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ABSTRACT

Attractor networks are essential theoretical components in recurrent networks
for memory, learning, and computation. However, the continuous attractors that
are essential for continuous-valued memory suffer from structural instability—
infinitesimal changes in the parameters can destroy the continuous attractor. More-
over, the perturbed system’s dynamics can exhibit divergent behavior with asso-
ciated exploding gradients. This poses a question about the utility of continuous
attractors for systems that learn using gradient signals. To address this issue, we
use Fenichel’s persistence theorem from dynamical systems theory to show that
bounded attractors are stable in the sense that all perturbations maintain the stability.
This ensures that if there is a restorative learning signal, there will be no exploding
gradients for any length of time for backpropagation. In contrast, unbounded
attractors may devolve into divergent systems under certain perturbations, leading
to exploding gradients. This insight also suggests that there can exist homeostatic
mechanisms for certain implementations of continuous attractors that maintain
the structure of the attractor sufficiently for the neural computation it is used in.
Finally, we verify in a simple continuous attractor that all perturbations preserve
the invariant manifold and demonstrate the principle numerically in ring attractor
systems.

1 INTRODUCTION

Recurrent neural/neuronal networks (RNNs) can process sequential observations and model temporal
dependencies of arbitrary length. At the same time, they are fundamentally limited by their finite-
sized hidden states which form the only channel between the past and the future. To store information
over a long period of time, as many difficult tasks demand, RNNs can learn or be designed to have
“persistent memory”. When the information of interest is continuous-valued, a natural solution is to
use continuous attractors. Continuous attractors are prevalent in theoretical neuroscience as tools to
model neural representation and computation ranging from internal representations of head directions
and eye positions to perceptual decision-making and working memory (Khona and Fiete, 2022).
Continuous attractors are also at the core of long short-term memory (LSTM) (Greff et al., 2017) units
and the neural Turning machine (NTM) (Graves et al., 2014) to provide digital computer memory like
properties not natural to recurrent networks. In fact, the critical weakness of continuous attractors
is their inherent brittleness as they are rare in the parameter space, i.e., infinitesimal changes in
parameters destroys the continuous attractor structures implemented in RNNs (Seung, 1996; Renart
et al., 2003), even if biologically plausible asymmetric connections are used to construct them
(Darshan and Rivkind, 2022). However, as we will show, not all RNN implementations of continuous
attractors behave similarly in their brittleness.

We found that in the space of RNNs, some have neighbourhoods with highly undesirable exploding
gradients. We will describe some continuous attractors which have such neighbourhoods. Consider
an RNN (without input or output for now) expressed in continuous time as an ordinary differential
equation:

ẋ = −x+ [Wx+ b]+ (1)

where x ∈ Rd is the hidden state of the network, b > 0 is the bias, and [·]+ = max(0, ·) is the
threshold nonlinearity per unit. In discrete time, this corresponds to a ReLU RNN (see Sec. 3.1.1).
The non-trivial activity of this network is limited to the (non-negative) first quadrant.
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When d = 2, we can build two kinds of continuous attractors. First, through positive feedback,
W = [0, 1; 1, 0] and no bias b = 0, we can create a continuous attractor, i.e., ẋ = 0 on the
x1 = x2 ≥ 0 half-line, and surrounding attractive flow (Fig. 1A left). We refer to it as an unbounded
line attractor (UBLA). For any point on the line attractor, linearization results in eigenvalues 0
and −2, corresponding to the zero flow and attractive flow respectively. When W is perturbed,
the null eigenvalue can easily become non-zero and the continuous line attractor disappears. If
it becomes negative, the system bifurcates to a stable fixed point at the origin (Fig. 1A bottom).
However, if it becomes positive (Fig. 1A top), the resulting flow diverges to infinity along the diagonal.
Corresponding to the divergent flow, the backpropagating gradient over time exponentially grows in
magnitude, thus rendering gradient descent impractical without truncation in time.

The second kind of continuous attractor is created through negative feedback. By choosing W =
[0,−1;−1, 0] and b = [1; 1], we get ẋ = 0 on the x1 = −x2+1 line segment in the first quadrant as
the continuous attractor. We refer to it as the bounded line attractor (BLA). Again, linearization on
the attractor shows two eigenvalues, 0 and −2, and perturbations again cause the null eigenvalue to
be non-zero and the line attractor disappears. However, surprisingly, the bifurcations are qualitatively
different. It either bifurcates into a single stable fixed point (Fig. 1B top) or two stable fixed points
separated with a saddle node in between (Fig. 1B bottom). Neither of these two cases show a divergent
flow, but rather consists of one or two basins of attraction. It implies only vanishing gradients for this
system and exploding gradients will not be present for an arbitrarily long time.
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Figure 1: Motivating case study of the two systems implementing the same computation but one
near exploding gradients. Phase portraits for unbounded and bounded linear attractors (1). Under
perturbation of parameters, each of them can bifurcate to one of the two potential systems without
the continuous line attractor. Note that the parameters for the UBLA are near a diverging system
associated with exploding gradient behavior.

Avoiding exploding gradients is of importance in the context of long-range temporal learning
(Sec. 2.2). Learning generally induces stochasticity in parameters, while spontaneous synaptic
fluctuations are present in biological neuronal networks (Sec. 2.3). Given these observations, we
predict that BLA would be a more stable motif for computation than UBLA in the presence of noise
and continuous learning. Since BLAs, but not UBLAs, avoid exploding gradients, if the desired
computation requires a line attractor of finite range, BLA would be both easier to maintain and learn.
Is this only true for ReLU parameterized RNNs, or does it generalize?

In this paper, we lay out a new theory of general continuous-valued memory in the context of learning
to answer the following questions:

1. Can we avoid exploding gradients under parameter perturbation?
2. Do we need to worry about the brittleness of the continuous attractor solutions in practice?

Our theory provides answers to both questions under mild assumptions in an architecture agnostic
manner. Using Fenichel’s invariant manifold theorem, we derive a sufficient condition for RNNs
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implementing continuous attractors to remain free of exploding gradients. Moreover, even after a
bifurcation, these RNNs still approximately behave like the original continuous attractor for a while.
Together these theoretical results significantly mitigate the concern of the fine tuning problem in
theoretical neuroscience and suggest general principles for evaluating and designing new architectures
and initialization strategies for RNNs in machine learning.

2 THEORY OF GRACEFULLY DEGRADING CONTINUOUS ATTRACTORS

In this section, we apply invariant manifold theory to RNNs and translate the results for the machine
learning and theoretical neuroscience audience. Our emphasis in this paper centers on investigating
the distinctive properties of continuous attractors that prove essential for specific tasks, with a
deliberate exclusion of considerations related to learning chaotic dynamics.

2.1 INVARIANT CONTINUOUS ATTRACTOR MANIFOLD THEORY

We start by formulating RNNs implementing a continuous attractor in continuous time: ẋ = f(x). Let
l be the intrinsic dimension of the manifold of equilibria that defines the continuous attractor. We will
reparameterize the dynamics around the manifold with coordinates y ∈ Rl and the remaining ambient
space with z ∈ Rd−l. To describe an arbitrary bifurcation of interest, we introduce a sufficiently
smooth function g and a bifurcation parameter ϵ ≥ 0, such that the following system is equivalent to
the original ODE:

ẏ = ϵg(y, z, ϵ) (tangent) (2)
ż = h(y, z, ϵ) (normal) (3)

where ϵ = 0 gives the condition for the continuous attractor ẏ = 0. We denote the corresponding
manifold of l dimensionsM0 = {(y, z) | h(y, z, 0) = 0}.
We need the flow normal to the manifold to be hyperbolic, that is normally hyperbolic, meaning
that the Jacobians ∇zh evaluated on any point on the M0 has d − l eigenvalues with their real
part uniformly away from zero, and ∇yg has l eigenvalues with zero real parts. More specifically,
for continuous attractors, the real part of the eigenvalues of ∇zh will be negative, representing
sufficiently strong attractive flow toward the manifold. Equivalently, for the ODE, ẋ = f(x), the
variational system is of constant rank, and has exactly (d− l) eigenvalues with negative real parts
and l eigenvalues with zero real parts everywhere along the continuous attractor.

slow manifold
continuous attractor

bifurcation

Figure 2: Fenichel’s invariant manifold theorem applied to compact continuous attractor guarantees
the flow on the slow manifold is locally invariant and continues to be attractive. The dashed line is a
trajectory “trapped” in the slow manifold (locally invariant).

When ϵ > 0, the continuous attractor bifurcates away. What can we say about the fate of the
perturbed system? The continuous dependence theorem (Chicone, 2006) says that the trajectories will
change continuously as a function of ϵ without a guarantee on how quickly they change. Moreover,
the topological structure and the asymptotic behavior of trajectories change discontinuously due
to the bifurcation. Surprisingly there is a strong connection in the geometry due to Fenichel’s
theorem (Fenichel and Moser, 1971). We informally present a special case due to (Jones, 1995):
Theorem 1 (Fenichel’s Invariant Manifold Theorem). LetM0 be a connected, compact, normally
hyperbolic manifold of equilibria originating from a sufficiently smooth ODE. For a sufficiently small
perturbation ϵ > 0, there exists a manifoldMϵ diffeomorphic toM0 and locally invariant under the
flow of (2). Moreover,Mϵ has O(ϵ) Hausdoff distance toM0 and has the same smoothness as g
and h in (2).
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The manifoldMϵ is called the slow manifold which is no longer necessarily a continuum of equilibria.
However, the local invariance implies that trajectories remain within the manifold except potentially
at the boundary. Furthermore, the non-zero flow on the slow manifold is slow and given in the
ϵ → 0 limit as dy

dτ = g(cϵ(y),y, 0) where τ = ϵt is a rescaled time and cϵ(·) parameterizes the
l dimensional slow manifold. In addition, the stable manifold ofM0 is similarly approximately
maintained (Jones, 1995), allowing the manifoldMϵ to remain attractive.

These conditions are met (up to numerical precision) for the BLA example in Fig. 1B (see Sec. S1.4
for the rerparametrization of the BLA to this form). As a technical note, for the theory apply to a
continuous piecewise-linear system, it is required that the invariant manifold is attracting (Simpson,
2018), which is also the case for the BLA. As the theory predicts, BLA bifurcates into a 1-dimensional
slow manifold (dark colored regions) that contains fixed points, and overall still attractive. On the
contrary, the UBLA does not satisfy the compactness condition, hence the theory does not predict its
persistence. Importantly, the “slow” flow on the perturbed system is not bounded.

In practice, the sufficient conditions for RNNs implementing continuous attractors to have this
graceful breakdown (like BLA but not UBLA) is for the continuous attractor manifold to be of finite
dimension throughout, connected, and bounded. However, in systems with an invariant manifold with
dimension at least three, it is possible that a slow manifold with chaotic dynamics is created through a
perturbation. This would have as consequence that the perturbed system acquires positive Lyapunov
exponents (corresponding to the chaotic orbit), which then can still lead to exploding gradients albeit
with very slow flow that has little practical consequence in finite time experiments.

2.2 IMPLICATIONS ON MACHINE LEARNING

Extending the memory time constant of RNNs have long been an important area of research with
much focus on random weights (Legenstein and Maass, 2007; Goldman, 2009; Toyoizumi and
Abbott, 2011; Kerg et al., 2019; Chen et al., 2018; Henaff et al., 2016; Rusch and Mishra, 2021;
Arjovsky et al., 2016). Various initializations for the recurrent weights have been proposed to help
learning: initialization with the identity matrix (Le et al., 2015), with a random orthogonal matrix
(Saxe et al., 2014; Henaff et al., 2016), with a unitary matrix (Arjovsky et al., 2016) and with a
block diagonal weight matrix that creates a quasi-periodic system with limit cycles (Sokol et al.,
2019). However, despite the capacity to maintain representation of continuous quantities for arbitrary
duration of time, continuous attractor mechanism has not been pursued in machine learning research
because of its brittleness. The stochasticity in gradients inherited from the training data, regularization
strategy, and multi-task learning objectives act as a perturbation on the recurrent dynamics, and
continuous attractors break down even if it could be learned. Remedies emerged in machine learning
to hard-code continuous-valued memory structures within the RNNs—e.g., the cell state in vanilla
LSTM. However, our theory shows that the geometric structure of the manifold and the flow around
the manifold play a critical role in enabling gradient descent learning of continuous attractors using
standard methods such as backpropagation through time (BPTT) (Toomarian and Barhen, 1991).

It is well known that asymptotic exploding gradients comes from positive Lyapunov expo-
nents (Mikhaeil et al., 2022; Vogt et al., 2022; Engelken et al., 2023). It has also been pointed
out that bifurcations can cause arbitrarily large gradients (Doya, 1993) as well as discontinuity in
the Lyapunov spectrum (Park et al., 2023). These gradient propagation theories suggested that
bifurcations should be avoided, including the continuous attractors.

As far as we know, there is no architecture agnostic theory describing the loss landscape around
RNN solutions. We remark that due to the singular nature of the center manifold that supports
the continuous attractor, the usual analysis approach of linearization fails. Our theory successfully
connects the invariant manifold theory and the gradient signal propagation theory in RNNs to
describe two types of loss landscape around continuous attractor solutions. In one case, when the
theorem holds, the landscape is shallow in all directions due to (asymptotically) vanishing gradients
induced by the attractor structure—we have the gracefully degrading continuous attractor. In the other
case, we can find examples where the theorem does not hold, and the continuous attractor solution is
at the boundary of network configurations with exploding gradients, meaning the loss landscape is
very steep in some directions. While exploding gradients would prevent gradient descent to correct
for deviations from the optima, for gracefully degrading ones, one can apply restorative forces via
gradient descent to be in the vicinity of the brittle continuous attractor solution (see Sec. 3.1.4).
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2.3 IMPLICATIONS ON NEUROSCIENCE

Continuous attractors are biologically plausible, theoretically elegant, consistent with neural record-
ings, and avoids the asymptotic exploding and vanishing gradient problem (Park et al., 2023). As a
conceptual tool in computational and theoretical neuroscience, continuous attractors are widely used
when working memory of continuous values is needed (Dayan and Abbott, 2001; Burak and Fiete,
2009; Khona and Fiete, 2022). When used to accumulate stimulus, continuous attractors are also
called neural integrators that are hypothesized to be the underlying computation for the maintenance
of eye positions, heading direction, self-location, target location, sensory evidence, working memory,
decision variables, to name a few (Seung, 1996; Seung et al., 2000; Romo et al., 1999). Neural
representation of continuous values have been observed as persistent activity in the prefrontal cortex
of primates, ellipsoid body of the fly, and hypothalamus (Romo et al., 1999; Noorman et al., 2022;
Nair et al., 2023). A typical computational implementation of a continuous attractor is a bump
attractor network model which requires a mean-field limit (Skaggs et al., 1995; Camperi and Wang,
1998; Renart et al., 2003) and finite sized networks with threshold linear units (Noorman et al., 2022;
Spalla et al., 2021), see also Sec. 3.2.

However, the so-called “fine-tuning problem” describing the theoretical and practical brittleness of
continuous attractors has long been recognized (Seung, 1998; Park et al., 2023). Since biological
neural systems have constantly fluctuating synaptic weights (Shimizu et al., 2021), this has been a
big puzzle in the field. There have been efforts and remedies to lessen the degradation for particular
implementations, often focusing on keeping the short-term behavior close to the continuous attractor
case (Lim and Goldman, 2012; 2013; Boerlin et al., 2013; Koulakov et al., 2002; Renart et al., 2003).

Our theory shows that not all continuous attractors are born equal, and there are gracefully degrading
continuous attractors. In finite time, trajectories are well-behaved, contrary to the asymptotic
behavior captured by the Lyapunov exponents. Animal behavior is finite time in nature and the
longer the temporal distance the harder it is to learn in general. The conditions are favorable in the
recurrent neuronal networks: (1) mutual inhibition is widely present and evidence points to inhibition
dominated dynamics, (2) the neural state space is bounded due to physiological constraints, namely
by a non-negative firing rate below and a maximum firing rate above.

3 EXPERIMENTS

To computationally investigate the neighborhood of recurrent dynamical systems that implement
continuous attractors, we investigate 5 RNNs that are known a priori to form 1 or 2 dimensional
continuous attractors. We consider two topologically distinct temporal integration tasks: (i) linear
integration, and (ii) angular integration. For all experiments we used single precision floating point
arithmetic and PyTorch.

3.1 LINEAR TEMPORAL INTEGRATION TASK

Given a sequence of scalar input, the job of the network is to accumulate the values over time and
report the final value at a later time. In the context of perceptual decision-making, subjects can be
trained to perform the Poisson clicks task where they have to count the differing number of sensory
stimulus events from the left and right side and report the side (Brunton et al., 2013). A linear
integrator as a continuous attractor is a natural solution to such a task. We generalize the clicks to
have associated continuous-values for the training of RNNs to discourage discrete counting solutions.

We used discrete time representations over T time bins and the stimulus encoded as difference of two
non-negative values:

It,i = mt,i · ut,i t = 1, . . . , T, i = 1, 2 (continuous clicks) (4)

O∗
t =

t∑
s=0

(Is,1 − Is,2) t = 1, . . . , T (desired output) (5)

where mt,i are independent Bernoulli random variables with probability 0.2 and ut,i are independent
random variables with uniform distribution on the unit interval. We used mean squared error (MSE)
of the 1-dimensional output over time as the loss function over all time bins. We used T = 100 time
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bins per trial unless specified otherwise. The gradients were computed in batch mode with 1024
randomly generated trials.

3.1.1 RNN SOLUTIONS TO THE LINEAR INTEGRATION TASK

We use vanilla RNN implementations with the standard parameterization:

xt = σ(WinIt +Wxt−1 + b)

Ot = Woutxt + bout
(6)

where xt ∈ Rd is the hidden state, It ∈ RK is the input, σ : R → R an activation function which
acts on each of the hidden dimension, and W,b,Win,Wout,bout are parameters. Assuming an Euler
integration with unit time step, the discrete-time RNN of (6) corresponds to the ODE:

ẋ = −x+ σ(WinI+Wx+ b). (7)

For tractable analysis, we consider 2 dimensional systems with ReLU activation. We study the three
different ReLU RNN implementations of a perfect integrator in a 2 dimensional system, the Identity
RNN (iRNN), UBLA and BLA (we refer to the line attractors together as LA). These three networks
have same norm in the recurrent matrix W but not close in the parameter space. On the original
clicks task the UBLA and BLA networks count the click differences directly, while iRNN counts the
clicks separately and then subtracts these representations through the output mapping. The behaviors
of UBLA and BLA in the absence of stimulus are shown in Fig. 1, while the behavior of the iRNN is
trivial since there is no flow. These networks are defined as follows.

Identity RNN (Le et al., 2015)

Win =

(
1 0
0 1

)
, W =

(
1 0
0 1

)
, Wout =

(
−1
1

)
, b =

(
0
0

)
, bout = 0. (8)

Unbounded line attractor We formulate this implementation of a bounded integrator with a
parameter that determines step size along line attractor α. Together with the parameters for the output
bias β the parameters determine the capacity of the network. While the line attractor is unbounded
from above, it only extends to the center from below. The step size along line attractor α determines
the maximum number of clicks as the difference between the two channels; the capacity is β/α
number of clicks.

Win = α

(
−1 1
−1 1

)
, W =

(
0 1
1 0

)
, Wout =

1

2α

(
1
1

)
, b =

(
0
0

)
, bout = −

β

α
. (9)

Bounded line attractor Similarly as for UBLA, the BLA has a parameter that determines step
size along line attractor α. Analogously as for UBLA, these parameters determine the capacity of
the network. The inputs push the input along the line attractor in two opposite directions, see below.
UBLA and BLA need to be initialized at β(1, 1) and β

2 (1, 1), respectively, for correct decoding, i.e.,
output projection.

Win = α

(
−1 1
1 −1

)
, W =

(
0 −1
−1 0

)
, Wout =

1

2α

(
1
−1

)
, b = β

(
1
1

)
, bout = 0. (10)

3.1.2 ASYMMETRIC LOSS LANDSCAPE REFLECTING DYNAMICS AFTER BIFURCATION

To illustrate the effect of bifurcations from the continuous attractor solution, we take a 1-dimensional
slice of the loss surface, see Fig. 3B. Specifically, we continuously vary one of the entries of the
self-recurrent connection matrix: W1,1 ← W1,1 + ∆. At any ∆ ̸= 0, the continuous attractor
disappears and the spontaneous dynamics of the networks show convergent and/or divergent behavior
at exponential rates. Therefore, as the number of time steps in a trial increases, the error in the output
also exponentially converge or diverge in a corresponding manner. As can be seen in Fig. 3B, for
UBLA and iRNN, ∆ > 0 perturbations shows exponentially increasing loss and corresponds to an
exploding gradient dynamical system. In all other cases, including all perturbations of BLA, leads
to vanishing gradient, hence the loss is bounded. Note also the high curvature of the loss landscape
around the optimal solution indicating that the slow manifold may only be maintained in a small
neighborhood around the optimal solution, especially for the LAs.
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3.1.3 BIFURCATION PROBABILITY AND RANDOM PERTURBATIONS OF BLA

We consider all parametrized perturbations of the form W←W+V for a random matrix V ∈ R2×2

to the BLA. The BLA can bifurcate in the following systems, characterized by their invariant sets: a
system with single stable fixed point, a system with three fixed points (one unstable and two stable)
and a system with two fixed points (one stable and the other a half-stable node) and a system with a
(rotated) line attractor. Only the first two bifurcations (Fig. 1) can happen with nonzero chance for
the type of random perturbations we consider. The perturbations that leave the line attractor intact or
to lead to a system with two fixed points have measure zero in the parameter space. The perturbation
that results in one fixed point happen with probability 3

4 , while perturbations lead to a system with
three fixed points with probability 1

4 , see Sec. S1.2. The (local) invariant manifold manifold is indeed
persistent for the BLA and homeomorphic to the original (the bounded line).

3.1.4 MAINTAINING A NEURAL INTEGRATOR

The theory of persistent invariant manifolds for compact continuous attractors suggests that the
BLA should have bounded gradients (unlike UBLA and iRNN) and hence it should be easier to
maintain it in the presence of noise. To investigate the differential effect of stochastic gradient descent
(SGD) on the three neural integrator models, we performed three learning experiments using the
continuous-valued click integration task. The input and output are defined as in Eqs. 4 and 5 with
It,i = 0 for t = 11, . . . , T . We investigate the effects of perturbations of the recurrent matrix on
the learning of the parameters during gradient descent starting from the perfect solutions to the task.
Gradient step were taken with a fixed gradient step size λ (learning rate). We set α = 1 and β = 20
in Eq 9 and 10. The hidden state at the start of a trial is a learnable parameter.

In the first experiment, Gaussian random noise is injected to all parameters inducing a constant
diffusion of the parameters, which emulates the biological synaptic variability. This type of noise is
directly applied to the weights as W ←W +V with Vi,j ∼ N (0, σ). To dissociate the effect of
misadjustment from gradient descent and external perturbation, we measured the effect of a single
perturbation on the learning dynamics. Fig. 3C shows that for all networks, gradient descent (with
constant learning rate, chosen from a grid search) was able to counter the diffusion. BLA and UBLA
with learning have superior misadjustment compared to iRNN and compared to perturbations without
learning, while the BLA has the broadest range of learning rates that are optimal and far away from
exploding gradients (Fig. 3A). BLA has a slight advantage in terms of a smaller spread of MSE
compared to UBLA. The invariant manifold of the BLA is persistent throughout learning in many
cases, see S8 and Fig. S12. However, the gradients are not pointing towards the BLA but to one of
the bifurcations of the BLA (see Supp Fig. S10, Fig. S13 and Supp. Fig. S14). We determine the
alignment of the gradient as the cosine similarity of the gradient step with the vector in recurrent
parameter space that points towards the initial parameters at every gradient step and use a cutoff of a
maximum deviation of 45° as aligned gradients with the optimal solution direction. iRNN often finds
a different optimum (it settles at a part of the state space that is at a non-zero distance from the initial
recurrent matrix and bias (Fig. 3D and Fig S12). UBLA can stay close to the initial solution for a
small enough learning rate (Fig. 3D and E) and maintains a slower flow than the BLA (Fig. S15).

We calculated the loss on a batch of inputs for various noise levels σ for all three noise types (Fig. S6).
We chose a matched noise level per integrator that corresponded to a set average loss averaged over
200 weight perturbations (see also in Sec. S3). This way of matching noise level to induce the same
loss should be a universal approach to be able to compare the performance of different networks.

For the matched noise level, we find the optimal learning rate for each network separately. The
optimal learning rates for the input-type noise experiments were chosen from a set of values ({(1 +
j 1
4 ))10

−i}i=4,...10,j=1,2,3)) based on best performance of the task, measured as mean MSE of the
last ten epochs averaged over ten runs. The slow manifold that is created after perturbations provides
gradients that can counteract parameter diffusions for all networks (on short trials), even for the ones
that have the potential for exploding gradients (Fig. 3A and C). We use the normed difference to the
initial parameters at every gradient step as proxy for the misadjustment from the optimal solution
(Fig. 3D and E). We further show that all networks converge to a different (from the initialization),
non-optimal, solution as they settle in a regime in parameter space that has a higher norm difference
with the initial parameters of the neural integrator in ten different runs with the same random seed
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for the noise for the three integrators (Fig. 3D and E). We conclude therefore that, in practice, it is
difficult to maintain any of the continuous attractors.

Note that exploding gradients can be seen for UBLA manifested as the bimodal distribution of the
gradients in Fig. 3F. This does lead to faster divergence (for lower learning rate) but has on the other
hand the benefit of providing useful gradients to maintain the (local) solution around the optimal
solution, which explains the superior performance at the optimal learning rate for the UBLA (Fig. 3A),
on this timescale for the trial that we investigated. Also in the presence of input and internal noise the
UBLA has a higher tendency to have exploding gradients for lower learning rates, see Fig. S9. We
hypothesise that the negative effect of exploding gradients shows only for longer trials.
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Figure 3: Comparing three continuous attractor solutions on the click integration task of T = 100
time steps. (A) MSE distribution during learning with different learning rates. (B) Loss landscape is
steeper around the attractors. The BLA has a bounded loss in its neighborhood. (C) MSE distribution
during learning and in the presence of noise. Learning counteracts diffusion in all three-types of
initializations. (D) All networks converge to local non-optimal solutions after a single perturbation in
30 gradient steps. (E) Distance of parameters to original during learning with noise (left) and without
learning (right). (F) Gradient distribution at the beginning (upper) and end (lower) of trials.

3.2 ANGULAR INTEGRATION NETWORKS

For circular variables such as the goal-direction or head-direction needed for spatial navigation in
2D, the temporal integration and working memory functions are naturally solved by a ring attractor
(continuous attractor with a ring topology). Continuous attractor models of the head-direction
representation suggest that the representation emerges from the interactions of recurrent connections
among neurons that form a ring-like structure (Zhang, 1996; Noorman et al., 2022; Ajabi et al., 2023).
Since continuous attractors are susceptible to noise and perturbations the precise representation of
the head direction can in principle be disrupted easily. We demonstrate the consequences of the
Persistence Theorem in two models with a continuous ring attractor.

The first model we analyzed is a simple (non-biological) system that has a ring attractor we analysed
is defined by the following ODE: ṙ = r(1− r), θ̇ = 0. This system has as fixed points the origin
and the ring with radius one centered around zero, i.e., (0, 0) ∪ {(1, θ) | θ ∈ [0, 2π)}. We investigate
bifurcations caused by parametric and bump perturbations of the ring invariant manifold (see Sec. S9),
which is bounded and boundaryless. All perturbations maintain the invariant manifold (Fig. 4B).

Second, we investigated perturbations of a continuous ring attractor proposed as a model for the
head direction representation in fruitflies (Noorman et al., 2022). As this continuous ring attractor
is bounded its invariant manifold persists and, hence, no divergent orbits are created under small
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perturbations to this system. Furthermore, because the ring attractor is boundaryless it is both forward
and backward invariant, i.e. hence it is invariant and trajectories never leave the persistent invariant
manifold (Wiggins, 1994). This model is composed of N heading-tuned neurons with preferred
headings θj ∈ { 2πiN }i=1...N radians (see Supp. Sec S10). For sufficiently strong local excitation
(given by the parameter JE) and broad inhibition (JI ), this network will generate a stable bump
of activity, one corresponding to each head direction. This continuum of fixed points forms a one
dimensional manifold homeomorphic to the circle.

2 4 6 8 10
Number of fixed points

0.0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n

12
Marginally stable fixed pointConnecting orbit

2FPs 4FPs 6FPs

8FPs 10FPs

12FPs

SaddleStable fixed point Unstable fixed point

BA

Figure 4: Characterization of bifurcations of two ring attractors. (A) Perturbations to the ring attractor
(Noorman et al., 2022). The ring attractor can be perturbed in systems with an even number of
fixed points (FPs) up to 2N (stable and saddle points are paired). (B) Perturbations to a simple
implementation of a ring attractor lead to bifurcations that all leave the invariant manifold intact.

We evaluate the effect of parametric perturbations of the form W←W+V with Vi,j
iid∼ N (0, 1

100 )
on a network of size N = 6 with J∗

E = 4 and JI = −2.4 by identifying all bifurcations (Sec. S9).
We found that the ring (consisting of infinite fixed points) can be perturbed into systems with between
2 and 12 fixed points (Fig. 4A). As far as we know, this bifurcation from a ring of equilibria to a
saddle and node has not been described previously in the literature. The probability of each type
of bifurcation was numerically estimated. There are several additional co-dim 1 bifurcations with
measure zero (see Fig. S16).

4 DISCUSSION

The attractive manifold of equilibria in continuous attractor networks provides two key functions
continuous memory and propagation of gradient through time. Although the corresponding configura-
tions are measure zero, we showed that the when the invariant manifold theorem holds, the finite time
behavior of the trajectories and the gradient through time only slowly breakdown. We investigated
the neighborhood of the continuous attractor networks and analyzed diverse bifurcations in 5 example
systems. There were surprisingly diverse bifurcations which provide additional insights to vanishing
and exploding gradient regimes that the network visits in the presence of stochasticity in synapses
and learning signals. In particular, we showed that some RNNs are devoid of bifurcations that lead to
exploding gradients with non-zero measure.

As the theory predicts, our numerical experiments demonstrate the properties of loss landscape
and gradient near the fine-tuned system. However, after small perturbations, plain gradient descent
typically converges to a non-continuous attractor solution, indicating that the homeostatic restoration
of continuous attractor may be challenging. Based on our observations, we cannot conclude that
continuous attractors solutions are universally brittle. Further research on finding continuous attractor
networks that may allow restorative learning for larger perturbations in the parameter space is needed.
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SUPPLEMENTARY MATERIAL

S1 BIFURCATION ANALYSIS OF THE LINE ATTRACTORS

S1.1 UNBOUNDED LINE ATTRACTOR

Stabilty of the fixed point with full support We investigate how perturbations to the bounded line affect
the Lyapunov spectrum. We calculate the eigenspectrum of the Jacobian:

det[W ′ − (1 + λ)I] = (ϵ11 − 1− λ)(ϵ22 − 1− λ)− (ϵ12 + 1)(ϵ21 + 1)

= λ2 − (2 + ϵ11 + ϵ22)λ− ϵ11 − ϵ22 + ϵ11ϵ22 − ϵ12 − ϵ21 − ϵ12ϵ21

Let u = −(2 + ϵ11 + ϵ22) and v = −ϵ11 − ϵ22 + ϵ11ϵ22 − ϵ12 − ϵ21 − ϵ12ϵ21

There are only two types of invariant set for the perturbations of the line attractor. Both have as invariant set a
fixed point at the origin. What distinguishes them is that one type of perturbations leads to this fixed point being
stable while the other one makes it unstable.

S1.2 BOUNDED LINE ATTRACTOR

Input Parameter that determines step size along line attractor α. The size determines the maximum number
of clicks as the difference between the two channels. This pushes the input along the line “attractor" in two
opposite directions, see below.

Stability of the fixed points We perform the stability analysis for the part of the state space where Wx > 0.
There, the Jacobian is

J = −
(
1 1
1 1

)
(11)

We apply the perturbation

W ′ =

(
0 −1
−1 0

)
+ ϵ (12)

with

ϵ =

(
ϵ11 ϵ12
ϵ21 ϵ22

)
(13)

The eigenvalues are computed as

det[W ′ − (1 + λ)I] = (ϵ11 − 1− λ)(ϵ22 − 1− λ)− (ϵ12 − 1)(ϵ21 − 1)

= λ2 + (2− ϵ11 − ϵ22)λ− ϵ11 − ϵ22 + ϵ11ϵ22 + ϵ12 + ϵ21 − ϵ12ϵ21

Let u = 2− ϵ11 − ϵ22 and v = −ϵ11 − ϵ22 + ϵ11ϵ22 + ϵ12 + ϵ21 − ϵ12ϵ21

λ =
−u±

√
u2 − 4v

2
(14)

Case 1: Re(
√
u2 − 4v) < −u, then λ1,2 < 0

Case 2: Re(
√
u2 − 4v) > −u, then λ1 < 0 and λ2 > 0

Case 3: v = 0, then λ = 1
2
(−u± u), i.e., λ1 = 0 and λ2 = −u

ϵ11 = −ϵ22 + ϵ11ϵ22 + ϵ12 + ϵ21 − ϵ12ϵ21 (15)

We give some examples of the different types of perturbations to the bounded line attractor. The first type is
when the invariant set is composed of a single fixed point, for example for the perturbation:

ϵ =
1

10

(
−2 1
1 −2

)
(16)

13
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The second type is when the invariant set is composed of three fixed points:

ϵ =
1

10

(
1 −2
−2 1

)
(17)

The third type is when the invariant set is composed of two fixed points, both with partial support.

b′ =
1

10

(
1 −1

)
(18)

The fourth and final type is when the line attractor is maintained but rotated:

ϵ =
1

20

(
1 10
10 1

)
(19)

Theorem 2. All perturbations of the bounded line attractor are of the types as listed above.

Proof. We enumerate all possibilities for the dynamics of a ReLU activation network with two units. First of all,
note that there can be no limit cycle or chaotic orbits.

Now, we look at the different possible systems with fixed points. There can be at most three fixed points (?,
Corollary 5.3). There has to be at least one fixed point, because the bias is non-zero.

General form (example):

ϵ =
1

10

(
−2 1
1 −2

)
(20)

One fixed point with full support:

In this case we can assume W to be full rank.

ẋ = ReLU

[(
ϵ11 ϵ12
ϵ21 ϵ22

)(
x1

x2

)
+

(
1
1

)]
−

(
x1

x2

)
= 0

Note that x > 0 iff z1 := ϵ11x1 + (ϵ12 − 1)x2 − 1 > 0. Similarly for x2 > 0.

So for a fixed point with full support, we have(
x1

x2

)
= A−1

(
−1
−1

)
(21)

with

A :=

(
ϵ11 − 1 ϵ12 − 1
ϵ21 − 1 ϵ22 − 1

)
.

Note that it is not possible that x1 = 0 = x2.

Now define

B := A−1 =
1

detA

(
ϵ22 − 1 1− ϵ12
1− ϵ21 ϵ11 − 1

)
with

detA = ϵ11ϵ22 − ϵ11 − ϵ22 − ϵ12ϵ21 + ϵ12 + ϵ21.

Hence, we have that x1, x2 > 0 if B11 + B12 > 0, B21 + B22 > 0 and detA > 0 and B11 + B12 < 0,
B21 +B22 < 0 and detA < 0.

This can be satisfied in two ways, If detA > 0, this is satisfied if ϵ22 > ϵ12 and ϵ11 > ϵ21, while if detA > 0,
this is satisfied if ϵ22 < ϵ12 and ϵ11 < ϵ21. This gives condition 1.

Finally, we investigate the condition that specify that there are fixed points with partial support. If x1 = 0 then
(ϵ22 − 1)x2 + 1 = 0 and z1 < 0. From the equality, we get that x2 = 1

1−ϵ22
. From the inequality, we get

(ϵ12 − 1)x2 + 1 ≥ 0, i.e. 1
1−ϵ12

≥ x2. Hence,

1

1− ϵ12
≥ 1

1− ϵ22

and thus
ϵ22 ≤ ϵ12. (22)
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Similarly to have a fixed point x∗ such that x∗
2 = 0, we must have that

ϵ11 ≤ ϵ21. (23)

Equation 22 and 23 together form condition 2.

Then, we get the following conditions for the different types of bifurcations:

1. If condition 1 is violated, but condition 2 is satisfied with exactly oner strict inequality, there are two
fixed points on the boundary of the admissible quadrant.

2. If condition 1 is violated, and only one of the subconditions of condition 2 is satisfied, there is a single
fixed point on one of the axes.

3. If condition 2 is violated, there is a single fixed point with full support.

4. If both conditions are satisfied, there are three fixed points.

We now look at the possibility of the line attractor being preserved. This is the case if v = 0. It is not possible
to have a line attractor with a fixed point off of it for as there cannot be disjoint fixed points that are linearly
dependent (Morrison et al., Lemma 5.2).

S1.3 STRUCTURE OF THE PARAMETER SPACE

Table 1: Summary of the conditions for the different bifurcations.

1FP (full) 1FP (partial) 3FPs 2FPs LA

C1 ✓ ✗ ✓ ✗ ✗

C2 ✗ only Eq22 or 23 ✓ ✓ ✗

ε22 

ε21 

det A > 0

det A < 0
     3FPs

ε11 - ε12

ε11 - 1
 b =

ε12 - 1
ε11 - 1

 a =

ε 22 
= aε 21

+ b

ε22 = aε11+ b ε21 = ε11

ε21 > ε11

ε21 < ε11

det A = 0

Figure S5: A slice of the parameter space of the BLA for a fixed ϵ11 and ϵ12.

S1.3.1 PROBABILITY OF BIFURCATION TYPES

We check what proportion of the bifurcation parameter space is constituted with bifurcations of the type that
result in three fixed points.

15
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The conditions are

0 < ϵ11ϵ22 − ϵ11 − ϵ22 − ϵ12ϵ21 − ϵ12 − ϵ21,

ϵ22 ≤ ϵ12,

ϵ11 ≤ ϵ21.

Because

ϵ22 ≤ ϵ12,

ϵ11 ≤ ϵ21.

we always have that

0 < ϵ11ϵ22 − ϵ11 − ϵ22 − ϵ12ϵ21 − ϵ12 − ϵ21.

This implies that this bifurcation happens with 1
4

probability in a ϵ-ball around the BLA neural integrator with
ϵ < 1.

S1.4 FAST-SLOW FORM

We transform the state space so that the line attractor aligns with the y-axis. So, we apply the affine transformation

Rθ(x− 1
2
) with the rotation matrix Rθ =

[
cos θ − sin θ
sin θ cos θ

]
= 1√

2

[
1 1
−1 1

]
where we have set θ = −π

4
. So

we perform the transformation x → x′ = Rθ(x− 1
2
) and so we have x = R−1

θ x′ + 1
2

with R−1
θ = R−θ . Then

we get that

R−1
θ ẋ′ = ReLU

(
W (R−1

θ x′ +
1

2
) + 1

)
−R−1

θ x′ − 1

2
. (24)

For a perturbed connection matrix W =

[
ϵ −1
−1 0

]
we get

R−1
θ ẋ′ = ReLU

(
1√
2

[
ϵ −1
−1 0

]([
1 −1
1 1

]
x′ +

1

2

)
+ 1

)
− 1√

2

[
1 −1
1 1

]
x′ − 1

2
(25)

ẋ′ =

[
−1 1
1 1

](
1

2

[
ϵ− 1 −ϵ− 1
−1 1

]
x′ +

1

2
√
2

[
ϵ− 1
−1

]
+

[
1
1

]
− 1

2

[
1
1

])
− x′ (26)

ẋ′ =

([
−2 0
0 0

]
+

ϵ

2

[
1 −1
−1 1

])
x′ +

1

2
√
2

[
ϵ
−ϵ

]
(27)

S2 SMOOTHER ACTIVATION FUNCTIONS

It is well-known that activation functions (σ in Eqs. 6 and 7), which can take many forms, play a critical role in
propagating gradients effectively through the network and backwards in time (Jagtap and Karniadakis, 2023;
Ramachandran et al., 2017; Hayou et al., 2019). Activation functions that are Cr for r ≥ 1 are the ones to which
the Persistence Theorem applies. The Persistence Theorem further specifies how the smoothness of the activation
can have implications on the smoothness of the persistent invariant manifold. For situations where smoothness
of the persistent invariant manifold is of importance, smoother activation functions might be preferable, such as
the Exponential Linear Unit (ELU)(Clevert et al., 2015) or the Continuously Differentiable Exponential Linear
Units (CELU) (Barron, 2017).

16
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S3 INTERNAL AND INPUT NOISE AND NOISE LEVEL MATCHING

We investigate the effects of two other types of noise on the learning of the parameters during gradient descent
starting from the perfect solutions to the task. We investigated the effect of learning when perturbations are
induced by the backpropagated gradient which is structured by the recurrent dynamics in the following two
ways. The second type of noise is injected into the input xi,t + ϵi,t with ϵ ∼ N (0, σ). To inject noisy gradients
naturally, we added noise to the input to the first 10 time steps during the trial that were not integrated in the
target output O∗

t (Eq. 5). The third type of noise is injected into the hidden state hi,t + ϵi,t with ϵ ∼ N (0, σ)
for t = 1, . . . , T and i = 1, 2.
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Figure S6: For various values the loss was calculated for the three types of noise. The matched noise
levels were chosen based on these curves.
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S4 CONTINUOUS ATTRACTOR SOLUTIONS IN CLICK INTEGRATION TASKS
WITH NOISE IN THE WEIGHTS

For the SGD, the last output of the network after T steps was taken to calculate the loss based on the mean
squared error (MSE) over a batch of 1024 trials.
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Figure S7: Comparing three continuous attractor solutions to the click integration task for a length
of T = 100 time steps. (A) Effect of gradient descent in repairing the continuous attractor. RNNs
without gradient descent (dashed line) are shown for reference. Box plots show distribution of
the loss for the last 10 steps. Averages (thick lines) over 10 simulations (thin lines) are shown for
each network. (B) Changes to the recurrent parameters (matrix and bias), without (upper) and with
(lower) learning (with the optimal learning rates). iRNN converges to a different solution. (C) The
distribution of the MSE for different learning rates. The dip in the MSE defines the optimal learning
rate for each of the three neural integrators. (D) Single parameter perturbation showing exploding
gradients for iRNN and UBLA. (E) Distribution of gradients shows bimodal distribution for UBLA.
(F) Interleaved weight perturbations showing quick recovery for BLA and and slow for iRNN and
UBLA.
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Figure S8: Comparing three continuous attractor solutions to the click integration task for a length
of T = 1000 time steps. (A) Effect of gradient descent in repairing the continuous attractor. RNNs
without gradient descent (dashed line) are shown for reference. Box plots show distribution of the
loss for the last 10 steps. (B) Changes to the recurrent parameters (matrix and bias), without (upper)
and with (lower) learning (with the optimal learning rates). iRNN converges to a different solution.
(C) The distribution of the MSE for different learning rates. The dip in the MSE defines the optimal
learning rate for each of the three neural integrators. (D) Single parameter perturbation showing
exploding gradients for iRNN and UBLA. (E) Distribution of gradients shows bimodal distribution
for UBLA. (F) Interleaved weight perturbations showing quick recovery for BLA and and slow for
iRNN and UBLA.
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S5 STABILITY OF THE NEURAL INTEGRATORS FOR DIFFERENT LEARNING
RATES
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Figure S9: Distribution of MSE for the three noisy types for different learning rates.
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S6 TRAJECTORIES OF THE NEURAL INTEGRATORS IN THE RECURRENT
NETWORK SPACE
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Figure S10: Trajectories of learning in parameter space relative to the initial recurrent parameters.
The LAs follow a trajectory that is orthogonal to the initial parameters, but that yet decreases the
MSE.
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S7 INFLUENCE OF THE DIFFERENT NOISE TYPES ON THE FOUND SOLUTIONS
FOR THE NEURAL INTEGRATORS
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Figure S11: Distribution of parameters for the three noise types for three noise levels. Because of
relative scale of perturbation, iRNN is further away from the initial parameters with internal and
input noise. Depending on the level of the noise it performs better or worse than the LAs.

S8 CHANGES TO THE NEURAL INTEGRATORS DURING LEARNING
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Figure S12: The dynamics of the recurrent part of the integrators across learning with some example
orbits (blue lines), stable (green) and unstable (red) fixed points. A gradient step is taken after every
perturbation. Gradient steps 0, 1, 5, 10, 15, 20, 25 and 29 are shown.
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Figure S13: The dynamics of the recurrent part of the integrators across learning with some example
orbits (blue lines), stable (green) and unstable (red) fixed points. A gradient step is taken after every
5 perturbations. Gradient steps 0, 1, 5, 10, 15, 20, 25 and 29 are shown.
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Figure S14: The dynamics of the recurrent part of the integrators across learning with some example
orbits (blue lines), stable (green) and unstable (red) fixed points. 30 gradient steps are take after a
single perturbation. Gradient steps 0, 1, 5, 10, 15, 20, 25 and 29 are shown.
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Figure S15: Speed along the invariant manifold during learning. For the iRNN a slice (the diagonal)
is shown.
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S9 RING PERTURBATIONS

We define a local perturbation (i.e., a change to the ODE with compact support) through the bump function
Ψ(x) = exp

(
1

∥x∥2−1

)
for ∥x∥ < 1 and zero outside, by multiplying it with a uniform, unidirectional vector

field. All such perturbations leave at least a part of the continuous attractor intact and preserve the invariant
manifold, i.e. the parts where the fixed points disappear a slow flow appears. The parametrized perturbations are
characterized as the addition of random matrix to the connection matrix.

S10 HEADING DIRECTION NETWORK

τ ḣj = −hj +
1

N

∑
k

(W sym
jk + vinW

asym
jk )ϕ(hk) + cff , j = 1, . . . , N, (28)

In the absence of an input (vin = 0) fixed points of the system can be found analytically by considering all
submatrices W sym

σ for all subsets {σ ⊂ [n]} with[n] = {1, . . . , N}. A fixed point x∗ needs to satisfy

x∗ = −(W sym
σ )−1cff (29)

and
x∗
i < 0 for i ∈ σ. (30)

S10.1 MEASURE ZERO CO-DIMENSION 1 BIFURCATIONS

Figure S16: Measure zero co-dimension 1 bifurcations of the ring attractor network (Noorman et al.,
2022).
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S10.2 INDEPENDENCE OF NORM OF PERTURBATION ON BIFURCATION
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Figure S17: Rows show the bifurcations resulting from perturbations from the matrices with the same
direction in Fig. 4A but with different norms (columns).
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S11 TRAINING RNNS ON AN INTEGRATION TASK FROM SCRATCH

We trained vanilla RNNs with a ReLU nonlinearity for the recurrent layer and a linear output layer on the angular
velocity integration task Fig. S19. The network size varies between 50 and 200 units, initialized using a normal
distribution for the parameters. Adam optimization with β1 = 0.9 and β2 = 0.99 was employed with a batch
size of 512 and training was run until no decrease in the loss occurred for 100 epochs. The task has 256 time
steps for the training samples, and training was based on the mean squared error loss.

A B

Figure S18: The two types of found solutions. A) A line attractor with hyperbolically stable fixed
points at the end of the line. B) Saddle nodes at the ends of the line.

From an arbitrary initialization, we find that a line attractor-like structure often (8 out of 10 runs) emerged with
hyperbolically stable fixed points (Fig.S18A) when trained on a longer version of the task. For shorter trial
lengths, saddle nodes are more likely to emerge (6 out of 10 runs) at the ends of the line (Fig. S18B), meaning
that the resulting structure is not an attractor.
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S12 TRAINING RNNS ON AN ANGULAR VELOCITY INTEGRATION TASK FROM
SCRATCH

We trained vanilla RNNs with a tanh nonlinearity for the recurrent layer and a linear output layer on the angular
velocity integration task Fig. S19. The network size is 20 units, initialized using a normal distribution for the
parameters. Adam optimization with β1 = 0.9 and β2 = 0.99 was employed with a batch size of 512 and
training was run until no decrease in the loss occurred for 100 epochs. The task has 100 time steps for the
training samples, and the mean squared error loss was used.
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Figure S19: Description of the tasks. A) The angular velocity integration task. B) The output of the
angular velocity integration in the output space, color coded according to the integrated angle. An
example of an input is shown with constant velocity and it is provided until one turn is completed.
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Figure S20: Analysis steps for the distillation of the implemented computation in a trained RNN.
A) Input driven hidden trajectories for constant inputs of different magnitudes in the left (blue)
and right (red) direction. B) Projection onto the output space of the attractors found by simulation
until convergence to periodic solutions (color indicates the angular direction it maps to) with slow
points found by minimizing the speed of the hidden (square) or output (cross) dynamics. Stability is
indicated by green for stable, pink and red for saddles with 1 and 2 unstable dimensions, respectively.
C) Effective input drive shown as average vector fields for the hidden dynamics projected onto the
output space. Averages taken for a single constant input in left (blue) and right (red) directions.

For the angular velocity integration task, typical solutions have two limit cycles corresponding to the two
directions of constant inputs. The autonomous dynamics can be characterized by an (approximate) line attractor
with two (approximate) ring attractors at the ends. The found solutions Fig.S21A-C all show bounded ring-like
attractors. These solutions are all composed of two rings (Fig.S20A) connected by an (approximate) line
attractor.

The vector field (Fig. S20C) suggests that the system exhibits input driven dynamics corresponding to a limit
cycle, which would mean that the invariant manifold of the input-driven dynamics is compact.

28



Under review as a conference paper at ICLR 2024

A B C

Figure S21: A) A solution with a single limit cycle (light blue) that gets mapped onto a small subset
of the output space. B) A solution with multiple limit cycles spread around the ring attractor. C) A
solution with only fixed points spread around a ring like attractor with slow dynamics.
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