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DIFFUSION-BASED PHOTOREALISTIC BOKEH REN-
DERING FOR MOBILE DEVICES

Anonymous authors
Paper under double-blind review
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Figure 1: MagicBokeh is the first unified method specifically designed for high-zoom bokeh render-
ing in mobile devices. The inputs of real-world photos are images captured by an iPhone 13 at 5x
digital zoom. (Zoom-in for best view)

ABSTRACT

Photographs captured by mobile devices are often constrained by physical limi-
tations, i.e., small apertures, making it challenging to achieve the bokeh effects
of shallow depth-of-field. Although previous work has primarily focused on
learning-based methods to simulate bokeh effects for mobile images, they still
face challenges when processing photos captured at high digital zoom levels on
mobile devices, which often suffer from reduced resolution and degraded details.
Therefore, it is still necessary to improve the quality of these inputs before creating
the photorealistic bokeh effects, but this requirement will introduce inefficiencies
in the workflow and lead to unnecessary error accumulation. To address the afore-
mentioned issues, we propose MagicBokeh, a unified diffusion-based framework
that improves both the quality and efficiency of bokeh rendering for high-zoom
mobile photography. With the help of the proposed alternative training strategy
and focus-aware mask attention, our approach achieves a unified optimization of
bokeh rendering and super-resolution, thus improving both the controllability and
quality of mobile bokeh rendering. Additionally, we further optimize depth esti-
mation on low-quality images by degradation-aware depth module. Experiments
demonstrate that MagicBokeh efficiently simulates high-quality bokeh effects un-
der complex backgrounds, especially for digital zoom inputs from mobile devices.
Code will be made publicly available.
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1 INTRODUCTION

With the rapid advancement of mobile devices, smartphone photography has seen remarkable
progress in recent years, which has greatly improved the photo-taking experience for users. How-
ever, limited by hardware constraints, current mobile devices often struggle to produce natural bokeh
effects. Researchers have proposed many bokeh rendering methods which either rely on physical
optics models to simulate light scattering (Kraus & Strengert, 2007; Lee et al., 2010; Wadhwa et al.,
2018; Zhang et al., 2019; Sheng et al., 2024) or generate realistic bokeh effects by learning from
large-scale datasets (Alzayer et al., 2023; Ignatov et al., 2020; Peng et al., 2022b; Wang et al.,
2018). They can usually generate visually pleasing bokeh results and have been applied on mobile
devices. Despite advances in these methods, one of the major limitations is that they all assume that
the input is an all-in-focus high-quality (HQ) image. When applying these methods to images cap-
tured from a high digital zoom of the mobile camera, they often suffer from amplified noise, blurred
subject boundaries, and unrealistic texture synthesis. Moreover, the quality degradation caused by
digital zoom in mobile photography further hinders the effectiveness of existing bokeh rendering
approaches, where the focused degraded regions usually affect the aesthetics.

Amplified noise

(a)

(b)

(c)

Two-stage: error accumulation         Inefficient

Enable LR input        Single-stage        Fast & Efficient

BokehLR Input LR Bokeh

Blurred subject boundaries

LR Input SR BokehSR Bokeh

SR & BokehLR Input SR Bokeh

Figure 2: Compared with low-resolution
(LR) bokeh rendering (a) and two-stage super-
resolution (SR) bokeh rendering (b), our proposed
method (c) seamlessly integrates the SR with
bokeh rendering within a unified framework,
thereby achieving both computational efficiency
and photorealistic bokeh effects.

To address this issue, a straightforward ap-
proach is using a two-stage pipeline: perform-
ing real-world image super-resolution (Real-
ISR) first and then conducting bokeh render-
ing. However, such a naive approach results in
two main problems: Firstly, since the output of
the Real-ISR network is not always perfect, it
may introduce error accumulation. These er-
rors can be further amplified during the subse-
quent bokeh rendering process, ultimately de-
grading the overall image quality, as shown in
Fig. 1. Secondly, the two-stage method re-
quires two separate model inferences, which
affects the computational efficiency on mobile
devices. These limitations (shown in Fig. 2)
naturally lead us to consider a unified approach.

Recently, diffusion models (Ho et al., 2020;
Sohl-Dickstein et al., 2015; Song et al.,
2020a;b), such as Stable Diffusion (SD) (Rom-
bach et al., 2022), have demonstrated signifi-
cant advantages in generating fine-grained im-
age details and show remarkable generalization performance across various tasks, especially in Real-
ISR. Moreover, we have observed that images produced by generative models often contain inherent
bokeh information, indicating that these models possess the bokeh prior. This observation motivates
us to consider whether we can design a unified diffusion-based approach that improves both the
quality and efficiency of bokeh rendering for high digital zoom mobile devices.

In this paper, we present MagicBokeh, a unified diffusion-based single-step framework designed for
mobile photography that can efficiently generate bokeh effects for high-zoom photos. However, in-
tegrating Real-ISR and bokeh rendering into a unified model tends to introduce conflicting optimiza-
tion objectives between two tasks, leading to performance degradation during training. To address
this issue, we propose an alternative training strategy and focus-aware mask attention specifically
designed for our framework.

To enhance computational efficiency, we compress the computationally intensive U-Net component
in SD by well-designed block pruning. Depth Anything v2, with its powerful depth estimation
capability, has been adopted as a depth prior in bokeh rendering tasks. Nevertheless, its performance
is still challenged by image quality degradation. To address this issue, we propose a degradation-
aware depth module, which improves the robustness and accuracy of depth estimation on low-quality
(LQ) images. Experimental results demonstrate that our approach achieves valuable advancements
in bokeh rendering for high-zoom mobile photography and also performs well in related tasks, such
as refocusing. In summary, our main contributions are as follows:
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• We propose MagicBokeh, a diffusion-based single-step framework that conducts Real-ISR
and bokeh rendering simultaneously within a unified architecture.

• To further enhance high-zoom mobile bokeh rendering, we propose an alternative training
strategy with focus-aware mask attention and introduce a degradation-aware depth module
for improved depth estimation on high-zoom mobile photographs.

• Comprehensive experiments show that MagicBokeh achieves state-of-the-art (SOTA) quan-
titative and qualitative results on both synthetic and high-zoom real-world mobile pho-
tographs, highlighting its effectiveness in mobile photography.

2 RELATED WORKS

2.1 BOKEH RENDERING

Bokeh rendering refers to a computational photography technique that simulates the depth-of-field
(DoF) effect. Existing bokeh rendering methods can be categorized into classical rendering methods
and learning-based methods.
Classical Rendering Methods. Early bokeh rendering methods were primarily based on classical
computer graphics, using ray tracing (Pharr et al., 2023; Potmesil & Chakravarty, 1981) to generate
physically accurate bokeh effects. However, as the camera sampling space increased, the computa-
tional complexity increased exponentially, making these methods difficult to render fast. Subsequent
methods improve efficiency by providing depth maps and focal plane information (Barron et al.,
2015; Bertalmio et al., 2004; Soler et al., 2009; Wadhwa et al., 2018; Zhang et al., 2019; Busam
et al., 2019). DeepFocus Senaras et al. (2018) specializes in using a perfect depth map to render
realistic bokeh effects in low resolution. However, obtaining a perfect depth map in the real world is
challenging. Dr.Bokeh Sheng et al. (2024) uses an inpainting model to estimate the RGBD values of
occluded regions behind the salient object. It then simulates bokeh by computing the scattering and
focusing of light in a spherical lens system based on foreground and background images, effectively
reducing occlusion artifacts in boundary. Nevertheless, due to inaccuracies in the disparity maps,
these methods often suffer from unnatural partial occlusion artifacts or color bleeding.
Learning-based Methods. Recent research has introduced neural rendering and generative models
to address unnatural partial occlusion artifacts and color bleeding in bokeh rendering. BokehMe
(Peng et al., 2022a) first generates bokeh effects using a classical physically motivated renderer and
then employs a neural renderer to correct artifacts, mitigating the impact of imperfect disparity in-
puts. MPIB (Peng et al., 2022b) leverages an inpainting network to restore occluded background
regions and applies an adaptive aggregation operation on a multiplane image layer, enabling the
network to learn shallow DoF rendering across different focal planes. EBokehNet (Seizinger et al.,
2023) integrates lens properties as additional inputs into the neural network to control the shape
and intensity of the bokeh effect. BokehDiff (Zhu et al., 2025) is a diffusion-based lens blur ren-
dering method that achieves physically accurate results with depth-aware attention. Despite recent
advances, these methods still face significant challenges when applied directly to LQ inputs.

2.2 DIFFUSION-BASED REAL-ISR

Recent advances in generative diffusion models (Ho et al., 2020), particularly large-scale pre-trained
text-to-image models (Rombach et al., 2022), have demonstrated exceptional performance in various
downstream tasks, especially in ISR tasks (Lin et al., 2024; Xie et al., 2024; Moser et al., 2024; Yu
et al., 2024). Recent studies have increasingly focused on single-step diffusion ISR models (Wang
et al., 2024; Wu et al., 2024a; Zhang et al., 2024), which have shown great value when used on
mobile devices. SinSR (Wang et al., 2024) presents a deterministic sampling technique that stabi-
lizes the noise-image pair through consistency-preserving distillation. OSEDiff (Wu et al., 2024a)
employs variational score distillation (Wang et al., 2023b) to maintain fidelity when generating high-
resolution images. S3Diff (Zhang et al., 2024) leverages the T2I prior from SD-Turbo (Sauer et al.,
2024) to achieve HQ images in a single step. Inspired by the aforementioned methods, we integrate
the single-step Real-ISR task into the mobile bokeh rendering pipeline to enhance both generation
quality and efficiency.

3
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Figure 3: The framework of MagicBokeh. We introduce an alternative training strategy to unified
Real-ISR and bokeh rendering together. During the bokeh training, the controlnet and bokeh LoRA
layers are trainable to learn controllable bokeh rendering. During the Real-ISR training, only the SR
LoRA is trainable to learn SR. During inference, given a high-zoom mobile photo, it can generate a
disparity map through the degradation-aware depth model to guide bokeh rendering.

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW

Existing bokeh rendering methods based on generation models or lens blur rendering often rely on
HQ image input, which is not suitable for high-zoom mobile photography. Therefore, we propose
MagicBokeh, a diffusion-based framework that is highly suitable for this task while maintaining
computational efficiency. As illustrated in Fig. 3, MagicBokeh consists of two main parts: HQ
feature extraction and controllable bokeh rendering. The former extracts HQ features from LQ im-
ages, while the latter governs bokeh rendering based on the controllable bokeh rendering module
and focus-aware mask attention.
Single-Step HQ Feature Extraction. Recent diffusion-based ISR approaches (Yue & Loy, 2024;
Li et al., 2023a) have shown that directly using LQ images with little or no noise as input can sub-
stantially eliminate the uncertainty introduced by random noise sampling, while maximizing the
retention of semantic content. Therefore, we directly feed the LQ images into the HQ feature ex-
traction module without introducing any noise. Then, we inject Low-Rank Adaptation (LoRA) (Hu
et al., 2022) into both the VAE encoder (only train in the first ISR training stage) and modified
lightweight U-Net, and finetune the model to recover its HQ feature extraction capability. We em-
ploy L2 loss and LPIPS loss for supervision.
Controllable Bokeh Rendering Module. To achieve precise and controllable bokeh rendering, we
introduce ControlNet (Zhang et al., 2023) as a conditional control module. In our framework, Con-
trolNet receives a defocus map as the structural condition. Specifically, we first estimate a disparity
map from the depth estimation network. The defocus map can be calculated by

r = K |d− df | , (1)

where d represents the disparity of the pixel, df denotes the disparity of the focal position that
the users specified, K indicates the blur intensity, and r represents the blur radius of the pixel.
By integrating ControlNet, our model can generate visually plausible bokeh with controllable
depth-of-field (DoF), while preserving semantic consistency in the in-focus regions.

3.2 ALTERNATIVE TRAINING STRATEGY

When implementing end-to-end training of our MagicBokeh framework using the SR bokeh dataset
(containing paired LQ and HQ bokeh images), we observed a notable performance degradation in
the ISR of subject areas, despite the original intention to simultaneously optimize both subject super
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resolution and background bokeh rendering, as shown in the top part of Fig. 6. This degradation pri-
marily arises from the conflicting optimization objectives inherent in Real-ISR and bokeh rendering
tasks. Furthermore, the imbalance between the training samples for these tasks biases the network
toward optimizing one task at the expense of the other.

To effectively address these challenges and mitigate conflict between tasks, we propose an alterna-
tive training strategy to decouple Real-ISR from bokeh rendering. This cyclical strategy alternates
attention between different tasks. Initially, training emphasizes HQ bokeh rendering using LQ all-
in-focus images as inputs, conditioned by defocus maps to generate HQ bokeh outputs. During
this stage, the original diffusion model and pre-trained HQ feature extraction model are fixed, and
training specifically targets the ControlNet and the bokeh LoRA layers in the focus-aware mask at-
tention modules to refine the quality of bokeh rendering. Subsequently, training shifts to Real-ISR,
employing pairs of LQ and HQ images as training samples. In this phase, optimization is restricted
solely to the SR LoRA layers within the UNet of the diffusion network. We alternatively train these
two phases. Our experiments validate that by alternating the focus between bokeh rendering and
Real-ISR tasks, our proposed training strategy effectively reduces intertask interference, ultimately
achieving significant improvements in the quality of mobile bokeh rendering.

3.3 FOCUS-AWARE MASK ATTENTION

In our task, incorporating bokeh conditions directly into the generation process frequently results
in degradation of the restoration quality for focused regions. To address this issue, we propose an
approach that explicitly decouples Real-ISR from bokeh rendering, ensuring that the in-focus areas
are accurately reconstructed without being affected by the defocused regions. Notably, in text-to-
image models such as SD, self-attention layers play a crucial role in maintaining global coherence
within generated images. Previous research (Epstein et al., 2023; Kim et al., 2023b) has shown
that appropriately modulating self-attention layers can significantly enhance the controllability of
generative results.

Although employing the alternative training strategy can alleviate conflicts between these two tasks,
incorrect control still persists, particularly in image details. Consequently, we propose focus-aware
mask attention, as shown in Fig. 3c, which utilizes focus cues obtained through the defocus maps
as guidance for modulating self-attention layers. Specifically, we modulate the attention maps as
below,

Attention = softmax
(
QK⊤ +M√

d

)
V, (2)

where Q, K, V are the query, key and value of the self-attention layer, respectively. The focus
attention mask M at feature location (x, y) is

M(x,y) =

{
0 if M(x,y) = 1

−∞ otherwise
, (3)

where M is the binary result obtained by extracting the subject information from the defocus map
at the focus region and binarizing the relationships between different regions (with the same regions
being 1 and different regions being 0). This binary mask is resized to match the resolution required
by the attention layer. During the training process, we alternately trained the SR LoRA layer and
Bokeh LoRA layer. Notice that in the Real-ISR phase, the attention mask M is set to 0 to restore
the whole image.

Integrating this attention mechanism into the proposed alternative training strategy enables a clear
delineation of tasks: the ISR component is effectively directed toward prioritizing the focused sub-
ject area, whereas the bokeh rendering component is steered toward enhancing the background
bokeh effects. This complementary interplay, guided by the defocus map, further facilitates achiev-
ing effective refocusing capabilities. Our experimental results demonstrate that the focus-aware
mask attention module substantially enhances the controllability of our unified model, thus improv-
ing the overall quality of generated images.

3.4 DEGRADATION-AWARE DEPTH ESTIMATION

Despite the remarkable performance in HQ data, the accuracy of the depth estimation model deteri-
orates rapidly when applied to LQ images. The input of imperfect disparity map degrades the results
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of SR bokeh rendering. To address this issue, we propose a self-feature distillation framework to
estimate HQ-like features. We utilize the pre-trained Depth Anything v2 as the baseline network for
both the teacher and student models. During the training process, both HQ images and simulated de-
graded images are respectively input into the teacher and student networks to extract features from
encoder. Through feature distillation and output supervision, the features are expected to remain
consistent, thereby improving the performance of depth estimation. Additional result analyses are
provided in the Appendix. A.2.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Training Datasets. Following the setup of recent works (Wu et al., 2024b;a), we train our HQ
feature extraction model on the LSDIR (Li et al., 2023b) and a subset of 10k face images from
FFHQ (Karras et al., 2019). Additionally, to obtain HQ bokeh images as ground truth in bokeh
training stage, similar to MPIB (Peng et al., 2022b) and Dr.Bokeh (Sheng et al., 2024), we built a
ray-tracing-based renderer that generates lens blur through a real thin lens. More details are pro-
vided in the Appendix. A.3. During the training process, we use the degradation pipeline proposed
in Real-ESRGAN (Wang et al., 2021) to synthesize the required LQ-HQ pairs. The synthesized LQ
images are upscaled to match the HR resolution of 512 × 512 before feeding into our model.
Evaluation Metrics. We evaluate the performance of various methods using both full-reference and
no-reference metrics. First, we use PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018)
to measure the fidelity of the bokeh rendering. We also use reference-based perceptual metrics such
as DISTS (Ding et al., 2020), image generation similarity metrics like FID (Heusel et al., 2017), and
no-reference metrics including NIQE (Zhang et al., 2015), MANIQA (Yang et al., 2022), MUSIQ
(Ke et al., 2021), and CLIPIQA (Wang et al., 2023a).
Implementation Details. Our single-step HQ feature extraction model is built upon SD2.1, where
we remove all cross-attention layers and the mid-stage module in the original U-Net by well-
designed block pruning. Specifically, through experimental observations on existing single-step
Real-ISR methods (Wu et al., 2024a; Zhang et al., 2024), we observe that while text prompts pro-
vide semantic information, they offer limited benefits and significant computational overhead in
extracting HQ features in practice. Consequently, we remove the text encoder and cross-attention
modules from the pipeline, effectively eliminating prompt dependency and reducing computational
overhead. Following (Kim et al., 2023a), we streamline the U-Net architecture by removing the
entire mid-stage module, which significantly improves efficiency without compromising perceptual
quality. Then we inject LoRA modules into both the VAE encoder and the modified lightweight U-
Net, and retrain the model on the Real-ISR dataset with paired LQ-HQ images. We use the AdamW
optimizer with a learning rate set to 5e-5. Then, we adopt an alternative training strategy consisting
of two phases. In the bokeh rendering phase, we train the controllable bokeh rendering module and
the bokeh LoRA layers in the focus-aware mask attention module on the SR bokeh dataset con-
taining paired LQ and HQ bokeh images. We use the AdamW optimizer with a learning rate set to
5e-5. In the following Real-ISR phase, we train the SR LoRA layers of the UNet on the ISR dataset,
employing the AdamW optimizer with a learning rate of 5e-6. The entire training process takes
approximately 20 hours on 4 NVIDIA L40 GPUs. In addition, we apply random horizontal flipping
to enhance the diversity of the training data.

4.2 RESULTS ON SYNTHETIC DEGRADATION DATASET

Synthetic Degradation Dataset. We conduct a systematic evaluation of bokeh rendering perfor-
mance on the real-world EBB dataset. For the established EBB400 benchmark, we randomly select
400 image pairs and manually label the focal regions in each image to assess the bokeh rendering
accuracy. We applied this benchmark to evaluate images in the high-zoom mobile bokeh rendering
task, named EBB400-LQ, where image degradation was simulated using the Real-ESRGAN
pipeline. To ensure a fair comparison, since the compared methods obtain SR images after the first
stage, Depth Anything v2 is used to generate disparity maps. In contrast, our approach employs the
proposed degradation-aware depth network to directly estimate more robust disparity maps from
the original LQ inputs. All disparity maps are normalized to 0-1 during testing to ensure consistency.
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Figure 4: Qualitative comparison on EBB400-LQ. More can be seen in the Appendix. A.5.
Table 1: Quantitative comparison of performance with two-stage SOTA models on EBB400-LQ
benchmark. ISR methods use OSEDiff (*) and S3Diff(+). The inference times are tested with an
input image of size 512 × 512, and the inference time is measured on an L40s GPU. Bold and
underline denote the best and the second best result.

Method PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ MUSIQ ↑ MANIQA ↑ FID ↓ Time(s) ↓
BokehMe* 23.51 0.8459 0.3106 0.1666 57.70 0.4219 72.98 0.1648
Dr.Bokeh* 23.39 0.8488 0.3132 0.1677 52.40 0.3934 73.38 2.4021
BokehDiff* 23.65 0.8459 0.3049 0.1713 59.24 0.4251 72.65 0.3376
BokehMe+ 23.75 0.8388 0.3138 0.1606 57.54 0.4137 72.25 0.7510
Dr.Bokeh+ 23.67 0.8430 0.3134 0.1687 52.63 0.3876 73.10 2.9883
BokehDiff+ 23.83 0.8397 0.3071 0.1735 59.36 0.4259 72.54 0.9238
MagicBokeh 24.23 0.8623 0.2786 0.1600 58.83 0.4138 72.43 0.1062

Quantitative Experiment. To validate the effectiveness of our method, we compare MagicBokeh
with two-stage pipelines, including SOTA diffusion-based Real-ISR methods and bokeh render-
ing methods. Specifically, considering that recent work has focused mainly on the diffusion-based
single-step framework, we evaluate our method against Real-ISR methods including OSEDiff (Wu
et al., 2024a), and S3Diff (Zhang et al., 2024). The approaches which require depth maps always get
better bokeh effects, so we compare with bokeh rendering methods including BokehMe (Peng et al.,
2022a), Dr.Bokeh (Sheng et al., 2024) and BokehDiff (Zhu et al., 2025). As shown in the Tab. 1, our
model achieves SOTA performance compared to previous two-stage SOTA methods, demonstrating
its superior effectiveness in high digital zoom mobile bokeh rendering. Although our method per-
forms worse than BokehDiff in some non-parameterized metrics, this is due to BokehDiff generating
more focused areas in the EBB400-LQ dataset, leading to higher metric values. However, this im-
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provement is not realistic in terms of the actual bokeh effect. Therefore, we performed a qualitative
comparison in Fig. 4. The conclusion is further validated by the visual comparison in Appendix.
A.5. Through this comparison, we observe clear limitations in the performance of other two-stage
methods. Firstly, the two-stage methods require two separate model inferences, which lead to in-
efficiency. Moreover, the edge artifacts introduced during Real-ISR lead to bokeh rendering with
unnatural edge transitions. In contrast, by reusing the prior information from the diffusion model
and adopting an alternative training strategy along with focus-aware mask attention, our approach
delivers superior bokeh quality and computational efficiency compared to other methods. Bokehme
struggles to render natural partial occlusion. Dr.Bokeh incorporates an inpainting model, which in-
troduces more artifacts and blurriness. OSEDiff and S3Diff rely on semantic conditions as inputs,
which often leads to semantic errors in the Real-ISR process. Furthermore, although we do not
use any text conditions, MagicBokeh still shows strong performance in the single task of Real-ISR
compared with single-step Real-ISR methods, as illustrated in the Appendix. A.4, highlighting its
ability to restore both the realism and aesthetic quality of images.

4.3 USER STUDY ON REAL-WORLD DATASET

MagicBokeh

OSEDiff+BoMe

OSEDiff+BoDiff

S3Diff+BoMe

S3Diff+BoDiff

OSEDiff+Dr.Bo

S3Diff+Dr.Bo

7
1
.7

%

0.8%

2.7%

3.1%

Figure 5: The figure shows the human preference.

Real-world Degradation Dataset. Synthetic
degradation datasets fail to capture the com-
plex artifacts in real-world mobile photography,
such as hybrid sensor circuit noise, motion blur
from handheld shooting and lossy compression
in digital zoom. To address this, we design a
user study specifically on authentic LQ images
captured under practical mobile photography
conditions. We collected 50 real-world LQ im-
ages using an iPhone 13 pro, covering diverse
scenarios (portraits, landscapes, indoor/outdoor
scenes) with varying high digital zoom levels
(5× – 15×). The average resolution of the im-
ages is 4032 × 3024.

Quantitative Results. This study engages 50 participants from diverse backgrounds, ensuring
a wide range of perspectives. Each participant is presented with bokeh images from different
methods, and they are then asked to choose the best one from these images. As shown in Fig. 5,
our method achieves outstanding scores compare with other two-stage approaches in the HQ bokeh
rendering task for high-zoom mobile photography.

4.4 ABLATION STUDIES

In this section, we perform a comprehensive ablation study to assess the impact of each component
in MagicBokeh on the EBB400-LQ dataset.
Table 2: Ablation study on the EBB400-LQ dataset. The setting of “FAMA”, “Strategy”, and “DA
depth” are short for the focus-aware mask attention, alternate training strategy, and degradation-
aware depth module respectively. Bold and underline denote the best and the second best result.

Modules Metrics

FAMA Strategy DA depth PSNR ↑ LPIPS ↓ CLIP-IQA ↑ NIQE ↓ MUSIQ ↑ MANIQA ↑ FID ↓

% % % 24.21 0.2931 0.3743 6.0786 57.41 0.4038 73.25
% ! ! 24.22 0.2798 0.4157 5.9068 58.10 0.4065 75.23
! % ! 24.20 0.2946 0.3781 5.7076 56.08 0.3956 73.04
! ! % 24.20 0.2784 0.4209 5.8035 58.80 0.4114 75.03
! ! ! 24.23 0.2786 0.4229 5.6341 58.83 0.4138 72.43

Effect of Focus-aware Mask Attention. To validate whether focus-aware mask attention can ef-
fectively reconstruct the focal region while being unaffected by the defocused areas, we designed a
single-contrast variant model, referred to as w/o focus-aware mask attention (w/o FAMA). This vari-
ant model does not use the focal cues obtained from the defocused image to modulate self-attention,

8
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𝑤/𝑜 DA Depth 𝑤 DA Depth

𝑤/𝑜 Training Strategy MagicBokeh𝑁𝑢𝑙𝑙 𝑤/𝑜 FAMA

Depth Anything v2 DA Depth

Input

Input

Figure 6: Visual comparison of the ablation study.
instead applying attention operations only on the global image. The results are shown in Tab. 2.
As can be seen, the full model and w/o FAMA seems minor differences in PSNR, the no-reference
metrics show significant improvement in the full model. This indicates that the focus-aware mask
attention mechanism can successfully decouple the focused subject from the out-of-focus area.

Effect of Alternate Training Strategy. To verify whether the alternate training strategy improves
the quality of subject Real-ISR and the blurring effect of the defocus region, we designed another
single contrast variant model, named w/o alternative training strategy (w/o Strategy). The results
are shown in Tab. 2 and Fig. 6. As can be seen, compared to w/o strategy, the full model, which
includes the alternative training strategy, enhancing the quality of bokeh rendering.

Effect of Degradation-Aware Depth Module. To assess the contribution of degradation-aware
depth module in MagicBokeh, we input the disparity map predicted by Depth Anything v2 into the
network and conduct a comparative experiment, named w/o DA depth. To verify, the results are
listed in Tab. 2. Although there is no substantial difference in quantitative metrics between w/o DA
depth and our method, we can find improvement in qualitative comparison, as shown in bottom part
of Fig. 6. DA depth provides better depth estimation results for LQ images.

4.5 FURTHER APPLICATION

Input (Focus on coffee) Output (Refocus on chair)

Figure 7: Further application in refocusing.

While existing bokeh rendering methods as-
sume all-in-focus inputs, mobile photograph
often contain partially defocused regions due to
autofocus errors or multi-subject compositions.
Thus, reconstructing sharp image areas that are
blurred by the bokeh effect and refocusing on
new regions of interest presents a critical chal-
lenge. Our method, which is built upon LQ in-
put images, is found to generalize well to the
task of refocusing. As shown in Fig. 7, the re-
sult demonstrate that our approach significantly
produces smooth blur transitions when shifting
focus from the coffee cup to background chairs.

5 CONCLUSION

In this paper, we present MagicBokeh, a unified diffusion-based framework for high-zoom bokeh
rendering on mobile devices. Our method jointly performs Real-ISR and bokeh rendering in a uni-
fied architecture, thereby effectively overcoming the limitations of traditional two-stage pipelines.
To address the conflicting objectives between image super-resolution and bokeh rendering, we intro-
duce an alternating training strategy that enables the model to learn both tasks efficiently. Further-
more, we design two plug-and-play modules, namely controllable bokeh rendering and focus-aware
mask attention, to guide bokeh rendering and enhance subject-background separation, respectively.
And we also propose well-designed block pruning to further optimize computational efficiency. Ex-
tensive experiments and a user study demonstrate that MagicBokeh achieves SOTA results in high-
zoom mobile bokeh rendering and is well suited for real-world mobile photography applications.

9
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ETHICS STATEMENT

This study is based on publicly available datasets under their respective licenses. No new data
involving human subjects were collected. All visualizations respect privacy. We confirm that our
methods and experiments do not raise additional ethical concerns.

REPRODUCIBILITY STATEMENT

We use publicly accessible datasets, LSDIR (Li et al., 2023b), FFHQ (Karras et al., 2019), NYUv2
(Silberman et al., 2012), KITTI (Geiger et al., 2013), RealSR (Cai et al., 2019) , DrealSR (Wei
et al., 2020), PhotoMatte85 (Lin et al., 2021), RWP-636 (Yu et al., 2021), AIM-500 (Li et al., 2021)
and SA-1B (Kirillov et al., 2023). After the blind review period, we will release our codebase,
training/inference scripts, configuration files, and model checkpoints, together with step-by-step
instructions and evaluation protocols to fully reproduce all results.

REFERENCES

Hadi Alzayer, Abdullah Abuolaim, Leung Chun Chan, Yang Yang, Ying Chen Lou, Jia-Bin Huang,
and Abhishek Kar. Dc2: Dual-camera defocus control by learning to refocus. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21488–21497, 2023.

Jonathan T Barron, Andrew Adams, YiChang Shih, and Carlos Hernández. Fast bilateral-space
stereo for synthetic defocus. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4466–4474, 2015.

Marcelo Bertalmio, Pere Fort, and Daniel Sanchez-Crespo. Real-time, accurate depth of field us-
ing anisotropic diffusion and programmable graphics cards. In Proceedings. 2nd International
Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004., pp.
767–773. IEEE, 2004.

Benjamin Busam, Matthieu Hog, Steven McDonagh, and Gregory Slabaugh. Sterefo: Efficient
image refocusing with stereo vision. In Proceedings of the IEEE/CVF international conference
on computer vision workshops, pp. 0–0, 2019.

Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single
image super-resolution: A new benchmark and a new model. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 3086–3095, 2019.

Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying
structure and texture similarity. IEEE transactions on pattern analysis and machine intelligence,
44(5):2567–2581, 2020.

Dave Epstein, Allan Jabri, Ben Poole, Alexei Efros, and Aleksander Holynski. Diffusion self-
guidance for controllable image generation. Advances in Neural Information Processing Systems,
36:16222–16239, 2023.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The international journal of robotics research, 32(11):1231–1237, 2013.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Andrey Ignatov, Jagruti Patel, and Radu Timofte. Rendering natural camera bokeh effect with
deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 418–419, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale im-
age quality transformer. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 5148–5157, 2021.

Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. Bk-sdm: Architec-
turally compressed stable diffusion for efficient text-to-image generation. In Workshop on Effi-
cient Systems for Foundation Models@ ICML2023, 2023a.

Yunji Kim, Jiyoung Lee, Jin-Hwa Kim, Jung-Woo Ha, and Jun-Yan Zhu. Dense text-to-image
generation with attention modulation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 7701–7711, 2023b.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything, 2023. URL https://arxiv.org/abs/2304.02643.

Martin Kraus and Magnus Strengert. Depth-of-field rendering by pyramidal image processing. In
Computer graphics forum, volume 26, pp. 645–654. Wiley Online Library, 2007.

Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. Real-time lens blur effects and focus control.
ACM Transactions on Graphics (TOG), 29(4):1–7, 2010.

Jizhizi Li, Jing Zhang, and Dacheng Tao. Deep automatic natural image matting. arXiv preprint
arXiv:2107.07235, 2021.

Ruibin Li, Qihua Zhou, Song Guo, Jie Zhang, Jingcai Guo, Xinyang Jiang, Yifei Shen, and Zhenhua
Han. Dissecting arbitrary-scale super-resolution capability from pre-trained diffusion generative
models. arXiv preprint arXiv:2306.00714, 2023a.

Yawei Li, Kai Zhang, Jingyun Liang, Jiezhang Cao, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun
Liu, Denis Demandolx, et al. Lsdir: A large scale dataset for image restoration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1775–1787, 2023b.

Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta, Brian L Curless, Steven M Seitz, and Ira
Kemelmacher-Shlizerman. Real-time high-resolution background matting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8762–8771, 2021.

Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang,
and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In
European Conference on Computer Vision, pp. 430–448. Springer, 2024.

Brian B Moser, Arundhati S Shanbhag, Federico Raue, Stanislav Frolov, Sebastian Palacio, and
Andreas Dengel. Diffusion models, image super-resolution, and everything: A survey. IEEE
Transactions on Neural Networks and Learning Systems, 2024.

Juewen Peng, Zhiguo Cao, Xianrui Luo, Hao Lu, Ke Xian, and Jianming Zhang. Bokehme: When
neural rendering meets classical rendering. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 16283–16292, 2022a.

Juewen Peng, Jianming Zhang, Xianrui Luo, Hao Lu, Ke Xian, and Zhiguo Cao. Mpib: An mpi-
based bokeh rendering framework for realistic partial occlusion effects. In European Conference
on Computer Vision, pp. 590–607. Springer, 2022b.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering: From theory to
implementation. MIT Press, 2023.

Michael Potmesil and Indranil Chakravarty. A lens and aperture camera model for synthetic image
generation. ACM SIGGRAPH Computer Graphics, 15(3):297–305, 1981.

11

https://arxiv.org/abs/2304.02643


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. In European Conference on Computer Vision, pp. 87–103. Springer, 2024.

Tim Seizinger, Marcos V Conde, Manuel Kolmet, Tom E Bishop, and Radu Timofte. Efficient multi-
lens bokeh effect rendering and transformation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1633–1642, 2023.

Caglar Senaras, M Khalid Khan Niazi, Gerard Lozanski, and Metin N Gurcan. Deepfocus: detection
of out-of-focus regions in whole slide digital images using deep learning. PloS one, 13(10):
e0205387, 2018.

Yichen Sheng, Zixun Yu, Lu Ling, Zhiwen Cao, Xuaner Zhang, Xin Lu, Ke Xian, Haiting Lin, and
Bedrich Benes. Dr. bokeh: differentiable occlusion-aware bokeh rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4515–4525, 2024.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. In Computer Vision–ECCV 2012: 12th European Conference
on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, pp. 746–760.
Springer, 2012.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.
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A APPENDIX

In the appendix, we first provide the LLM usage statement, ethics statement, and reproducibility
statement. We then present a detailed description of Degradation-aware Depth Estimation and the
pipeline of the bokeh training dataset. Subsequently, we report additional experimental comparisons,
including quantitative comparison on Real-ISR and qualitative comparison on real-world photos.

Appendix is organized as follows:

CONTENTS

A.1 Use of LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A.2 Degradation-aware Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . 1

A.2.1 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A.2.2 Quantitative comparison of depth estimation . . . . . . . . . . . . . . . . 1

A.3 Detail of bokeh training datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

A.4 Quantitative comparison on Real-ISR . . . . . . . . . . . . . . . . . . . . . . . . 2

A.5 More Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A.1 USE OF LLMS

The LLMs are used only for language polishing and editing of the manuscript text.

A.2 DEGRADATION-AWARE DEPTH ESTIMATION

A.2.1 TRAINING DETAILS

Despite the remarkable performance in HQ data, the accuracy of the depth estimation model dete-
riorates rapidly when applied to LQ images. And the input of imperfect disparity map degrades the
results of SR bokeh rendering.
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Figure 8: The training pipeline of the degradation-
aware depth module.

To address this issue, we propose a self-feature
distillation framework to estimate HQ-like fea-
tures. As shown in Fig. 8, we utilize the pre-
trained Depth Anything v2 Large model as the
baseline network for both the teacher and the
student models. During the training process,
both HQ images and simulated degraded im-
ages are respectively input into the teacher and
student networks to extract features from en-
coder. Through feature distillation, features are
expected to remain consistent, thereby improv-
ing depth estimation performance. Simultaneously, the network’s output is supervised to obtain a
more accurate depth map.

A.2.2 QUANTITATIVE COMPARISON OF DEPTH ESTIMATION

In our experiments, we use the pre-trained Depth Anything v2 as the teacher model to generate
pseudo-labels and supervise the student model, initialized identically, within a distillation framework
that takes only RGB images as input. Specifically, we conduct our distillation experiments using a
subset of 200,000 samples from the SA-1B dataset (Kirillov et al., 2023). The Real-ESRGAN
degradation pipeline (Wang et al., 2021) is used to synthesize LQ-HQ training pairs.

To demonstrate the effectiveness of our degradation-aware depth model on degraded images, we
compare our approach with the baseline method, Depth Anything v2. Tab. 3 shows that our method
outperforms these related works on the degraded NYUv2 (Silberman et al., 2012) (for indoor scenes)
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Table 3: Quantitative comparison on the NYUv2 and KITTI datasets (seen datasets with synthetic
degradations) for “Degrade”, “Clear”, and “Average” scenarios.

Dataset Method Degrade Clear Average
AbsRel ↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑

NYUv2 Depth Anything v2 0.081 0.926 0.043 0.981 0.062 0.954
DA depth 0.068 0.946 0.047 0.976 0.058 0.961

KITTI Depth Anything v2 0.123 0.852 0.074 0.946 0.099 0.899
DA depth 0.105 0.883 0.079 0.944 0.092 0.914

and KITTI (Geiger et al., 2013) (for outdoor scenes). We use point prompts for ”Degrade”, ”Clear”
and ”Average” scenarios. ”Degrade” refers to images degraded by Real-ESRGAN, ”Clear” refers to
the original, non-degraded images, and ”Average” is the mean value of the ”Degrade” and ”Clear”
images. The bold values indicate the best performance. Through self-feature distillation, our student
model not only exhibits minimal performance degradation on clear images but also outperforms the
baseline on degraded images, thereby verifying the superiority of our method.

A.3 DETAIL OF BOKEH TRAINING DATASETS

Background

Foreground2Foreground1

Figure 9: The pipeline of data synthesis.

To obtain HQ bokeh images as ground truth in
bokeh training stage, similar to MPIB (Peng
et al., 2022b) and Dr.Bokeh (Sheng et al.,
2024), we built a ray-tracing-based renderer
that generates lens blur through a real thin lens,
as shown in Fig. 9. We first collected nearly
2k high-resolution landscape images from the
Internet to serve as our background images.
The foreground images are collected from Pho-
toMatte85 (Lin et al., 2021), RWP-636 (Yu
et al., 2021), AIM-500 (Li et al., 2021) and
websites. Each sample is randomly composed
of two selected foreground images and one background image. During the composition process,
the disparity map is set within the range from 0 to 1, the random blur parameter ranges from 0 to
32, and the disparity focus is randomly set to one of the positions in either the foreground or the
background. In order to introduce more variation in depth and create more diverse blur effects in the
training data, we randomly set the depth variation for the background.

Table 4: Quantitative comparison with state-of-the-art methods on real-world benchmarks (RealSR
(Cai et al., 2019) and DrealSR (Wei et al., 2020)). By providing a defocus map with all-zero input,
our method can generate a high-quality all-in-focus image for quantitative comparison. The best and
second-best results are highlighted in red and blue.

Datasets Methods PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ CLIP-IQA ↑ NIQE ↓ MUSIQ ↑ MANIQA ↑ FID ↓

RealSR

SinSR 26.32 0.7363 0.3195 0.2351 0.6153 6.3541 60.42 0.5366 138.64
OSEDiff 25.15 0.7341 0.2921 0.2128 0.6685 5.6528 69.11 0.6332 123.68
S3Diff 25.18 0.7269 0.2722 0.2005 0.6742 5.2612 67.82 0.6417 105.11

MagicBokeh 26.14 0.7392 0.2888 0.2192 0.6246 5.6337 67.22 0.6214 123.06

DRealSR

SinSR 28.35 0.7484 0.3689 0.2497 0.6319 6.9533 55.09 0.4881 170.18
OSEDiff 27.91 0.7834 0.2968 0.2269 0.6964 6.4907 64.65 0.5899 135.28
S3Diff 27.54 0.7491 0.3109 0.2100 0.7132 6.1935 63.93 0.6099 118.57

MagicBokeh 28.99 0.7901 0.3003 0.2220 0.6633 6.1204 62.93 0.5901 143.02

A.4 QUANTITATIVE COMPARISON ON REAL-ISR

Although our method is not specifically designed for super-resolution tasks, setting the blur intensity
K to 0 allows us to obtain all-in-focus HR images. Furthermore, despite not incorporating text
conditions, MagicBokeh still shows performance in the single task of Real-ISR, as illustrated in
Tab. 4, highlighting its ability to restore both the realism and aesthetic quality of images.

2



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

LR Input Defocus Map SR 1× blur 2× blur 3× blur

Figure 10: Given the defocus map and LR input, our method is able to gradually increase the aperture
parameter from 1x blur to 3x blur (Zoom-in for best view).

𝑳𝑹 𝒅𝒇 = 𝟎. 𝟐 𝒅𝒇 = 𝟎. 𝟒 𝒅𝒇 = 𝟎. 𝟔 𝒅𝒇 = 𝟎. 𝟖𝑺𝑹

Figure 11: Given the disparity map and LR input, our method is able to achieve dynamic adjustment
of the focus distance (Zoom-in for best view).

A.5 MORE RESULTS

Adjusting Aperture. We present the results of increased blurriness in Fig. 10. MagicBokeh suc-
cessfully achieves progressive blurriness while maintaining subject sharpness. The cases are high-
zoom real mobile device captures, and MagicBokeh generates realistic bokeh effects.

Adjusting Focus Distance. We provide examples of changing focus distance in Fig. 11. Whether
focusing on the foreground or background, our method can achieve natural super-resolution and
bokeh effects.

More Comparisons. Here, we provide more comparisons between MagicBokeh and other two-
stage pipeline to further validate the effectiveness of MagicBokeh.

First, we demonstrate more comparisons in Fig. 12. In the first example, MagicBokeh produces
bokeh effects that are closer to the Ground Truth compared to other methods, especially in the red-
boxed area. Compared to methods including BokehMe and Dr.Bokeh in the green-boxed area, our
method and BokehDiff generate sharper edges. In the second example, in terms of super-resolution,
our method produces more distinct leaf details compared to OSEDiff and S3Diff. In terms of bokeh,
our method generates the best edge effects compared to BokehDiff, BokehMe, and Dr.Bokeh. In the
third example, our method can still produce bokeh effects that are consistent with the real situation,
even in the presence of noise. We continue the demonstration of results in Fig. 13. Our method grad-
ually increases the blur with increasing defocus while keeping the focused foreground unchanged,
resulting in a more realistic effect. We present more results in Fig. 14, derived from 5x zoom im-
ages captured with an iPhone 13, demonstrating that our method is well suited for real-world mobile
photography applications.
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Figure 12: (Qualitative comparison on EBB400-LQ Zoom-in for best view).
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Figure 13: Qualitative comparison on EBB400-LQ (Zoom-in for best view).
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Real Photo OSEDiff+Bokehme

MagicBokeh S3Diff+Bokehme S3Diff+DrBokeh S3Diff+Bokehdiff

OSEDiff+DrBokeh OSEDiff+Bokehdiff

Real Photo OSEDiff+Bokehme OSEDiff+DrBokeh OSEDiff+Bokehdiff

MagicBokeh S3Diff+Bokehme S3Diff+DrBokeh S3Diff+Bokehdiff

Figure 14: Qualitative results on 5x zoom images captured with an iPhone 13.
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