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Abstract

Surging interest in deep learning from high-stakes domains has precipitated
concern over the inscrutable nature of black box neural networks. Explainable
AI (XAI) research has led to an abundance of explanation algorithms for
these black boxes. Such post hoc explainers produce human-comprehensible
explanations, however, their fidelity with respect to the model is not well
understood – explanation evaluation remains one of the most challenging issues
in XAI. In this paper, we ask a targeted but important question: can popular
feature-additive explainers (e.g., LIME, SHAP, SHAPR, MAPLE, and PDP) explain
feature-additive predictors? Herein, we evaluate such explainers on ground
truth that is analytically derived from the additive structure of a model. We
demonstrate the efficacy of our approach in understanding these explainers
applied to symbolic expressions, neural networks, and generalized additive models
on thousands of synthetic and several real-world tasks. Our results suggest that
all explainers eventually fail to correctly attribute the importance of features,
especially when a decision-making process involves feature interactions.

1 Introduction

The counterintuitive mispredictions and undesirable behaviors of black box AI systems [99, 116,
54, 117, 77] has piqued widespread interest in explainable AI (XAI) solutions, including from the
medical, financial, and the legal domains [77, 83, 105, 118]. Late interest has saturated due to
real-world consequences [90, 20, 16, 81] and regulatory pushes [36, 120, 37, 76, 29]. Accordingly,
a plethora of XAI approaches have been proposed to shed light on previously inscrutable black
boxes. However, explanations are notoriously difficult to evaluate [34]. Measuring the fidelity
of explanations has remained so unverifiable [15] that we are starting to see meta-evaluations
(quality evaluations of quality evaluation metrics of explanations of black box models) [53].
In this work, we study the evaluation of a specific but popular class of XAI methods: post
hoc feature-additive explainers, like LIME [103], SHAP [79], and PDP [41]. We ask, “can feature-
additive explainers explain feature-additive predictors?” We propose a novel explainer evaluation
methodology that overcomes many issues present in prior work. This work presents the following
contributions:
• We construct a test bed for the evaluation of feature-additive post hoc explanations against

ground truth derived analytically from feature-additive models. By definition, perfect explana-
tions should be exactly equal to this ground truth.

• To facilitate evaluation, we propose an algorithm, MatchEffects, that directly maps any
model with any amount of additive structure to feature-additive post hoc explanations.
∗Code available at github.com/craymichael/PostHocExplainerEvaluation
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• We evaluate the popular post hoc explainers LIME [103], SHAP [79], SHAPR [1], PDP [41], and
MAPLE [95] on thousands of synthetic tasks and models, as well as with neural networks and
generalized additive models on several real-world datasets.

• We demonstrate that although SHAP outperforms the other explainers, all explainers begin to
fail in the presence of higher-dimensional data, models with higher-order interactions, and
models with more interaction effects.

2 Background

Algorithms for Local Post Hoc Explanation Whereas ante hoc explainers have an intrinsic
notion of interpretability, post hoc methods serve as a surrogate explainer for a black box. There
are several classes of post hoc explanation methods, including salience maps [11, 110], local
surrogate models [79, 103], counterfactuals [128], and global interpretation techniques [132]. A
comprehensive overview can be found in [48, 85, 122, 108, 8]. However, here we strictly focus
on feature-additive local approximation [21], which is one of the most prevalent explanation
strategies. Local post hoc explainers estimate the feature importance for a single decision
whereas global explainers provide explanations of a model for an entire dataset. Explainers aim to
recover the local model response about an instance while isolating the most important features
to produce comprehensible explanations. Specifically, we consider the LIME [103], SHAP [79],
SHAPR [1], PDP [41], and MAPLE [95] explainers. The explainers are detailed in Appendix A.

Evaluation of Explainers There are three main types of evaluations: application-grounded
(real humans, real tasks), human-grounded (real humans, simplified tasks), and functionally-
grounded (no humans, proxy tasks) [34]. Human- and application-grounded evaluations are
expensive, subjective, and qualitative. However, they measure the human utility and effectiveness
of explanations. Functionally-grounded metrics are concerned with proxies for the same objectives,
but also can quantitatively score the fidelity of an explanation with respect to the model being
explained [89]. We are interested in the functionally-grounded evaluation of explanation fidelity
(correctness) in this paper. The highest-fidelity evaluations involve comparing explanations to
the ground truth explanation. For the sake of space, we abbreviate related work and elaborate
in Appendix A. In short, there are three types of ground truth checks that can be performed:
against annotations, controlled data, and white boxes [7, 89] – we are interested in the latter as
it offers the highest-fidelity evaluation of an explainer.
White box checks evaluate the correspondence between explanations and the known white box
reasoning. There are several types of evaluations:
• Feature selection approaches isolate a subset of features that the model uses, e.g., by having

the model use a subset of features globally, only considering the features leading to the
predicted leaf of a tree, or only considering the features that a rule comprises [19, 62, 61, 133].

• Feature ranking approaches identify the relative importance of each feature so they can be
ranked, such as via the coefficients of a logistic regression model [45, 103, 136].

• Inexact feature contributions methods use a proxy measure to estimate feature contributions
from a model, such as the gradient with respect to each feature in differentiable models or
the Gini impurity of trees [65, 47, 88].

• Exact feature contributions methods identify the exact amount each feature contributes to the
predicted outcome of a model with respect to a formal (and useful) definition of contribution.
Typically, and in this paper, a contribution is the amount that a feature (or subset of features)
at a particular value adds to the predicted outcome such that the sum of all contributions
totals the model prediction. For instance, the prediction could be the number of times a
non-overlapping pattern appears in an image, thus the additive contribution of each pixel is
known [84]. Alternatively, the contributions can be taken from a linear regression model [28, 72].
In [18], a connection it is shown that GAMs (with or without interaction effects) can be
recovered from Shapley values (with or without interaction effects). They demonstrate that
interaction effects with an order of two can be precisely estimated, but can only be detected
at higher orders with Shapley values in experiments.

White box checks offer the highest fidelity estimate of explanation fidelity as the form of the
model, and thus how it uses the data, is well-understood. However, the feature selection and
ranking approaches are limited in that the contribution of each feature is unknown. Exact feature
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Figure 1: High-level overview of the proposed evaluation of post hoc explainer quality. Therein,
a feature-additive post hoc explainer estimates the feature contributions of a feature-additive
model for some data X. Each fi and f̂j is a function as described in Section 3. Both the model
and the explainer produce a set of effects and contributions – those of the model are the ground
truth. To compare the model and explainer, the effects of the explainer are aligned with the
ground truth using the MatchEffects algorithm (Section 3). Thereafter, the matched effects
inform how to carry out the equivalence relations – this process allows for direct comparison of
explained contributions to the ground truth (Section 3). Finally, the fidelity of the explainer is
computed using the matched contributions – perfect explainer explanations should be exactly
equal to the ground truth explanations.

contribution approaches are also able to evaluate both feature selection and ranking. In addition,
they are more faithful to the true feature contributions within the explained model than inexact
feature contributions as no proxy is needed. Our approach fits into this category of white box
checks.
Our approach has several advantages over prior work. (1) [28, 72] define the exact feature
contributions as the coefficients of a linear regression model to evaluate the fidelity of explainers,
such as LIME and SHAP. However, this is inappropriate for these explainers and thus does not
provide an exact set of feature contributions (see Appendix A for details). We correct for
these issues in our work for all considered explainers. (2) No prior work on white box checks
has considered the case of feature interactions [84, 28, 72], which are ubiquitous among black
box models, especially neural networks. We consider models with a various number of feature
interactions and order of feature interactions. (3) Unlike prior work [84, 28, 72], we consider in
our experiments both synthetic and real-world data, both tabular and image data, as well as both
non-learnable and learnable models, including convolutional neural networks.
Further comprehensive overviews of explanation evaluation methodologies and aspects are detailed
in [7, 89, 134, 123, 92, 101] (as well as Appendix A).

3 Methodology

We propose to evaluate feature-additive explainers by comparing their explanations to the ground
truth explanations from feature-additive white box models. We provide a fair way of comparing
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Figure 2: A simple example demonstrating MatchEffects for a hypothetical medical task.
Like colors from each side of the graph can be directly compared. While no explainer evaluated
in this work explicitly detects interactions (|m̂| ≥ 2), the visual demonstrates how such explainers
are compatible with the framework.

these two explanations (sets of feature contributions) when the model has feature interactions,
or, more generally, when the explainer and model explanations comprise different sets of effects.
Figure 1 shows a high-level overview of our approach.

Feature-Additive Model & Explainer Formulation We consider a general form of
feature-additive white box models, similar to, but distinct from, generalized additive mod-
els (GAMs)2. Concise definitions of feature contributions follow naturally from its addi-
tive structure while still allowing for feature interactions, high dimensionality, and highly
nonlinear effects. Let X ∈ Rn×d be a matrix with n samples and d features, x ∈
X be a sample, D = {i}d

i=1 be the set of all feature indices, and F (·) be an addi-
tive function comprising m effects. Each effect is given by a non-additive function fj(·)

F (x) =
m∑

j=1
fj

(
xDj

)
=

m∑
j=1

Cj (1)

F̂ (x) =
m̂∑

k=1
f̂k

(
xD̂k

)
=

m̂∑
k=1

Ĉk (2)

that takes a subset of features Dj⊆D as input and yields
an additive contribution Cj to the model output as shown
in Eq. (1). In this paper, we refer to an effect by the
subset of features Dj that it comprises. If |Dj | > 1, it is
an interaction effect, otherwise it is a main effect. The
ground truth explanation is then the set of effects and
their contributions {(Dj , Cj)}m

j=1.

Explainer For explainers, we denote local estimates of the model as F̂ (·) which comprise a
summation of m̂ effects given by each f̂k(·) as in Eq. (2). Similarly, the explanation from an
explainer has the form {(D̂k, Ĉk)}m̂

k=1. The explainers evaluated in this work have m̂ ≤ d,
however, explainers with m̂ > d are compatible with our formulation and implementation.
Synthetic Models We generate synthetic models with controlled degrees of sparsity, order of
interaction, nonlinearity, and size. This allows us to study how different model characteristics
affect explanation quality. Here, each fj(·) is a composition of random non-additive unary and/or
binary operators for a random subset of features Dj . Expressions are generated based on these
parameters and we verify that the domains and ranges are in R. For example, a generated
expression with m = d = 4 and 2 dummy features could look like F (x) = x1+ex4 +log(x1x4)+ x4

x1
.

See Appendix E for details of our algorithm used to generate such models.
Learned Models We consider two types of learned models: GAMs and feature-additive neural
networks (NNs). The former is a rich yet simple model that models nonlinear effects while being
conducive for understanding feature significance [51]. Each fj(·) is a smooth nonparametric
function that is fit using splines. A link function relates the summation of each fj(·) to the target
response, such as the identity link for regression and the logit link for classification.

2This formulation notably differs from GAMs in that each fj(·) can be non-smooth.
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The feature-additive NNs we consider have the same additive structure, but each fj(·) is instead
a fully-connected NN. Each NN can have any architecture, operates on Dj , and yields a scalar
value for regression or a vector for classification. The output is the summation of each NN
with a link function similar to the GAM. This structure is related to the neural additive model
proposed in [6]. This NN formulation also holds for convolutional NNs (CNNs), which can have
a non-unary m as long as the receptive field at any layer does not cover the full image. Notably,
while the CNN operates on the image data X ∈ Rn×d1×d2×d3 , the explainers that we consider
operate on the flattened data X ∈ Rn×d1d2d3 . See Appendix B for more details.
The number of effects m and each effect Dj are selected randomly for learned models such that
m > 1, the number of matches from MatchEffects (introduced in Section 3) is >1, and the
task error is satisfactorily low.

Ground Truth Alignment: MatchEffects With our formalism, we now have a model and
an explainer, each of which produces explanations as a set of effects and their corresponding
contributions. Because there may not be a one-to-one correspondence between the two sets, we
cannot directly compare the effects. Consider the case of a model with an interaction effect, i.e.,
some |Dj | ≥ 2; if the explanation has no D̂k = Dj , then a direct comparison of explanations is
not possible. To this end, we propose the MatchEffects algorithm, which matches subsets of
effects between the model and explainer. Put simply, the algorithm finds the smallest feature
interaction effects that are common between the model and explainer explanations. For example,
if an explainer explanation contains contributions for features 1 and 2, and the model ground truth
explanation contains a contribution for the interaction effect involving both 1 and 2, then the
sum of the explainer contributions for these features is compared to the ground truth contribution.
A visual example of MatchEffects is given in Figure 2.
To achieve this matching, we consider all Dj and D̂fk

to be the left- and right-hand vertices,
respectively, of an undirected bipartite graph. Edges are added between effects with common
features. We then find the connected components of this graph to identify groups of effects
with inter-effect dependencies. If every component contains an exact match, for example, if
matchF ={{2}, {2, 3}} and matchF̂ ={{2}, {2, 3}}, then each contribution by {2} and {2, 3} will
be compared separately. Further details and algorithm illustrations are provided in Appendix A.

θ′
0 = θ0 −

∑
i

µiθi

σi
(3)

θ′
i = θi

σi
(4)

Equivalence Relations to Explainers With MatchEffects and
MaIoU defined, a direct comparison between true and explained explana-
tions is nearly possible. However, some adaptation is still required due
to the use of normalization and differing definitions of “contribution”
between explainers. Here, we bridge together these definitions. LIME
normalizes the data as z-scores, i.e., z = (xi − µi)/σi, before learning a
linear model. We then need to scale the coefficients Θ = {θi}d

i=1 of each local linear model using
the estimated means µi and standard deviations σi from the data as in Eqs. (3) and (4). In SHAP,
the notion of feature importance is the approximation of the mean-centered independent feature
contributions for an instance. The expected value E[F (x)] is estimated from the background
data SHAP receives. In order to allow for

CmatchF̂
=

∑
k∈matchF̂

f̂k(xk) +
∑

j∈matchF

E[Cj ] (5)valid comparison, we add back the expected
value of the true contribution E[Ci] esti-
mated from the same data. However, since
a 1:1 matching is not a guarantee, we must consider all effects grouped by said matching as
in Eq. (5). The same procedure applies to SHAPR. See Appendix C for the derivations of these
relations. Furthermore, LIME and MAPLE provide feature-wise explanations as the coefficients Θ of
a linear regression model. In turn, we must simply compute the product between each coefficient
and feature vector xi θi to yield the contribution to the output according to the explainer.

4 Experimental Results

We evaluate the explainers on thousands of synthetic problems and popular real-world datasets. By
varying the data and models, we identify when explainers fail, whether plausible explanations are
faithful, and other interesting trends. See Appendix B for experimental setup and implementation
details.
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Figure 3: Average cosine distances (top) and Euclidean distances (bottom) between ground
truth and explained effect contributions as a function of the number of features d and the order
of interaction effects. As the dimensionality, the degree of interactions, and the number of
interactions increase, the disagreement with ground truth grows for all explainers.

Evaluation We measure the error between the explanations of the ground truth and explainer
using a few metrics. The set of contributions comprising each explanation can be thought
of as a vector collectively, thus we can compute the distance between them after applying
MatchEffects. First considered is Euclidean distance to understand the magnitude of the
disagreement with the ground truth. To quantify the disagreement in orientation, we utilize
cosine distance. Each measure of error here is the quantified infidelity of explanations.

Synthetic Problems We first demonstrate our approach on 2,000 synthetic models that are
generated with a varied number of effects, order of interaction, number of features, degree of
nonlinearity, and number of unused (dummy) variables. The explainers are evaluated on each
model with access to the full dataset and black box access to the model. Some explainers failed
to explain some models – see Appendix B for details.
Results demonstrate the efficacy of the proposed approach in understanding explanation quality, as
well as factors that influence it when paired with the experimental design. As the dimensionality,
the degree of interactions, and the number of interactions increase, the disagreement between
ground truth and explanation grows. Figure 3 illustrates these results for all of the explained
synthetic models. Because LIME failed to explain a substantial portion of synthetic models, it
appears to improve with an increased d in the leftmost plots; in reality, it only succeeded in
explaining simpler models with a larger d. SHAP performs the best relative to the other explainers,
maintaining both a closer and more correctly-oriented explanation compared to the ground truth.
Interestingly, the ranking of LIME and MAPLE swaps when comparing average cosine and Euclidean
distances. Surprisingly, SHAPR struggles to handle interaction effects effectively – the baseline SHAP
outperforms it substantially. Appendix D includes additional analyses and figures with synthetic
models, including evaluation as a function of the number of number of interactions, number of
nonlinearities, and dummy features.

Real-World Case Studies We evaluate GAMs and feature-additive NNs on several real-world
datasets: Boston housing [50], COMPAS [9], FICO HELOC [40], and a down-sampled version
of MNIST [75]. Table 1 contains the aggregate results across all real-world datasets for the
considered models. Among the considered explainers, SHAP outperforms on all datasets and
models, often by several orders of magnitude. Surprisingly, SHAPR performs worse than SHAP, but
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Dataset Model Explainer Error
ρperf

PDP LIME MAPLE SHAP SHAPR

Boston GAM 0.340 0.709 0.652 0.001 0.111 0.995
NN 0.278 0.182 0.431 0.001 0.209 0.351

COMPAS GAM 0.821 0.781 0.863 0.000 – 0.800
NN 0.328 0.062 0.274 0.001 – 1.000

FICO GAM 0.795 0.949 0.962 0.003 – 0.200
NN 0.761 0.193 0.270 0.001 – 0.800

MNIST CNN 0.660 0.253 0.318 0.049 0.175 0.410

Table 1: Real-world explainer results on several datasets for GAMs and NNs. Here, explainer error
is the cosine distance averaged over all samples and classes, if applicable. ρperf is Spearman’s
rank correlation coefficient between the mean explanation cosine distance and explainer accuracy.
SHAPR is not implemented for data with categorical variables in this work.

still ranks well compared to the other explainers. PDP, LIME, and MAPLE produce poor explanations
in general, and all explainers struggled more with the GAMs than the considered NNs. To test
whether explainer fidelity correlates with accuracy, we compute the Spearman’s rank correlation
coefficient ρperf between the mean explanation cosine similarity (explanation fidelity) and explainer
accuracy. Recall that under the feature-additive perspective that the sum of the contributions
from an explainer approximates the model output, which can be treated as the prediction of the
explainer. The scores, shown in Table 1, demonstrate that a plausible explainer, i.e, one that
predicts accurately, does not necessarily produce faithful explanations, and vice versa.

5 Discussion

The answer to our question – whether feature-additive explainers effectively explain feature-
additive predictors – is a nuanced “no.” It depends on the application, the data, and the model.
However, typical NNs contain a greater number of interaction effects and order of interactions
than those considered here – if an explainer underperforms on feature-additive white boxes, then
it should not be expected to perform well with black box predictors.
The shortcomings of these explainers arise from their underlying assumptions, such as feature
independence and the locality of linearity. These assumptions are further impacted by the
explainer hyperparameters which require tuning dependent upon the data and model. In practice,
these knobs can be adjusted until the explanations “look right,” which is not realistic when the
most faithful hyperparameters need to be derived from the black box itself. This is especially
troubling as studies show that data scientists overtrust or do not understand interpretability
techniques [68, 71]. With the results of our study, even those practitioners who do not abuse
these explanation tools may still be mislead.
Our results corroborate findings in prior research. Post hoc explainers have been show to be
unverifiable, unfaithful, inconsistent, incomplete, intractable, unsuitable for real-time applications,
and/or untrustworthy [114, 106, 26, 10, 71, 17, 30, 22, 43]. Additionally, these methods can
be fooled [112, 32, 33, 12]. However, they may increase user trust in AI systems [24], user
performance under certain conditions [57], and trustlessly audit black boxes [23]. Nonetheless,
post hoc explanation is often argued to be unsuitable for high-stakes applications [105]. Rather,
intrinsically interpretable models should be favored [114, 106], which are more desirable to experts
and can even be more accurate than their black box counterparts in high-stakes application
domains [4, 60, 25, 52].
Future Work A natural extension of this work would be to evaluate additional explanation
methods that consider interaction effects and guide the improvement of explainer quality. We
believe that progress within this class of explainers will emerge by accounting for interdependence
between features, better defining locality, and scaling computation for high-dimensional data.
Last, we echo the arguments that XAI research needs to be rigorous with certifiable guarantees,
clear and falsifiable hypotheses, and justified generalization checks [46, 94, 74].
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A Expanded Details

Comprehensive Related Work

There are three main types of evaluations: application-grounded (real humans, real tasks), human-
grounded (real humans, simplified tasks), and functionally-grounded (no humans, proxy tasks) [34].
Human- and application-grounded evaluations are expensive, subjective, and qualitative. However,
they measure the human utility and effectiveness of explanations. Functionally-grounded metrics
are concerned with proxies for the same objectives, but also can quantitatively score the fidelity of
an explanation with respect to the model being explained [89]. The “Co-12” explanation properties
include aspects about the user (e.g., context and controllability), presentation (e.g., compactness
and confidence), and content (e.g., correctness and consistency) [89]. Whereas content-based
explanation properties evaluate desirable proxy characteristics, such as the complexity of feature
interactions (covariate complexity) or the similarity of explanations between like examples
(continuity), evaluations of correctness, or fidelity, concern nothing but the explanation faithfulness
with respect to the model being explained. If an explanation is unfaithful to the model, then the
question of human utility, trust, or otherwise is irrelevant [89, 64, 74]. Thus, we are interested in
the functionally-grounded evaluation of explanation fidelity in this paper.

Prior Evaluations of Explanation Fidelity While there are evaluation methods for post hoc
explainers that act as surrogate predictors (e.g., by knowledge distillation) and models that
jointly predict and explain [7, 89], we keep our review focused on fidelity evaluations applicable
to the explainers detailed in Section 2. Perturbation-based approaches perturb the model or
data and verify that the explanation changes proportionally to either the perturbation or the
model [7, 89]. Removal-based approaches delete or mask input feature(s) and measure the
correlation between model output change and explanation importance score [7, 89]. This can be
done with single features, or incrementally with feature ordering determined by the explanation
importance scores. The removal can also be accomplished via pixel-flipping, baseline substitutions,
zero-padding, or cropping. While these approaches guarantee that explanations have certain
desirable proxy properties, they do not guarantee that explainers are faithful to the exact model
behavior [89, 64, 74]. That is unless the model is modified to have those constraints imposed and
verified [15]. However, the question of explanation descriptive completeness of model behavior
would still remain [89]. In turn, we are interested in fidelity evaluations using ground truth
evaluations. However, this term is overloaded in the literature, so we delineate the three ways it
is used here:
• Annotation checks measure the correlation between feature importance scores and annotated

data that is deemed important to the task. Existing evaluations use human annotations,
whether it is sample-wise annotations or a crafted annotation-generation process, that evaluate
explainers via a proxy task, e.g., object localization or rationale generation [73, 87, 14, 13, 119,
107, 97, 113, 115, 38, 35, 86, 56, 129, 21]. However, this quantifies explanation plausibility
rather than fidelity with respect to the model.

• Controlled data checks involve creating a dataset (typically synthetic) such that a well-
performing model should follow some a priori reasoning. For example, this reasoning could be
a region of an image belonging to an object of interest, a set of nodes in a graph belonging
to a discriminative motif, or a subset of features that are deemed highly discriminative. Two
types of evaluations have been studied:
– Feature selection studies evaluate whether an explanation captures a subset of the important

features according to the a priori reasoning [3, 55, 69, 91, 42, 78, 80, 131, 125, 96, 98,
104, 5, 102, 130, 135].

– Feature ranking studies evaluate whether an explanation ranks the importance of (a subset
of) features according to the a priori reasoning [59, 27].

However, there is no guarantee that the model actually follows the a priori reasoning as it is
still a black-box, even if it performs well on the data.

• White box checks evaluate the correspondence between explanations and the known white
box reasoning. There are several types of evaluations that have
– Feature selection approaches isolate a subset of features that the model uses, e.g., by having

the model use a subset of features globally, only considering the features leading to the
predicted leaf of a tree, or only considering the features that a rule comprises [19, 62, 61, 133].
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– Feature ranking approaches identify the relative importance of each feature so they can be
ranked, such as via the coefficients of a logistic regression model [45, 103, 136].

– Inexact feature contributions methods use a proxy measure to estimate feature contributions
from a model, such as the gradient with respect to each feature in differentiable models or
the Gini impurity of trees [65, 47, 88].

– Exact feature contributions methods identify the exact amount each feature contributes
to the predicted outcome of a model with respect to a formal (and useful) definition of
contribution. Typically, and in this paper, a contribution is the amount that a feature
(or subset of features) at a particular value adds to the predicted outcome such that the
sum of all contributions totals the model prediction. For instance, the prediction could
be the number of times a non-overlapping pattern appears in an image, thus the additive
contribution of each pixel is known [84]. Alternatively, the contributions can be taken
from a linear regression model [28, 72]. In [18], a connection it is shown that GAMs (with
or without interaction effects) can be recovered from Shapley values (with or without
interaction effects). They demonstrate that interaction effects with an order of two can
be precisely estimated, but can only be detected at higher orders with Shapley values in
experiments.

White box checks offer the highest fidelity estimate of explanation fidelity as the form of the
model, and thus how it uses the data, is well-understood. However, the feature selection and
ranking approaches are limited in that the contribution of each feature is unknown. Exact
feature contribution approaches are also able to evaluate both feature selection and ranking.
In addition, they are more faithful to the true feature contributions within the explained model
than inexact feature contributions as no proxy is needed. Our approach fits into this category
of white box checks.

Our approach has several advantages over prior work. (1) First, [28, 72] define the exact feature
contributions as the coefficients of a linear regression model to evaluate the fidelity of explainers,
such as LIME and SHAP. However, this is inappropriate for these explainers and thus does not
provide an exact set of feature contributions. LIME yields explanations as linear regression
coefficients on normalized data, which must be taken into consideration for computing error. SHAP
yields explanations as feature-additive contributions rather than coefficients – for a linear model,
the corrected feature contribution is simply given by multiplication between each coefficient and
each feature value. In addition, the contributions need to be adjusted for the baseline values that
SHAP uses. We correct for these issues in our work for all considered explainers. (2) No prior work
has considered the case of feature interactions [84, 28, 72], which are ubiquitous among black
box models, especially neural networks. We consider models with a various number of feature
interactions and order of feature interactions. (3) Unlike prior work [84, 28, 72], we consider in
our experiments both synthetic and real-world data, both tabular and image data, as well as both
non-learnable and learnable models, including convolutional neural networks.
Further comprehensive overviews of explanation evaluation methodologies and aspects are detailed
in [7, 89, 134, 123, 92, 101].

Considered Local Post Hoc Explainers
• Partial Dependence Plots PDPs [41] estimate the average marginal effect of a subset of

features on the output of a model using the Monte Carlo method. When the subset comprises
one or two features, the model output is plotted as a function of the feature values. PDPs
give a global understanding of a model, but can also yield a local explanation for the specific
feature values of a sample.

• Local Interpretable Model-agnostic Explanations LIME [103] explains by learning a linear
model from a randomly sampled neighborhood around z-score normalized instances. Feature
selection is controlled by hyperparameters that limit the total number of features used in
approximation, such as the top-k largest-magnitude coefficients from a ridge regression model.

• Model Agnostic Supervised Local Explanations MAPLE [95] employs a tree ensemble, e.g.,
a random forest, to estimate the importance (the net impurity) of each feature. Feature
selection is performed upfront on the background data by iteratively adding important features
to a linear model until error is minimized on held out validation data. For local explanations,
MAPLE learns a ridge regression model on the background data distribution with samples
weighed by the tree leafs relevant to the explained instance.
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• Shapley Additive Explanations SHAP [79] takes a similar but distinct approach from LIME by
approximating the Shapley values of the conditional expectation of a model. Feature selection
is controlled using a regularization term. Note that when we write SHAP, we are specifically
referring to Kernel SHAP, which is distinguished from its other variants for trees, structured data,
etc. An extension of SHAP to handle dependent features has also been proposed [1], which we
refer to as SHAPR after the associated R package. In effort to improve the accuracy of SHAP
explanations, SHAPR estimates the conditional distribution assuming features are statistically
dependent.

MatchEffects

MatchEffects is formalized in Algorithm 1 and illustrated for a few examples in Figure 4.
This process guarantees the most fair and direct comparison of explanations, and does not rely
on gradients, sensitivity, or other proxy means [47, 31, 39]. The worst-case time complexity of
MatchEffects is O (mm̂d) and the space complexity is O (mm̂) (see Appendix C for proofs).
It should be noted that in all practical use cases, the wall-time and memory bottlenecks of the
framework arise from the explainers, especially those that scale combinatorially with d or require
a reference data set that scales with n.
Algorithm 1: MatchEffects
Input: D = {Dj | 1 ≤ j ≤ mF }, the set of feature subsets operated on by model F

Input: D̂ = {D̂k | 1 ≤ k ≤ mF̂ }, the set of feature subsets operated on by explainer F̂
Result: Corresponding sets of effects that can be compared
// add edges between effects with mutual features

1 E ← new array;
2 for Dj ∈ D do
3 for D̂k ∈ D̂ do
4 if |Dj ∩ D̂k| > 0 then
5 E.append({Dj , D̂k});

6 V ← D ∪ D̂; // effects are vertices
7 G← (V, E);

// find connected components (CCs) for the undirected graph G
8 CCs← ConnectedComponents(G);
9 matches← new array;

// Vc and Ec comprise the vertices and edges of component c, respectively
10 for {Vc, Ec} ∈ CCs do // unpack the components
11 matchF ← new array;
12 matchF̂ ← new array;
13 for Dc ∈ Vc do
14 if Dc ∈ DF then
15 matchF .append(Dc);
16 else
17 matchF̂ .append(Dc);

18 if matchF = matchF̂ then
// elements of identical sets are each a perfect match

19 for Dc ∈ matchF do
20 matches.append({{Dc}, {Dc}});

21 matches.append({matchF , matchF̂ });
22 return matches

One could exploit MatchEffects by producing explanations that attribute the entire output
of the model to a single effect comprising all d features; the comparison of contributions could
trivially yield perfect but uninformative scores. Likewise, a model with such interaction effects, like
most deep NNs, would render this evaluation inconsequential. To mitigate this issue, we introduce
a metric that evaluates the goodness of the matching. Let Ec be the set of edges of a single
component found by MatchEffects. For an edge {Dj , D̂k} ∈ Ec, the intersection-over-union
(IoU), also known as the Jaccard index, is calculated between Dj and D̂k. The total goodness
for a component is the average of the IoU scores of each edge in Ec, and the total goodness for
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Dataset MaIoU
PDP LIME MAPLE SHAP SHAPR

Boston 0.979 0.979 0.214 0.979 0.979
COMPAS 0.971 0.971 0.286 0.971 –
FICO 0.750 0.659 0.648 0.659 –
MNIST 0.500 0.500 0.500 0.500 0.500

Table 2: The MaIoU for each explainer on several real-world datasets. Note that MaIoU is
identical for both GAMs and NNs due to the experimental design: both are constrained to use
the same (but still randomly selected) effects for each dataset. SHAPR is not implemented for
data with categorical variables in this work.

a matching is the mean value of these averages: the mean-average-IoU (MaIoU). This metric is
given by Equation (6)

MaIoU(CCs) = 1
|CCs|

∑
{Vc,Ec}∈CCs

aIoU(Ec) (6)

and the average IoU (aIoU) is defined by Equation (7)

aIoU(Ec) = 1
|Ec|

∑
{Dj ,D̂k}∈Ec

|Dj ∩ D̂k|
|Dj ∪ D̂k|

. (7)

where CCs is defined in Algorithm 1. MaIoU can be thought of the degree to which the
effects uncovered by an explainer agree with the true effects of the model. Figure 4c shows the
effectiveness of MaIoU on an example with three components, and Figure 4d shows how MaIoU
can inform when an explanation is uninformative and mechanistically incorrect, mitigating the
aforementioned consequences.
Table 2 shows the MaIoU for each explainer on each dataset. Note that MaIoU is identical for
both GAMs and NNs due to the experimental design: both are constrained to use the same
(but still randomly selected) effects for each dataset. Of the explainers, MAPLE has the worst
(lowest) average MaIoU due to its feature selection process that picks relatively few features
compared to the other explainers. LIME, SHAP, and SHAPR achieve the same scores as they all
provide feature-wise explanations and feature selection is not forced. This favors explanation
completeness over human-comprehensibility, which is more favorable for testing fidelity. PDP
follows the same line of reasoning except for FICO; PDP provides non-zero estimates of several
more features than LIME and SHAP. On the MNIST task, all explainers achieve the same MaIoU –
we explain this phenomenon in Appendix D following the details of the feature-additive CNNs.

B Reproducibility

Implementation and Setup

We use SymPy [82] to generate synthetic models and represent expressions symbolically as
expression trees. This allows us to automatically discover the additivity of arbitrary expressions.
See Appendix C for the unary and binary operators, parameters, and operation weights considered
in random model generation. All stochasticity is seeded for reproducibility, and all code is
documented and open-sourced3. The framework is implemented in Python [121] with the help
of SymPy and the additional libraries NumPy [49], SciPy [124], pandas [127], Scikit-learn [93],
Joblib [66], mpmath [67], pyGAM [111], PDPbox [63], alibi [70], TensorFlow [2], Matplotlib [58],
and seaborn [126]. Furthermore, we build a Python interface to the R [100] package shapr [109]
using rpy2 [44]. Appendix B also details hyperparameters used to train the GAMs and feature-
additive NNs, and the hardware used to run experiments. Last, we consider the explanation of

3The source code for this work is available at github.com/craymichael/PostHocExplainerEvaluation
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Figure 4: Examples of MatchEffects and MaIoU (Equation 6) in facilitating fair comparison
between feature-additive explanations and ground truth. (a) A simple example demonstrating
MatchEffects for a hypothetical medical task. Like colors from each side of the graph can
be directly compared. While no explainer evaluated in this work explicitly detects interactions
(|m̂| ≥ 2), the visual demonstrates how such explainers are compatible with the framework. (b)
A strict one-to-one matching between effects severs partially correct effects from comparison
and yields an over-penalizing MaIoU. (c) With MatchEffects, effects are fairly grouped
together for comparison and a more reasonable MaIoU is given – ideally, the sum of the true
contributions is equivalent to the sum of the explained contributions in each group (component).
(d) Importantly, MaIoU defines the goodness of a match, in this case indicating that a superficially
perfect explanation with MatchEffects (the sum of feature contributions is equivalent within
in each group) is uninformative and incorrect.
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an effect to be 0 if every estimated contribution is within a tolerance4. This is a fairer evaluation
and tends to favor the explainers in experiments when dummy variables are present.

Model Generation Parameters

See Algorithm 2 for definitions of parameters. The * in Table 3 means ‘1’ is implied when
pctinteract is zero.

Parameter Values
d {2, 4, 7, 16, 32, 64, 127, 256, 512, 1024}

ndummy {0, 0.2375d, 0.475d, 0.7125d, 0.95d}
pctnonlinear {0, .375, .75, 1.125, 1.5}
pctinteract {0, 0.167, 0.333, 0.5}

orderinteract {1*, 2, 3}
Table 3: Model generation parameters

Weights are the probability of being drawn as an operator (normalized against all considered
operators in the considered classes). The add operation is only considered when the operator
does not break up the interaction effect. The values of ndummy are a function of d.

Name Type Nonlinear Weight
cosh(·) unary yes 0.015
cosh(·) unary yes 0.015

sin(·) unary yes 0.015
sinh(·) unary yes 0.015

asinh(·) unary yes 0.015
tan(·) unary yes 0.015

tanh(·) unary yes 0.015
atan(·) unary yes 0.015
cot(·) unary yes 0.015

acot(·) unary yes 0.015
csc(·) unary yes 0.015

sech(·) unary yes 0.015
sinc(·) unary yes 0.015

| · | unary yes 0.133√
(·) unary yes 0.133

(·)2 unary yes 0.133
(·)3 unary yes 0.133

exp(·) unary yes 0.133
log(·) unary yes 0.133

(·) × (·) binary no 0.8
(·)/(·) binary no 0.2

(·) + (·) binary no -
min (·, ·) binary yes 0.5
max (·, ·) binary yes 0.5

Table 4: Operators considered

Explainer Hyperparameters

In general, the defaults were used and no tuning was performed. We only allowed explainers to
explain as many effects as possible as the goal wasn’t to produce comprehensible explanations,
but rather faithful ones as the only criteria. See the table below for specified parameters of
interest. Note that we do not use L1 regularization with SHAP as far too many features would be
filtered and we do not tune explainer hyperparameters.

4See the documentation of numpy.allclose for details
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Explainer

LIME

num_samples 5000
num_features d

discretize_continuous False
feature_selection ‘auto’

MAPLE

train_size 2/3
fe_type ‘rf’

n_estimators 200
max_features 0.5

min_samples_leaf 10
regularization 1e-3

SHAP
n_background_samples 100

summarization kmeans
l1_reg False

Table 5: Explainer hyperparameters

PDP Local Explanations

To generate local explanations using PDP, we compute the PDP for each feature individually. The
PDPBox library uses percentiles to sample the domain of each feature. We compute PD for 100
sample points for each feature. Thereafter, we use linear interpolation between each point, and
extrapolation for values outside the range, to give a feature contribution for “unseen” values.
The local explanation is thus the interpolated PD of each feature.

Dataset Descriptions

We demonstrate our framework on 2,000 synthetic models that are generated with a varied
number of effects, order of interaction, number of features, degree of nonlinearity, and number of
unused (dummy) variables. For each, we discard models with invalid ranges and domains that do
not intersect with the interval [−1, 1]. The data of each feature x∗,i is sampled independently
from a uniform distribution U(−1, 1). We draw n samples quadratically proportional to the
number of features d as n = 500

√
d. The explainers are evaluated on each model with access

to the full dataset and black box access to the model. Of the 2,000 models, 16 were discarded
due to the input domain producing non-real numbers. Furthermore, some explainers were not
able to explain every model due to invalid perturbations and resource exhaustion5. The former
occurred with PDP, LIME, and SHAP, typically due to models with narrower feature domains, while
the latter occurred with MAPLE and SHAPR due to the inefficient use of background data and
intrinsic computational complexity. In total, 82%, 39%, 80%, 91%, and 40% of models were
successfully explained by PDP, LIME, MAPLE, SHAP, and SHAPR, respectively. We consider the failure
to produce an explanation for valid input to be a limitation of an explainer or its implementation.
The Boston housing dataset [50] contains median home values in Boston, MA, that can be
predicted by several covariates, including sensitive attributes, e.g., those related to race. Models
that discriminate based off of such features necessitate that their operation be exposed by
explanations.
We also evaluate explainers on the Correctional Offender Management Profiling for Alternative
Sanctions (COMPAS) recidivism risk dataset [9]. The dataset was collected by ProPublica in 2016
and contains covariates, such as criminal history and demographics, the proprietary COMPAS
risk score, and recidivism data for defendants from Broward County, Florida.
The FICO Home Equity Line of Credit (HELOC) dataset [40], introduced in a 2018 XAI challenge,
is also used in this work. It comprises anonymous HELOC applications made by consumers
requesting a credit line in the range of $5,000 and $150,000. Given the credit history and

5See Appendix B for hardware and time budgets.
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characteristics of an applicant, the task is to predict whether they will be able to repay their
HELOC account within two years.
Last, we evaluate on a down-sampled version of the MNIST dataset [75]. With the aim of
reducing explainer runtime and improving comprehensibility of effect-wise results, we crop and
then resize each handwritten digit in the dataset to 12 × 10 and only include a subset of the 10
digits. We evaluate explainers on a down-sampled version of the MNIST dataset as mentioned
in the text. Again, all steps taken here are to reduce explainer run-times and improve the
comprehensibility of the results. We select a subset of classes to reduce the amount of data and
the number of classes to explain. Specifically, we include only the four digits 0, 1, 5, and 8 due to
separability between the data of each class. The crop was selected by observing the percentage
of non-zero pixels that would be removed for all crop values, i.e., of the top and bottom rows,
and the left and right columns. We remove about 1% of all non-zero pixels by using a global
crop of 3 pixels from the top, 2 from the bottom, 5 from the left, and 3 from the right. This
crop changes each image size from 28 × 28 to 23 × 20. We then resize each handwritten digit in
the dataset to 12 × 10 using the scikit-image function resize with anti-aliasing.

Experiment Reproducibility

While all experiments use random seeds, some results may not be completely reproducible
due to the behavior of SymPy (see the discussion in issue #205226). For instance, the model
generation uses the sympy.calculus.util.continuous_domain function to determine if gen-
erated models have valid input domains. This function randomly iterates through assump-
tions, and due to bugs, may not converge to the same result. Thus, we provide every SymPy
model in the pickle format, and the generated data, and true contributions, and the ex-
plainer contributions in a NumPy format. The latter files should not suffer from reproducibil-
ity issues, but are provided to guarantee reproducibility. These files are located in a shared
Google Drive folder: https://drive.google.com/drive/folders/1cBDwi4JIXmAihOv9yfjqrLNsohM-
CX5W?usp=sharing.
The source code is also linked in the main paper with the same seeds used in our experiments as
the default arguments.
For the neural network, we train each pathway (for each effect) with 3 fully-connected layers
[64, 64, 32] with the first two using a ReLU activation and the latter with no activation (identity
function). The Adam optimizer is used with a learning rate of 1e-3 and early stopping with a
patience of 100 based on the training loss, restoring the best weights at the end of training. The
maximum number of epochs is 1,000. For the GAM, a spline term is added with 25 splines for
each main effect, and a tensor term with 10 splines per marginal term is used for interaction
effects. The link function is logistic for classification and identity for regression.
The convolutional neural network (CNN) uses the same optimization hyperparameters but a
slightly different architecture. The first layer is 2D convolution with a kernel size and stride size
of (2, 1), SAME padding (i.e., with a stride of one, the filtered output shape is the same as the
input shape), and 4 filters. This implies sparsity within the model, thus additive structure. A
dense layer then gives the output for each interaction effect from the output of the convolutional
layer; due to the kernel and strides sizes, the filter outputs will all comprise the nonlinear ReLU
function of 2 features.
For the real-world experiments, data is normalized (z-score normalization) before training. Training
uses the full dataset as generalization is not of interest — rather, we only care if explainers can
faithfully explain the model’s predictions. Feature contributions and data are inverse normalization
in all figures for better readability in terms of the underlying features.

Hardware

Experiments were run on a cluster running the Univa Grid Engine (UGE) software. Each job was
allocated 16 cores of an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz and 10 GiB of RAM (soft
maximum) per explanation of a model. Note that by pooling resources, a set of explanation
jobs can contend for and pool up to 128 GiB of RAM. The operating system in use was Red

6https://github.com/sympy/sympy/issues/20522
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Hat Enterprise Linux Server release 7.9 (Maipo). For total time running synthetic experiments,
LIME took ∼6 hours for all explanations, SHAP took ∼18 hours for all explanations, and MAPLE
exceeded a 2 week budget (although, each run was faster than SHAP up until d > 64). SHAPR
exceeded the memory limits for several processes, as well as the time budget of 2 weeks. PDP
finished all jobs in 6 days.

Licenses

The FICO HELOC dataset license is available at https://community.fico.com/s/
explainable-machine-learning-challenge?tabset-3158a=a4c37. MNIST is under the
Creative Commons Attribution-Share Alike 3.0 license. For software, see the corresponding
licenses of the cited libraries in the text. Our software is under the MIT License.

C Proofs and Derivations

Proof of MatchEffects Complexities

The worst-case time complexity of MatchEffects is O (mm̂d) and the space complexity is
O (max (d(m + m̂), mm̂)) (note that we write O (mm̂) in the text for simplicity as the number
of effects is almost always ≫ d in practical usage of the algorithm). Here we prove these claims,
starting with the time complexity.
Lines 2-5 perform the following number of set intersections in the worst-case:

O(|D||D̂|)
= O(mm̂)

Similarly, this is the worst-case number of edges |E| = mm̂, which occurs if the bipartite graph
is fully-connected (all effects relate to all other effects). Each set intersection (linear with hash
sets in the implementation) has the following worst-case time complexity:

O
(

max
({

|Dj | | Dj ∈ (D ∪ D̂)
}))

= O
(
|Dmax

j |
)

= O (d)

In the absolute worst-case every subset has d features in the effect. Thus, the time complexity of
these lines is O (mm̂d).
In line 6, we compute the union of feature subsets (they become the graph vertices).

O (|V |)

= O
(

|D| + |D̂|
)

= O (m + m̂)

Set union takes linear time.
Line 8 performs the well-known connected components algorithm using graph traversal (BFS/DFS).
Thus this takes

O(|V | + |E|)
= O (m + m̂ + mm̂)
= O (mm̂)

time.
Lines 10-22 will traverse through each vertex exactly once (the vertices comprising each Vc

are guaranteed to be unique). For each vertex, checking membership in a set takes (O(1))
time for each check. Thus, we have O (|V |) = O (m + m̂) for these lines. The match equality
comparisons over all iterations in the loop will also take the same time per the guarantee each
vertex is visited once.
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Thus, the worst-case time complexity is O (mm̂d) □

Here we consider the space complexity. The size of the graph is simply the size of the vertices and
edges O (|V | + |E|) = O (mm̂). Note that the graph is represented in a sparse format (nonzero
values only), though this doesn’t reduce space in the dense worst-case scenario.
The other space to consider is from matches. This contains sets, each with two sets of effects
(ground truth and explained). For efficiency, each effect is represented as an index, reducing
the space required from O(d) to O(1). Thus matches (|V | effects total, no matter how large a
single match is) takes O(m + m̂) space.
Last, the input data is the same size as matches, except effects are not represented as indices.
Therefore, the input data (D and D̂) takes O(d(m + m̂)) space.
The total space required is:
O (max (d(m + m̂), mm̂)) □

Derivation of Equivalence Relations

LIME

For LIME, we derive the unnormalized coefficients for use in producing contributions. LIME uses
z-score normalization ((xi − µi)/σi) on the input data before learning local linear regression
models.

F̂ (x) = θ0 +
d∑
i

xi − µi

σi
θi

F̂ (x) = θ0 +
d∑
i

(
xi

σi
− µi

θi

)

F̂ (x) =
(

θ0 − µi

θi

)
+

d∑
i

xi

σi

Thus we simply just need to scale the coefficients as follows (same as the main text)

θ′
0 = θ0 −

∑
i

µiθi

σi

θ′
i = θi

σi

where θ′
0 is the adjusted bias term and each θ′

i is an adjusted coefficient.

SHAP

SHAP estimates the contributions relative to the mean-centered model response. In other words:

F̂ (x) ≈ F (x) − E [F (x)]

Thus, the SHAP estimation can be written as follows

F̂ (x) =
d∑
i

f̂i (xi) − E[fi(xi)]
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due to the fact that

E [F (x)] = E

 m∑
j

fj

(
xDj

)
=

m∑
j

E
[
fj

(
xDj

)]
.

So for each contribution, we can write that of the explainer as

Ĉi = f̂i(xi) + E[Ci]

in order to correct for the removed expected value. However, this assumes that there is some
i = j = k for every fj(·) and f̂k(·) of the white box and explainer. As this is not always the
case, we have to consider the effects of a match holistically. This then gives us the final relation
for some match:

CmatchF̂
=

∑
k∈matchF̂

f̂k(xk) +
∑

j∈matchF

E[Cj ]

This same process applies to SHAPR.

D Additional Results and Figures

We also visualize a subset of results in Figure 5 as feature shapes. We consider normalized
(interquartile) root-mean-square error (nrmse) for comparing individual effects, as defined by
Eq. (8)

nrmse(a, b) = 1
Qa

3 − Qa
1

√∑n
i (ai − bi)2

n
(8)

where Qa
3 and Qa

1 are the third and first quartiles of a, respectively. This measure of error
is the quantified infidelity of explanations. This shows more clearly that several explainers do
not faithfully explain some of the feature contributions. For example, SHAPR, MAPLE, and LIME
fail to satisfactorily unearth how the proportion of African Americans living in an area (feature
B), according to the NN, drive the housing price; SHAPR produces a high-variance estimate
(nrmse = 1.68), MAPLE fails to even detect the effect (nrmse = 3.59), and LIME only is able
to approximate the mean contribution value (nrmse = 3.04). This type of failure is incredibly
misleading to any user and potentially damaging if the model is deployed. Fortunately, in this
instance, SHAP reveals this relationship within reasonable error (nrmse = 0.129). The COMPAS
visualization shows another example of explanations of the “Age” feature of a GAM. Again, several
explainers produce misleading and noisy explanations. Notably, some explained feature shapes
correlate with the ground truth (e.g., “RAD”) but are offset (the expected value of the feature
contributions deviate). In turn, this becomes a problem when the ranks of feature contributions
are considered, which is how many interpretability tools present explanations [70, 79, 103].
Surprisingly, SHAPR struggles to handle interaction effects effectively – the baseline SHAP out-
performs it substantially. While the quantitative comparison is clear, it is difficult to intuit
poor explanations. In turn, we visualize an instance of an explained interaction effect by the
best-performing explainer, SHAP, in Figure 6. As the feature value on the y-axis decreases, SHAP
and the ground truth contributions deviate exponentially (average cosine distance of 0.492 and
Euclidean distance of 2.54).
Looking at aggregate metrics is not sufficient to understand how poor an explanation may be.
We consider the utility of an explainer in high-stakes applications to be limited by its worst
explanation. Consequently, we visualize the worst explanations from each explainer and show

8While the Boston housing dataset is widely studied as a baseline regression problem, the data
column (“B”) is notably controversial; the original paper [50] includes and preprocesses the data as
B = 1000(B′ − 0.63)2 where B′ is the proportion of African Americans by town.
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Figure 5: The true and explained feature shapes of (a) RAD (index of accessibility to radial
highways) and B (proportion of African American population by town8) from a NN trained
on the Boston housing dataset. SHAPR, MAPLE, and LIME fail to satisfactorily unearth how the
proportion of African Americans living in an area (feature B), drive the housing price. Fortunately,
in this instance, SHAP reveals this relationship within reasonable error. (b) The true and explained
feature shapes of Age from a GAM trained on the COMPAS dataset. Several explainers produce
misleading and noisy explanations, and some explained feature shapes correlate with the ground
truth but are offset across all feature values. See Appendix C for feature shapes of all remaining
main effects on each task.
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Figure 6: SHAP explanations for the generated synthetic expression: x1 + ex4 + log (x1x4) + x4
x1

.
The expression is an interaction effect of the two variables x1 and x4, so the application of
MatchEffects results in the comparison of the sum of the explained contributions of each
variable. As feature value y approaches 0, the SHAP-estimated contributions deviate exponentially
from the ground truth. See Appendix C for additional angles and examples of explanations.
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Figure 7: The top-10 explained effects of the worst explanation of a GAM trained on the Boston
dataset from each explainer. Top effects are ranked by magnitude and the quality of explanation
is ranked by the mean cosine distance among all explained samples.

those on the Boston dataset in Figure 7. The 10 most relevant effects to each decision are shown
and the quality of the explanation is assessed using cosine distance. Again, the low point of
SHAP is still of relatively high quality, and the other explainers reveal incorrect attributions of
effects. MAPLE selects few important features correctly and does so conservatively. PDP, LIME, and
SHAPR all problematically assign opposite-signed contributions for several effects. Similarly, we
visualize the worst explanations for the MNIST task in Figure 8. Every explainer manages to flip
the sign of at least a few contributions with the extreme case being PDP. While SHAP performs
notably better than the other explainers, as shown in Table 1, its worst explanation is qualitatively
misleading with some exaggerated contributions and some contributions with the opposite sign.
The MNIST task of explaining the CNN is more difficult due to the higher dimensionality of the
data and the number of interaction effects in the CNN. These interaction effects are of course
due to the convolutional layers that operate over local neighborhoods of pixels. Appendix A goes
into greater detail on this point.

E Synthetic Model Generation

Synthetic models are generated as described by Algorithm 2, GenerateModel. This algorithm
takes in three absolute parameters: the number of features, the number of dummy (unused)
features, and the order of interactions. It also takes in two relative parameters: the percentage of

30



0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

10
11

True

0 1 2 3 4 5 6 7 8 9

Explainer

0.6

0.4

0.2

0.0

0.2

0.4

0.6

LIME worst explanation

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

10
11

True

0 1 2 3 4 5 6 7 8 9

Explainer

0.5

0.0

0.5

1.0

1.5

MAPLE worst explanation

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

10
11

True

0 1 2 3 4 5 6 7 8 9

Explainer

2.5

2.0

1.5

1.0

0.5

0.0

0.5

PDP worst explanation

0 1 2 3 4 5 6 7 8 9
0

1
2

3
4

5
6

7
8

9
10

11

True

0 1 2 3 4 5 6 7 8 9

Explainer

0.6

0.4

0.2

0.0

0.2

0.4

0.6

SHAP worst explanation

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

10
11

True

0 1 2 3 4 5 6 7 8 9

Explainer

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

SHAPR worst explanation

Figure 8: The heatmap of explained interaction effects of the worst explanations by LIME, MAPLE,
PDP, SHAP, and SHAPR (left-to-right, top-to-bottom, respectively) for a CNN trained on the MNIST
dataset as described in the text. See Appendix C for details on the CNNs in experiments and the
derived interaction effects. The worst explanation is determined by the cosine distance from the
ground truth explanations.

nonlinear operators and the percentage of interaction terms. Generation is split into four phases:
nonlinear main effects, linear main effects, nonlinear interaction effects, and linear interaction
effects. These phases are marked by corresponding comments in the algorithm.
Before any phase, we select the unique features to use in the model, which is simply the d features
with the dummy features removed from consideration. After model generation, data is still drawn
for these unused variables, but the model ignores it. For nonlinear main effects, we use at most
the percentage of nonlinear operators times the number of features as the number of effects
to generate. If this product is larger than the number of features, then we determine that the
residual nonlinear operators will be applied to effects multiple times. For example, for d = 2 and
a nonlinear percentage of 2 (200%), we may end up with something like cos(|x1|) + exp(√x2).
This describes the steps where we place operators into some amount of bins (which is done as
uniformly as possible with the values of each bin being an integer). Following this selection, we
simply iterate over the unique features, applying the unary nonlinear operators to each, and add
the result (still in symbolic form) to the expression. For linear main effects, we simply add the
number of remaining features that have not had nonlinearities applied, if any, to the expression.
We have two parameters to consider for interaction effects: the interaction order (the number of
features involved in each interaction) and the percentage of interaction terms (treated in the same
manner as the percentage of nonlinear operators). We first select the unique interactions based
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on the number of interactions specified and the number of main effects. This is a simple way of
constraining the sparsity of generated models — with too many interaction terms, separation of
effect contributions may not be possible by MatchEffects. The unique interactions selected
are also naturally limited by the number of possible unique combinations given the number of
features and the order of interactions. From these interactions, we select the number to be
nonlinear in the exact same way as the main effects. However, we make choices from both unary
and binary operators — binary operators are used to bridge together terms to form a whole effect
and can include linear binary operators if the number of nonlinear operators is not sufficient to
do so (i.e., less than the number of features in an interaction minus one). Finally, we select the
remaining linear interactions, choose linear interaction operators, and additionally add these to
the expression.
See the previous supplemental content listing the unary and binary operators. The implementation
of this algorithm has all randomness, e.g., choices, seeded. For simplicity, the data structures
(binary expression trees), random choices with operator weights, and valid domain checking are
omitted from this algorithm.
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Algorithm 2: GenerateModel: Generates a synthetic model satisfying various arguments
Input: d: the number of features
Input: ndummy: the number of unused features
Input: pctnonlinear: the percentage of nonlinearities used (relative to d)
Input: pctinteract: the percentage of interaction terms (relative to d)
Input: orderinteract: the order of interaction terms (≥ 2)
Result: A randomly generated expression (model)

1 features← choose (d− ndummy) unique features;
// Initialize Expression

2 expr ← 0;
// Nonlinear Main Effects

3 n′
main_nonlinear ← pctnonlinear × |features|;

// Number of terms
4 nmain_nonlinear ← min(n′

main_nonlinear, |features|);
// Each bin will on average contain n′

main_nonlinear/nmain_nonlinear operators
5 opsmain_nonlinear ← place n′

main_nonlinear unary nonlinear operators into nmain_nonlinear bins;
// Cycle keeps track of the current element in a sequence, starting at the

beginning if the previous element was at the end
6 mainfeatures ← cycle(features);
7 for i ∈ {i | 1 ≤ i ≤ nmain_nonlinear do

// Get the next feature in the cycle
8 term← next mainfeatures;

// Apply nonlinearities
9 for op ∈ opsmain_nonlinear[i] do

10 term← op(term);
11 expr ← expr + term;

// Linear Main Effects
12 nmain_linear ← |features| − nmain_nonlinear;
13 for i ∈ {i | 1 ≤ i ≤ nmain_linear} do
14 feature← next mainfeatures;
15 expr ← expr + feature;

// Nonlinear Interaction Effects
16 ninteract ← min {pctinteract × |features|, |features|};
17 n′

interact_nonlinear ← pctnonlinear × ninteract;
18 interactions← choose ninteract unique feature pairs of size orderinteract;
19 ninteract_nonlinear ← min(n′

interact_nonlinear, ninteract);
// Each is a unary/binary nonlinear operator or binary linear operator. # of

binary operators per effect = orderinteract − 1
20 opsinteract_nonlinear ← place n′

interact_nonlinear (non)linear operators into ninteract_nonlinear

bins;
21 interactfeatures ← cycle(interactions);
22 for i ∈ {i | 1 ≤ i ≤ ninteract_nonlinear do
23 interaction← cycle(next interactfeatures);
24 term← next interaction;
25 for op ∈ opsinteract_nonlinear[i] do
26 if op is unary then
27 term← op(term);
28 else
29 feature← next interaction;
30 term← op(term, feature);

31 expr ← expr + term;
// Continues on the following page...
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// Linear Interaction Effects
32 ninteract_linear ← ninteract − ninteract_nonlinear;
33 for i ∈ {i | 1 ≤ i ≤ ninteract_linear} do
34 interaction← cycle(next interactfeatures);
35 opsinteract_linear ← choose |interaction| − 1 linear non-additive binary operations;
36 term← next interaction;
37 for op ∈ opsinteract_linear do
38 feature← next interaction;
39 term← op(term, feature);
40 expr ← expr + feature;
41 return expr
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