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ABSTRACT

Is bigger always better for time series foundation models? With the question in
mind, we explore an alternative to training a single, large monolithic model: build-
ing a portfolio of smaller, pretrained forecasting models. By applying ensembling
or model selection over these portfolios, we achieve competitive performance on
large-scale benchmarks using much fewer parameters. We explore strategies for
designing such portfolios and find that collections of specialist models consistently
outperform portfolios of independently trained generalists. Remarkably, we demon-
strate that post-training a base model is a compute-effective approach for creating
sufficiently diverse specialists, and provide evidences that ensembling and model
selection are more compute-efficient than test-time fine-tuning.

1 INTRODUCTION

The dominant paradigm in pretrained time series models is the “bigger is better” view, supported by
evidence that larger models improve forecast accuracy. Building on this observation, recent work
has focused on scaling up both model size and training data to build better zero-shot forecasters
(Das et al., 2024; Woo et al., 2024; Ansari et al., 2024a; Shi et al., 2024; Edwards et al., 2025).
However, these large, monolithic models come with high training and inference costs, which limits
their practical use. To offset the need for ever-larger models, a promising alternative has emerged:
allocating extra compute at test time. In NLP and computer vision, this includes generating multiple
outputs for a single input and aggregating them—either by sampling from a single model (Sun et al.,
2024) or using multiple models (Mavromatis et al., 2024). These examples, which partially inspire
our work, belong to a broader class of methods that continue to achieve increasingly successful results
across domains. Nevertheless, such strategies have not yet found their way to time series forecasting.

Inspired by these developments, we explore an alternative path. Instead of scaling up a single
model, we propose to build a portfolio of smaller pretrained time series models and combine them at
test time. This strategy offers greater flexibility and efficiency, but introduces two key challenges.
First, how can we train a diverse set of models without incurring the full cost of training each one
from scratch? Second, how should we combine the models at inference time to make accurate and
efficient predictions? We address both challenges and show that this approach can match or even
outperform larger monolithic models, while reducing inference costs and enabling modular design.
More specifically, we make the following contributions.

1. We show that a portfolio of small pretrained models, each specializing on a subset of the
training corpus, can match the accuracy of large monolithic models, while being more
compute-efficient. By combining models at test time using ensembling or model selection,
our approach achieves accuracy comparable to state-of-the-art pretrained forecasters, while
dramatically reducing inference cost. We further observe that portfolios follow similar
compute–performance scaling trends as monolithic models.

2. We introduce an efficient strategy for constructing diverse model portfolios without training
each model from scratch. The approach starts by pretraining a generalist model on the full
data distribution, followed by targeted fine-tuning on data partitions defined by metadata
such as frequency and domain, obtaining specialists (see, Figure 1). This reduces overall
training time by 10x and yields a portfolio that maintains diversity and delivers accurate
forecasts.
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Figure 1: A diagram depicting the approaches explored in this work. (a) Typical setup for pretraining, where a
single large model is trained on a large corpus composed of many different datasets. At test time, the model can
be invoked zero-shot as well as with finetuning at test-time and used to obtain forecasts. (b) Building a model
portfolio by training an array of smaller models, where each specialist is trained on a single smaller corpus
representing a different modality or domain. At test time, these models are combined via fitting an ensemble
or by selecting the best model, and the selected combination (or, single model) is used for forecasting. (c)
Specialists can also be trained in two-stages, by post-training the generalist model. We demonstrate that this
approach for inducing diversity into the model portfolio results in comparable accuracy, while reducing the
training-time compute by an order of magnitude. The approach also leads to the same forecast accuracy as (a),
in return for a much smaller number of total parameters used actively for inference.

3. We explore different methods of combining pretrained portfolios at test time. Unsurprisingly,
we find that the performance of our portfolios depends on the ability to quickly identify the
best sparse combination among them in a new test task. We find that performing model
selection or greedy ensemble selection among specialists is an efficient approach when
compared to other methods of utilizing compute at test time (e.g., with fine tuning).

2 BACKGROUND AND RELATED WORK

2.1 TIME SERIES FORECASTING

The objective of time series forecasting is to predict the future H values of a time series x, given
the previous C observations. Formally, we consider a time series x = [x1, . . . , xC ] where xt ∈ R
denotes the value of the time series x at time step t. The goal of probabilistic forecasting is to
approximate the distribution of future time series values xC+1:C+H given the history x1:C with a
model pθ

pθ(xC+1:C+H |x1:C) ≈ p(xC+1:C+H |x1:C).

Forecasting approaches fall into three broad categories (Benidis et al., 2022; Januschowski et al.,
2020). Local models, such as ETS and ARIMA (Hyndman & Athanasopoulos, 2018), train separate
models, often fully determined by several parameters (∼10), for each individual time series. Global
models, including deep learning methods (Salinas et al., 2020; Rangapuram et al., 2018; Oreshkin
et al., 2020; Nie et al., 2023), learn shared parameters (∼100K) across a single dataset of multiple
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related time series (e.g., energy consumption of different households). More recently, pretrained
models such as Chronos (Ansari et al., 2024a), TimesFM (Das et al., 2024), and Moirai (Woo et al.,
2024) have adapted ideas from large language models to time series forecasting. These models are
trained on large and diverse collections of time series data and aim to generalize to new forecasting
tasks without task-specific fine-tuning. With parameter counts typically exceeding 10M, they serve
as universal forecasters capable of making accurate zero-shot predictions across a wide range of
domains. To reduce inference costs associated with such large models, Ekambaram et al. (2024)
proposed Tiny Time Mixers (TTMs)—lightweight models with around 1M parameters, specialized
for specific context and forecast settings. Our approach shares the same goal of reducing the test-time
cost, but instead of specializing a single small model per setting, we train a portfolio of small models
and select or combine them at test time.

2.2 MODEL AND FORECAST COMBINATION

Traditional model combination methods, such as bagging (Breiman, 1996a) and boosting (Freund &
Schapire, 1997), improve prediction accuracy by aggregating the outputs of multiple complementary
models. Similar ideas have been applied in time series forecasting under the name forecast combina-
tion (Wang et al., 2023b). Forecasts are often combined using weighted averages of individual model
predictions. These weights are typically shared across all time series in the dataset and are either
set uniformly or in proportion to each model’s validation performance (Pawlikowski & Chorowska,
2020). More flexible strategies learn these weights directly from data, for example using greedy
ensemble selection (Caruana et al., 2004; Shchur et al., 2023).

In the context of pretrained models, some works have explored combining multiple LLMs, such as
Mavromatis et al. (2024), which studies independently trained base models and their ensembles at
test time. Here, the authors compare methods including weighted ensembling, uniform ensembling,
and model selection. While their work is closely related to ours in the context of foundation model
portfolios, it focuses exclusively on language tasks. In contrast, we focus on probabilistic time series
forecasting, where the use of model combination and more generally test-time computation remains
largely unexplored. Furthermore, beyond comparing model combination strategies as in Mavromatis
et al. (2024), we also investigate how to build a diverse portfolio of test-time efficient models.

Another related approach for pretrained models is the mixture-of-experts (MoE) framework (Jacobs
et al., 1991; Shazeer et al., 2017), where component models and combination rules are jointly trained.
Although this is shown to be effective for reducing inference time, it limits flexibility. In contrast,
our approach trains the component models in the portfolio independently, and allows the use of
different fusion strategies at test-time. Notably, this flexibility enables the fusion rule to be adapted
according to available computational resources during inference. Additionally, our approach enhances
interpretability during the prediction by clarifying the contribution of each portfolio member, whose
training procedures are transparent.

3 CHROMA: A PORTFOLIO OF SMALL PRETRAINED FORECASTERS

In this section, we introduce our method for building portfolios of small pretrained forecasting models.
Our approach consists of two stages. In the training stage, our goal is to build a diverse collection
of small forecasting models. At test time, we combine their predictions to maximize accuracy for
the given forecasting task. Applying this methodology to the publicly available pretrained models
Chronos-Bolt (Ansari et al., 2024b), we construct our model portfolio, Chroma, which we describe in
detail below.

3.1 MODEL ARCHITECTURE

We focus on portfolios composed of models with the same architecture, each pretrained independently
on a different subset of the target distribution. The key difference is that we pretrain the full portfolio
once, ahead of time, and reuse it across tasks—just as one would with a single large pretrained model.

We build Chroma using the training setup and architectures of Chronos-Bolt (Ansari et al., 2024b),
a publicly available pretrained time series model based on the T5 encoder-decoder architecture
(Raffel et al., 2020). Both pretraining and fine-tuning use average quantile loss, consistent with the
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original Chronos-Bolt implementation. Chronos-Bolt generates multi-step-ahead quantile forecasts
and is trained on a diverse collection of time series datasets. We select this model due to its strong
benchmark performance, open-source training pipeline and data, and support for a range of model
sizes (e.g., tiny, mini), which enables flexible experimentation under different compute budgets.
We train multiple versions of the model on different training datasets to induce diversity. We focus on
smaller models ranging from 1M to 9M parameters, corresponding roughly to the tiny (9m) and
below scale. Further implementation and training details are provided in Appendix B.

3.2 BUILDING DIVERSE PORTFOLIOS

We now turn to the question of how to construct model portfolios that can be effectively combined at
test time. It is well established that ensembles benefit from diversity among their members, provided
each model is reasonably accurate (Zhou, 2012). However, diversity and individual model accuracy
often trade off against each other (Wood et al., 2023).

In the context of pretrained models, diversity must be introduced during training, as weights are
typically frozen at test time. The standard Chronos-Bolt training strategy aggregates all available
time series datasets into a single, large corpus and trains one generalist model to perform well on
average. In contrast, we aim to exploit structure in the data by explicitly training specialist (see,
(Hinton et al., 2015)) models on disjoint subsets of the training corpus. Note that these models are not
trained at once as in mixtures-of-experts or on the same data distribution but with perturbed samples
as in bagging. Instead, we train each specialist model independently on a distinct partition of the
corpus representing a different subproblem within the broader target distribution.

Specifically, we partition the data along metadata dimensions that reflect distinct characteristics of the
time series. We focus on two such dimensions: frequency and application domain. Each specialist
model is trained on a smaller subset of data defined by one of these attributes. For example, a domain-
based portfolio may include an “energy” specialist trained only on energy-related datasets, while a
frequency-based portfolio may contain an “hourly” specialist trained solely on hourly-resolution data.
In each portfolio, we also include a generalist model of identical size trained on the full corpus for
comparison. The training corpus of Chroma includes Chronos training data sets, plus some new ones
for underrepresented frequencies and domains. The partitions and statistics of the datasets used are
specified in Appendix C.

3.3 REDUCING TRAINING COST THROUGH POST-TRAINING

While forming portfolios, training all specialists from scratch on large datasets can result in significant
computational cost. To mitigate this, we introduce diversity into the portfolio through post-training:
we first train a generalist model of a given size, then fine-tune it briefly on different subsets of the
training data to produce specialist models. This avoids the overhead of training each specialist model
from random initialization.

This strategy is particularly important in our setup, where some data partitions may contain far
fewer examples than others—for example, datasets with yearly resolution typically have far fewer
observations than those with minutely resolution. In such cases, training from scratch may be
inefficient or impractical. By leveraging post-training on a shared base model, we reduce overall
training time and compute requirements while still matching the accuracy of portfolios trained
independently. The benefits of post-training become even more critical in domains with larger models.
While the largest time series models today are around 1 billion parameters, NLP models can reach
up to 1 trillion. In such regimes, training each specialist from scratch is often infeasible, making
post-training a practical and scalable alternative.

3.4 FORECAST COMBINATION AT TEST-TIME

Given a new time series dataset that was not seen by the portfolio members during training, we can
utilize the models through one of two strategies: model selection or ensembling. In the first approach,
we simply select the single best-performing model based on its accuracy on a validation set. In
the second approach, we combine the predictions from multiple models using weighted averaging
ŷens =

∑M
m=1 wm · ŷm, where the weights are determined using the ensemble selection algorithm

(Caruana et al., 2004). For completeness, we provide the full description of the ensemble selection
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algorithm in Appendix D. Both strategies depend on validation sets produced through time series
cross-validation (Hyndman & Athanasopoulos, 2018) to rank or weight the predictions in the model
portfolio.

4 EXPERIMENTS AND RESULTS

Setup. We extend the range of Chronos-Bolt model sizes to smaller variants and train portfolios
of model sizes 1m, 2m, 4m, and tiny (9m). Details of these model architectures are provided in
Appendix B. We extend the training corpus of Chronos1 and partition this new corpus across two
dimensions: frequency and domain.

For each model size, we first train a generalist using the original Chronos-Bolt corpus and a 200K-
gradient-step training procedure following the reference implementations Ansari et al. (2024b), and
incorporating mixup and synthetic data as specified in Ansari et al. (2024a). We then construct a
portfolio of specialists by further fine-tuning (i.e., post-training) the generalist weights on different
subsets of the training corpus for 1K gradient steps. In exploratory experiments, we also tested 3K,
10K, and 20K post-training steps, but observed no significant performance differences. As a result,
we did not tune this variable further or include it as an experimental factor, and we use 1K gradient
steps in our main experiments. This post-training phase amounts to only 0.5% of the generalist’s
training time, making our method of constructing specialists extremely lightweight. Each portfolio
includes the generalist and its associated specialists.

To evaluate a portfolio on a target task, we hold out the last H observations from the training set to
create a validation window. All models in the portfolio generate forecasts for this window. We then
either select the model with the lowest loss on the validation set, or fit a weighted ensemble using the
greedy ensemble selection algorithm (Caruana et al., 2004) implemented in AutoGluon (Shchur et al.,
2023). The selected model or ensemble is then applied to the test set to produce final forecasts.

Most of our results are reported on Chronos Benchmark II2 (BM2). Importantly, all datasets in the
benchmark are zero-shot examples for our models (these datasets, including their training partitions,
were not used in training of Chroma portfolios). Following the benchmark, we report the probabilistic
forecasting results using the weighted quantile loss (WQL) and point forecasting results using the
mean absolute scaled error (MASE). Finally, we also evaluate the larger Chroma variants on GIFT-
Eval3 (Aksu et al., 2024). For both benchmarks, we report aggregate performance using the geometric
mean of relative errors. Specifically, for each dataset, we divide the model’s error by that of a baseline
(Seasonal Naive unless stated otherwise), and then compute the geometric mean across datasets
(Fleming & Wallace, 1986). Further details on the experiment setup are given in Appendix B.

4.1 PERFORMANCE AND TEST-TIME EFFICIENCY

Benchmark performance compared to the state of the art. We report overall results for Chroma
on BM2 in Figure 2 (left), comparing the performance of 4m and tiny (9m) Chroma portfolios
of frequency specialists to the state of the art in pretrained time series models. We find that, despite
having as little as 4M active parameters at test time, the Chroma portfolio performs comparably to
much larger monoliths such as Moirai-1.1 Large (311M parameters) (Woo et al., 2024), TimesFM-2.0
(500M parameters) (Das et al., 2024) or Chronos-Bolt Base (205M parameters).

We also report results on the GIFT-Eval benchmark, in Figure 2 (right), including only pretrained
architectures and statistical baselines for comparison. In rolling window evaluation tasks, we perform
model selection or ensembling on the Chroma model portfolio on the first evaluation window
alone, and infer with this fixed selection across the subsequent windows. In this benchmark, too,
Chroma’s aggregated probabilistic forecasting performance over 97 tasks is close to some much larger
pretrained architectures, including TabPFN-TS (Hoo et al., 2025) which leverages significant test-time
computation for in-context learning with a tabular foundation model. Note that we report results for
TTM (Ekambaram et al., 2024) in zero-shot mode only. Moreover, in order not to misrepresent the
performance of TTM, which specializes in high-frequency time series, we omit TTM’s results on

1https://huggingface.co/datasets/autogluon/chronos_datasets
2https://huggingface.co/spaces/autogluon/fev-leaderboard
3https://huggingface.co/spaces/Salesforce/GIFT-Eval
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Figure 2: Results on Chronos Benchmark II (BM2) and GIFT-Eval. Results reported are for probabilistic
forecasting, with weighted quantile losses (WQL), scaled relative to Seasonal Naive model, aggregated across
all data sets using geometric mean. For Chroma, Best refers to performing model selection on a validation set
while Ensemble refers to the ensemble selection algorithm.

BM2 which primarily contains low-frequency time series datasets. Further details on benchmark
evaluations, including point forecasting performance, are given in Appendix G.

Portfolio design and combination method. We now investigate the impact of key design choices
in portfolio construction and test-time combination across different model sizes. To better isolate
the effect of these choices, we report results on BM2 using a different reference point: instead
of comparing to the Seasonal Naive baseline, we compute relative errors with respect to a single
generalist model of size 1m. We also include a similarly sized portfolio of generalists (models trained
with the same large corpus of data but with different random seeds).

We observe that building time series model portfolios by partitioning datasets by frequency is
preferable to partitioning them by application domain, as this results in ∼ 5% decrease in overall
MASE and ∼ 4% in WQL, across all model sizes considered (Table 1). This is consistent with
earlier work such as TTM (Ekambaram et al., 2024) who used frequency to partition datasets. When
comparing the use of ensemble vs. model selection, although ensemble selection leads to a slight
improvement across model sizes and metrics, we find the evidence for this is not as strong as our
previous conclusion. Therefore, while using ensembling to combine Chroma models can result in
improvements in accuracy, this difference may not be strong enough to justify the added computational
costs of using multiple models for inference. Finally, we observe that simply combining multiple
generalists trained using the same large data set does not result in significant performance gains over
just using a single generalist. We hypothesize this is due to variance being a negligible factor in the
test error committed by models pretrained on large corpora—an observation that can be supported
by Lin et al. (2024), who argues that current LLMs remain underfitted owing to the relatively small
number of training epochs. We discuss this observation further in Appendix F.

Scaling behavior. Having observed that our conclusions hold across different model sizes, we turn
our attention to quantifying how Chroma scales. Similar to recent works (Hoffmann et al., 2022;
Kaplan et al., 2020; Shi et al., 2024; Edwards et al., 2025), we carry out ordinary least squares fits
to the test error of Chroma (on BM2) and the number of active parameters at inference time. We
present results for model selection on the Chroma portfolio in Figure 3. We observe that despite
individually training on much smaller datasets, the overall model portfolio’s performance scales
at rates comparable to the individual generalist models. In further experiments, we found that our
training setup of post-training on generalists to obtain the portfolio is essential to this conclusion
(see, Appendix G). We therefore conclude that, provided datasets can be proportionally scaled, our
approach can be scaled up to larger model sizes to obtain even better performance.
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Table 1: Aggregated relative WQL and MASE on BM2, scaled against a single generalist model of
size 1m. The best two models for each metric and model size are given in bold.

WQL MASE
1m 2m 4m tiny 1m 2m 4m tiny

Domain Ensemble (Greedy) 0.957 0.936 0.932 0.915 0.964 0.932 0.928 0.918
Model Selection 0.963 0.950 0.939 0.923 0.973 0.948 0.933 0.930

Frequency Ensemble (Greedy) 0.926 0.898 0.890 0.896 0.910 0.884 0.878 0.887
Model Selection 0.918 0.916 0.880 0.909 0.920 0.899 0.887 0.893

Generalists Ensemble (Greedy) 0.987 0.951 0.939 0.919 0.974 0.944 0.931 0.928
Model Selection 0.990 0.966 0.942 0.944 0.979 0.961 0.935 0.941

Single Generalist None 1.000 0.977 0.960 0.958 1.000 0.971 0.962 0.961

2 3 4 5 6 7 8 9
Number of Active Parameters (millions)

0.62

0.64
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0.72

W
QL

Single Generalist ( =-0.025)***
Frequency Sp. ( =-0.013)***
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0.80
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M
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E

Single Generalist ( =-0.020)***
Frequency Sp. ( =-0.017)***
Domain Sp. ( =-0.021)***

Figure 3: Scaling behavior of Chroma portfolios. Results are presented for performing model selection from
a Chroma portfolio of domain or frequency specialists. Each individual run is for an independently trained
generalist in the portfolio, with four trials reported per experiment setting. α refers to the slope of the scaling fit,
and asterisks denote statistical significance of the fitted coefficient at the 5% level (p < 0.05). Reported results
are aggregated across BM2.

Test-time compute efficiency. Chroma delivers strong forecast accuracy, but at the cost of additional
test-time computation. Since we must either select the best model from the portfolio or combine
multiple models via greedy ensembling, each model in the portfolio must run inference on both the
validation and test sets. This raises a natural question: how does this compute overhead compare to
alternative strategies for adapting pretrained models at test time?

The simplest option is to use a single generalist model in a zero-shot manner—no adaptation, and
only one forward pass. Our approach sits in the middle: it avoids fine-tuning but requires multiple
inference passes and some lightweight model selection or combination logic. At the high end of the
compute spectrum is test-time fine-tuning, where a single generalist model is adapted to the target
task using gradient updates.

To quantify these trade-offs, we compare all three strategies—zero-shot generalist, Chroma (with
model selection or ensembling), and fine-tuned generalist—by measuring total test-time floating point
operations (FLOPs) and reporting accuracy across the board. Fine-tuning is done with 1K gradient
steps for reference. This lets us position Chroma in terms of both accuracy and compute efficiency
relative to common adaptation strategies. Our results are presented in Figure 4, where different model
sizes and combination methods are shown along the efficient frontier of accuracy vs. the total test-time
compute required. Fine-tuning a generalist model for 1K gradient steps yields strong accuracy but
requires nearly 10x more compute than simple forward passes. Chroma offers a middle ground: it
achieves competitive accuracy using a fixed portfolio of small models, with only lightweight model
selection or ensembling at test time. This places it near the center of the efficiency frontier, offering
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a favorable trade-off between accuracy and computational cost. Further fine-tuning may improve
accuracy, but it shifts the operating point toward significantly higher compute requirements.
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Figure 4: Efficient frontier of Chroma portfolios, compared to using a single generalist model without any
test-time computation (i.e., zero-shot, ×) and fine-tuning a generalist model (■). Test-time computation is
computed as the estimated FLOPs for performing model fitting, fine tuning, or model selection in addition to a
single forward pass for inference, per time series in the test set. Reported results are aggregated across BM2.

4.2 FURTHER EXPERIMENTS

Ablation studies. We perform three ablation studies summarized in Table 2. A key element in the
portfolios we consider is the inclusion of a generalist (see, e.g., Hinton et al. (2015)). We estimate
the effect of excluding the generalist on MASE and WQL errors averaged across different model
sizes, specialist types (domain vs. freq) and datasets. In both cases, we find average error increases
of ∼ 2%, while these regressions in performance are not measured to be statistically significant.

Table 2: Summary results of ablation studies. Results are given in the estimated increase in normalized
error (where seasonal naive error is 1) on BM2 for the ablation performed, and the p-value associated
with the t-test of the regression coefficient.

MASE WQL
Increase in Error p-value Increase in Error p-value

No Generalists in Portfolio 0.016 0.107 0.017 0.118
Ensemble - Performance-weighted 0.186 0.000 0.142 0.000
Ensemble - Simple Average 0.242 0.000 0.180 0.000
Specialists Trained From Scratch 0.002 0.798 -0.001 0.918

Second, we observe that the benefit of specialist portfolios comes primarily from the diversity they
introduce. However, this diversity is only useful if we combine models intelligently at test time. In
particular, our ensembles do not work simply by reducing variance through averaging, as might be
expected in settings where randomness in training dominates model differences. We confirm this in
ablation studies: both simple averaging and performance-weighted averaging (cf. Pawlikowski &
Chorowska, 2020) lead to significant performance drops when applied to our pretrained portfolios.
This contrasts with much of the prior forecasting literature, where ensembles of task-specific models
are often effective even with naive combination strategies (Wang et al., 2023b).

An essential part of our methodology in training a diverse portfolio of models is to pretrain a single
generalist before inducing diversity by post-training with different data subsets. In our final ablation
study, we compare this to training all specialists from random initializations (see, Figure 1 (b)). On
average, this does not lead to any regressions in performance. However, in scaling studies we find
that post-trained models scale better (see, Appendix G).
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Credit assignment and interpretability of the portfolio. We also investigate which specialists
are activated during ensembling or model selection for a given test task. Figure 5 illustrates this
activation pattern. The heatmaps are structured as matrix plots, where rows represent tasks and
columns represent specialists (categorized by domain or frequency). We observe that all specialists
are activated for some tasks, indicating no “mode collapse” where only a single model dominates.
Notably, when the test task shares a domain or frequency with a particular specialist, that specialist
tends to be highly activated. This suggests a practical efficiency gain: in many real-world applications,
the nature of the test-time task is known in advance. This knowledge can be leveraged to manually
select relevant specialists, thereby reducing test-time computational cost. Additionally, Figure 5 also
offers a layer of interpretability. For each task, the specialist weights provide meaningful insights that
can aid practitioners in understanding the model’s behavior.
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Figure 5: Distribution of ensemble weights for 4m specialist portfolios across distinct tasks, grouped with
respect to the their domain or frequency information.

5 CONCLUSION

In this work, we introduced Chroma: a portfolio of small, pretrained time series forecasters. Chroma
consists of specialist models, each fine-tuned on disjoint subsets of the training data from a generalist
pretrained model. When model selection or ensembling is applied at test time, Chroma achieves
competitive performance on forecasting benchmarks from Ansari et al. (2024a) and Aksu et al.
(2024), matching the accuracy of much larger monolithic models. Our experiments demonstrate the
test-time efficiency of Chroma, as well as its scalability. We believe that the methodology behind
Chroma opens a promising new direction for enhancing the accuracy of pretrained forecasting models,
especially under limited compute budgets. Furthermore, while our focus is on time series forecasting,
the underlying principles may also extend to other domains such as natural language processing and
computer vision. Our strategy offers an alternative to approaches like Best-of-N which samples from
a single base model. Instead, it proposes an inference-aware portfolio formation strategy: train a
single generalist base model, fine-tune it into a portfolio of specialized experts, and apply model
selection at test time.
Limitations and future work. We focused on test-time efficiency because inference often domi-
nates the computational budget in deployed forecasting systems. To that end, we showed that small
portfolios of pretrained models can match the performance of much larger models while requiring
substantially less compute at test time. Although we did not study the impact of the pretraining
phase in detail, our design choices follow standard practice (see Appendix B. Also, our theoretical
observations in Appendix F provides a bias-variance perspective that helps explain the observed gains
and suggests implications for the role of pretraining. Understanding how the number of training
iterations and other pretraining hyperparameters interact with our bias–variance explanation would
be a valuable direction for future research. Moreover, while we hand-crafted the specialist portfolios
using known dataset features (e.g., domain or frequency), future work could explore more principled
approaches. For instance, foundation model specialists can be formed by incorporating boosting-style
objectives (Freund & Schapire, 1997). Finally, this work focused on weighted ensembling; future
research could explore more sophisticated methods such as stacked ensembling (Breiman, 1996b)
that can lead to higher accuracy.
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APPENDIX

A ADDITIONAL LITERATURE

Prior work shows that ensembles of neural networks outperform single networks and provide better
uncertainty quantification. Specifically, it has been reported that training the same model architecture
from different random initializations is an effective strategy for sufficiently diverse portfolios Lee et al.
(2015), and deep ensembles utilize this idea Lakshminarayanan et al. (2017); Fort et al. (2019); Zaidi
et al. (2021). At the foundation-model scale, however, such work is less common. Notably, Sun et al.
(2022) builds LLM ensembles by varying random seeds, while Wang et al. (2023a) uses low-rank
adapters for resource efficiency. We adopt a similar approach while forming our generalist portfolios
and likewise observe gains over single models. However, we further show that larger improvements
can be achieved with specialist portfolios, where models are fine-tuned on targeted subsets of the
data distribution. As discussed in Appendix F, in the foundation-model regime, variance reduction
from ensembling is less decisive than improved coverage of heterogeneous data.

In time-series context, we also find that partitioning by frequency to induce specialization across
portfolio members performs particularly well. This aligns with a broader line of work that exploits
frequency-based representation and basis expansions for time-series forecasting. Namely, Darlow
et al. (2024) proposes a foundation model that predicts coefficients of sinusoidal bases for functional
decomposition, and Kim et al. (2024) represents time series directly in the frequency space. As
opposed to those methods aiming to learn a single, monolithic model, our methodology is focused
on specialization, i.e., training multiple experts on frequency-based clusters and aggregating their
predictions. In classical statistical forecasting, beyond our baselines such as Auto-ETS and Auto-
ARIMA, there are also recent methods such as FFORMA (Montero-Manso et al., 2020), which
learns to predict ensemble weights over a pool of univariate forecasters using time-series features,
and SCUM (Petropoulos & Svetunkov, 2020), which aggregates established statistical methods via
median-based fusion.

B DETAILS ON MODEL ARCHITECTURES AND HYPERPARAMETERS

We adopt Chronos-Bolt as the architecture for Chroma (Ansari et al., 2024b). Chronos-Bolt is
based on the T5 encoder-decoder architecture (Raffel et al., 2020). It chunks the historical time
series context into patches of multiple observations, as in PatchTST (Nie et al., 2023), which are
then input into the encoder. The decoder then uses the representations generated by the encoder to
directly generate quantile forecasts across multiple future steps—a method known as direct multi-
step forecasting. This differs from the original Chronos (Ansari et al., 2024a) models that rely on
autoregressive decoding. The Chronos-Bolt architecture following a standard pattern — namely,
patching the inputs, using transformer blocks, and multi-step-ahead quantile prediction — makes it
a representative choice for time series foundation models, as this pattern is similar to other recent
SOTA time-series models.

We also adopt the training methodology of Chronos-Bolt, which was trained on nearly 100B time
series observations from varying frequencies and application domains. The training objective is
the mean weighted quantile loss (WQL) over 9 equally spaced quantiles between 0.1 and 0.9.
For simplicity, we keep the same training corpus as Chronos-Bolt when training our generalist
models. When training specialists, we added new datasets to the training corpus to balance data for
underrepresented frequency and domain classes (see, Appendix C. Our generalist models are not
trained on these new datasets to remain consistent with the Chronos-Bolt setup. Although we do not
directly compare generalists and their corresponding specialists in our main experiments, we also
explored training generalists on the full specialist dataset. We have observed that this had little effect.
The performance of individual generalists, test-time fine-tuned generalists, and generalist portfolios
considered in the main paper remained largely unchanged.

Note that the models we train are smaller in size ranging from 1 million parameters to 9 million
parameters. The 9 million parameter model architecture exists in the released Chronos-Bolt and
T5-efficient line-ups as the tiny model size.4 The rest of the models were shrunk, roughly keeping

4https://huggingface.co/google/t5-efficient-tiny

13

https://huggingface.co/google/t5-efficient-tiny


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the same aspect ratio as the Chronos models. These hyperparameter choices are given in Table 3.
Importantly, we set the patch size and patch stride parameters to 16. Across all models, the number of
heads is set to 4, the dropout rate to 0.1, decay the learning rate using a triangular schedule initialized
at 10−3, and use a batch size of 256. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with
weight decay set to 0.1, gradient clipping at 1.0 and β1 = 0.98, β2 = 0.9. All models are pretrained
for 200K iterations, as outlined in (Ansari et al., 2024a). For post-training fine-tuning, as discussed in
the main paper, we perform 1K gradient update steps. For a portfolio of N specialists, this yields
a speedup of 200K× N/(200K + 1K×N ) ≈ 10x for typical portfolio sizes. This speedup applies
equally to wall-clock time, FLOPs, and GPU-hours.

Table 3: Architectural hyperparameters for the model sizes considered in the paper. dff, dkv, and d
refer to the feedforward model hidden dimension, key-value dimension, and the model (embedding)
dimension respectively. Le and Ld denote the number of layers in the encoder and decoder.

dff dkv d Ld Le

tiny 1024 64 256 4 4
4m 768 64 192 3 3
2m 640 32 160 2 2
1m 512 32 128 1 2

We trained and evaluated all models on NVIDIA A10G Tensor Core GPUs, used through AWS
EC2 G5 family of instances. For reference, our 1m, 2m, 4m, and 9m (tiny) model sizes take
1.4, 1.7, 3.3, and 4.8 hours on average to train from scratch for 200K iterations, on a single A10G
GPU. Post-training runs typically take several minutes. Anonymized code for training the models is
provided in the supplementary material.

C DETAILS ON SPECIALISTS

In order to train the models of Chroma portfolios, datasets inside the general training corpus5 as
well as additional datasets from Monash (Godahewa et al., 2021) and UCI (Asuncion et al., 2007)
repositories, are partitioned in two ways, into six partitions of domain and five partitions of frequency.
Details of these assignments, as well as some summary statistics of the data sets are provided in
Table 4.

Models trained from scratch follow the exact same training procedure as the generalist models,
including 200K training iterations, albeit with access to only a specific part of the training corpus.

For Chroma specialists, which were post-trained, we randomly selected a generalist model as the
initial weights and fine-tuned each specialist via 1K gradient steps, using the same training setup
as mentioned above. Due to computational constraints, we trained only one set of specialists for
each model size and partitioning scheme, however during experiments, we evaluated each portfolio 5
times varying the generalist in the portfolio and reported their average. Similarly, for all other results
reported on single generalists, we give an average of 5 independently trained models.

D DETAILS ON MODEL SELECTION

Ensemble selection algorithm Caruana et al. (2004) is a standard approach for forecast combination
in both point and probabilistic forecasting (Deng et al., 2022; Shchur et al., 2023). Given a set of
models producing predictions ŷ1, . . . , ŷM , where each ŷm is the tensor of predictions for all item,
time steps and quantile levels, the goal is to find optimal weights w1, . . . , wM for the ensemble
prediction ŷens =

∑M
m=1 wm · ŷm.

The ensemble selection algorithm optimizes validation loss by greedily adding models to an equally-
weighted ensemble with replacement. Since an equally-weighted ensemble with replacement is
equivalent to a weighted average with fractional weights, this can be interpreted as optimizing
weights w1, . . . , wM via coordinate-wise ascent.

5https://huggingface.co/datasets/autogluon/chronos_datasets/
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Table 4: Datasets used in training, summary statistics and and their assignments to domain and
frequency partitions.

Nr. Time Series Nr. Observations Missing Rate Avg. Length Frequency Domain

indian_power_generation 13 13,858 0.0% 1066 daily energy
wind_farms_daily 337 119,549 16.8% 355 daily energy
iowa_liquor_subset 847 1,803,263 0.0% 2129 daily retail
online_retail_I 1,742 587,893 0.0% 337 daily retail
online_retail_II 4,772 2,369,710 0.0% 497 daily retail
monash/covid_mobility 450 180,379 13.0% 401 daily transport
monash/covid_mobility_without_missing_values 450 180,379 0.0% 401 daily transport
uber_tlc_daily 262 47,422 0.0% 181 daily transport
m4_daily 4,227 10,023,836 0.0% 2371 daily various
monash/bitcoin 18 82,458 9.8% 4581 daily various
monash/bitcoin_without_missing_values 18 75,364 0.0% 4187 daily various
monash/us_births 1 7,305 0.0% 7305 daily various
monash/sunspot 1 73,924 4.4% 73924 daily weather
monash/sunspot_without_missing_values 1 73,924 0.0% 73924 daily weather
monash/temperature_rain 422 305,950 0.5% 725 daily weather
ushcn_daily 1,218 47,080,115 7.7% 38654 daily weather
monash/electricity_hourly 321 8,443,584 0.0% 26304 hourly energy
solar_1h 5,166 45,254,160 0.0% 8760 hourly energy
wind_farms_hourly 337 2,869,414 17.0% 8515 hourly energy
mexico_city_bikes 494 38,687,004 0.0% 78314 hourly transport
monash/pedestrian_counts 66 3,132,346 0.0% 47460 hourly transport
monash/rideshare 156 84,396 44.2% 541 hourly transport
taxi_1h 2,428 1,794,292 0.0% 739 hourly transport
uber_tlc_hourly 262 1,138,128 0.0% 4344 hourly transport
m4_hourly 414 373,372 0.0% 902 hourly various
monash/kdd_cup_2018 270 2,942,364 17.1% 10898 hourly weather
monash/kdd_cup_2018_without_missing_values 270 2,942,364 0.0% 10898 hourly weather
electricity_15min 370 41,936,458 0.0% 113342 subhour energy
monash/aus_solar_1min 1 493,149 0.0% 493149 subhour energy
monash/aus_wind_1min 1 493,144 0.0% 493144 subhour energy
monash/elecdemand 1 17,520 0.0% 17520 subhour energy
monash/london_smart_meters 5,560 166,528,896 0.0% 29951 subhour energy
monash/solar_10_minutes 137 7,200,720 0.0% 52560 subhour energy
monash/solar_4_seconds 1 7,397,222 0.0% 7397222 subhour energy
solar 5,166 543,049,920 0.0% 105120 subhour energy
taxi_30min 2,428 3,589,798 0.0% 1478 subhour transport
heart_rate 4 5,500 0.0% 1375 subhour various
monash/wind_4_seconds 1 7,397,147 0.0% 7397147 subhour weather
m4_monthly 48,000 11,246,411 0.0% 234 supra various
monash/m3_other 174 13,325 0.0% 77 supra various
brazil_gas_prices 187 128,471 0.0% 687 weekly energy
monash/electricity_weekly 321 50,076 0.0% 156 weekly energy
monash/solar_weekly 137 7,124 0.0% 52 weekly energy
m4_weekly 359 371,579 0.0% 1035 weekly various
monash/kaggle_web_traffic_weekly 145,063 16,537,182 0.0% 114 weekly web
weatherbench_daily 225,280 78,991,953,920 0.0% 350639 daily weather
wiki_daily_100k 100,000 274,100,000 0.0% 2741 daily web

Algorithm: Greedy Ensemble Weighting

1. Initialize weights w(0) = 0 ∈ RM .
2. For iterations j = 1, . . . , S:

(a) Select model that minimizes validation loss:

m(j) = argmin
m

L(ŷens, yval),

where ŷens uses the updated weights

(j − 1)w(j−1) + em
j

,

and em is the m-th canonical basis vector.
(b) Update weights:

w(j) =
(j − 1)w(j−1) + em(j)

j
.

3. Return final weights w(S).

In our evaluation we use S = 100 steps of ensemble selection and use the last window of H
observations in the training portion of each series as the validation set yval. As in the rest of the paper,
we use the weighted quantile loss (WQL) as the loss function L.
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E FLOPS COMPUTATION

In our test-time compute we use approximations to the total number of floating point operations
used at test time. For this, we use approximations which we define here for completeness. As in
Appendix B, let Le, Ld denote the number of layers in the encoder and decoder, and d the model
dimension respectively. We also denote T as the effective sequence length, which is the number of
tokens that are given to the encoder as the context. For our work, T = 2048

16 = 128 where 2048 is the
original sequence length and 16 is the patch size, for all models considered. We compute

FLOPsforward ≈ (Le + Ld)× T × d2 ×
(
24 +

4T

d

)
.

When model fine-tuning using backward passes are required at test time, we calculate

FLOPstrain ≈ 3× FLOPsforward,

since the backward pass usually incurs about twice the cost of the forward pass, plus some overhead.

Note we compute two numbers for test-time compute, namely, total test-time compute and amortized
compute. By the former, we refer to the total effort of performing model selection or ensembling with
a given portfolio of N models, and performing one inference pass with the resulting selection. For
example, total test time compute for performing model selection is given as (N + 1)× FLOPsforward
where the N term results from the necessity to infer with each model once during selection, and the 1
term to the single inference pass with the selected model. Similarly, for ensembling, this factor is
≈ (N + 2.5) where 2.5 is the average number of models selected for the ensemble. Finally, when
we report amortized test-time compute, we omit the N factor as the initial cost of performing the
model selection or fine-tuning will be amortized over all future inference passes using the resulting
ensemble or model.

F BIAS–VARIANCE IN FOUNDATION MODEL PORTFOLIOS

As we have seen in Table 1, portfolios composed of generalist models, each trained on the full training
distribution, yield only small performance improvements over a single generalist model. In contrast,
specialist portfolios in Chroma, whether based on frequency or domain, offer substantial gains. This
may seem counterintuitive, since each generalist model is trained on the entire training distribution
rather than a specific subset, and on average, a model from the generalist portfolio outperforms a
model from the specialist portfolio in a direct, head-to-head comparison. In this section, we offer an
explanation for this observation using the bias–variance decomposition of the expected generalization
error.

The generalization error of a model is known to be decomposable as (Vapnik, 1999)

Average Test Error = Irreducible noise + Bias + Variance.

Here, irreducible noise is inherent to the task and cannot be reduced. Typically, model combination
methods target either the bias or variance components to lower the overall error.

In a generalist portfolio, all models are trained on the same training corpus and therefore share same
biases. As a result, ensembles’ overall bias remains unchanged from that of the individual models in
the portfolio. However, such ensembles reduce variance. Indeed, if the models are independently
sampled, the variance decreases by a factor of N , where N is the number of models in the ensemble.
Note that this setup is analogous to classical bagging in ensemble learning (Breiman, 1996a; Zhou,
2012), where multiple models trained on bootstrapped subsets of the full data set are averaged to
reduce variance without affecting bias.

We argue that in the regime where pretrained time series models are trained, generalization
error due to bias dominates the error due to variance. As a result, having a generalist portfolio
does not result in significant performance gains over a single model.

To confirm this argument, we estimate the bias and variance components of the error of a single
model. To do so, we train ten distinct generalists using different random seeds following the same
training procedure outlined in Appendix B. In order to discard the “irreducible noise” component of

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

the error, we test our models on synthetic signal inputs without a noise component. Specifically, we
draw 10 thousand time series from a mixture of periodic Gaussian process kernels and offset these
with random trends and constants. On this dataset, we compute

Bias(x) =
(
f̄(x)− y

)2
Variance(x) =

1

M

M∑
i=1

(
fi(x)− f̄(x)

)2
,

where fi(x) denotes the point forecast produced by model realization i for test input x, f̄(x) is the
average forecast across all M realizations, and y represents the true value of the signal corresponding
to x over the prediction horizon. The results are provided in Table 5. Observe that over all model size
spectrum we consider in this work, the bias component of the error dominates the variance component
across all generalist models.

Table 5: Bias and variance components of the error. It can be seen that bias component dominates the
variance component across all model sizes.

Bias Variance

1m 65.305 10.067
2m 49.031 12.298
4m 22.009 6.423
tiny 20.063 8.367

Our observation for time-series foundation models aligns with the argument of Lin et al. (2024),
which states that, in current large language models, the variance component of the error becomes
strictly smaller than the bias because these models are typically trained for only one or a few epochs
on their massive training corpora, leaving them underfit.

These observations also help us understand why Chroma works so well. While building pretrained
model portfolios, Chroma trains specialist models by fine-tuning a generalist base model. Each of
these specialists reduces bias within a specific part of the overall data distribution. As a result, a
specialist portfolio consists of models with distinct biases.

Crucially, we leverage this diversity in the biases effectively through an intelligent model combination
at test time. In contrast to traditional ensembling approaches, such as bagging, which reduce variance
by averaging out randomness across models, Chroma’s advantage does not rely on variance reduction.
Instead, it operates through targeted bias reduction. For instance, when applying model selection,
it selects the most appropriate specialist for each test input, and the overall bias of the ensemble
effectively becomes equal to the minimum bias among the models in the portfolio.

Table 2 supports this perspective, as well. A simple, uniform averaging over specialist portfolios
fail to deliver performance gains comparable to model selection or greedy ensembling. This finding
stands in contrast to much of the forecast combination literature, where heterogeneous ensembles of
task-specific models typically benefit from averaging. In our case, however, the models are used in a
zero-shot manner, and require test time input specific selection to be effective. This is consistent with
our earlier observation that, in the pretrained regime, generalization error is dominated by bias rather
than variance. Since variance is already low, reducing bias through targeted specialist selection offers
a more effective way of improving performance.

G ADDITIONAL EXPERIMENT RESULTS

This section complements Section 4 by providing additional results and plots.

G.1 SCALING BEHAVIOR

As discussed in Section 4, we perform ordinary least squares fits on the test error of BM2 to analyze
the scaling behavior of Chroma. Each run corresponds to an independently trained generalist within
the portfolio, with four trials reported per experimental setting. The parameter α denotes the slope of
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the scaling fit, and asterisks indicate statistical significance of the fitted coefficient at the 5% level (p
< 0.05).

Figures 6 and 7 show the test error plotted against the number of active parameters at inference
time for model selection and ensembling on the Chroma portfolio, respectively. Indeed, the overall
portfolio performance scales at rates comparable to those of the individual generalist models.

In contrast, Figures 8 and 9 present results when the Chroma portfolio is trained from scratch, rather
than post-training. Here, as mentioned in the main paper, the behavior differs significantly. Therefore,
we conclude that post-training generalist models to form the portfolio is essential for Chroma’s
scaling behavior.

We also provide scaling plots in terms of amortized test-time compute in Figures 10, 11, 12, 13,
calculated according to Appendix E, which provide the same conclusions.
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Figure 6: Scaling behavior of Chroma portfolios. Results are presented for performing model
selection from a Chroma portfolio of domain or frequency specialists, where each of these specialists
are formed with post-training.
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Figure 7: Scaling behavior of Chroma portfolios. Results are presented for performing ensembling
on a Chroma portfolio of domain or frequency specialists, where each of these specialists are formed
with post-training.
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Figure 8: Scaling behavior of portfolios, when each of the specialists are trained from scratch. Results
are presented for performing model selection from a portfolio of domain or frequency specialists.
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Figure 9: Scaling behavior of portfolios, when each of the specialists are trained from scratch. Results
are presented for performing ensembling on a portfolio of domain or frequency specialists.
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Figure 10: Scaling behavior of Chroma portfolios with respect to the amortized test time compute,
when the specialists are formed with post-training and model selection is performed during test-time.
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Figure 11: Scaling behavior of Chroma portfolios with respect to the amortized test time compute,
when the specialists are formed with post-training and greedy ensembling is performed during test-
time.
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Figure 12: Scaling behavior of portfolios with respect to the amortized test time compute, when the
specialists are trained from scratch and model selection is performed during test-time.
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Figure 13: Scaling behavior of portfolios with respect to the amortized test time compute, when the
specialists are trained from scratch and greedy ensembling is performed during test-time.
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G.2 TEST-TIME COMPUTE EFFICIENCY

Figures 14 and 15 demonstrate the tradeoff between total test-time compute (in terms of FLOPs) and
performance. FLOPs are estimated as described in Appendix E, and incorporate the costs of model
fitting, fine-tuning, or model selection, in addition to a single forward pass for inference per item in
the test set.

Figure 14 presents results from Chroma portfolios formed through post-training, while Figure 15
shows portfolios composed of models trained from scratch. Both are compared against two baselines:
a single generalist model evaluated in a zero-shot setting (i.e., without any test-time computation,
×), and a generalist model that has been fine-tuned (■). All results are aggregated over the BM2
benchmark.

The conclusion remains the same in both figures. Chroma portfolios with frequency specialists lie
at the test-time compute-efficiency frontier, whether the specialists are formed with post-training or
trained from scratch.
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Figure 14: Total test-time compute (GFLOPs) and performance tradeoff, presented for Chroma
portfolios built through post-training.
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Figure 15: Total test-time compute (GFLOPs) and performance tradeoff, presented for portfolios
when the specialist models are trained from scratch.
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G.3 CREDIT ASSIGNMENT AND INTERPRETABILITY OF THE PORTFOLIO

In Figures 16, 17, 18, and 19, we extend the analysis from Figure 5 by applying the same methodology
to portfolios composed of model architectures 1m, 2m, 4m, and tiny, as depicted in Appendix B.
We examine which specialists are activated during ensembling for each test task. Like in Figure 5,
the heatmaps are presented as matrix plots, with rows representing tasks and columns representing
specialists (categorized by domain or frequency). Tasks are grouped according to their domain or
frequency, and the weights are aggregated across tasks and normalized per group. We can see that
our findings from Figure 5 remain consistent across portfolios of different model sizes.
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Figure 16: Distribution of ensemble weights for 1m specialist portfolios across distinct tasks.
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Figure 17: Distribution of ensemble weights for 2m specialist portfolios across distinct tasks.
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Figure 18: Distribution of ensemble weights for 4m specialist portfolios across distinct tasks.
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Figure 19: Distribution of ensemble weights for tiny specialist portfolios across distinct tasks.
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G.4 ABLATION STUDY

We perform three sets of ablations in this study, quantifying the effects of dropping generalists from
ensembles, using simple averaging as the ensembling strategy, and for training Chroma portfolio
models from scratch instead of post-training. For each study, we fit mixed linear models controlling
for the evaluation dataset, and quantify the effect of the ablation and its statistical significance. While
overall results for ablations are given in the main text, we also provide detailed results per portfolio
type and model size as well.

Table 6: Ablation study, fixed effects and p-values for removing the generalist from model selection
or ensembles for all model sizes and portfolio types.

Group WQL - Fixed Effect WQL - p-value MASE - Fixed Effect MASE - p-value

Portfolio Type domain 0.025 0.000 0.024 0.000
Portfolio Type freq 0.009 0.015 0.007 0.046
Model Size 1m 0.017 0.015 0.012 0.184
Model Size 2m 0.017 0.014 0.018 0.017
Model Size 4m 0.018 0.007 0.018 0.008
Model Size tiny 0.016 0.001 0.014 0.006
Overall N/A 0.017 0.000 0.016 0.000

Table 7: Ablation study, fixed effects and p-values for replacing greedy weighted averages with
simple and performance weighted ensembles.

Group Ensemble Type WQL - Fixed Effect WQL - p-value MASE - Fixed Effect MASE - p-value

Portfolio Type domain Perf 0.149 0.000 0.193 0.000
Portfolio Type domain Simple 0.192 0.000 0.264 0.000
Portfolio Type freq Perf 0.136 0.000 0.179 0.000
Portfolio Type freq Simple 0.167 0.000 0.221 0.000
Model Size 1m Perf 0.142 0.000 0.179 0.000
Model Size 1m Simple 0.177 0.000 0.231 0.000
Model Size 2m Perf 0.137 0.000 0.179 0.000
Model Size 2m Simple 0.172 0.000 0.232 0.000
Model Size 4m Perf 0.152 0.000 0.199 0.000
Model Size 4m Simple 0.196 0.000 0.265 0.000
Model Size tiny Perf 0.138 0.000 0.186 0.000
Model Size tiny Simple 0.174 0.000 0.241 0.000
Overall N/A Perf 0.142 0.000 0.186 0.000
Overall N/A Simple 0.180 0.000 0.242 0.000

Table 8: Ablation study, fixed effects and p-values for replacing post-training with training each
specialist from scratch.

Group WQL - Fixed Effect WQL - p-value MASE - Fixed Effect MASE - p-value

Portfolio Type domain -0.008 0.015 -0.005 0.088
Portfolio Type freq 0.007 0.032 0.008 0.002
Model Size 1m -0.002 0.695 -0.003 0.554
Model Size 2m -0.009 0.043 0.004 0.338
Model Size 4m -0.001 0.779 0.009 0.055
Model Size tiny 0.010 0.049 -0.004 0.224
Overall N/A -0.001 0.791 0.002 0.533

G.5 DETAILED BENCHMARK RESULTS

While we provide the aggregated results in the main text, in this section, we provide detailed results
for each individual dataset included in the benchmarks. Specifically, for BM2, we report the results
for WQL and MASE in Tables 9 and 10, respectively. For GIFT-Eval, WQL results are shown in
Tables 11 and 12, while MASE results are presented in Tables 13 and 14.
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Table 9: Weighted quantile losses (WQL) on Chronos Benchmark II
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Table 10: Mean absolute scaled errors (MASE) on Chronos Benchmark II
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Table 11: Weighted quantile losses (WQL) on GIFT-Eval (Part 1)
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Table 12: Weighted quantile losses (WQL) on GIFT-Eval (Part 2)

C
hr

om
a

(4
m

,
fr

eq
,

be
st

)

C
hr

om
a

(4
m

,
fr

eq
,

en
s.)

C
hr

om
a

(t
in

y,
fr

eq
,

be
st

)

C
hr

om
a

(t
in

y,
fr

eq
,

en
s.)

C
hr

on
os

B
ol

tB
as

e
C

hr
on

os
B

ol
t

Sm
al

l

C
hr

on
os

L
ar

ge
T

T
M

-R
2

Z
er

os
ho

t
Ta

bP
FN

-
T

S
T

im
es

FM
2.

0
(5

00
m

)

A
ut

o
A

R
IM

A
A

ut
o

E
T

S
Se

as
on

al
N

ai
ve

et
t1

-H
-4

80
0.

30
9

0.
31

8
0.

29
8

0.
34

3
0.

30
3

0.
29

5
0.

33
3

0.
33

9
0.

27
6

0.
28

2
0.

38
4

—
–

0.
54

0
et

t1
-H

-7
20

0.
59

2
0.

54
1

0.
30

5
0.

46
7

0.
31

1
0.

33
7

0.
35

0
0.

34
2

0.
29

0
0.

31
0

0.
43

0
—

–
0.

61
6

et
t1

-W
-8

0.
28

1
0.

25
3

0.
27

7
0.

26
0

0.
29

6
0.

29
3

0.
31

6
0.

44
8

0.
25

6
0.

27
2

0.
30

5
0.

27
7

0.
33

8
et

t2
-1

5T
-4

8
0.

07
1

0.
06

8
0.

06
4

0.
06

4
0.

06
7

0.
07

0
0.

07
2

0.
09

3
0.

07
3

0.
06

5
0.

09
6

0.
10

3
0.

09
6

et
t2

-1
5T

-4
80

0.
11

9
0.

11
5

0.
10

9
0.

10
7

0.
11

0
0.

11
9

0.
12

6
0.

12
8

0.
09

8
0.

10
5

0.
14

3
0.

32
5

0.
14

3
et

t2
-1

5T
-7

20
0.

12
1

0.
11

7
0.

11
7

0.
11

3
0.

11
1

0.
11

8
0.

14
0

0.
12

6
0.

10
1

0.
10

6
0.

16
5

0.
31

7
0.

16
5

et
t2

-D
-3

0
0.

09
6

0.
09

9
0.

09
6

0.
10

4
0.

09
4

0.
09

1
0.

09
1

0.
11

9
0.

12
9

0.
10

8
0.

12
5

0.
15

8
0.

20
5

et
t2

-H
-4

8
0.

06
6

0.
06

6
0.

06
7

0.
06

7
0.

06
3

0.
06

5
0.

07
2

0.
08

8
0.

07
0

0.
06

6
0.

08
9

0.
10

3
0.

09
4

et
t2

-H
-4

80
0.

12
9

0.
11

8
0.

12
1

0.
12

1
0.

11
5

0.
11

8
0.

12
5

0.
13

9
0.

12
8

0.
11

0
0.

24
5

0.
27

2
0.

24
1

et
t2

-H
-7

20
0.

16
9

0.
14

6
0.

12
9

0.
13

0
0.

11
7

0.
12

1
0.

13
9

0.
14

4
0.

13
6

0.
12

5
0.

27
2

0.
32

9
0.

28
7

et
t2

-W
-8

0.
09

3
0.

09
4

0.
09

9
0.

09
5

0.
08

8
0.

09
4

0.
07

1
0.

20
0

0.
12

0
0.

11
0

0.
13

6
0.

11
5

0.
16

9
hi

er
ar

ch
ic

al
-s

al
es

-D
-3

0
0.

57
7

0.
57

6
0.

58
0

0.
57

7
0.

57
6

0.
58

2
0.

59
9

0.
79

2
0.

59
3

0.
57

6
0.

73
5

0.
93

1
2.

36
0

hi
er

ar
ch

ic
al

-s
al

es
-W

-8
0.

35
0

0.
35

0
0.

35
6

0.
35

1
0.

35
3

0.
35

4
0.

36
5

0.
72

5
0.

34
2

0.
33

0
0.

48
5

0.
64

2
1.

03
0

ho
sp

ita
l-1

2
0.

05
4

0.
05

4
0.

05
4

0.
05

4
0.

05
7

0.
05

8
0.

05
7

0.
12

3
0.

05
0

0.
05

0
0.

06
0

0.
05

3
0.

06
2

je
na

-w
ea

th
er

-1
0T

-4
8

0.
03

5
0.

03
4

0.
04

6
0.

04
8

0.
03

3
0.

03
7

0.
04

4
0.

04
5

0.
03

5
0.

01
6

0.
15

5
0.

08
2

0.
15

5
je

na
-w

ea
th

er
-1

0T
-4

80
0.

05
9

0.
06

0
0.

05
8

0.
05

7
0.

05
7

0.
06

0
0.

07
5

0.
06

9
0.

05
7

0.
03

1
0.

27
7

0.
21

0
0.

27
7

je
na

-w
ea

th
er

-1
0T

-7
20

0.
06

0
0.

05
9

0.
07

0
0.

06
7

0.
06

4
0.

06
3

0.
07

7
0.

06
8

0.
05

5
0.

03
5

0.
30

4
0.

28
2

0.
30

4
je

na
-w

ea
th

er
-D

-3
0

0.
04

6
0.

04
6

0.
04

6
0.

04
6

0.
04

5
0.

04
7

0.
04

9
0.

12
4

0.
04

7
0.

05
8

0.
08

0
0.

07
4

0.
29

7
je

na
-w

ea
th

er
-H

-4
8

0.
04

3
0.

04
6

0.
04

2
0.

04
4

0.
04

2
0.

04
3

0.
04

6
0.

06
0

0.
04

3
0.

04
5

0.
14

3
0.

15
8

0.
17

3
je

na
-w

ea
th

er
-H

-4
80

0.
05

5
0.

05
5

0.
05

9
0.

05
9

0.
05

4
0.

05
8

0.
07

1
0.

07
3

0.
06

0
0.

06
6

0.
21

1
—

–
0.

48
6

je
na

-w
ea

th
er

-H
-7

20
0.

06
6

0.
07

4
0.

08
8

0.
08

3
0.

06
2

0.
06

8
0.

07
2

0.
08

4
0.

06
6

0.
06

8
0.

23
0

—
–

0.
59

8
kd

d-
cu

p-
20

18
-w

ith
-m

is
si

ng
-D

-3
0

0.
37

5
0.

36
8

0.
37

9
0.

37
5

0.
37

2
0.

37
3

0.
50

2
0.

45
2

0.
35

9
0.

37
8

0.
39

3
—

–
0.

88
8

kd
d-

cu
p-

20
18

-w
ith

-m
is

si
ng

-H
-4

8
0.

44
1

0.
39

8
0.

35
7

0.
38

0
0.

24
6

0.
26

7
0.

45
8

0.
51

4
0.

43
7

0.
37

6
0.

55
9

1.
16

0
0.

55
9

kd
d-

cu
p-

20
18

-w
ith

-m
is

si
ng

-H
-4

80
0.

45
6

0.
44

3
0.

42
3

0.
42

5
0.

30
1

0.
36

4
0.

65
8

0.
53

2
0.

46
2

0.
46

6
0.

85
1

0.
94

9
0.

94
9

kd
d-

cu
p-

20
18

-w
ith

-m
is

si
ng

-H
-7

20
0.

49
4

0.
49

8
0.

47
1

0.
47

1
0.

30
0

0.
41

9
0.

63
6

0.
54

2
0.

46
2

0.
51

8
1.

05
0

1.
25

0
1.

25
0

m
4-

da
ily

-1
4

0.
02

4
0.

02
3

0.
02

3
0.

02
2

0.
02

1
0.

02
1

0.
02

2
0.

03
5

0.
02

4
0.

02
1

0.
02

3
0.

02
9

0.
02

6
m

4-
ho

ur
ly

-4
8

0.
02

8
0.

02
9

0.
02

7
0.

02
6

0.
02

5
0.

02
0

0.
02

6
0.

04
0

0.
02

8
0.

01
1

0.
03

4
0.

07
0

0.
04

0
m

4-
m

on
th

ly
-1

8
0.

09
5

0.
09

4
0.

09
4

0.
09

3
0.

09
4

0.
09

4
0.

10
3

0.
17

7
0.

08
8

0.
06

7
0.

09
8

0.
10

0
0.

12
6

m
4-

qu
ar

te
rl

y-
8

0.
07

9
0.

07
7

0.
07

6
0.

07
5

0.
07

7
0.

07
8

0.
08

3
0.

13
9

0.
07

5
0.

06
2

0.
08

2
0.

07
9

0.
09

9
m

4-
w

ee
kl

y-
13

0.
04

3
0.

04
4

0.
04

3
0.

04
3

0.
03

8
0.

03
8

0.
03

7
0.

06
9

0.
03

6
0.

04
2

0.
05

0
0.

05
2

0.
07

3
m

4-
ye

ar
ly

-6
0.

11
8

0.
11

4
0.

12
3

0.
12

2
0.

12
1

0.
12

8
0.

13
5

0.
19

7
0.

11
3

0.
09

1
0.

13
0

0.
11

1
0.

13
8

re
st

au
ra

nt
-3

0
0.

28
7

0.
28

2
0.

27
9

0.
27

8
0.

26
4

0.
26

4
0.

27
9

0.
43

8
0.

29
7

0.
26

1
0.

36
2

—
–

0.
90

7
sa

ug
ee

nd
ay

-D
-3

0
0.

44
0

0.
43

7
0.

38
8

0.
38

7
0.

33
8

0.
35

4
0.

42
0

0.
58

9
0.

38
4

0.
40

8
0.

56
4

0.
59

6
0.

75
4

sa
ug

ee
nd

ay
-M

-1
2

0.
33

4
0.

33
4

0.
32

4
0.

37
9

0.
29

6
0.

29
3

0.
41

5
0.

40
5

0.
27

8
0.

34
2

0.
32

6
0.

32
2

0.
44

5
sa

ug
ee

nd
ay

-W
-8

0.
50

6
0.

47
9

0.
44

9
0.

44
9

0.
36

3
0.

37
2

0.
47

1
0.

69
6

0.
38

0
0.

60
1

0.
54

9
0.

89
6

0.
85

5
so

la
r-

10
T-

48
0.

65
8

0.
53

2
0.

47
5

0.
50

4
0.

51
1

0.
49

8
0.

57
5

0.
78

5
0.

54
5

0.
80

4
0.

86
0

0.
87

0
0.

86
0

so
la

r-
10

T-
48

0
0.

35
3

0.
35

3
0.

35
6

0.
35

0
0.

43
6

0.
45

3
0.

68
1

0.
57

3
0.

35
9

0.
51

6
0.

77
1

—
–

0.
77

1
so

la
r-

10
T-

72
0

0.
35

5
0.

35
5

0.
34

0
0.

33
4

0.
44

3
0.

49
7

0.
74

7
0.

54
5

0.
35

2
0.

49
8

0.
78

6
2.

93
0

0.
78

6
so

la
r-

D
-3

0
0.

28
4

0.
27

9
0.

28
1

0.
27

8
0.

28
7

0.
28

6
0.

32
8

0.
39

6
0.

26
9

0.
27

8
0.

28
2

0.
28

1
0.

75
7

so
la

r-
H

-4
8

0.
32

2
0.

32
2

0.
31

7
0.

31
6

0.
29

8
0.

30
3

0.
33

7
0.

46
8

0.
35

8
0.

40
6

0.
62

8
1.

08
0

0.
62

8
so

la
r-

H
-4

80
0.

33
6

0.
33

3
0.

33
2

0.
33

1
0.

36
8

0.
35

6
0.

35
5

0.
49

3
0.

32
4

0.
37

6
0.

55
7

2.
12

0
1.

27
0

so
la

r-
H

-7
20

0.
34

1
0.

33
9

0.
33

8
0.

34
3

0.
40

5
0.

37
3

0.
44

8
0.

51
2

0.
32

4
0.

49
3

0.
60

7
1.

72
0

1.
47

0
so

la
r-

W
-8

0.
22

7
0.

18
3

0.
13

6
0.

14
7

0.
13

3
0.

13
6

0.
16

2
0.

53
1

0.
12

4
0.

17
1

0.
15

2
0.

13
9

0.
23

6
te

m
pe

ra
tu

re
-r

ai
n-

w
ith

-m
is

si
ng

-3
0

0.
55

1
0.

55
1

0.
54

8
0.

54
8

0.
53

8
0.

54
4

0.
60

9
0.

79
1

0.
56

5
0.

58
6

0.
69

4
0.

75
4

1.
63

0
us

-b
ir

th
s-

D
-3

0
0.

02
3

0.
02

3
0.

02
2

0.
02

3
0.

02
6

0.
02

8
0.

02
3

0.
10

4
0.

01
8

0.
01

9
0.

07
4

0.
07

4
0.

14
4

us
-b

ir
th

s-
M

-1
2

0.
02

1
0.

02
1

0.
01

9
0.

02
0

0.
01

9
0.

01
6

0.
01

3
0.

03
6

0.
01

3
0.

01
1

0.
01

0
0.

01
2

0.
01

7
us

-b
ir

th
s-

W
-8

0.
01

6
0.

01
6

0.
01

5
0.

01
5

0.
01

3
0.

01
3

0.
01

0
0.

02
7

0.
01

1
0.

01
3

0.
01

8
0.

01
8

0.
02

2

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 13: Mean absolute scaled errors (MASE) on GIFT-Eval (Part 1)
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Table 14: Mean absolute scaled errors (MASE) on GIFT-Eval (Part 2)
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