □

The proof of Lemma 2 is provided in Appendix A.3.
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4.4 Proof of Theorem 1

Now, we combine the results obtained in the previous sections to prove Theorem 1. Let us first
introduce z̃ := z − L̃ϵ(x̃) ∈ RD, ξ := COL(x̃, z̃) ∈ R(n+D), and compactly rewrite system (10) as

ξt+1 = F (ξt, t), (17)

where, by using a hybrid notation ξ = COL(x̃, z̃), F : R(n+D) × N → R(n+D), reads as

F (ξ, t) =

[
x̃− γ(G̃ϵ

t(x̃, z̃ + L̃ϵ(x̃))− ẽϵt(x̃))
(ID − St)z̃ − L̃ϵ(x̃− γ(G̃ϵ

t(x̃, z̃ + L̃ϵ(x̃))− ẽϵt(x̃))) + L̃ϵ(x̃)

]
. (18)

Analogously, by using this notation, we also rewrite the original system (8) in the compact form

ξt+1 = F (ξt, t) + Eϵ
t (ξt), (19)

in which we model the gradient estimation error term through Eϵ
t : R(n+D) → R(n+D) defined as

Eϵ
t (ξ) :=

[
−γẽϵt(x̃)

⊤ L̃ϵ(x̃− γ(G̃ϵ
t(x̃, z̃ + L̃ϵ(x̃))− ẽϵt(x̃)))

⊤−L̃ϵ(x̃− γ(G̃ϵ
t(x̃, z̃ + L̃ϵ(x̃))))⊤

]⊤
.

Then, given the Lyapunov function U characterized in Lemma 1, we define V : R(n+D) ×N → R as

V (ξ, t) = U(z̃, t) + ∥x̃∥2 , (20)

where we use again ξ = COL(x̃, z̃). In light of (13a), for all ξ ∈ R(n+D) and t ∈ N, we have

∥ξ∥2 ≤ V (ξ, t) ≤ Tmax ∥ξ∥2 . (21)

Hence, in light of (21), the level set Ωc := {ξ ∈ R(n+D) | V (ξ, t) ≤ c,∀t ∈ N} of V is compact
for all c > 0. We want to invoke Theorem 2 (cf. Appendix A.1) about generic time-varying
two-time-scales systems to characterize the increment of V along the trajectories of the nominal,
interconnected system (17) rather than in the auxiliary systems (12) and (15) (cf. Lemma 1 2,
respectively). Theorem 2 requires (i) a Lyapunov function ensuring exponential stability of the origin
for the boundary-layer system (12) (see (40)), (ii) a Lyapunov function ensuring exponential stability
of the origin for the reduced system (15) (see (41)), and (iii) that the system dynamics and equilibrium
function admit the bounds (37). The first point is achieved by using U characterized in (13) (cf.
Lemma 1). The second one follows by setting W (x̃) = ∥x̃∥2, using (16) (cf. Lemma 2), and noting
that, being W a quadratic function, it trivially satisfies (41a) and (41c). The third point is achieved
since ℓ is continuous (cf. Assumption 1) and eϵt is bounded in compact sets (cf. Assumption 2).
Hence, by Theorem 2, for all ξ = (x̃, z̃) ∈ Rn × RD, ν ∈ (0, 2µL/(µ+ L)), and κ ∈ (0, 1), there
exists γ̄ > 0 such that, for all γ ∈ (0, γ̄), the increment of V along the trajectories of (17) satisfies

V (F (ξ, t), t+ 1)− V (ξ, t) ≤ −γν ∥x̃∥2 − κ ∥z̃∥2 , (22)

for all t ∈ N. Moreover, the definition of V (cf. (20)) and the bound (13c) lead to

V (ξ, t)− V (ξ′, t) ≤ (Tmax + 1) ∥ξ − ξ′∥ (∥ξ∥+ ∥ξ′∥), (23)

for all t ∈ N and ξ, ξ′ ∈ R(n+D). Now, we consider ξ ∈ Ωc for some c > 0 to be defined later
and add ±V (F (ξ, t), t+ 1) to the increment ∆V (ξ, t) := V (F (ξ, t) + Eϵ

t (ξ), t+ 1) − V (ξ, t) of
V along the trajectories of the original system (19), thus obtaining

∆V (ξ, t) = V (F (ξ, t), t+ 1)− V (ξ, t) + V (F (ξ, t) + Eϵ
t (ξ), t+ 1)− V (F (ξ, t), t+ 1)

(a)

≤ −γν ∥x̃∥2 − κ ∥z̃∥2 + (Tmax + 1) ∥Eϵ
t (ξ)∥ (∥F (ξ, t) + Eϵ

t (ξ)∥+ ∥F (ξ, t)∥), (24)

where in (a) we use the bound (22) along the nominal trajectory and (23). Being Ωc compact, then
∥ẽϵt(x̃)∥ ≤ L̃ for all ξ = COL(x̃, z̃) ∈ Ωc by Assumption 2. Hence, by denoting the Lipschitz constant
of Lϵ(x̃− γ(G̃ϵ

t(x̃, z̃+ L̃ϵ(x̃))− ẽϵt(x̃))) in Ωc with LLϵ (which is finite since ℓ is differentiable, see
Assumption 1), we have ∥Eϵ

t (ξ)∥ ≤ γϵL̃2 with L̃2 := L̃
√
1 + L2

Lϵ and, thus, we can bound (24) as

∆V (ξ, t) ≤ −min{γν, κ}/TmaxV (ξ, t) + ϵγ(Tmax + 1)L̃2(2 ∥F (ξ, t)∥+ γϵL̃2). (25)

By recalling the definition of G̃ϵ
t , L̃ϵ, and ẽϵt (cf. (11)), and the gradient reconstruction property (2),

we note that G̃ϵ
t(0n, L̃ϵ(0n))− ẽϵt(0n) = ∇ℓ(θ⋆) = 0n since θ⋆ is the optimal solution to problem (1).
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By plugging this result in the definition of F (cf. (18)), we get F (0n+D, t) = 0n+D for all t ∈ N.
This is not surprising since ξ = COL(x−θ⋆, z−Lϵ(x)) by definition and, thus, ξ = 0n+D means that
the solution estimate corresponds to the optimal solution θ⋆, while the auxiliary variables correspond
to their equilibrium values. Further, since L̃ϵ (see (11)) is continuous (cf. Assumption 1) and Eϵ

t is
bounded in compact sets (cf. Assumption 2), F is Lipschitz continuous in ξ within Ωc, that is

∥F (ξ, t)− F (ξ′, t)∥ ≤ LF ∥ξ − ξ′∥ , (26)
for all ξ, ξ′ ∈ Ωc, t ∈ N, and some finite LF > 0. Thus, for all ξ ∈ Ωc, we can further bound (25) as

∆V (ξ, t) ≤ −min{γν, κ}/TmaxV (ξ, t) + ϵγ(Tmax + 1)L̃2(2LF ∥ξ∥+ γϵL̃2). (27)
We thus set γ ∈ (0, γ̄) and, given the desired final radius ρ ≤ c (without loss of generality), we define

ϵ̄ := min
{
min{γν, κ}ρ2/(Tmax(γ(Tmax + 1)L̃2(2LF

√
c+ γL̃2))), 1

}
. (28)

Then, for all ϵ ∈ (0, ϵ̄), we can further bound (27) as

∆V (ξ, t) ≤ −min{γν, κ}/Tmax
(
V (ξ, t)− ρ2

)
. (29)

The inequality (29) ensures that the level set Ωc is forward-invariant for system (19), i.e., ξt0 ∈
Ωc =⇒ ξt ∈ Ωc for all t ≥ t0 along the trajectories of (19). To summarize, we recall that this
property has been obtained for generic c, ρ > 0 and by satisfying the corresponding bounds defined
by γ̄ and ϵ̄. Therefore, by repeating all the above steps with c > 0 such that ξ0 = COL(x0 − θ⋆, z0 −
Lϵ(x0)) ∈ Ωc, by noting that ∥x− θ⋆∥ = ∥x̃∥ ≤

√
V (ξ, t) in light of the definition of V (cf. (20)),

and by iterating inequality (29) from t = 0, we ensure that the origin is a practically exponentially
stable equilibrium (see Definition 2 in Appendix A.1) of system (19) and the proof concludes.

5 Numerical Simulations

This section numerically validates our theoretical findings with Monte Carlo simulations of N = 20
trials in a logistic regression scenario (cf. Section 5.1) and a ridge regression one (cf. Section 5.2).

5.1 Logistic Regression

In this first case, we consider m ∈ N points p1, . . . , pm ∈ Rn with binary labels l1, . . . , lm ∈ {−1, 1},
and we use them to train a linear classifier by addressing the problem

min
θ∈Rn

1
m

∑m
k=1 log

(
1 + e−lk(θ

⊤pk)
)
+ C

2 ∥θ∥2 , (30)

where C > 0 is a regularization parameter. In each trial, we randomly generate a synthetic dataset
composed by m = 1000 points. See Appendix A.4 for details on the dataset generation. We
perform two sets of comparisons. In the first one, we consider n = 10, 25, 50. The estimation
technique we consider is inspired by extremum-seeking methods and is defined in (4). In detail, we
consider D directions d1, . . . , dD ∈ Rn and we generate them according to dj = COL(sin( π

τ1 j +

ϕ1), . . . , sin( π
τn j + ϕn)) for all j ∈ {1, . . . , D}, where, for each k ∈ {1, . . . , n}, we set ϕk = π/2,

τk = τk−1 if k is even and ϕk = 0, τk = D · 2((−k+1)/2) if k is odd. It is possible to show that
Assumption 2 is satisfied with D = 11 when n = 10, D = 29 when n = 25, and D = 53 when
n = 50 (see, e.g., Mimmo et al. [2024]). We run Algorithm 1 by cyclically selecting a single direction
dj per iteration. Namely, for all t ∈ N, we set sjt = 1 for j = (t mod D) + 1 and sjt = 0 for
all other directions. Thus, Assumption 3 is satisfied with Tmax = D. We consider the dimensions
n = 10, 25, 50 and compare our scheme with the state-of-the-art 1-point schemes described in
Appendix A.5, namely, with methods (57) Choi et al. [2002], (58) Chen et al. [2022], and (59) Zhang
et al. [2022, 2024]. We empirically select ϵ = 0.1 in all the schemes. We manually select the step
sizes γ to achieve the fastest possible convergence for each method. Table 1 reports the chosen values.

Table 1: Step size γ used for each algorithm in 1-point (left) and 2-point (right) comparisons.

n = 10 n = 25 n = 50
Algorithm 1 0.001 0.0003 0.0001
1-point (57) 0.0003 0.0001 0.00004
1-point (58) 0.003 0.0025 0.002
1-point (59) 0.003 0.0025 0.002

n = 50 n = 200 n = 300
Algorithm 1 0.02 0.004 0.002
2-point (60) 0.02 0.004 0.002

8



Fig. 1 reports the average and 1-standard deviation band across the trials of the evolution over t of the
distance ∥xt − θ⋆∥, where θ⋆ ∈ Rn is the optimal solution to the trial problem. Fig. 1 shows that our
algorithm significantly outperforms methods (57), (58), and (59) in terms of convergence speed.
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Figure 1: Problem (30) with n = 10 (left), n = 25 (middle), and n = 50 (right): Monte Carlo
comparison of Algorithm 1 with a single cost sample per iteration (blue) and the 1-point methods (57)
(red), (58) (yellow), and (59) (violet).

In the second comparison, we consider n = 50, 200, 300, the 2-point method (60) Agarwal et al.
[2010], Duchi et al. [2015], Shamir [2017] (cf. Appendix A.5), and equip Algorithm 1 with the
estimation technique (3). Namely, we consider D = 2n directions dj : the first n correspond to
the canonical basis of Rn, while the remaining n are their negatives. In this case, at each iteration
t ∈ N, we set sjt , s

j+n
t = 1 for j = (t mod n) + 1 and sjt = 0 for all the other directions, so that

Assumption 3 is satisfied with Tmax = n and the comparison with (60) is fair as both methods take 2
cost samples per iteration. We empirically select ϵ = 0.01 in both algorithms, while, as before, we
select γ to achieve the fastest possible convergence of both methods, and report the chosen values
in Table 1. In Fig. 2, we report the average and 1-standard deviation band across the trials of the
evolution over the iterations t of the optimality distance ∥xt − θ⋆∥ in this second set of comparisons,
respectively, where θ⋆ ∈ Rn is the optimal solution to the problem of the trial. As before, Fig. 2
shows that our algorithm significantly outperforms its counterpart (60) in terms of convergence speed.
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Figure 2: Problem (30): Monte Carlo comparison of Algorithm 1 with 2 cost samples per iteration
(blue) and the 2-point method (60) (red) with n = 50 (left), n = 200 (middle), and n = 300 (right).

5.2 Ridge Regression

In this second case, we consider ridge regression problems described as
min
θ∈Rn

1
2m∥Xθ − y∥2 + C

2 ∥θ∥2, (31)

where X ∈ Rm×n is a data matrix, y ∈ Rm a response vector, and C > 0 is a regularization
parameter. The first term enforces data fidelity, while the second term controls overfitting by
promoting smoothness in the solution. See Appendix A.4 for details on the dataset generation. We
consider the two sets of comparisons performed in Section 5. Hence, we first consider our method
equipped with the gradient estimation technique (4) and compare it with the three 1-point methods
described in Section A.5.1. The parameters of the gradient estimation technique (4) are the same used
in Section 5. We empirically select ϵ = 0.1 in all the algorithms. We manually select the step sizes γ
to achieve the fastest possible convergence for each method, and report the chosen values in Table 2.

Table 2: Step size γ used for each algorithm in 1-point (left) and 2-point (right) comparisons.

n = 10 n = 25 n = 50
Algorithm 1 0.0005 0.0001 0.00007
1-point (57) 0.0001 0.00005 0.00002
1-point (58) 0.001 0.00125 0.001
1-point (59) 0.001 0.00125 0.001

n = 50 n = 200 n = 300
Algorithm 1 0.01 0.003 0.002
2-point (60) 0.01 0.003 0.002
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In Fig. 3, we report the average and 1-standard deviation band across the trials of the evolution over
the iterations t of the optimality distance ∥xt − θ⋆∥ in this first set of comparisons, where θ⋆ ∈ Rn

is the optimal solution to the problem of the trial. Fig. 3 shows that our algorithm significantly
outperforms the 1-point methods (57), (58), and (59) in terms of convergence speed.

0 1 2 3 4

·104
10−3

10−2

10−1

100

101

102

Iteration t

∥x
t
−
θ ⋆
∥

0 2 4 6 8

·104
10−2

10−1

100

101

102

Iteration t

∥x
t
−
θ ⋆
∥

0 0.5 1 1.5 2

·105
10−2

10−1

100

101

102

Iteration t

∥x
t
−
θ ⋆
∥

Figure 3: Problem (31) with n = 10 (left), n = 25 (middle), and n = 50 (right): Monte Carlo
comparison of Algorithm 1 with a single cost sample per iteration (blue) and the 1-point methods (57)
(red), (58) (yellow), and (59) (violet).

In the second comparison, we consider n = 50, 200, 300, the 2-point method (60) Agarwal et al.
[2010], Duchi et al. [2015], Shamir [2017] (cf. Appendix A.5), and equip Algorithm 1 with the
estimation technique (3). Namely, we consider D = 2n directions dj : the first n correspond to
the canonical basis of Rn, while the remaining n are their negatives. In this case, at each iteration
t ∈ N, we set sjt , s

j+n
t = 1 for j = (t mod n) + 1 and sjt = 0 for all the other directions, so that

Assumption 3 is satisfied with Tmax = n and the comparison with (60) is fair as both methods take 2
cost samples per iteration. We empirically select ϵ = 0.1 in both algorithms, while, as before, we
select γ to achieve the fastest possible convergence of both methods, and report the chosen values
in Table 2. In Fig. 4, we report the average and 1-standard deviation band across the trials of the
evolution over the iterations t of the optimality distance ∥xt − θ⋆∥ in this second set of comparisons,
respectively, where θ⋆ ∈ Rn is the optimal solution to the problem of the trial. As before, Fig. 4
shows that our algorithm significantly outperforms its counterpart (60) in terms of convergence speed.
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Figure 4: Problem (31): Monte Carlo comparison of Algorithm 1 with 2 cost samples per iteration
(blue) and the 2-point method (60) (red) with n = 50 (left), n = 200 (middle), and n = 300 (right).

6 Conclusions

In this paper, we introduced a novel paradigm for model-free optimization based on memory mecha-
nisms. We started from a generic technique that estimates the gradient of the cost function at a given
point using cost samples obtained by perturbing that point along a finite, fixed set of directions. Our
main contribution is the introduction of a memory mechanism that enables the reuse of the most
recent cost samples for each direction. This mechanism removes the need to evaluate the cost in
all directions at every iteration, while still allowing the estimation of descent directions through a
weighted average of all directions. As a result, by using this approximate descent in the solution
estimate update, the proposed approach achieves faster convergence without increasing the oracle
complexity. We analyzed the algorithm using system-theoretic tools based on timescale separation
and, for strongly convex problems, established convergence to an arbitrarily small neighborhood of
the optimal solution. Finally, numerical experiments on regression problems demonstrated that our
method significantly outperforms state-of-the-art model-free optimization algorithms.
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Ying Tan, Dragan Nešić, and Iven Mareels. On non-local stability properties of extremum seeking
control. Automatica, 42(6):889–903, 2006.

Yujie Tang, Junshan Zhang, and Na Li. Distributed zero-order algorithms for nonconvex multiagent
optimization. IEEE Transactions on Control of Network Systems, 8(1):269–281, 2020.

12



Andrew R Teel and Dobrivoje Popovic. Solving smooth and nonsmooth multivariable extremum
seeking problems by the methods of nonlinear programming. In Proceedings of the 2001 American
Control Conference.(Cat. No. 01CH37148), volume 3, pages 2394–2399. IEEE, 2001.

Ryan Turner and Carl Edward Rasmussen. Model based learning of sigma points in unscented kalman
filtering. Neurocomputing, 80:47–53, 2012.

Björn Wittenmark and Alexander Urquhart. Adaptive extremal control. In Proceedings of 1995 34th
IEEE Conference on Decision and Control, volume 2, pages 1639–1644. IEEE, 1995.

Quan Xiao, Qing Ling, and Tianyi Chen. Lazy queries can reduce variance in zeroth-order optimiza-
tion. IEEE Transactions on Signal Processing, 71:3695–3709, 2023.

Scott Yang and Mehryar Mohri. Optimistic bandit convex optimization. Advances in Neural
Information Processing Systems, 29, 2016.

Yan Zhang, Yi Zhou, Kaiyi Ji, and Michael M Zavlanos. A new one-point residual-feedback oracle
for black-box learning and control. Automatica, 136:110006, 2022.

Yan Zhang, Yi Zhou, Kaiyi Ji, Yi Shen, and Michael M Zavlanos. Boosting one-point derivative-free
online optimization via residual feedback. IEEE Transactions on Automatic Control, 2024.

Peng Zhao, Guanghui Wang, Lijun Zhang, and Zhi-Hua Zhou. Bandit convex optimization in
non-stationary environments. Journal of Machine Learning Research, 22(125):1–45, 2021.

13



A Technical Appendices and Supplementary Material

A.1 Preliminaries on Two-Time-Scales Discrete-Time Systems

In this section, we provide a generic stability result for discrete-time two-time-scales systems. Before
doing so, we introduce some preliminaries about discrete-time dynamical systems. Consider a generic
time-varying discrete-time dynamical system parametrized by a parameter γ > 0 and described by

χt+1 = Gγ(χt, t), (32)

where χt ∈ Rn is the state vector and Gγ : Rn × N → Rn describes its time-varying dynamics. The
next definition introduces the concept of equilibrium point.
Definition 1. A point χ̄ ∈ Rn is an equilibrium point of system (32) if

χ̄ = Gγ(χ̄, t),

for any t ∈ N and γ > 0. □

The following definition introduces the concepts of global and semi-global exponential (or geometric)
stability of an equilibrium point. The key distinction between the two lies in the dependence of the
bound on the parameter γ (see system (32)) with respect to the initial conditions. In the global case,
there exists a bound on γ that is uniform over all initial conditions for which stability is achieved. In
contrast, in the semi-global case, for each initial condition, there exists a (possibly different) bound
on γ that ensures stability. The definition also introduces the concept of practical stability, which
allows for an arbitrarily small bound on the asymptotic distance from the equilibrium point.
Definition 2. The equilibrium point χ̄ is said to be globally exponentially (or geometrically) stable
for (32) if there exists γ̄ > 0 such that, for all γ ∈ (0, γ̄), the trajectories of (32) satisfy

∥χt − χ̄∥ ≤ a1 ∥χ0 − χ̄∥ at2, (33)

for all χ0 ∈ Rn and some a1 > 0, a2 ∈ (0, 1). The equilibrium point χ̄ is said to be semi-globally
exponentially (or geometrically) stable if, for all χ0 ∈ Rn, there exist γ̄, b1, b2 > 0 such that, for
all γ ∈ (0, γ̄), the exponential decay (33) holds true for some a1 > 0, a2 ∈ (0, 1). Finally, the
equilibrium point χ̄ is said to be semi-globally exponentially (or geometrically) practically stable if
for all χ0 ∈ Rn and ρ > 0, there exist γ̄ > 0 such that, for all γ ∈ (0, γ̄), it holds

∥χt − χ̄∥ ≤ a1 ∥χ0 − χ̄∥ at2 + ρ, (34)

for some a1 > 0, a2 ∈ (0, 1). □

A popular tool for establishing the stability properties of an equilibrium point is the so-called
Lyapunov approach. Essentially, it consists in showing the decrease of a so-called Lyapunov function
V : Rn ×N → R along the trajectories of the system, namely, V (Gγ(χ, t), t+ 1)− V (χ, t) ≤ 0 for
all χ ∈ Rn and t ∈ N (see, e.g., [Haddad and Chellaboina, 2008, Ch. 13] for a detailed discussion).
The following theorem applies the Lyapunov approach to establish semi-global exponential stability
properties for a generic discrete-time two-time-scale system. Such a stability result extends [Carnevale
et al., 2025, Th.II.3] as it weakens the assumption of global Lipschitz continuity on the subsystems’
vector fields and the equilibrium function, requiring only condition (37) to hold in compact sets. As a
consequence, the next theorem establishes semi-global exponential stability for the interconnected
system (35), in contrast to the global result presented in [Carnevale et al., 2025, Th. II.3]. Namely, the
bound on γ under which the stability of the interconnected system is guaranteed is no longer uniform
over all initial conditions (see Definition 2). To the best of the authors’ knowledge, this result is novel
and, thus, represents a side contribution of this paper.
Theorem 2 (Semi-Global exponential stability for time-varying two-time-scales systems). Consider
the time-varying interconnected system

xt+1 = xt + γf(xt, zt, t) (35a)
zt+1 = g(zt, xt, t), (35b)

with xt ∈ D ⊆ Rn, zt ∈ Rm, f : D×Rm ×N → D, g : Rm ×Rn ×N → Rm, and γ > 0. Assume
that there exists zeq : Rn → Rm such that for all x ∈ D it holds

0n = f(0n, zeq(0n, t), t) (36a)
zeq(x) = g(zeq(x), x, t), (36b)
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for all t ∈ N. Moreover, assume that for any compact set S ⊂ D×Rm, the constants Lf , Lg, Leq > 0
defined as

Lf := sup
(x,z̃)∈S,t∈N

∥∥∥∥[∇1f(x, z̃ + zeq(x), t)
∇2f(x, z̃ + zeq(x), t)

]∥∥∥∥ (37a)

Lg := sup
(x,z̃)∈S,t∈N

∥∥∥∥[∇1g(z̃ + zeq(x), x, t)
∇2g(z̃ + zeq(x), x, t)

]∥∥∥∥ (37b)

Leq := sup
(x,z̃)∈S,t∈N

∥∇zeq(x+ γf(x, z̃ + zeq(x), t))∥ (37c)

exist and are finite. Let
xt+1 = xt + γf(xt, zeq(xt), t) (38)

be the reduced system and
z̃t+1 = g(z̃t + zeq(x), x, t)− zeq(x) (39)

be the boundary layer system with z̃t ∈ Rm.

Assume that there exists a continuous function U : Rm × N → R such that

b1 ∥z̃∥2 ≤ U(z̃, t) ≤ b2 ∥z̃∥2 (40a)

U(g(z̃ + zeq(x), x, t)− zeq(x), t+ 1)− U(z̃, t) ≤ −b3 ∥z̃∥2 (40b)

|U(z̃, t)− U(z̃′, t)| ≤ b4 ∥z̃ − z̃′∥ (∥z̃∥+ ∥z̃′∥) , (40c)

for all z̃, z̃′ ∈ Rm, x ∈ Rn, t ∈ N , and some b1, b2, b3, b4 > 0. Further, assume there exist a
continuous function W : D × N → R and γ̄1 > 0 such that, for all γ ∈ (0, γ̄1), it holds

c1 ∥x∥2 ≤ W (x, t) ≤ c2 ∥x∥2 (41a)

W (x+ γf(x, zeq(x), t), t+ 1)−W (x, t) ≤ −γc3 ∥x∥2 (41b)

|W (x, t)−W (x′, t)| ≤ c4 ∥x− x′∥ ∥x∥+ c4 ∥x− x′∥ ∥x′∥ , (41c)

for all x, x′ ∈ D, t ∈ N, and some c1, c2, c3, c4 > 0.

Then, for all (x, z̃) ∈ D × Rm, c̃3 ∈ (0, c3), and b̃3 ∈ (0, b3), there exists γ̄ ∈ (0, γ̄1) such that, for
all γ ∈ (0, γ̄), it holds

U(g(z̃ + zeq(x), x, t)− zeq(x+ γf(x, z̃ + zeq(x), t)), t+ 1) +W (x+ γf(x, z̃ + zeq(x), t), t+ 1)

− U(z̃, t)−W (x, t) ≤ −γc̃3 ∥x∥2 − b̃3 ∥z̃∥2 ,
for all t ∈ N.

Proof. Let us define the error coordinate z̃t := zt − zeq(xt) ∈ Rm and accordingly rewrite the
interconnected system (35) as

xt+1 = xt + γf(xt, z̃t + zeq(xt), t) (42a)
z̃t+1 = g(z̃t + zeq(xt), xt, t)− zeq(xt) + ∆zeq(xt+1, xt), (42b)

where we introduce the drift function ∆zeq(xt+1, xt) := −zeq(xt+1) + zeq(xt). Given c > 0, let
Ωc ⊂ D×Rm be the level set of the overall Lyapunov function U(z̃, t)+W (x, t) (see (40) and (41)),
namely

Ωc := {(x, z̃) ∈ D × Rm | U(z̃, t) +W (x, t) ≤ c,∀t ∈ N}.
Now, we take a generic pair (x, z̃) ∈ Ωc. In light of (40a) and (41a), we note that Ωc is compact
for all c > 0. The compactness of Ωc, in turn, allows us to claim that, for all t ∈ N, the functions
f(x, z̃+ zeq(x), t) and g(z̃+ zeq(x), x, t) are Lipschitz continuous in their first two arguments on Ωc,
and that zeq(x+ γf(x, z̃ + zeq(x), t)) is Lipschitz continuous on Ωc, with finite constants Lf , Lg,
and Leq defined as in (37) with S = Ωc. With these constants at hand, we can follow the remaining
steps in the proof of [Carnevale et al., 2025, Th.II.3] to show that the overall Lyapunov function
U(z̃, t) +W (x, t) is decreasing along the trajectories of (42) rather than along the trajectories of the
boundary-layer and reduced systems, namely, the auxiliary dynamics (38) and (39), respectively. For
the sake of completeness, we report all the steps of the proof as follows.
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We now evaluate the increment ∆W (x, t) := W (x + γf(x, z̃ + zeq(x), t), t+ 1) − W (x, t) of
W (x, t) along the trajectories of subsystem (42a) and obtain

∆W (x, t) = W (x+ γf(x, z̃ + zeq(x), t), t+ 1)−W (x, t)

(a)
= W (x+ γf(x, zeq(x), t), t+ 1)−W (xt, t)

+W (x+ γf(x, z̃ + zeq(x), t), t+ 1)−W (x+ γf(x, zeq(x), t), t+ 1)

(b)

≤ −γc3 ∥x∥2 +W (x+ γf(x, z̃ + zeq(x), t), t+ 1)−W (x+ γf(x, zeq(x), t), t+ 1)

(c)

≤ −γc3 ∥x∥2 + 2γc4Lf ∥z̃∥ ∥x∥
+ γ2c4Lf ∥z̃t∥ ∥f(x, z̃ + zeq(x), t)∥+ γ2c4Lf ∥z̃∥ ∥f(x, zeq(x), t)∥ , (43)

where in (a) we add and subtract the term W (x + γf(x, zeq(x), t), t+ 1), in (b) we use (41b) to
bound the difference of the first two terms, in (c) we use (41c), the Lipschitz continuity of f , and the
triangle inequality. By recalling that f(0n, zeq(0n), t) = 0n (cf. (36)), we can write

∥f(x, z̃ + zeq(x), t)∥ = ∥f(x, z̃ + zeq(x), t)− f(0n, zeq(0n), t)∥
(a)

≤ Lf ∥x∥+ Lf ∥z̃ + zeq(x)− zeq(0n)∥
(b)

≤ Lf (1 + Leq) ∥x∥+ Lf ∥z̃∥ , (44)

where in (a) we use the Lipschitz continuity of f and zeq, while in (b) we combine the Lipschitz
continuity of zeq and the triangle inequality. With similar arguments, we can show the bound

∥f(x, zeq(x), t)∥ ≤ Lf (1 + Leq) ∥x∥ . (45)

By using the inequalities (44) and (45), we then bound the right-hand side of (43) according to

∆W (x, t) ≤ −γc3 ∥x∥2 + 2γc4Lf ∥z̃∥ ∥x∥+ γ2c4L
2
f ∥z̃∥2 + 2γ2c4L

2
f (1 + Leq) ∥z̃∥ ∥x∥

(a)

≤ −c3 ∥x∥2+γ2k3 ∥z̃∥2+(γk1 + γ2k2) ∥z̃∥ ∥x∥ , (46)

where in (a) we introduce the constants k1, k2, k3 > 0 defined as

k1 := 2c4Lf , k2 := 2c4L
2
f (1 + Leq), k3 := c4L

2
f .

We now evaluate the increment ∆U(z̃, t) := U(g(z̃ + zeq(x), x, t) − zeq(x + γf(x, z̃ +
zeq(x), t)), t+ 1)− U(z̃, t) of the function U (cf. (40)) along the trajectories of (42b), obtaining

∆U(z̃, t) = U(g(z̃ + zeq(x), x, t)− zeq(x) + ∆zeq(x+ γf(x, z̃ + zeq(x), t), x), t+ 1)− U(z̃, t)

(a)

≤ U(g(z̃ + zeq(x), x), t− zeq(x), t+ 1)− U(z̃, t)

− U(g(z̃ + zeq(x), x, t)− zeq(x), t+ 1)

+ U(g(z̃ + zeq(x), x, t)− zeq(x) + ∆zeq(x+ γf(x, z̃ + zeq(x), t), x), t+ 1)

(b)

≤ −b3 ∥z̃∥2 − U(g(z̃ + zeq(x), x, t)− zeq(x), t+ 1)

+ U(g(z̃ + zeq(x), x, t)− zeq(x) + ∆zeq(x+ γf(x, z̃ + zeq(x), t), x), t+ 1)

(c)

≤ −b3 ∥z̃∥2
+ b4 ∥∆zeq(x+ γf(x, z̃ + zeq(x), t), x)∥

× ∥g(z̃ + zeq(x), x, t)− zeq(x) + ∆zeq(x+ γf(x, z̃ + zeq(x), t), x)∥
+ b4 ∥∆zeq(x+ γf(x, z̃ + zeq(x), t), x)∥ ∥g(z̃ + zeq(x), x, t)− zeq(x)∥

(d)

≤ −b3 ∥z̃∥2 + b4 ∥∆zeq(x+ γf(x, z̃ + zeq(x), t), x)∥2
+ 2b4 ∥∆zeq(x+ γf(x, z̃ + zeq(x), t), x)∥ ∥g(z̃ + zeq(x), x, t)− zeq(x)∥ , (47)

where in (a) we add and subtract the term U(g(z̃+zeq(x), x, t)−zeq(x), t+ 1), in (b) we exploit (40b)
to bound the first two terms, in (c) we use (40c) to bound the difference of the last two terms, and
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in (d) we use the triangle inequality. The definition of ∆zeq(x + γf(x, z̃ + zeq(x), t), x) and the
Lipschitz continuity of zeq lead to

∥∆zeq(x+ γf(x, z̃ + zeq(x), t), x)∥ ≤ Leq ∥x+ γf(x, z̃ + zeq(x), t)− x∥
(a)

≤ γLeq ∥f(x, z̃ + zeq(x), t)∥
(b)

≤ γLeq ∥f(x, z̃ + zeq(x), t)− f(0n, zeq(0n), t)∥
(c)

≤ γLeqLf (1 + Leq) ∥x∥+ γLeqLf ∥z̃∥ , (48)

where in (a) we use the update (42a), in (b) we add the term f(0n, zeq(0n), t) since this is zero in
light of (36), and in (c) we use the triangle inequality and the Lipschitz continuity of the functions f
and zeq. Moreover, since g(zeq(x), x, t) = zeq(x) for all x ∈ D (cf. (36)), we can write

∥g(z̃ + zeq(x), x, t)− zeq(x)∥ = ∥g(z̃ + zeq(x), x, t)− g(zeq(x), x, t)∥
≤ Lg ∥z̃∥ , (49)

where the inequality is due to the Lipschitz continuity of the function g. By using the inequalities (48)
and (49), we then bound (47) as

∆U(z̃, t) ≤ −b3 ∥z̃∥2 + 2γb4LeqLgLf (1 + Leq) ∥x∥ ∥z̃∥+ 2γb4LeqLgLf ∥z̃∥2

+ γ2b4L
2
eqL

2
f (1 + Leq)

2 ∥x∥2 + 2γ2b4L
2
eqL

2
f (1 + Leq) ∥x∥ ∥z̃∥

+ γ2b4L
2
eqL

2
f ∥z̃∥2

≤ (−b3 + γk6 + γ2k7) ∥z̃∥2 + γ2k8 ∥x∥2 + (γk4 + γ2k5) ∥x∥ ∥z̃∥ , (50)

where we introduce the constants

k4 := 2b4LeqLgLf (1 + Leq), k5 := 2b4L
2
eqL

2
f (1 + Leq),

k6 := 2b4LeqLgLf , k7 := b4L
2
eqL

2
f ,

k8 := b4L
2
eqL

2
f (1 + Leq)

2.

We now introduce the overall Lyapunov function V : D × Rm × N → R defined as

V (x, z̃, t) := W (x, t) + U(z̃, t).

By evaluating its increment ∆V (x, z̃, t) := V (x+ γf(x, z̃+ zeq(x), t), g(z̃+ zeq(x), x, t)− zeq(x+
γf(x, z̃ + zeq(x), t)), t+ 1) − V (x, z̃, t) = ∆W (x, t) + ∆U(z̃, t) along the trajectories of the
interconnected system (42), we can use the results (46) and (50) to write

∆V (x, z̃, t) ≤ −
[
∥x∥
∥z̃∥

]⊤
Q(γ)

[
∥x∥
∥z̃∥

]
, (51)

where we introduce the matrix Q(γ) = Q(γ)⊤ ∈ R2 defined as

Q(γ) :=

[
γc3 − γ2k8 q21(γ)

q21(γ) b3 − γk6 − γ2(k3 + k7)

]
,

with q21(γ) := − 1
2 (γ(k1 + k4) + γ2(k2 + k5)). Now, we consider the constants c̃3, b̃3 introduced in

the theorem statement and we recall that c̃3 ∈ (0, c3) and b̃3 ∈ (0, b3). By Sylvester criterion, we

know that Q >

[
γc̃3 0

0 b̃3

]
if and only if{

γ(c3 − c̃3) > γ2k8
γ(c3 − c̃3)(b3 − b̃3) > p(γ),

(52)

where the polynomial p(γ) is defined as

p(γ) :=q21γ
2+γ2(c3−c̃3)k6+γ3(c3 − c̃3)(k3+k7)+γ2(b3 − b̃3)k8−γ3k6k8−γ4k8(k3+k7).

First, we note that the first condition in (52) is satisfied for all γ ∈ (0, (c3 − c̃3)/k8). Then, we note
that p is a continuous function of γ and limγ→0 p(γ)/γ = 0. Hence, there exists some γ̄ ∈ (0, γ̄1) so
that (52) is satisfied for all γ ∈ (0, γ̄) and the proof concludes.
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A.2 Proof of Lemma 1

Consider the linear, time-varying system (12). Given t0, t ∈ N with t ≥ t0, we introduce the so-called
state transition matrix Φ(t, t0) ∈ RD×D of system (12) defined as

Φ(t, t0) :=

t∏
τ=t0

(ID − Sτ ). (53)

We note that this transition matrix allows us to write z̃t = ϕ(t, t0)z̃t0 along the trajectories of
system (12). Moreover, in light of the essentially-cyclic condition ensured by Assumption 3, we note
that

Φ(t0 + Tmax + τ, t0) = 0D, (54)

for all t0, τ ∈ N. Then, we use Φ to explicitly define the (time-varying) Lyapunov function
U : RD × N → R as

U(z̃, t) :=

t+Tmax−1∑
τ=t

∥Φ(τ, t)z̃∥2 . (55)

Being the chosen function quadratic, it trivially satisfies the conditions (13a) and (13c). As for
condition (13b), by definition (55), we note that

U((ID − St)z̃, t+ 1) =

t+Tmax∑
τ=t+1

∥Φ(τ, t+ 1)(ID − St)z̃∥2

(a)
= ∥Φ(t+ Tmax, t+ 1)(ID − St)z̃∥2 +

t+Tmax−1∑
τ=t+1

∥Φ(τ, t+ 1)(ID − St)z̃∥2

(b)
= ∥Φ(t+ Tmax, t)z̃∥2 +

t+Tmax−1∑
τ=t+1

∥Φ(τ, t)z̃∥2

(c)
= U(z̃, t)− ∥z̃∥2 ,

where in (a) we isolate the last term of the sum, in (b) we use the fact that Φ(τ, t + 1)(ID −
St) = Φ(τ, t) for all τ ≥ t + 1 by definiton (53), in (c) we use (54) to cancel out the first
term and the definiton of U (cf. (55)) to manipulate the second term as

∑t+Tmax−1
τ=t+1 ∥Φ(τ, t)z̃∥2 =∑t+Tmax−1

τ=t ∥Φ(τ, t)z̃∥2 − ∥Φ(t, t)z̃∥2 = U(z̃, t)− ∥z̃∥2 and the proof concludes.

A.3 Proof of Lemma 2

The proof is straightforward since the reduced system (15) is the gradient method applied to prob-
lem (1). We report it here for completeness. We consider the increment ∥x̃− γ∇ℓ(x̃+ θ⋆)∥2 −∥x̃∥2
and, by expanding the square norm, we obtain

∥x̃− γ∇ℓ(x̃+ θ⋆)∥2 − ∥x̃∥2

= −2γ∇ℓ(x̃+ θ⋆)
⊤x̃+ γ2 ∥∇ℓ(x̃+ θ⋆)∥2

(a)

≤ −2γ (∇ℓ(x̃+ θ⋆)−∇ℓ(θ⋆))
⊤
(x̃+ θ⋆ − θ⋆) + γ2 ∥∇ℓ(x̃+ θ⋆)−∇ℓ(θ⋆)∥2

(b)

≤ −γ
2µL

µ+ L
∥x̃∥2 − γ

(
2

µ+ L
− γ

)
∥∇ℓ(x̃+ θ⋆)−∇ℓ(θ⋆)∥2 (56)

where in (a) we use the fact that ∇ℓ(θ⋆) = 0n, while in (b) we use the fact that ℓ is µ-strongly convex
and its gradient is L-Lipschitz continuous (cf. Assumption 1). The proof concludes by using the
bound γ ≤ 2

µ+L to neglect the second term in (56).

A.4 Dataset Generation for the Tests in Section 5

In this section, we describe how we generate the datasets used in the numerical simulations presented
in Section 5.
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A.4.1 Logistic Regression Dataset Generation

In the logistic regression scenario (cf. Section 5.1), for each trial and k ∈ {1, . . . ,m}, we generate
an input vector pk ∈ Rn by sampling it from a standard normal distribution in Rn and we assign it
the label lk = sign(θ̄⊤pk + ηk), where the ground truth vector θ̄ ∈ Rn is sampled from a standard
normal distribution in Rn, ηk is a zero-mean Gaussian noise with standard deviation 0.1, while
sign : R → {−1, 1} denotes the sign function, i.e., sign(η) = 1 if η ≥ 0 and sign(η) = −1
otherwise. Finally, we set C = 1 and, in each trial, we randomly initialize the algorithms’ solution
estimates by sampling x0 from a zero-mean Gaussian distribution with covariance matrix 10 · In.

A.4.2 Ridge Regression Dataset Generation

In the ridge regression scenario (cf. Section 5.2), in each Monte Carlo trial, the entries of X are
sampled from a standard Gaussian distribution, while the ground truth vector θ̄ ∈ Rn is drawn from a
standard Gaussian distribution in Rn. The response vector y is then constructed as

y = Xθ̄ + η,

where η ∈ Rm is randomly generated by sampling it from a zero-mean Gaussian distribution with
standard deviation 0.1. Finally, we set C = 1 and, in each trial, we randomly initialize the algorithms’
solution estimates by sampling x0 from a zero-mean Gaussian distribution with covariance matrix
10 · In.

A.5 Description of the Algorithms Used in the Comparisons in Section 5

In this section, we provide the description of the algorithms used in the comparisons with our method
performed in Section 5. We recall that the choice of the parameters γ and ϵ for these methods is
provided in Section 5 and Appendix 5.2.

A.5.1 1-point methods

We consider three 1-point methods. The first one is a discrete-time extremum-seeking method (see,
e.g., Choi et al. [2002]) and consists in maintaining a solution estimate xt ∈ Rn and a low-pass filter
zt ∈ R and updating them according to

xt+1 = xt − γ
2(ℓ(xt + ϵdt)− zt)dt

ϵ
(57a)

zt+1 = zt + γ(ℓ(xt + ϵdt)− zt), (57b)

where dt ∈ Rn is a sinusoidal signal, namely, dt = COL(sin( π
τ1 t+ ϕ1), . . . , sin( π

τn t+ ϕn)), where
τ i > 0 and ϕi ∈ [0, 2π) for all k ∈ {1, . . . , n}. In the simulations, all the parameters τ i and ϕi are
chosen as in our method (see Section 5). Second, we consider the method proposed in Chen et al.
[2022] that consists in maintaining a solution estimate xt ∈ Rn and a filter variable zt ∈ R and
updating them according to

zt+1 = (1− β)zt + ℓ(xt + ϵdt)− ℓ(xt−1 + ϵdt−1) (58a)

xt+1 = xt − γ
zt+1dt

ϵ
, (58b)

where {dt}t∈N are i.i.d. random directions uniformly sampled from the sphere in Rn with unitary
radius, while β > 0 is an additional tuning parameters. In all the simulations, we run (58) by
empirically setting β = 0.9. Finally, we consider the 1-point method proposed in Zhang et al. [2022,
2024] and consists in maintaining a solution estimate xt ∈ Rn and updating it according to

xt+1 = xt − γ
(ℓ(xt + ϵdt)− ℓ(xt−1 + ϵdt−1))dt

ϵ
, (59a)

where, also in this case, {dt}t∈N are i.i.d. random directions uniformly sampled from the sphere in
Rn with unitary radius.

19



A.5.2 2-point method

We consider the 2-point method proposed in Agarwal et al. [2010], Duchi et al. [2015], Shamir [2017]
that consists in maintaining a solution estimate xt ∈ Rn and updating it according to

xt+1 = xt − γ
(ℓ(xt + ϵdt)− ℓ(xt − ϵdt))dt

2ϵ
, (60)

where {dt}t∈N are i.i.d. random directions uniformly sampled from the sphere in Rn with unitary
radius.
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them fully reproducible. In particular, the algorithms’ and problem description are carefully
detailed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We prefer to keep the code and data private for now, but we are open to sharing
them upon request.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test detail (e.g., the number of trials of the Monte Carlo
simulation) are carefully reported. In particular, the paper provides all the details about the
dataset generation used and the parameters of the algorithms.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The numerical results provided in Section 5 are provided in terms of the
average achieved over the trials and using the standard deviation as confidence interval.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We believe that this detail is not relevant for the scope of the paper and,
thus, we prefer to omit it in the main body of the paper. However, we clarify here that the
experiments were run by using Matlab on a single machine with 8GB of RAM and 8 CPU
cores.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]

Justification: the main scope of our paper is to provide a theoretical analysis of the proposed
algorithm, which is not related to any ethical issues. However, we are aware of the NeurIPS
Code of Ethics and we will make sure to comply with it in our future work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: the main scope of our paper is to provide a theoretical analysis of the proposed
optimization algorithm, which is not strictly related to any societal impact, as the aim of our
algorithm is the same as the one of already existing optimization algorithms.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: the paper does not use existing assets.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

26

paperswithcode.com/datasets


Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: we only used LLMS to check grammar and spelling mistakes in the paper. The
core method development in this research does not involve LLMs as any important, original,
or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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