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Figure 1: Scatter plot of the model size and accuracy data in Table 1. Model size is shown on an inverted log scale (right is
better). The LMU models are consistently smaller and more accurate over the model space, shown by their being in the top
right. NB: TinySpeech models are stateless (state is reset between inferences) and non-streamable, hence not appropriate for
real-time deployment. Other more recent models of this type are discussed in the text but not included in this figure.

ABSTRACT
Keyword spotting (KWS) provides a critical user interface for many
mobile and edge applications, including phones, wearables, and
cars. As KWS systems are typically ‘always on’, maximizing both
accuracy and power efficiency are central to their utility. In this
work we use hardware aware training (HAT) to build new KWS
neural networks based on the Legendre Memory Unit (LMU) that
achieve state-of-the-art (SotA) accuracy and low parameter counts.
This allows the neural network to run efficiently on standard hard-
ware (212 𝜇W). We also characterize the power requirements of
custom designed accelerator hardware that achieves SotA power
efficiency of 8.79 𝜇W, beating general purpose low power hardware
(a microcontroller) by 24x and special purpose ASICs by 16x.
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1 INTRODUCTION
There are a wide variety of keyword spotting deep neural networks
available, including those based on CNNs, LSTMs, GRUs, and many
variants of these. However, commercially viable networks have
several constraints often ignored by research focused efforts. In
this more constrained setting, neural networks must be:

(1) Stateful: The network cannot assume to know when a key-
word is about to be presented. As a result, the starting state
of the network cannot be known in advance, but is deter-
mined by whatever processing has happened recently – not
by being reset to a known ‘zero’ state.

(2) Online (or ‘streaming’): The most responsive, low-latency
networks will process audio data as soon as it is available
and in real-time. Many methods are often tested on the as-
sumption that large windows of data are available all at once.
However, at deployment, waiting for large amounts of data
introduces undesirable latencies. As well, reusing previously
processed data, as done by RNNs, can lead to efficiency gains.
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(3) Quantized: Quantization to 8-bit weights and activities is
becoming standard for mobile or ‘edge’ applications. Quanti-
zation allows more efficient deployment on low power, edge
hardware.

(4) Power efficient: While quantization helps with power effi-
ciency, it is not the sole determiner of the power required
by a network. For instance, the number and type of com-
putations performed are also important. Specific focus on
the power efficiency of the network, and its viability for de-
ployment on available hardware is critical for commercial
applications.

In this paper, we use a method of hardware aware training (HAT)
that directly trains a network for efficient hardware deployment,
accounting for hardware assumptions during model development.
This provides a practical method for meeting such constraints.

As a result, we focus on comparing this work to recent SotA
results that share interest in these constraints. All of the new results
we report also satisfy these constraints. As a consequence, our
main metrics of interest will be: accuracy; size of the model (in
bits; the number of parameters times the bits per parameter); and
power usage in a real-time setting. In what follows we describe
new optimization, algorithmic, and hardware techniques that have
allowed us to develop a highly power efficient KWS algorithm
and hardware platform. Critically, we demonstrate that these same
methods can be used to target different hardware platforms (both
general and special purpose). To the best of our knowledge, we
present better than current SotA results on each of these metrics
and for each platform.

2 THE LEGENDRE MEMORY UNIT
The recurrent neural network (RNN) that lies at the heart of our
algorithm is called the Legendre Memory Unit (LMU), which we
have recently proposed [13].1 The LMU consists of a linear ‘memory
layer’ and a nonlinear ‘output layer’ that are recurrently coupled
both to themselves and each other. A distinguishing feature of the
LMU is that the linear memory layer is optimal for compressing an
input time series over time. The output of this layer represents the
weighting of a Legendre basis, which gives rise to the LMU’s name.

Because of this provable optimality, unlike past RNNs (includ-
ing LSTMs, GRUs, and so on) the LMU has fixed recurrent and
input weights on the linear layer. As well, the theoretical charac-
terization of the LMU permits intermediate representations to be
decoded, providing a degree of explainability to the functioning of
the network.

In the original LMU paper, it was shown that on a task requiring
the memory of a time-varying signal, the LMU outperforms the
LSTM with a 106x reduction in error, while encoding 102 more
timesteps, and using 500 versus 41,000 parameters. In some ways
this is not surprising, as the LMU is optimized for this task. Nev-
ertheless, the LMU also outperforms all previous RNNs on the
standard psMNIST benchmark task by achieving 97.15% test accu-
racy, compared to the next best network (dilated RNN) at 96.1% and

1The LMU is a patent pending technology of Applied Brain Research Inc., free for
academic research, educational and personal uses. Please contact ABR for commercial
use licensing at info@AppliedBrainResearch.com

Figure 2: The LMU architecture used in this work. This dif-
fers from the original LMU [13], in that there are multiple
linear layers and fewer connections (see text for details).

the LSTM at 89.86%. Again, the LMU used far fewer parameters
~102,000 versus ~165,000 (a reduction of 38%).

Because the LMU is designed to be optimal at remembering
information over a window, while receiving streamed input, and
because it also tends to use fewer parameters while achieving high
accuracy, it is well-suited to the constraints of real-world KWS
tasks.

2.1 Model architecture
In this work, we have modified the originally proposed LMU in a
number of ways (see Figure 2). In particular, we have removed the
connection from the nonlinear to the linear layer, the connection
from the linear layer to the intermediate input, and the recurrent
connection from the nonlinear layer to itself. As well, we have
included multiple linear memory layers in the architecture. We
found that this was important for improving performance on the
KWS task.

The resulting architecture, depicted in Figure 2, is thus described
by the following equations:

h𝑡 = 𝑓 (Wxx𝑡 +Wmm𝑡 + b)

𝑢𝑡 = exTx𝑡 + eh
Th𝑡−1

m𝑡 = Ām𝑡−1 + B̄𝑢𝑡

where each of the variables is defined as depicted in Figure 2, and
the nonlinearity we use for this application is the ReLU.

We refer to this architecture as a single LMU layer. The final
network we test includes multiple LMU layers and a feedforward
output layer.

3 RESULTS
3.1 Dataset, methods, and metrics
Our methods and metrics follow standard practices for the Speech-
Commands dataset (see, e.g., Rybakov et al. [11], Warden [15]). As
specified in Warden [15] we split the data into training, validation,
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and testing sets with one second speech samples at 16 kHz. The
network is trained on twelve labels: the ten keywords, plus silence
and unknown tokens. All accuracy results are on the test data only
(see Table 1 and Figure 1).

The methods we use to build the LMU models all leverage hard-
ware aware training (HAT). This extends standard quantization
aware training to precisely match the hardware on which the mod-
els will be deployed. Thismeans that all model elements arematched
to the bit precisions assumed throughout a design. Quantization
aware training typically makes assumptions not satisfied by hard-
ware.2 As a result the reported accuracies for the LMU models are
the expected, real-world, deployed accuracies.

All LMU models and the results from Rybakov et al. [11] are for
stateful, quantized and online KWS applications. The results from
Wong et al. [17] are quantized, but their latency and statefulness
is not reported. Because the amount of quantization is different
between different models, we have measured the model size in
kilobits (kbits) instead of parameter count. The kbits are the number
of parameters multiplied by the number of bits per parameter to
give a consistent model size metric.

In Table 1 we show the results from four different LMU models.
The first model (LMU-1) uses 8-bit weights, while the remaining
three models use 4-bit weights. All LMU models use 7-bit activa-
tions. LMU-1 and LMU-2 are not pruned. LMU-3 has 80% pruning
performed and LMU-4 has 91% of its weights pruned.

3.2 Comparison to other work
We compare our results to Google’s latest KWS paper [11], up-
dated in July of 2020, ARM’s recent results [2] and DarwinAI’s
announcement from August of 2020 [17] and October of 2020 [18].
As shown in Table 1, the LMU models outperform Google results
and Darwin’s first announcement in terms of accuracy and size.
For instance, LMU-1 is the same accuracy as the best Google model,
while using 41% fewer bits. As well, LMU-2 is comparable in accu-
racy to the CNN [11], while using 11.7x fewer bits in the final model.
In comparison to the generally smaller models of Wong et al. [17],
the LMUs show significant accuracy improvements. Specifically,
the LMU-3 reduces the error by 14% relative to TinySpeech-A, while
using 17% fewer bits. Similarly, the LMU-4 reduces error by 19%
relative to TinySpeech-B while using 8% fewer bits. Similarly, com-
pared to recent work from ARM [2], the LMU-2 is outperforming
all of the tested networks, while being small enough to fit on the
smallest processor tested (an ARM M4F).

However, recent work reported in Li et al. [9] and Wong et al.
[18] describe convolution approaches that are highly competitive.
Specifically the largest TENet model (800 kbits) achieves 96.6%,3
while the smallest (136 kbits) achieves 96.0%. Similarly, in [18] for
smaller networks, TinySpeech-Y (49 kbits) achieves 93.6% accuracy
and TinySpeech-X (86 kbits) achieves 94.6%. Critically, neither of
these methods are stateful (i.e. network state is reset between infer-
ences), which is known to boost accuracy, both have a minimum
1s latency (as convolutions are done on the entire 1s samples), and

2For instance, activities are often asymmetrically quantized to unsigned 8 bits, but
in a hardware implementation 7-bit quantization is more appropriate since one bit is
required for a signed two’s complement representation to allow 8-bit multiplication
with weights.
3We have also generated a 720kbit network at 96.5%, not included in Table 1.

Table 1: Recent KWS accuracy results with model sizes.

Model Accuracy (%) Model Size
(kbits) Reference

DNN 90.6 3576 Rybakov et al. [11]
CNN+strd 95.6 4232
CNN 96.0 4848
GRU (S) 96.3 4744
CRNN (S) 96.5 3736
SVDF 96.9 2832
DSCNN 96.9 3920

TinySpeech-A 94.3 127 Wong et al. [17]
TinySpeech-B 91.3 53

LMU-1 96.9 1683 This work
LMU-2 95.9 361
LMU-3 95.0 105
LMU-4 92.7 49

both are not streamable. Consequently these networks are not ap-
propriate for real-time deployment, and reported results are not
reflective of real-world performance. As such we mention them for
completeness, not as an appropriate comparison.

As noted in Section 3.1, the LMU models are all stateful, stream-
able, and developed with HAT (as are those from Google and ARM).
Hence the reported accuracies can be realized on hardware in real-
time, real-world applications.

4 POWER USAGE ON GENERAL PURPOSE
AND SPECIALIZED HARDWARE

4.1 Power modeling and results
While power use will scale with model size on standard hardware,
suggesting the LMU models will be very efficient, an even more
efficient implementation can be obtained using custom designed
hardware. Hence, we have designed low power digital hardware
to natively implement the necessary computations for the LMU
models discussed in Section 3. Here we report results on power
modeling of the LMU-2 architecture, which strikes a balance be-
tween small size and high accuracy. The design is flexible, allowing
for different degrees of parallelism, depending on the speed, power,
and area requirements. We considered a variety of designs across
different clock frequencies, while always ensuring that the timing
constraints of the SpeechCommands models proposed above (40ms
windows updated every 20ms) are satisfied in real time.

To estimate the power of our design, we established cycle-accurate
power envelopes of our design using ABR’s proprietary, silicon-
aware, hardware-software co-design mapping tools. Total power
usage is determined with these envelopes using publicly available
power data [3, 7, 19]. Multiply-accumulate (MAC) and SRAM dy-
namic and static power, are the dominant power consumers in the
design. We also included dynamic power estimates for multipliers,
dividers, and other components as a function of the number of
transistors in the component, and the power cost per transistor of
the MAC. All estimates are for a 22nm process.
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Figure 3: Power and area trade-off for different clock fre-
quencies of our custom hardware design. Blue dots indi-
cate specific designs considered while varying the number
of components and the clock’s frequency.

To estimate the number of transistors, and hence the area, of
the design we generated RTL designs of each of the relevant com-
ponents, and used the yosys open source tool [16] and libraries to
estimate the number of transistors required for the total number of
components included in our network.

Figure 3 shows the resulting power/area trade-off for our LMU-
based design. As can be seen, the lowest power design we found sits
at 8.79 𝜇W (92 kHz clock) and 8,052,298 transistors. For this design,
the throughput for one 20ms frame is 13.38ms and the latency for
the 40ms update is 39.59ms, meaning the design runs in real time.
Note that all designs depicted in Figure 3 are real-time.

4.2 Comparisons across hardware
implementations

There have been several recent results published noting low power
specialized hardware for keyword spotting. Those we were able
to find that had similar or lower numbers are not of comparable
complexity or accuracy to the networks we describe here. For in-
stance, Wang et al. [14] claim sub-300 nW power, but only detect a
single keyword. Similarly, Giraldo and Verhelst [4] claim less than
5 𝜇W, but only detect 4 keywords and report accuracy in the low
90s. In contrast, Giraldo et al. [5] uses the SpeechCommands, but
the accuracy is 90.9% for 10.6 𝜇W. A similar result is reported by
Shan et al. [12] who achieve 90.8% on this dataset for 16.11 𝜇W. A
main distinguishing feature of our result above is the high accuracy,
which is usually very difficult to achieve in a power constrained
setting. Our use of the LMU and HAT combine to provide SotA
performance.

Because we use HAT, it is straightforward to run the LMU net-
works on different hardware and compare across them. In this
section we compare an implementation on an off-the-shelf ARM
M4F, on an ‘idealized’ ARM M4F, on our hardware design from
the previous section, and on the Syntiant NDP10x special purpose
keyword spotting chips (see Table 2).

Table 2: Summary of hardware power results for Speech-
Commands keyword spotting.

Hardware Model Accuracy (%) Power (𝜇W)

ARM M4F LMU-2 95.9 212
ARM M4F (Optimal) LMU-2 95.9 119
Syntiant NPD10x – 94.0 170
This work LMU-2 95.9 9

We implemented the LMU keyword spotter on an ARM M4F
clocked at 120MHz, which processes 1 s of audio in 143,678 𝜇s
(0.14 s). This means that 17.24 million cycles are used to process one
second of audio. The lowest power setting of the ARM M4 is rated
at 12.26 𝜇W/MHz on the ARM M4 datasheet [1], which results in
212 𝜇W of power for this model. Thus our design from Section 4.1
is 24x more power efficient. A recent world-record efficiency was
reported by Racyics and GlobalFoundries with a power efficiency
of 6.88 𝜇W/MHz [8] for an ARM M4F. Using that idealized power
efficiency, the ARMM4F would use 119 𝜇W of power. This suggests
that our design is 14x more power efficient than running on state-
of-the-art low power general purpose hardware.

Holleman [6] reports energy per frame on the SpeechCommands
dataset for the Syntiant NDP10x special purpose chip at 3.4 𝜇J. For
real-time computation with a standard window stride of 20ms, the
network needs to process 50 frames per second, well within the
inference time of 10ms of the chip. This rate of processing results
in a power usage of 170 𝜇W. Syntiant has also reported a power
usage of 140 𝜇W [10]. As well, the network achieves an accuracy
of 94%, with a network size of 4456 kbits (assuming 8-bit weights,
which is not reported). As a result, our network is more accurate
with 95.9% accuracy and is 16-19x more power efficient with our
hardware design than the Syntiant special purpose hardware.

Finally, we note that because the LMU is parameter efficient,
with 12x fewer parameters than the Syntiant network, it potentially
eliminates the need for special purpose hardware. Specifically, the
LMU-2 running on the M4F uses (212 𝜇W), compared to Syntiant’s
special purpose hardware at (170 𝜇W). This suggests that the LMU-
3 (with one third the parameters of LMU-2) will run for less power,
while still achieving higher accuracy.

5 CONCLUSION
LMU-based keyword spotting networks are highly efficient, sur-
passing recent state-of-the-art results from Google, ARM, and Syn-
tiant, in terms of accuracy, size, and power efficiency over a wide
range. These improvements become more pronounced with special
purpose-designed hardware resulting in >14x reduction in power
use compared to current state-of-the-art offerings. Notably, these
conclusions are drawn in the context of real-world, real-time de-
ployment of keyword spotting systems.

REFERENCES
[1] ARM. Cortex-M4. https://developer.arm.com/ip-products/processors/cortex-

m/cortex-m4, 2020. Accessed online (September 2020).
[2] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas Navarro, Urmish

Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and Paul N. What-
mough. Micronets: Neural network architectures for deploying tinyml applica-
tions on commodity microcontrollers, 2020.

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4


Hardware Aware Training for Efficient Keyword Spotting on General Purpose and Specialized Hardware Conference’17, July 2017, Washington, DC, USA

[3] Fabio Frustaci, Mahmood Khayatzadeh, David Blaauw, Dennis Sylvester, and
Massimo Alioto. SRAM for error-tolerant applications with dynamic energy-
quality management in 28 nm CMOS. IEEE Journal of Solid-state circuits, 50(5):
1310–1323, 2015.

[4] J. S. P. Giraldo and M. Verhelst. Laika: A 5uW programmable LSTM accelerator
for always-on keyword spotting in 65nm CMOS. In ESSCIRC 2018 - IEEE 44th
European Solid State Circuits Conference (ESSCIRC), pages 166–169, 2018.

[5] J. S. P. Giraldo, S. Lauwereins, K. Badami, andM. Verhelst. Vocell: A 65-nm speech-
triggered wake-up SoC for 10-𝜇W keyword spotting and speaker verification.
IEEE Journal of Solid-State Circuits, 55(4):868–878, 2020.

[6] Jeremy Holleman. The Speed and Power Advantage of a Purpose-Built Neural
Compute Engine. https://www.syntiant.com/post/keyword-spotting-power-
comparison, 2019. Accessed online (September 2020).

[7] Sebastian Höppner and Christian Mayr. SpiNNaker2 - Towards extremely effi-
cient digital neuromorphics and multi-scale brain emulation. In NICE Workshop
Conference Proceedings, 2018.

[8] S. Höppner, H. Eisenreich, D. Walter, U. Steeb, A. S. Clifford Dmello, R. Sinkwitz,
H. Bauer, A. Oefelein, F. Schraut, J. Schreiter, R. Niebsch, S. Scherzer, U. Hensel,
J. Winkler, and M. Orgis. How to achieve world-leading energy efficiency using
22fdx with adaptive body biasing on an arm cortex-m4 iot soc. In ESSDERC 2019
- 49th European Solid-State Device Research Conference (ESSDERC), pages 66–69,
2019.

[9] Ximin Li, Xiaodong Wei, and Xiaowei Qin. Small-footprint keyword spotting
with multi-scale temporal convolution, 2020.

[10] George Medici. Syntiant NDP101 Microprocessor Receives Linley Group’s
Analysts’ Choice Award. https://www.syntiant.com/post/syntiant-ndp101-
microprocessor-receives-linley-group-s-analysts-choice-award, 2020. Accessed
online (September 2020).

[11] Oleg Rybakov, Natasha Kononenko, Niranjan Subrahmanya, Mirko Visontai, and
Stella Laurenzo. Streaming keyword spotting on mobile devices. arXiv preprint

arXiv:2005.06720, 2020.
[12] W. Shan, M. Yang, J. Xu, Y. Lu, S. Zhang, T. Wang, J. Yang, L. Shi, and M. Seok.

14.1 a 510nW 0.41V low-memory low-computation keyword-spotting chip using
serial FFT-based MFCC and binarized depthwise separable convolutional neural
network in 28nm CMOS. In 2020 IEEE International Solid- State Circuits Conference
(ISSCC), pages 230–232, 2020.

[13] Aaron R. Voelker, Ivana Kajić, and Chris Eliasmith. Legendre Memory Units:
Continuous-time representation in recurrent neural networks. In Advances in
Neural Information Processing Systems, pages 15544–15553, 2019.

[14] Dewei Wang, P. Chundi, S. Kim, Minhao Yang, J. P. Cerqueira, Joonsung Kang,
Seungchul Jung, andMingoo Seok. Always-on, sub-300-nW, event-driven spiking
neural network based on spike-driven clock-generation and clock- and power-
gating for an ultra-low-power intelligent device. arXiv preprint arXiv:2006.12314,
2020.

[15] Pete Warden. Speech Commands: A dataset for limited-vocabulary speech recog-
nition. arXiv preprint arXiv:1804.03209, 2018.

[16] Clifford Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/. Ac-
cessed online (September 2020).

[17] Alexander Wong, Mahmoud Famouri, Maya Pavlova, and Siddharth Surana.
TinySpeech: Attention condensers for deep speech recognition neural networks
on edge devices. arXiv preprint arXiv:2008.04245, Aug 10, 2020, 2020.

[18] Alexander Wong, Mahmoud Famouri, Maya Pavlova, and Siddharth Surana.
TinySpeech: Attention condensers for deep speech recognition neural networks
on edge devices. arXiv preprint arXiv:2008.04245, Oct 21, 2020, 2020.

[19] Makoto Yabuuchi, Koji Nii, Shinji Tanaka, Yoshihiro Shinozaki, Yoshiki Yamamoto,
Takumi Hasegawa, Hiroki Shinkawata, and Shiro Kamohara. A 65 nm 1.0 V 1.84
ns Silicon-on-Thin-Box (SOTB) embedded SRAM with 13.72 nW/Mbit standby
power for smart IoT. In 2017 Symposium on VLSI Circuits, pages C220–C221.
IEEE, 2017.

https://www.syntiant.com/post/keyword-spotting-power-comparison
https://www.syntiant.com/post/keyword-spotting-power-comparison
https://www.syntiant.com/post/syntiant-ndp101-microprocessor-receives-linley-group-s-analysts-choice-award
https://www.syntiant.com/post/syntiant-ndp101-microprocessor-receives-linley-group-s-analysts-choice-award
http://www.clifford.at/yosys/

	Abstract
	1 Introduction
	2 The Legendre Memory Unit
	2.1 Model architecture

	3 Results
	3.1 Dataset, methods, and metrics
	3.2 Comparison to other work

	4 Power Usage on General Purpose and Specialized Hardware
	4.1 Power modeling and results
	4.2 Comparisons across hardware implementations

	5 Conclusion
	References

