
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPRESSIVE POWER OF GRAPH NEURAL NETWORKS
FOR (MIXED-INTEGER) QUADRATIC PROGRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quadratic programming (QP) is the most widely applied category of problems
in nonlinear programming. Many applications require real-time/fast solutions,
though not necessarily with high precision. Existing methods either involve ma-
trix decomposition or use the preconditioned conjugate gradient method. For rela-
tively large instances, these methods cannot achieve the real-time requirement un-
less there is an effective preconditioner. Recently, graph neural networks (GNNs)
opened new possibilities for QP. Some promising empirical studies of applying
GNNs for QP tasks show that GNNs can capture key characteristics of an opti-
mization instance and provide adaptive guidance accordingly to crucial configu-
rations during the solving process, or directly provide an approximate solution.
Despite notable empirical observations, theoretical foundations are still lacking.
In this work, we investigate the expressive or representative power of GNNs, a cru-
cial aspect of neural network theory, specifically in the context of QP tasks, with
both continuous and mixed-integer settings. We prove the existence of message-
passing GNNs that can reliably represent key properties of quadratic programs,
including feasibility, optimal objective value, and optimal solution. Our theory is
validated by numerical results.

1 INTRODUCTION

Quadratic programming (QP) is an important type of optimization problem, with extensive appli-
cations across domains such as graph matching, portfolio optimization, and dynamic control (Vogel-
stein et al., 2015; Markowitz, 1952; Rockafellar, 1987). The goal of QP is to minimize a quadratic
objective function while satisfying specified constraints. These constraints can vary, leading to dif-
ferent subcategories of QP. When all the constraints are linear, we call a QP problem a linearly
constrained quadratic program (LCQP). When they also involve quadratic inequalities, we call the
problem a quadratically constrained quadratic program (QCQP). Furthermore, if the problem re-
quires some variables to be integers, we call it mixed-integer QP. In this study, we focus on LCQP
and its mixed-integer variant MI-LCQP.

In many real-world applications, finding solutions quickly is crucial, even if they are not perfectly
precise. For example, in transportation systems, such as ride-hailing platforms like Uber or Lyft,
matching drivers with passengers requires quick decision-making to minimize waiting times, even
if the optimal solution is not attained. Similarly, in financial trading, algorithms must swiftly adjust
investment portfolios in response to market changes, even if it is not the most optimal move.

Unfortunately, existing methods for solving QP often rely on some computationally expensive tech-
niques such as matrix decomposition and the preconditioned conjugate gradient method. For in-
stance, matrix decomposition techniques like LU decomposition typically require O(n3) opera-
tions for a matrix with size n × n (Golub & Van Loan, 2013), although more advanced algorithms
can achieve lower complexities. Similarly, the preconditioned conjugate gradient method involves
O(n2) operations per iteration, and a high condition number of the matrix can lead to slow conver-
gence or numerical instability (Shewchuk et al., 1994). These considerations underscore the clear
need for novel techniques to address the demands of real-time applications.

Machine learning (ML) brings new chances to QP. Recent research indicates that deep neural
networks (DNNs) can significantly improve the efficiency of the QP solving process. Based on the
role of DNNs in the solving process, these studies can be broadly categorized into two classes:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Type I: DNNs are used to accelerate an existing QP solver by generating adaptive configu-
rations tailored to the specific instance and context, speeding up the solving process (Bonami
et al., 2018; 2022; Ichnowski et al., 2021; Getzelman & Balaprakash, 2021; Jung et al., 2022;
King et al., 2024). The success of such an approach relies on DNNs’ capacity to capture in-
depth features of QP instances and provide customized guidance to the solver.

• Type II: DNNs replace or warm-start a QP solver. Here, DNNs take in a QP instance and
directly output an approximate solution. This approximate solution can be used directly or as
an initial solution for further refinement by a QP solver (Nowak et al., 2017; Chen et al., 2018;
Karg & Lucia, 2020; Wang et al., 2020a;b; 2021; Qu et al., 2021; Gao et al., 2021; Bertsimas
& Stellato, 2022; Liu et al., 2022a; Sambharya et al., 2023; Pei et al., 2023; Tan et al., 2024).

min 1
2 [x1 x2 x3]

[
1 0.1
0.1 1

1

][
x1

x2

x3

]
+ [1 2 3]

[
x1

x2

x3

]

s.t.
2x1 + x2 ≤ 5

x2 + 3x3 ≥ 0

0 ≤ x1, x2, x3 ≤ 1

w1

(1, 0, 1)
w2

(2, 0, 1)
w3

(3, 0, 1)

v1
(5,≤)

v2
(0,≥)

2 1 1 3

0.1

0.1
1 1 1

Figure 1: An illustrative example of
LCQP and its graph representation.

Among the various types of DNNs, this paper focuses
on graph neural networks (GNNs) (Scarselli et al.,
2008), an architecture designed for graphs and widely ap-
plied across various domains. By conceptualizing QPs
as graphs (Figure 1), GNNs can efficiently handle these
QP tasks (Nowak et al., 2017; Wang et al., 2020b; 2021;
Qu et al., 2021; Gao et al., 2021; Tan et al., 2024; Jung
et al., 2022). For instance, (Wang et al., 2021) demon-
strates using GNNs to solve Lawler’s QAP (Lawler,
1963) with up to 1502 variables, while (Wang et al., 2019;
Yu et al., 2020) apply GNNs to Koopman-Beckmann’s
QAP (Loiola et al., 2007) with 2562 variables, all employ-
ing 3-layer GNNs with hidden dimensions of 512, 1024,
or 2048. They exploits key strengths of GNNs: adapt-
ability to varying graph sizes, allowing the same model
applied to various QPs, and permutation invariance, en-
suring consistent outputs regardless of node order.
However, despite notable empirical results, a systematic understanding of GNN for QP is still lack-
ing. To thoroughly understand its pros and cons, some critical questions must be addressed:

• (Existence). Are there GNNs that can either capture the essential characteristics of QPs or
provide approximate solutions? This question is named the expressive power of GNNs.

• (Trainability). If such GNNs exist, can we find them? The process of finding such GNNs is
named training, which involves gathering data, creating a method to measure success or failure
(a loss function), and then refining the GNN to reduce the loss function.

• (Generalization). Can a trained GNN perform effectively on QP instances it has not previously
encountered? This concerns the generalization ability of GNNs.

This paper primarily addresses the first question about expressive power. For Type I applications,
we investigate whether GNNs can accurately map a QP to its crucial features, focusing on feasibility
and the optimal objective value. For Type II, we examine whether GNNs can map a QP to one of its
optimal solutions. Formally, the question motivating this paper is:

Are there GNNs that can accurately predict the feasibility,
optimal objective value, and an optimal solution of a QP?

(1.1)

The literature has explored the expressive capabilities of GNNs on general graph tasks (Xu et al.,
2019; Azizian & Lelarge, 2021; Geerts & Reutter, 2022; Zhang et al., 2023; Li & Leskovec, 2022;
Sato, 2020) and their ability to approximate continuous functions on graphs (Azizian & Lelarge,
2021; Geerts & Reutter, 2022). However, significant gaps remain in understanding how these results
relate to QP, as the connections between QP features (such as feasibility and optimal objective value)
and graph properties have not been established. The most relevant works Chen et al. (2023a;b)
investigate the representation power of GNNs for (mixed-integer) linear programs, but their analysis
highly depends on the linear structure and does not cover nonlinear programs like QP.
Contributions. Overall, as several studies have empirically shown that incorporating a GNN can
greatly improve the performance of a QP solver on specific datasets — either via GNN-generated
real-time warm starts or GNN-suggested adaptive configurations — our primary aim is to theoreti-
cally investigate the expressive power of GNNs in these tasks and to determine if there is room for
improvement or any considerations to be aware of. Specifically, contributions of this paper include:

• (GNN for LCQP). We provide an affirmative answer to question (1.1), establishing a theoretical
foundation for using GNNs for LCQP, across both Type I and II applications.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• (GNN for MI-LCQP). In the case of MI-LCQP, our findings generally suggest a negative an-
swer to question (1.1). However, we identify specific, precisely defined subclasses of MI-LCQP
where GNNs can accurately predict feasibility, boundedness, and an optimal solution.

• (Experimental Validation). We conduct experiments that directly validate the above results.

2 PRELIMINARIES

This section introduces foundational concepts and preliminary definitions. We focus on linearly
constrained quadratic programming (LCQP), which is formulated as follows:

min
x∈Rn

1

2
x⊤Qx+ c⊤x, s.t. Ax ◦ b, l ≤ x ≤ u, (2.1)

where Q ∈ Rn×n, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n, and
◦ ∈ {≤,=,≥}m. In this paper, we always assume that Q is symmetric.
Basic concepts of LCQPs. An x satisfying all constraints of (2.1) is named a feasible solution. The
set of all feasible solutions, defined as X =: {x ∈ Rn : Ax ◦ b, l ≤ x ≤ u}, is referred to as the
feasible set. The LCQP is considered feasible if this set is non-empty; otherwise, it is infeasible. The
value of 1

2x
⊤Qx+ c⊤x is named the objective (function) value. Its infimum across the feasible set

is termed the optimal objective value. If this infimum is −∞, suggesting the objective value could
indefinitely decrease, the LCQP is deemed unbounded. Conversely, when the optimal objective
value is finite, the corresponding x is identified as an optimal solution.
Graph representation of LCQPs. We present a graph structure, termed the LCQP-graph GLCQP =
(V,W,A,Q,HV , HW), that encodes all the elements of a LCQP (2.1). Particularly,

• The graph contains two distinct types of nodes. Nodes in V = {1, 2, . . . ,m}, labeled as i,
represent the i-th constraint and are called constraint nodes. Nodes in W = {1, 2, . . . , n},
labeled as j, represent the j-th variable and are known as variable nodes. The union set V ∪W
includes all the vertices of the entire LCQP-graph GLCQP.

• The graph comprises two distinct edge types. An edge connects i ∈ V to j ∈ W if Aij is
nonzero, with Aij serving as the edge weight. Similarly, the edge between nodes j, j′ ∈ W
exists if Qjj′ ̸= 0, with Qjj′ as the edge weight. Self loops (j = j′) are permitted.

• Attributes/features vi = (bi, ◦i) are attached to the i-th constraint node for i ∈ V . The collec-
tion of all such attributes is denoted as HV = (v1, v2, . . . , vm).

• Attributes/features wj = (cj , ℓj , uj) are attached to the j-th variable node for j ∈ W . The
collection of all such attributes is denoted as HW = (w1, w2, . . . , wn).

Such a representation is illustrated by an example shown in Figure 1 and it can be regarded as
fundamental since it is minimal in the sense that every entry in (A, b, c,Q, l, u, ◦) is used exactly
once. To the best of our knowledge, this particular representation is only detailed in Jung et al.
(2022), yet it forms the foundation or core module for numerous related studies. For instance,
removing nodes in V and their associated edges reduces the graph into the assignment graph used
in graph matching problems (Nowak et al., 2017; Wang et al., 2020b; 2021; Qu et al., 2021; Gao
et al., 2021; Tan et al., 2024). In these cases, the linear constraints Ax ◦ b are typically bypassed by
applying the Sinkhorn algorithm to ensure that x meets these constraints. Another scenario involves
LP and MILP: removing edges associated with Q simplifies the graph to a bipartite structure, which
reduces the LCQP to an LP (Chen et al., 2023a; Fan et al., 2023; Liu et al., 2024; Qian et al., 2024).
Further, by incorporating an additional node feature, an approach detailed in Section 4, this bipartite
graph is also capable of representing MILP (Gasse et al., 2019; Chen et al., 2023b; Nair et al., 2020;
Gupta et al., 2020; Shen et al., 2021; Gupta et al., 2022; Khalil et al., 2022; Paulus et al., 2022;
Scavuzzo et al., 2022; Liu et al., 2022b; Huang et al., 2023).
GNNs for solving LCQPs. Building on the established concepts, we present message-passing
graph neural networks (hereafter referred to simply as GNNs) tailored for LCQPs using LCQP-
graphs. These GNNs take in an LCQP-graph GLCQP (including all the node attributes and edge
weights) as input and update node attributes sequentially across layers via a message-passing mech-
anism. Initially, node attributes s0i , t

0
j are computed using embedding mappings fV

0 , fW
0 :

• s0i = fV
0 (vi) for i ∈ V , and t0j = fW

0 (wj) for j ∈ W .
The architecture includes L standard message-passing layers where each layer (where 1 ≤ l ≤ L)
updates node attributes by locally aggregating neighbor information:

• sli = fV
l

(
sl−1
i ,

∑
j∈W Aijg

W
l (tl−1

j)
)

for i ∈ V , and

• tlj = fW
l

(
tl−1
j ,

∑
i∈V Aijg

V
l (sl−1

i),
∑

j′∈W Qjj′g
Q
l (tl−1

j′)
)

for j ∈ W .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Finally, there are two types of output layers. For applications where the GNN maps LCQP-graphs
to a singular real value, such as evaluating properties like feasibility of the LCQP, a graph-level
output layer is employed that computes a single real number encompassing the entire graph:

• y = r1
(∑

i∈V sLi ,
∑

j∈W tLj
)
∈ R.

Alternatively, if the GNN is required to map the LCQP-graph to a vector y ∈ Rn, assigning a real
number to each variable node as its output (as is typical in applications where GNNs are used to
predict solutions), then a node-level output should be utilized. This output layer computes the
value for the j-th output as follows:

• yj = r2
(∑

i∈V sLi ,
∑

j∈W tLj , t
L
j

)
.

In our theoretical analysis, we assume all the mappings fV
l , fW

l (0 ≤ l ≤ L), gVl , fW
l , gQl (1 ≤

l ≤ L), and r1, r2 to be continuous. In practice, these continuous mappings are learned from data.
We aim to find mappings that enable all the LCQP-graphs GLCQP from a dataset to be mapped accu-
rately to their desired outputs y. To achieve this, we parameterize these mappings using multilayer
perceptrons (MLPs) and optimize them within the parametric space.
Definition 2.1 (Space of LCQP-graphs and space of GNNs). The set of all LCQP-graphs, denoted
as Gm,n

LCQP
1, comprises graphs with m constraints and n variables, where the matrix Q is symmetric.

Definition 2.2 (Spaces of GNNs). The collection of all message-passing GNNs, denoted as FLCQP

for graph-level outputs (or FW
LCQP for node-level outputs), consists of all GNNs constructed using

continuous mappings fV
l , fW

l (0 ≤ l ≤ L), gVl , fW
l , gQl (1 ≤ l ≤ L), and r1 (or r2).

Note that the input graph size for GNNs within FLCQP and FW
LCQP is unspecified, as the functions

fV
l , fW

l (0 ≤ l ≤ L), gVl , fW
l , gQl (1 ≤ l ≤ L), and r1 (or r2) are independent of m,n. This

independence highlights a key advantage of GNNs discussed in Section 1: their adaptability to
various graph sizes, allowing the same model to be consistently applied across different QPs.
Definition 2.3 (Target mappings). We define three mappings for LCQPs.

• Feasibility mapping: Φfeas(GLCQP) = 1 if the LCQP problem associated to GLCQP is feasible
and Φfeas(GLCQP) = 0 if it is infeasible.

• Optimal objective value mapping: Φobj(GLCQP) ∈ R ∪ {±∞} computes the optimal objective
value of the LCQP problem associated to GLCQP. Φobj(GLCQP) = +∞ means the problem is
infeasible and Φobj(GLCQP) = −∞ means the problem is unbounded.

• Optimal solution mapping: For a feasible and bounded LCQP problem (i.e., Φobj(GLCQP) ∈ R),
an optimal solution exists (Eaves, 1971) though it might not be unique. However, the optimal
solution with the smallest ℓ2-norm must be unique if Q ⪰ 0 and we define it as Φsol(GLCQP).

Given the definitions above, we can formally pose the question in (1.1) as follows: Is there any
F ∈ FLCQP that well approximates Φfeas or Φobj? Similarly, is there any function FW ∈ FW

LCQP that
well approximates Φsol(GLCQP)?

3 UNVERSAL APPROXIMATION OF GNNS FOR LCQPS

This section presents our main theoretical results for the expressive power of GNNs for representing
properties of LCQPs. In particular, we show that for any LCQP data distribution, there always be a
GNN that can predict LCQP properties, in the sense of universally approximating target mappings
in Definition 2.3, within given error tolerance. Although it is known in the previous literature that
there exists some continuous function that cannot be approximated by GNNs with arbitrarily small
error, see e.g., Xu et al. (2019); Azizian & Lelarge (2021); Geerts & Reutter (2022), our results in
this section indicate that approximating the target mappings of LCQPs (defined in Definition 2.3) do
not suffer from this fundamental limitation. Such results answer the question (1.1) positively.
Assumption 3.1. P is a Borel regular probability measure on Gm,n

LCQP.
The assumption of Borel regularity is generally satisfied for most data distributions in practice,
including discrete distributions, gaussian distributions, etc. With this assumption, we have:
Theorem 3.2. For any probability measure P satisfying Assumption 3.1 and any ϵ > 0, there exists
F ∈ FLCQP such that IF (GLCQP)>

1
2

acts as a classifier for LCQP-feasibility, with an error of up to ϵ:

1The space Gm,n
LCQP is equipped with the subspace topology induced from the product space{

(A, b, c,Q, l, u, ◦) : A ∈ Rm×n, b ∈ Rm, c ∈ Rn, Q ∈ Rn×n, l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n, ◦ ∈
{≤,=,≥}m

}
, where all Euclidean spaces have standard Eudlidean topologies, discrete spaces {−∞}, {+∞},

and {≤,=,≥} have the discrete topologies, and all unions are disjoint unions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

P
[
IF (GLCQP)>

1
2
̸= Φfeas(GLCQP)

]
< ϵ,

where I· is the indicator function: IF (GLCQP)>
1
2
= 1 if F (GLCQP) >

1
2 ; IF (GLCQP)>

1
2
= 0 otherwise.

This result suggests that a GNN is a universal classifier for LCQP feasibility: for any data distri-
bution of LCQPs satisfying Assumption 3.1, there exists a GNN that can classify LCQP feasibility
with arbitrarily high accuracy. This is a natural extension of the feasibility classification for linear
programs (Chen et al., 2023a), as feasibility is solely determined by the constraints, independent of
the objective function, and all LCQP constraints are linear.

However, using GNNs to predict the optimal objective value or an optimal solution is highly non-
trivial due to the nonlinear term x⊤Qx. Fortunately, when restricting LCQPs to convex cases, GNNs
can universally represent the optimal objective value and an optimal solution for these LCQPs.
Theorem 3.3. Let P be a probability measure on Gm,n

LCQP satisfying Assumption 3.1 with P[Q ⪰ 0] =
1, i.e., Q is positive semidefinite almost surely. For any ϵ > 0, there exists F1 ∈ FLCQP such that

P
[
IF1(GLCQP)>

1
2
̸= IΦobj(GLCQP)∈R

]
< ϵ. (3.1)

Addtitionally, if P[Φobj(GLCQP) ∈ R] = 1, then for any ϵ, δ > 0, there exists F2 ∈ FLCQP such that
P [|F2(GLCQP)− Φobj(GLCQP)| > δ] < ϵ. (3.2)

This theorem indicates that GNNs can approximate the optimal objective value mapping Φobj very
well in two senses: (1) GNN can predict whether the optimal objective value is a real number or
±∞, i.e., whether the LCQP problem is feasible and bounded or not. (2) For a data distribution over
feasible and bounded LCQP problems, GNN can approximate the real-valued mapping Φobj.

Our last theorem for LCQP is that GNN can approximate the optimal solution map Φsol that returns
the optimal solution with the smallest ℓ2-norm of feasible and bounded LCQP problems.
Theorem 3.4. Let P be a probability measure on Gm,n

LCQP satisfying Assumption 3.1 and P[Q ⪰ 0] =

P[Φobj(GLCQP) ∈ R] = 1. For any ϵ, δ > 0, there exists FW ∈ FW
LCQP such that

P [∥FW (GLCQP)− Φsol(GLCQP)∥ > δ] < ϵ.

The proofs of Theorems 3.3 and 3.4 will be presented in Appendix A. We briefly describe the main
idea here. The Stone-Weierstrass theorem and its variants are a powerful tool for proving universal-
approximation-type results. Recall that the classic version of the Stone-Weierstrass theorem states
that under some assumptions, a function class F can uniformly approximate every continuous func-
tion if and only if it separates points, i.e., for any x ̸= x′, one has F (x) ̸= F (x′) for some F ∈ F .
Otherwise, we say x and x′ are indistinguishable by any F ∈ F . Therefore, the key component in
the proof is to establish some separation results in the sense that two LCQP-graphs with different
optimal objective values (or different optimal solutions with the smallest ℓ2-norm) must be distin-
guished by some GNN in the class FLCQP (or FW

LCQP). It is first established in Xu et al. (2019) that
the separation power2 of GNNs is equivalent to the Weisfeiler-Lehman (WL) test (Weisfeiler & Le-
man, 1968), a classical algorithm for the graph isomorphism problem, which is further developed in
many recently works, see e.g. Azizian & Lelarge (2021); Geerts & Reutter (2022). We show that,
any two LCQP-graphs that are indistinguishable by the WL test, or equivalently by all GNNs, even
if they are not isomorphic, some of their structures must be identical, which guarantees that they
must have identical optimal objective value and identical optimal solution with the smallest ℓ2-norm
(see Definition A.1, Theorem A.2, and Theorem A.3).

The universal approximation results of GNNs for LCQPs can be extended to quadratically con-
strained quadratic programs (QCQPs) that have additional quadratic terms in the constraints com-
pared to LCQPs. Specifically, we modify the graph representation with additional hyperedges to
represent the quadratic terms in the constraints, and modify the GNN architecture that updates both
vertex features and edge features layer by layer. The details are deferred to Appendix E.

4 THE CAPACITY OF GNNS FOR MI-LCQPS

In this section, we discuss the expressive power of GNNs for mixed-integer linearly constrained
quadratic programs (MI-LCQPs), for which the general form is almost the same as (2.1) except

2Given two sets of functions, F and F ′, both defined over the same domain X , if F separating points x and
x′ implies that F ′ also separates x and x′ for any x, x′ ∈ X , then the separation power of F ′ is considered to
be stronger than or at least equal to that of F .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

that some entries of x are constrained to be integers: xj ∈ Z, ∀ j ∈ I , where I ⊂ {1, 2, . . . , n}
collects the indices of all integer variables. Before proceeding, we extend LCQP-graphs and the
corresponding GNNs and target mappings to the MI-LCQP setting.

MI-LCQP-graph is modified from the LCQP-graph (Section 2 and Figure 1) by adding a new
entry to the feature of each variable node j ∈ W . The new feature is wj = (cj , lj , uj , δI(j)) where
δI(j) = 1 if j ∈ I and δI(j) = 0 otherwise. We use Gm,n

MI-LCQP to denote the collection of all
MI-LCQP-graphs with m constraints, n variables, and symmetric and positive semi-definite Q.

GNNs for MI-LCQP-graphs are constructed following the same mechanism as for LCQP-graphs,
with the difference that the message-passing layer is modified as

• sli = fV
l

(
sl−1
i ,

∑
j∈NW

i
gWl (tl−1

j , Aij)
)

for i ∈ V , and

• tlj = fW
l

(
tl−1
j ,

∑
i∈NV

j
gVl (sl−1

i , Aij),
∑

j′∈NW
j

gQl (tl−1
j′ , Qjj′)

)
for j ∈ W ,

where NW
i = {j ∈ W : Aij ̸= 0}, N V

j = {j ∈ V : Aij ̸= 0}, and NW
j = {j′ ∈ W : Qjj′ ̸= 0}

are the sets of neighbors. We use FMI-LCQP and FW
MI-LCQP to denote the GNN classes for MI-LCQP-

graphs with graph-level and node-level output, respectively.

Target mappings for MI-LCQPs considered in this section are also similar to those in Definition 2.3.
In particular, the feasibility mapping Φfeas and the optimal objective value mapping Φobj are defined
in the same way as in Definition 2.3, while the optimal solution mapping Φsol can only be defined
on a subset of the class of feasible and bounded MI-LCQPs, which will be discussed in Appendix C.

4.1 GNNS CANNOT UNIVERSALLY REPRESENT MI-LCQPS

In this subsection, we answer the question (1.1) for MI-LCQP. When integer variables are intro-
duced, the situation changes. Particularly, we present some counter-examples illustrating the funda-
mental limitation of GNNs for representing properties of MI-LCQPs.
Proposition 4.1. There exist two MI-LCQP problems, with one being feasible and the other being
infeasible, such that their graphs are indistinguishable by any GNN in FMI-CLQP.
Proposition 4.2. There exist two feasible MI-LCQP problems, with different optimal objective val-
ues, such that their graphs are indistinguishable by any GNN in FMI-CLQP.
Proposition 4.3. There exist two feasible MI-LCQP problems with the same optimal objectives but
disjoint optimal solution sets, such that their graphs are indistinguishable by any GNN in FW

MI-CLQP.
Propositions 4.1, 4.2, and 4.3 indicate that for some MI-LCQP data distribution, it is impossible to
train a GNN to predict MI-LCQP properties, regardless of the size or the complexity of the GNN. Par-
ticularly, one can choose the uniform distribution over pairs of instances satisfying Propositions 4.1,
4.2, and 4.3: any GNN making good approximation on one instance must fail on the other.
The detailed proofs of all three propositions are provided in Appendix B. Here we present a pair of
MI-LCQP instances that prove Proposition 4.3. This pair is the most interesting among those related
to Propositions 4.1, 4.2, and 4.3. Consider the following two MI-LCQPs:

min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x1 = 0,

x3 − x4 = 0, x4 − x5 = 0,

x5 − x6 = 0, x6 − x7 = 0, x7 − x3 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3, xj ∈ Z, ∀ j ∈ {1, 2, . . . , 7}.

v1

v2

v3

v4

v5

v6

v7

v8

w1

w2

w3

w4

w5

w6

w7

min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x3 = 0, x3 − x1 = 0,

x4 − x5 = 0, x5 − x6 = 0,

x6 − x7 = 0, x7 − x4 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3, xj ∈ Z, ∀ j ∈ {1, 2, . . . , 7}.

v1

v2

v3

v4

v5

v6

v7

v8

w1

w2

w3

w4

w5

w6

w7

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Firstly, both MI-LCQPs are feasible and share the same optimal objective value, but their op-
timal solutions differ. In the first instance, the unique feasible (and thus optimal) solution is
(3, 3, 0, 0, 0, 0, 0), while in the second instance, it is (2, 2, 2, 0, 0, 0, 0). In both instances, the op-
timal objective values are identical, as 1⊤x = 6 leads to 1

2x
⊤11⊤x+ 1⊤x = 24.

Secondly, the two instances cannot be distinguished by any GNN in FW
MI-CLQP. Initially, each variable

node wj is assigned the same attribute, wj = (1, 0, 3, 1), which represents an objective coefficient
of cj = 1, lower bound lj = 0, upper bound uj = 3, and an integral indicator δI(j) = 1. These
concepts are detailed in Section 2 and the beginning of Section 4. We refer to these nodes as “red
nodes”. Similarly, the first seven constraint nodes vi (for 1 ≤ i ≤ 7) are assigned the same attribute,
vi = (0,=), which we label as “blue nodes”. The eighth constraint node v8 is unique, with the
attribute v8 = (6,=), and is called the “brown node”. Based solely on node information, the two
graphs are indistinguishable since both have seven red nodes, seven blue nodes, and one brown node.

Even after multiple rounds of message passing (as described in Section 2), the two graphs remain
indistinguishable. To explain, consider any red node wj , which is connected to a blue node with
weight Aij = 1 (solid lines), another blue node with weight Aij = −1 (dashed lines), the brown
node with weight Aij = 1 (green lines), and all seven red nodes with weights Qjj′ = 1 (brown
curves). Thus, the red node’s attribute is updated as follows (an informal but illustrative equation):

tlj = fw
l

(
red node, gVl (blue node)− gVl (blue node) + gVl (brown node), 7gQl (red node)

)
.

After the update, all red nodes tlj(1 ≤ j ≤ 7) in both graphs retain identical attributes and are still
indistinguishable. The same applies to the blue and brown nodes, leading to the conclusion that,
regardless of how many message-passing rounds occur, both graphs will still have seven red nodes,
seven blue nodes, and one brown node. This conclusion holds for any parameterized mappings used
in GNNs (fV

l , fW
l , gVl , gWl , and gQl), meaning no GNN can differentiate between the two instances.

This illustrates a limitation of GNNs in representing MI-LCQP, which is ignored in the literature.

4.2 GNNS CAN REPRESENT PARTICULAR TYPES OF MI-LCQPS

We have shown a fundamental limitation of GNNs to represent properties of general MI-LCQP
problems. Therefore, a natural question is: Whether we can identify a subset of GMI-LCQP on which
it is possible to train reliable GNNs. To address this, we need to gain a better understanding for
the separation power of GNNs or equivalently the WL test, according to the discussion following
Theorem 3.4. We state in Algorithm 1 the WL test for MI-LCQP-graphs associated to FMI-LCQP or
FW

MI-LCQP, where Cl,V
i and Cl,W

j are understood as the color of i ∈ V and j ∈ W at the l-th iteration.

Algorithm 1 The WL test for MI-LCQP-graphs (Example provided in Appendix D)

Require: A LCQP-graph G = (V,W,A,Q,HV , HW) and iteration limit L > 0.
1: Initialize with C0,V

i = HASH(vi) and C0,W
j = HASH(wj).

2: for l = 1, 2, · · · , L do
3: Cl,V

i = HASH
(
Cl−1,V

i ,
{{

(Cl−1,W
j , Aij) : j ∈ NW

i

}})
.

4: Cl,W
j = HASH

(
Cl−1,W

j ,
{{

(Cl−1,V
i , Aij) : i ∈ N V

j

}}
,
{{

(Cl−1,W
j′ , Qjj′) : j

′ ∈ NW
j

}})
.

5: end for
6: return The multisets containing all colors

{{
CL,V

i

}}m

i=0
,
{{

CL,W
j

}}n

j=0
.

Initially, each vertex is labeled a color according to its attributes (vi or wj). In the case that the hash
functions introduce no collisions, two vertices are of the same color at the l-th iteration if and only
if at the (l − 1)-th iteration, they have the same color and the same information aggregation from
neighbors in terms of multiset of colors and edge weights. This is a color refinement procedure.
One can have a partition of the vertex set V ∪ W at each iteration based on vertices’ colors: two
vertices are classified in the same class if and only if they are of the same color. Such a partition is
strictly refined in the first O(m+n) iterations and will remain stable or unchanged afterward if no
collision, see e.g. Berkholz et al. (2017).

Intuitively, vertices in the same class of the final stable partition generated by the WL test will always
have identical attributes in message-passing layers for all GNNs in FMI-LCQP or FW

MI-LCQP, and vice
versa, since the color refinement procedure in Algorithm 1 follows the same mechanism as the
message-passing process. Thus, to identify a subset of FMI-LCQP on which GNNs have sufficiently
strong separation power, we propose the following definition generalized from Chen et al. (2024)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

for mixed-integer linear programs (MILPs), which basically states that vertices in the same class
generated by the WL test can indeed be treated same in some sense.

Definition 4.4 (MP-tractable MI-LCQP). Let GMI-LCQP ∈ Gm,n
MI-LCQP be a MI-LCQP problem and

let (I,J) be the final stable partition of V ∪ W generated by WL test without collision, where
I = {I1, I2, . . . , Is} is a partition of V = {1, 2, . . . ,m} and J = {J1, J2, . . . , Jt} is a partition of
W = {1, 2, . . . , n}. We say that GMI-LCQP is message-passing-tractable (MP-tractable) if:

(a) For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t}, Aij is constant in i ∈ Ip, j ∈ Jq .

(b) For any q, q′ ∈ {1, 2, . . . , t}, Qjj′ is constant in j ∈ Jq, j
′ ∈ Jq′ .

We use Gm,n
MP ⊂ Gm,n

MI-LCQP to denote the collection of all MP-tractable MI-LCQP-graphs.

Under the assumption of MP-tractability, we can establish universal approximation results for GNNs
on MI-LCQPs regarding feasibility and optimal objective value. While GNNs cannot universally
represent all MI-LCQPs, they can represent MP-tractable ones.

Assumption 4.5. P is a Borel regular probability measure on Gm,n
MI-LCQP

3.

Theorem 4.6. Let P be a probability measure satisfying Assumption 4.5 and P[GMI-LCQP ∈ Gm,n
MP] =

1, i.e., the MP-tractability holds almost surely. For any ϵ > 0, there exists F ∈ FMI-LCQP such that

P
[
IF (GMI-LCQP)>

1
2
̸= Φfeas(GMI-LCQP)

]
< ϵ.

Theorem 4.7. Let P be a probability measure satisfying Assumption 4.5 and P[GMI-LCQP ∈ Gm,n
MP] =

1, i.e., the MP-tractability holds almost surely. For any ϵ > 0, there exists F1 ∈ FMI-LCQP such that

P
[
IF1(GMI-LCQP)>

1
2
̸= IΦobj(GMI-LCQP)∈R

]
< ϵ.

Additionally, if P[Φobj(GMI-LCQP) ∈ R] = 1, for any ϵ, δ > 0, there exists F2 ∈ FMI-LCQP such that

P [|F2(GMI-LCQP)− Φobj(GMI-LCQP)| > δ] < ϵ.

To extend these results to predicting optimal solutions with GNNs, we introduce two additional
assumptions. First, we assume the MI-LCQPs have an optimal solution. We define Gm,n

sol as the set of
MI-LCQPs for which an optimal solution exists. The assumption is expressed as GMI-LCQP ∈ Gm,n

sol .
The second assumption is that MI-LCQPs are unfoldable, defined below in Definition 4.8, extending
the concept from Chen et al. (2023b) for MILPs.

Definition 4.8 (Unfoldable MI-LCQP). In the same setting as in Definition 4.4, we say that GMI-LCQP
is unfoldable if t = n and |J1| = |J2| = · · · = |Jn| = 1, i.e., all vertices in W have different colors.
We use Gm,n

unfold ⊂ Gm,n
MI-LCQP to denote the collection of all unfoldable MI-LCQP-graphs.

With the two assumptions—that the MI-LCQPs have an optimal solution and are unfoldable—we
can establish a universal approximation result for optimal solution prediction: GNNs can universally
approximate the optimal solutions for this specific class of MI-LCQPs.

Theorem 4.9. Let P be a probability measure on Gm,n
MI-LCQP satisfying Assumption 4.5 and

P[GMI-LCQP ∈ Gm,n
sol ∩ Gm,n

unfold] = 1. For any ϵ, δ > 0, there exists FW ∈ FW
MI-LCQP such that

P [∥FW (GMI-LCQP)− Φsol(GMI-LCQP)∥ > δ] < ϵ.

Theorems 4.6, 4.7, and 4.9 precisely characterize the subsets of MI-LCQPs where GNNs can suc-
ceed and their proofs can be found in Appendix C.

4.3 PRACTICAL CHARACTERIZATION OF “SOLVABLE” MI-LCQPS

To better illustrate the practical implications of Theorems 4.6, 4.7, and 4.9, we make more discussion
of MP-tractability and unfoldability in this subsection.

MP-tractability vs unfoldability. While all unfoldable MI-LCQPs must be MP-tractable (strictly
proved in the appendix), not all MP-tractable problems are necessarily unfoldable. This difference
can be clearly illustrated with an example that is MP-tractable but not unfoldable:

min
1

2
x2
2+x1+x2+x3, s.t. x1+x3 ≤ 1, x1−x2+x3 ≤ 1, 0 ≤ x1, x2, x3 ≤ 1, x1, x2, x3 ∈ Z.

The related discussions, proofs, and this example are further detailed in Appendix D.

3The topology of Gm,n
MI-LCQP is defined in the same way as Gm,n

LCQP.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 500 1000 1500
Epoch

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

Er
ro

r

Emb. Size = 64
Emb. Size = 128
Emb. Size = 256
Emb. Size = 512

(a) Fit Φobj for LCQP

0 2500 5000 7500 10000
Epoch

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

Emb. Size = 64
Emb. Size = 128
Emb. Size = 256
Emb. Size = 512

(b) Fit Φsol for LCQP

0 2000 4000 6000
Epoch

10 7

10 5

10 3

10 1

101

Re
la

tiv
e

Er
ro

r

Emb. Size = 64
Emb. Size = 128
Emb. Size = 256
Emb. Size = 512

(c) Fit Φobj for MI-LCQP

0 2500 5000 7500 10000
Epoch

10 4

10 2

100

Re
la

tiv
e

Er
ro

r

Emb. Size = 64
Emb. Size = 128
Emb. Size = 256
Emb. Size = 512

(d) Fit Φsol for MI-LCQP

Figure 2: Relative errors when training GNNs to fit Φobj and Φsol for LCQP (2a-2b) and MI-LCQP
(2c-2d). GNNs are trained on 100 randomly generated problem instances.

Numerical verification of MP-tractability and unfoldability. In practice, both MP-tractability
and unfoldability can be efficiently verified. In particular, one can apply the WL test, which requires
at most O(m+n) iterations. The complexity of each iteration is bounded by the number of edges in
the graph Shervashidze et al. (2011), which, in our context, is the number of nonzeros in matrices A
and Q: nnz(A)+nnz(Q). Therefore, the overall complexity of Algorithm 1 is O((m+n)·(nnz(A)+
nnz(Q))). After running Algorithm 1, MP-tractability can be directly verified using Definition 4.4,
and unfoldability can be directly verified using Definition 4.8.
Frequency of MP-tractability and unfoldability. In practice, the frequency of MP-tractable and
unfoldable instances largely depends on the dataset. In the earlier example, two of three variables,
x1 and x3, display symmetry — they are labeled with the same color by WL test and swapping them
does not alter the problem. Generally, unfoldable problems lack symmetry and MP-tractability al-
lows for some degree of symmetry. Another example in Section 4.1 admits strong symmetry across
all variables, making it neither MP-tractable nor unfoldable. Thus, the frequency of MP-tractability
and unfoldability relates to the level of symmetry in the data. When there is symmetry in MI-LCQP,
it becomes foldable; and higher symmetry increases the risk of being MP-intractable. Fortunately,
unfoldable and MP-tractable instances make up the majority of the MI-LCQP set (shown in Ap-
pendix D). The dataset used in our experiments, which includes synthetic MI-LCQPs, portfolio
problems, and SVMs, consists entirely of unfoldable and MP-tractable instances. However, it’s im-
portant to note that in some challenging, artificially created datasets like MIPLIB 2017 Gleixner
et al. (2021), about 1/4 of the examples exhibit significant symmetry in half of the variables.
How to handle bad instances? Two potential approaches to deal with symmetry. (I) Adding
features: Introducing additional features can differentiate nodes in symmetric graphs. For example,
adding a random feature to nodes with identical attributes ensures they are no longer symmetric
Sato et al. (2021). (II) Using higher-order GNNs: These models can distinguish nodes that standard
message-passing GNNs cannot, enhancing their expressive power Morris et al. (2019).

5 NUMERICAL EXPERIMENTS

Numerical validation of GNNs’ expressive power. We train GNNs to fit Φobj or Φsol for LCQP
or MI-LCQP instances.4 For both LCQP and MI-LCQP, we randomly generate 100 instances, each
of which contains 10 constraints and 50 variables. The generated MI-LCQPs are all unfoldable and
MP-tractable with probability one. The optimal solutions and corresponding objective function val-
ues are collected using existing solvers. Details on the data generation and training schemes can be
found in Appendix F. We train four GNNs with four different embedding sizes and record their rel-
ative errors averaged on all instances during training.5 The results are reported in Figure 2. We can
see that GNNs can fit Φobj and Φsol well for both LCQP and MI-LCQP. These results validate The-
orems 3.3,3.4,4.7 and 4.9 on a small set of instances. We also observe that a larger embedding size
increases the capacity of a GNN, resulting in not only lower final errors but also faster convergence.

Numerical validation on a larger scale. To further validate the theorems, we expand the number
of problem instances to 500 and 2,500, and conduct training on the four GNNs along with a larger
variant with an embedding size of 1,024. The results are reported in Figure 3. We can observe that
GNN can achieve near-zero fitting errors as long as it has a large enough embedding size and thus
enough capacity for approximation, which directly validate Theorems 3.3,3.4,4.7 and 4.9.

4Since LCQP and MI-LCQP are linearly constrained, predicting feasibility falls to the case of LP and MILP,
which has been numerically investigated in Chen et al. (2023a;b). Hence we omit the feasibility experiments.

5The relative error of a GNN FW on a single problem instance G is defined as ∥FW (G) −
Φ(G)∥2/max(∥Φ(G)∥2, 1), where Φ could be either Φobj or Φsol.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

26 27 28 29 210

Hidden embedding size

0.000

0.002

0.004

0.006

Re
la

tiv
e

er
ro

r 100 Samples
500 Samples
2500 Samples

(a) Fit Φobj for LCQP

26 27 28 29 210

Hidden embedding size

0.00

0.05

0.10

Re
la

tiv
e

er
ro

r 100 Samples
500 Samples
2500 Samples

(b) Fit Φsol for LCQP

26 27 28 29 210

Hidden embedding size

0.00

0.02

0.04

0.06

Re
la

tiv
e

er
ro

r 100 Samples
500 Samples
2500 Samples

(c) Fit Φobj for MI-LCQP

26 27 28 29 210

Hidden embedding size

0.0

0.1

0.2

Re
la

tiv
e

er
ro

r 100 Samples
500 Samples
2500 Samples

(d) Fit Φsol for MI-LCQP

Figure 3: Empirical results on randomly generated generic LCQP and MI-LCQP problems as for-
mulated in (2.1) and (C.1). The figures illustrate the relative errors achieved during training for
various combinations of embedding sizes and numbers of training samples. We can achieve near
zero errors when the GNN is large enough.

26 27 28 29 210

Hidden embedding size

0.00

0.02

0.04

0.06

Re
la

tiv
e

er
ro

r 100 Samples
500 Samples
2500 Samples

(a) Fit Φobj for portfolio

26 27 28 29 210

Hidden embedding size

0.00

0.05

0.10
Re

la
tiv

e
er

ro
r 100 Samples

500 Samples
2500 Samples

(b) Fit Φsol for portfolio

26 27 28 29 210

Hidden embedding size

0.00

0.02

0.04

Re
la

tiv
e

er
ro

r 100 Samples
500 Samples
2500 Samples

(c) Fit Φobj for SVM

26 27 28 29 210

Hidden embedding size

0.00

0.05

0.10

Re
la

tiv
e

er
ro

r 100 Samples
500 Samples
2500 Samples

(d) Fit Φsol for SVM

Figure 4: Empirical results on randomly generated portfolio optimization and SVM optimization
problems (see Appendix F for formulation). The figures illustrate the best relative errors achieved
during training for various combinations of embedding sizes and numbers of training samples. We
can achieve near-zero errors when the GNN is large enough.

Various types of LCQP. Besides the generic LCQP formulation (2.1), we also extend the numerical
experiments to other types of optimization problems, namely portfolio optimization and support
vector machine (SVM) following Jung et al. (2022). The results of fitting solutions or objective
values on 100/500/2,500 randomly generated problem instances are illustrated in Figure 4. We can
observe similar fitting behaviors as those in the generic LCQP experiments where the expressive
power of GNNs increase as they become larger, evidenced by the fitting errors decreasing to near
zero when the embedding size increases. The formulation of the portfolio and SVM optimization
and how the problem instances are generated are explained in Appendix F.

Generalization. Besides investigating GNNs’ expressive capacity, we also explore their general-
ization ability and observed positive results. However, since the generalization ability is out of the
main topic of this work, we refer the interested readers to Appendix F for details.

Table 1: Average solving times of GNN
and OSQP on 1,000 LCQP instances.

Method Batch
Size

Solving
Time (ms)

OSQP - 2.44

GNN

1 47.56
10 6.13
100 0.79

1,000 0.41

Analysis of GNN computation complexity. GNNs are
superior over QP solvers in terms of running time, espe-
cially when we fully exploit parallel computing with GPU
acceleration. To show this, we measure the average run-
ning time using OSQP (Stellato et al., 2020) and a trained
GNN with different batch sizes over the 1,000 synthetic
LCQP problems generated in the experiment above. We
applied OSQP to solve all instances to a relative error
of 10−3, which is slightly less accurate than the trained
GNN (with an average relative error of 6.31× 10−4). All
running times were measured in milliseconds. The re-
sults are shown in the Table 1. The sufficiently acceler-
ated computation validates GNNs’ capacity as a real-time QP solver or fast warm-start, numerically
supporting the rationality of our theoretical study of GNNs for QPs.

6 CONCLUSION

This paper establishes theoretical foundations for using GNNs to represent the feasibility, optimal
objective value, and optimal solution, of LCQPs and MI-LCQPs. In particular, we prove the exis-
tence of GNNs that can predict those properties of LCQPs universally well and show with explicit
examples that such results are generally not true for MI-LCQPs when integer constraints are intro-
duced. Moreover, we precisely identify subclasses of MI-LCQP problems on which such universal
approximation results are still valid. All our findings are also verified numerically. However, our
universal approximation theorems only show the existence of the GNNs, without discussing the
training, generalization, and the size of GNNs, which are important future directions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for large-
scale machine learning. In 12th USENIX symposium on operating systems design and implemen-
tation (OSDI 16), pp. 265–283, 2016.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural net-
works. In International Conference on Learning Representations, 2021.

Christoph Berkholz, Paul Bonsma, and Martin Grohe. Tight lower and upper bounds for the com-
plexity of canonical colour refinement. Theory of Computing Systems, 60:581–614, 2017.

Dimitris Bertsimas and Bartolomeo Stellato. Online mixed-integer optimization in milliseconds.
INFORMS Journal on Computing, 34(4):2229–2248, 2022.

Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. Learning a classification of mixed-integer
quadratic programming problems. In Integration of Constraint Programming, Artificial Intel-
ligence, and Operations Research: 15th International Conference, CPAIOR 2018, Delft, The
Netherlands, June 26–29, 2018, Proceedings 15, pp. 595–604. Springer, 2018.

Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. A classifier to decide on the linearization of
mixed-integer quadratic problems in cplex. Operations research, 70(6):3303–3320, 2022.

Stéphane Caron, Akram Zaki, Pavel Otta, Daniel Arnström, Justin Carpentier, Fengyu Yang, and
Pierre-Alexandre Leziart. qpbenchmark: Benchmark for quadratic programming solvers available
in Python, 2024. URL https://github.com/qpsolvers/qpbenchmark.

Steven Chen, Kelsey Saulnier, Nikolay Atanasov, Daniel D Lee, Vijay Kumar, George J Pappas,
and Manfred Morari. Approximating explicit model predictive control using constrained neural
networks. In 2018 Annual American control conference (ACC), pp. 1520–1527. IEEE, 2018.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear pro-
grams by graph neural networks. In The Eleventh International Conference on Learning Repre-
sentations, 2023a.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-
integer linear programs by graph neural networks. In The Eleventh International Conference on
Learning Representations, 2023b.

Ziang Chen, Jialin Liu, Xiaohan Chen, Xinshang Wang, and Wotao Yin. Rethinking the capacity of
graph neural networks for branching strategy. arXiv preprint arXiv:2402.07099, 2024.

B Curtis Eaves. On quadratic programming. Management Science, 17(11):698–711, 1971.

Zhenan Fan, Xinglu Wang, Oleksandr Yakovenko, Abdullah Ali Sivas, Owen Ren, Yong Zhang,
and Zirui Zhou. Smart initial basis selection for linear programs. In International Conference on
Machine Learning, pp. 9650–9664. PMLR, 2023.

Quankai Gao, Fudong Wang, Nan Xue, Jin-Gang Yu, and Gui-Song Xia. Deep graph matching
under quadratic constraint. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5069–5078, 2021.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations, 2022.

Grant Getzelman and Prasanna Balaprakash. Learning to switch optimizers for quadratic program-
ming. In Asian Conference on Machine Learning, pp. 1553–1568. PMLR, 2021.

11

https://github.com/qpsolvers/qpbenchmark

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443–490, 2021.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

Prateek Gupta, Elias B Khalil, Didier Chetélat, Maxime Gasse, Yoshua Bengio, Andrea Lodi, and
M Pawan Kumar. Lookback for learning to branch. arXiv preprint arXiv:2206.14987, 2022.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International Conference
on Machine Learning, pp. 13869–13890. PMLR, 2023.

Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo, Francesco Borrelli,
Joseph E Gonzalez, Ion Stoica, and Ken Goldberg. Accelerating quadratic optimization with
reinforcement learning. Advances in Neural Information Processing Systems, 34:21043–21055,
2021.

Haewon Jung, Junyoung Park, and Jinkyoo Park. Learning context-aware adaptive solvers to accel-
erate quadratic programming. arXiv preprint arXiv:2211.12443, 2022.

Benjamin Karg and Sergio Lucia. Efficient representation and approximation of model predictive
control laws via deep learning. IEEE Transactions on Cybernetics, 50(9):3866–3878, 2020.

Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for guid-
ing combinatorial solvers. 36(9):10219–10227, 2022.

Ethan King, James Kotary, Ferdinando Fioretto, and Jan Drgona. Metric learning to accelerate con-
vergence of operator splitting methods for differentiable parametric programming. arXiv preprint
arXiv:2404.00882, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Eugene L Lawler. The quadratic assignment problem. Management science, 9(4):586–599, 1963.

Pan Li and Jure Leskovec. The expressive power of graph neural networks. Graph Neural Networks:
Foundations, Frontiers, and Applications, pp. 63–98, 2022.

Chang Liu, Zetian Jiang, Runzhong Wang, Lingxiao Huang, Pinyan Lu, and Junchi Yan. Revocable
deep reinforcement learning with affinity regularization for outlier-robust graph matching. In The
Eleventh International Conference on Learning Representations, 2022a.

Defeng Liu, Matteo Fischetti, and Andrea Lodi. Learning to search in local branching. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3796–3803, 2022b.

Tianhao Liu, Shanwen Pu, Dongdong Ge, and Yinyu Ye. Learning to pivot as a smart expert. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 8073–8081, 2024.

Eliane Maria Loiola, Nair Maria Maia De Abreu, Paulo Oswaldo Boaventura-Netto, Peter Hahn, and
Tania Querido. A survey for the quadratic assignment problem. European journal of operational
research, 176(2):657–690, 2007.

Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

Istvan Maros and Csaba Mészáros. A repository of convex quadratic programming problems. Opti-
mization methods and software, 11(1-4):671–681, 1999.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. A note on learning algorithms for
quadratic assignment with graph neural networks. stat, 1050:22, 2017.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In International Conference
on Machine Learning, pp. 17584–17600. PMLR, 2022.

Chaoying Pei, Zhi Xu, Sixiong You, Jeffrey Sun, and Ran Dai. Reinforcement learning-guided
quadratically constrained quadratic programming for enhanced convergence and optimality. In
2023 62nd IEEE Conference on Decision and Control (CDC), pp. 7293–7298. IEEE, 2023.

Chendi Qian, Didier Chételat, and Christopher Morris. Exploring the power of graph neural net-
works in solving linear optimization problems. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1432–1440. PMLR, 2024.

Jingwei Qu, Haibin Ling, Chenrui Zhang, Xiaoqing Lyu, and Zhi Tang. Adaptive edge attention for
graph matching with outliers. In IJCAI, pp. 966–972, 2021.

R Tyrell Rockafellar. Linear-quadratic programming and optimal control. SIAM Journal on Control
and Optimization, 25(3):781–814, 1987.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-end learning to
warm-start for real-time quadratic optimization. In Learning for Dynamics and Control Confer-
ence, pp. 220–234. PMLR, 2023.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM international conference on data mining (SDM), pp.
333–341. SIAM, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith,
and Karen Aardal. Learning to branch with tree mdps. arXiv preprint arXiv:2205.11107, 2022.

Roland Schwan, Yuning Jiang, Daniel Kuhn, and Colin N Jones. Piqp: A proximal interior-point
quadratic programming solver. In 2023 62nd IEEE Conference on Decision and Control (CDC),
pp. 1088–1093. IEEE, 2023.

Yunzhuang Shen, Yuan Sun, Andrew Eberhard, and Xiaodong Li. Learning primal heuristics for
mixed integer programs. In 2021 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE, 2021.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method without the
agonizing pain. 1994.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator split-
ting solver for quadratic programs. Mathematical Programming Computation, 12(4):637–
672, 2020. doi: 10.1007/s12532-020-00179-2. URL https://doi.org/10.1007/
s12532-020-00179-2.

13

https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Haoru Tan, Chuang Wang, Sitong Wu, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu. Ensemble
quadratic assignment network for graph matching. International Journal of Computer Vision, pp.
1–23, 2024.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Joshua T Vogelstein, John M Conroy, Vince Lyzinski, Louis J Podrazik, Steven G Kratzer, Eric T
Harley, Donniell E Fishkind, R Jacob Vogelstein, and Carey E Priebe. Fast approximate quadratic
programming for graph matching. PLOS one, 10(4):e0121002, 2015.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks
for deep graph matching. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 3056–3065, 2019.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Combinatorial learning of robust deep graph
matching: an embedding based approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(6):6984–7000, 2020a.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learning
lawler’s quadratic assignment problem with extension to hypergraph and multiple-graph match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):5261–5279, 2021.

Tao Wang, He Liu, Yidong Li, Yi Jin, Xiaohui Hou, and Haibin Ling. Learning combinatorial solver
for graph matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 7568–7577, 2020b.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching with
channel-independent embedding and hungarian attention. In International Conference on Learn-
ing Representations, 2020.

Bingxu Zhang, Changjun Fan, Shixuan Liu, Kuihua Huang, Xiang Zhao, Jincai Huang, and Zhong
Liu. The expressive power of graph neural networks: A survey. arXiv preprint arXiv:2308.08235,
2023.

A PROOFS FOR SECTION 3

In this appendix, we present the proofs for theorems in Section 3. The proofs will based on
Weisfeiler-Lehman (WL) test and its separation power to distinguish LCQP problems with different
properties.

The Weisfeiler-Lehman (WL) test (Weisfeiler & Leman, 1968) is a classical algorithm for the graph
isomorphism problem. In particular, it implements color refinement on vertices by applying a hash
function on the previous vertex color and aggregation of colors from neighbors, and identifies two
graphs as isomorphic if their final color multisets are the same. It is worth noting that WL test may
incorrectly identify two non-isomorphic graphs as isomorphic. We slightly modify the standard WL
test to fit the structure of LCQP-graphs, see Algorithm 2.

We define two equivalence relations as follows. Intuitively, LCQP-graphs in the same equivalence
class will be identified as isomorphic by WL test, though they may be actually non-isomorphic.

Definition A.1. For two LCQP-graphs GLCQP, ĜLCQP ∈ Gm,n
LCQP, let {{CL,V

i }}mi=0, {{C
L,W
j }}nj=0

and {{ĈL,V
i }}mi=0, {{Ĉ

L,W
j }}nj=0 be color multisets output by Algorithm 2 on GLCQP and ĜLCQP.

1. We say GLCQP ∼ ĜLCQP if {{CL,V
i }}mi=0 = {{ĈL,V

i }}mi=0 and {{CL,W
j }}nj=0 =

{{ĈL,W
j }}nj=0 hold for all L ∈ N and all hash functions.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 2 The WL test for LCQP-graphs

Require: A LCQP-graph G = (V,W,A,Q,HV , HW) and iteration limit L > 0.
1: Initialize with C0,V

i = HASH(vi) and C0,W
j = HASH(wj).

2: for l = 1, 2, · · · , L do
3: Refine the colors

Cl,V
i = HASH

Cl−1,V
i ,

n∑
j=1

AijHASH
(
Cl−1,W

j

) ,

Cl,W
j = HASH

Cl−1,W
j ,

m∑
i=1

AijHASH
(
Cl−1,V

i

)
,

n∑
j′=1

Qjj′HASH
(
Cl−1,W

j′

) .

4: end for
5: return The multisets containing all colors

{{
CL,V

i

}}m

i=0
,
{{

CL,W
j

}}n

j=0
.

2. We say GLCQP
W∼ ĜLCQP if {{CL,V

i }}mi=0 = {{ĈL,V
i }}mi=0 and CL,W

j = ĈL,W
j , ∀ j ∈

{1, 2, . . . , n}, for all L ∈ N and all hash functions.

Our main finding leading to the results in Section 3 is that, for LCQP-graphs in the same equivalence
class, even if they are non-isomorphic, their optimal objective values and optimal solutions must be
the same (up to a permutation perhaps).

Theorem A.2. For any GLCQP, ĜLCQP ∈ Gm,n
LCQP with Q, Q̂ ⪰ 0, if GLCQP ∼ ĜLCQP, then

Φobj(GLCQP) = Φobj(ĜLCQP).

Theorem A.3. For any GLCQP, ĜLCQP ∈ Gm,n
LCQP with Q, Q̂ ⪰ 0 that are feasible and bounded,

if GLCQP ∼ ĜLCQP, then there exists some permutation σW ∈ Sn such that Φsol(GLCQP) =

σW (Φsol(ĜLCQP)). Furthermore, if GLCQP
W∼ ĜLCQP, then Φsol(GLCQP) = Φsol(ĜLCQP).

We need the following lemma to prove Theorem A.2 and Theorem A.3.

Lemma A.4. Suppose that M ∈ Rn×n is a symmetric and positive semidefinite matrix and that
J = {J1, J2, . . . , Jt} is a partition of {1, 2, . . . , n} satisfying that for any q, q′ ∈ {1, 2, . . . , t},∑

j′∈Jq′
Mjj′ is a constant over j ∈ Jq . For any x ∈ Rn, it holds that

1

2
x⊤Mx ≥ 1

2
x̂⊤Mx̂, (A.1)

where x̂ ∈ Rn is defined via x̂j = yq = 1
|Jq|

∑
j′∈Jq

xj′ for j ∈ Jq .

Proof. Fixe x ∈ Rn and consider the problem

min
z∈Rn

1

2
z⊤Mz, s.t.

∑
j∈Jq

zj =
∑
j∈Jq

xj , q = 1, 2, . . . , t, (A.2)

which is a convex program. The Lagrangian is given by

L(z, λ) = 1

2
z⊤Mz −

t∑
q=1

λq

∑
j∈Jq

zj −
∑
j∈Jq

xj

 .

It can be computed that

∂

∂zj
L(z, λ) =

n∑
j′=1

Mjj′zj′ − λq, j ∈ Jq,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

and
∂

∂λq
L(z, λ) =

∑
j∈Jq

xj −
∑
j∈Jq

zj ,

It is clear that
∂

∂λq
L(x̂, λ) =

∑
j∈Jq

xj −
∑
j∈Jq

x̂j = 0,

by the definition of x̂. Furthermore, consider any fixed q ∈ {1, 2, . . . , t} and we have for any j ∈ Jq
that

∂

∂zj
L(x̂, λ) =

t∑
q′=1

yq′
∑

j′∈Jq′

Mjj′ − λq = 0,

if λq =
∑t

q′=1 yq′
∑

j′∈Jq′
Mjj′ that is independent in j ∈ q since

∑
j′∈Jq′

Mjj′ is constant over
j ∈ Jq for any q′ ∈ {1, 2, . . . , t}. Since the problem (A.2) is convex and the first-order optimality
condition is satisfied at x̂, we can conclude that x̂ is a minimizer of (A.2), which implies (A.1).

Proof of Theorem A.2. Let GLCQP and ĜLCQP be the LCQP-graphs associated to (2.1) and

min
x∈Rn

1

2
x⊤Q̂x+ ĉ⊤x, s.t. Âx ◦̂ b̂, l̂ ≤ x ≤ û, (A.3)

Suppose that there are no collisions of hash functions or their linear combinations when applying
the WL test to GLCQP and ĜLCQP and there are no strict color refinements in the L-th iteration.
Since GLCQP ∼ ĜLCQP, after performing some permutation, there exist I = {I1, I2, . . . , Is} and
J = {J1, J2, . . . , Jt} that are partitions of {1, 2, . . . ,m} and {1, 2, . . . , n}, respectively, such that
the followings hold:

• CL,V
i = CL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• ĈL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,W
j = CL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• CL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• ĈL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

Since there are no collisions, we have from the vertex color initialization that

• vi = (bi, ◦i) = v̂i = (b̂i, ◦̂i) and is constant over i ∈ Ip for any p ∈ {1, 2, . . . , s}.

• wj = (cj , lj , uj) = ŵj = (ĉj , l̂j , ûj) and is constant over j ∈ Jq for any q ∈ {1, 2, . . . , t}.

For any p ∈ {1, 2, . . . , s} and any i, i′ ∈ Ip, one has

CL,V
i = CL,V

i′ =⇒
∑
j∈W

AijHASH
(
CL−1,W

j

)
=

∑
j∈W

Ai′jHASH
(
CL−1,W

j

)
=⇒

∑
j∈W

AijHASH
(
CL,W

j

)
=

∑
j∈W

Ai′jHASH
(
CL,W

j

)
=⇒

∑
j∈Jq

Aij =
∑
j∈Jq

Ai′j , ∀ q ∈ {1, 2, . . . , t}.

One can obtain similar conclusions from CL,V
i = ĈL,V

i′ and ĈL,V
i = ĈL,V

i′ , and hence conclude
that

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

j∈Jq
Aij =

∑
j∈Jq

Âij and is constant
over i ∈ Ip.

Similarly, the followings also hold:

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

i∈Ip
Aij =

∑
i∈Ip

Âij and is constant
over j ∈ Jq .

• For any q, q′ ∈ {1, 2, . . . , t},
∑

j′∈Jq′
Qjj′ =

∑
j′∈Jq′

Q̂jj′ and is constant over j ∈ Jq .

If GLCQP or (2.1) is infeasible, then Φobj(GLCQP) = +∞ and clearly Φobj(GLCQP) ≥ Φobj(ĜLCQP).
If (2.1) is feasible, let x ∈ Rn be any feasible solution to (2.1) and define x̂ ∈ Rn via x̂j = yq =
1

|Jq|
∑

j′∈Jq
xj′ for j ∈ Jq . By the proofs of Lemma B.2 and Lemma B.3 in Chen et al. (2023a), we

know that x̂ is a feasible solution to (A.3) and c⊤x = ĉ⊤x̂. In addition, we have

1

2
x⊤Qx

(A.1)
≥ 1

2
x̂⊤Qx̂ =

1

2

t∑
q,q′=1

∑
j∈Jq

∑
j′∈Jq′

x̂jQjj′ x̂j′ =
1

2

t∑
q,q′=1

yqyq′
∑

j′∈Jq′

Qjj′

=
1

2

t∑
q,q′=1

yqyq′
∑

j′∈Jq′

Q̂jj′ =
1

2

t∑
q,q′=1

∑
j∈Jq

∑
j′∈Jq′

x̂jQ̂jj′ x̂j′ =
1

2
x̂⊤Q̂x̂,

which then implies that
1

2
x⊤Qx+ c⊤x ≥ 1

2
x̂⊤Q̂x̂+ ĉ⊤x̂,

and hence that Φobj(GLCQP) ≥ Φobj(ĜLCQP). Till now we have proved Φobj(GLCQP) ≥ Φobj(ĜLCQP)

regardless of the feasibility of GLCQP. The reverse direction Φobj(GLCQP) ≤ Φobj(ĜLCQP) is also true
and we can conclude that Φobj(GLCQP) = Φobj(ĜLCQP).

Proof of Theorem A.3. Under the same setting as in the proof of Theorem A.2, the results can be
proved using the same arguments as in the proof of Lemma B.4 and Corollary B.7 in Chen et al.
(2023a). We present the proof here for completeness.

Let x ∈ Rn be the optimal solution to (2.1) with the smallest ℓ2-norm, and let x̂ ∈ Rn be defined as
in the proof of Theorem A.2. By the arguments in the proof of Theorem A.2, x̂ is an optimal solution
to (A.3). In particular, x̂ is also an optimal solution to (2.1) since one can set (Â, b̂, ĉ, Q̂, l̂, û, ◦̂) =
(A, b, c,Q, l, u, ◦). Therefore, by the minimality of ∥x∥2, we have that

∥x∥2 ≤ ∥x̂∥2 =

t∑
q=1

∑
j∈Jq

x̂2
j =

t∑
q=1

|Jq|

 1

|Jq|
∑
j∈Jq

xj

2

≤
t∑

q=1

∑
j∈Jq

x2
j = ∥x∥2,

which implies that xj is a constant in j ∈ Jq and x = x̂. Thus, x is also an optimal solution to (A.3).

Let x′ ∈ Rn be the optimal solution to (A.3) with the smallest ℓ2-norm. Then ∥x′∥ ≤ ∥x̂∥ = ∥x∥
and the reverse direction ∥x∥ ≤ ∥x′∥ is also true, which implies that ∥x∥ = ∥x′∥. Therefore, we
have x = x′ by the uniqueness of the optimal solution with the smallest ℓ2-norm.

Noticing that the above arguments are made after permuting vertices in V and W , we can conclude
that Φsol(GLCQP) = σW (Φsol(ĜLCQP)) for some σW ∈ Sn. Additionally, if GLCQP

W∼ ĜLCQP, then
there is no need to perform the permutation on W and we have Φsol(GLCQP) = Φsol(ĜLCQP).

Corollary A.5. For any GLCQP ∈ Gm,n
LCQP that is feasible and bounded and any j, j′ ∈ {1, 2, . . . , n},

if CL,W
j = CL,W

j′ holds for all L ∈ N+ and all hash functions, then Φsol(GLCQP)j = Φsol(GLCQP)j′ .

Proof. Let ĜLCQP be the LCQP-graph obtained from GLCQP by relabeling j as j′ and relabeling
j′ as j. By Theorem A.3, we have Φsol(GLCQP) = Φsol(ĜLCQP), which implies Φsol(GLCQP)j =

Φsol(ĜLCQP)j = Φsol(GLCQP)j′ .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

It is well-known from previous literature that the separation power of GNNs is equivalent to that
of WL test and that GNNs can universally approximate any continuous function whose separation
is not stronger than that of WL test; see e.g. Chen et al. (2023a); Xu et al. (2019); Azizian &
Lelarge (2021); Geerts & Reutter (2022). We have established in Theorem A.2, Theorem A.3,
and Corollary A.5 that the separation power of Φobj and Φsol is upper bounded by the WL test
(Algorithm 2) that shares the same information aggregation mechanism as the GNNs in FLCQP and
FW

LCQP. Therefore, Theorem 3.3 and Theorem 3.4 can be proved using standard arguments in the
previous literature.

Proof of Theorem 3.3. Based on Theorem A.2, Theorem 3.3 can be proved following the same lines
as in the proof of Theorem 3.4 in Chen et al. (2023a), with straightforward modifications to gen-
eralize results for LP-graphs to the LCQP setting. We sketch the proof here for the sake of self-
containedness.

The separation power of GNNs is equivalent to that of the WL test, i.e., for any GLCQP, ĜLCQP ∈
Gm,n

LCQP with Q, Q̂ ⪰ 0,

GLCQP ∼ ĜLCQP ⇐⇒ F (GLCQP) = F (ĜLCQP), ∀ F ∈ FLCQP, (A.4)

which combined with Theorem A.2 leads to that

F (GLCQP) = F (ĜLCQP), ∀ F ∈ FLCQP =⇒ Φobj(GLCQP) = Φobj(ĜLCQP), (A.5)

indicating that the separation power of FLCQP is upper bounded by that of Φobj.

The indicator function IΦobj(·)∈R : Gm,n
LCQP → {0, 1} ⊂ R is measurable, and hence by Lusin’s

theorem, there exists a compact and permutation-invariant subspace X ⊂ Gm,n
LCQP such that

P[Gm,n
LCQP\X] < ϵ and that IΦobj(·)∈R restricted on X is continuous. Therefore, by the Stone-

Weierstrass theorem and (A.5), we have that there exists F1 ∈ FLCQP satisfying

sup
GLCQP∈X

∣∣F1(GLCQP)− IΦobj(GLCQP)∈R
∣∣ < 1

2

Therefore, it holds that

P
[
IF1(GLCQP)>

1
2
̸= IΦobj(GLCQP)∈R

]
≤ P

[
Gm,n

LCQP\X
]
< ϵ,

which proves (3.1). Additionally, (3.2) can be proved by applying similar arguments to Φobj :

Φ−1
obj (R) → R, where Φ−1

obj (R) ⊂ Gm,n
LCQP is the collection of feasible and bounded GLCQP ∈ Gm,n

LCQP.

Proof of Theorem 3.4. Based on Theorem A.3 and Corollary A.5, Theorem 3.4 can be proved fol-
lowing the same lines as in the proof of Theorem 3.6 in Chen et al. (2023a), with trivial modifications
to generalize results for LP-graphs to the LCQP setting. We sketch the proof here for the sake of
self-containedness.

In addition to (A.4), it can be proved that the separation powers of GNNs and the WL test are
equivalent in the following sense:

• For any GLCQP, ĜLCQP ∈ Gm,n
LCQP, GLCQP

W∼ ĜLCQP if and only if FW (GLCQP) =

FW (ĜLCQP) for all FW ∈ FW
LCQP.

• For any GLCQP ∈ Gm,n
LCQP and any j, j′ ∈ W , CL,W

j = CL,W
j′ for any L ∈ N and any hash

function if and only if FW (GLCQP)j = FW (GLCQP)j′ for all FW ∈ FW
LCQP.

Therefore, with Theorem A.3 and Corollary A.5, the separation power of GNNs is upper bounded
by that of Φsol in the following sense that for any GLCQP, ĜLCQP ∈ Gm,n

LCQP with Q, Q̂ ⪰ 0 and any
j, j′ ∈ W ,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• F (GLCQP) = F (ĜLCQP), ∀ F ∈ FLCQP implies Φsol(GLCQP) = σW (Φsol(ĜLCQP)) for
some σW ∈ Sn.

• FW (GLCQP) = FW (ĜLCQP), ∀ FW ∈ FW
LCQP implies Φsol(GLCQP) = Φsol(ĜLCQP).

• FW (GLCQP)j = FW (GLCQP)j′ , ∀ FW ∈ FW
LCQP implies Φsol(GLCQP)j = Φsol(GLCQP)j′ .

The optimal solution mapping Φsol : Φ
−1
obj (R) → R is measurable, and hence by Lusin’s theorem,

there exists a compact and permutation-invariant subspace X ⊂ Φ−1
obj (R) such that P[Φ−1

obj (R)\X] <
ϵ and that Φsol restricted on X is continuous. Therefore, applying the generalized Stone-Weierstrass
theorem for equivariant functions (Azizian & Lelarge, 2021, Theorem 22), we know that there exists
FW ∈ FW

LCQP satisfying

sup
GLCQP∈X

∥FW (GLCQP)− Φsol(GLCQP)∥ < δ.

Therefore, it holds that

P [∥FW (GLCQP)− Φsol(GLCQP)∥ > δ] ≤ P
[
Φ−1

obj (R)\X
]
< ϵ,

which completes the proof.

B PROOFS FOR SECTION 4.1

The proof of Proposisition 4.1 is directly from Chen et al. (2023b) since adding a quadratic term in
the objective function of an MILP problem does not change the feasible region. However, Proposi-
sitions 4.2 and 4.3 are not covered in Chen et al. (2023b) and we present their proofs here.

Proof of Proposisition 4.2. As discussed in Section 4.1, we consider the following two examples
whose optimal objective values are 9

2 and 6, respectively.

min
x∈R6

1

2

6∑
i=1

x2
i +

6∑
i=1

xi,

s.t. x1 + x2 ≥ 1, x2 + x3 ≥ 1, x3 + x4 ≥ 1,

x4 + x5 ≥ 1, x5 + x6 ≥ 1, x6 + x1 ≥ 1,

xj ∈ {0, 1}, ∀ j ∈ {1, 2, . . . , 6}.

min
x∈R6

1

2

6∑
i=1

x2
i +

6∑
i=1

xi,

s.t. x1 + x2 ≥ 1, x2 + x3 ≥ 1, x3 + x1 ≥ 1,

x4 + x5 ≥ 1, x5 + x6 ≥ 1, x6 + x4 ≥ 1,

xj ∈ {0, 1}, ∀ j ∈ {1, 2, . . . , 6}.

v1

v2

v3

v4

v5

v6

w1

w2

w3

w4

w5

w6

v1

v2

v3

v4

v5

v6

w1

w2

w3

w4

w5

w6

Denote GMI-LCQP and ĜMI-LCQP as the graph representations of the above two MI-LCQP problems.
Let sli, t

l
j and ŝli, t̂

l
j be the attributes at the l-th layer when apply a GNN F ∈ FMI-LCQP to GMI-LCQP

and ĜMI-LCQP. We will prove by induction that for any 0 ≤ l ≤ L, the followings hold:

(a) sli = ŝli and is constant over i ∈ {1, 2, . . . , 6}.

(b) tlj = t̂lj and is constant over j ∈ {1, 2, . . . , 6}.

It is clear that the conditions (a) and (b) are true for l = 0, since vi = v̂i = (1,≥) is constant in
i ∈ {1, 2, . . . , 6}, and wj = ŵj = (1, 0, 1, 1) is constant in j ∈ {1, 2, . . . , 6}. Now suppose that
the conditions (a) and (b) are true for l − 1 where 1 ≤ l ≤ L. We denote that sl−1 = sl−1

i =

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

s̄l−1
i , ∀ i ∈ {1, 2, . . . , 6} and tl−1 = tl−1

j = t̂l−1
j , ∀ j ∈ {1, 2, . . . , 6}. It can be computed for any

i ∈ {1, 2, . . . , 6} and j ∈ {1, 2, . . . , 6} that

sli = fV
l

sl−1
i ,

∑
j∈NW

i

gWl (tl−1
j , Aij)

 = fV
l

(
sl−1, 2gWl (tl−1, 1)

)
= ŝli,

tlj = fW
l

tl−1
j ,

∑
i∈NV

j

gVl (sl−1
i , Aij),

∑
j′∈NW

j

gQl (tl−1
j′ , Qjj′)


= fW

l

(
tl−1, 2gVl (sl−1, 1), gQl (tl−1, 1)

)
= t̂lj ,

which proves (a) and (b) for l. Thus, we can conclude that F (GMI-LCQP) = F (ĜMI-LCQP), ∀ F ∈
FMI-LCQP.

Proof of Proposition 4.3. Consider the following two MI-LCQPs:

min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x1 = 0,

x3 − x4 = 0, x4 − x5 = 0,

x5 − x6 = 0, x6 − x7 = 0, x7 − x3 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3, xj ∈ Z, ∀ j ∈ {1, 2, . . . , 7}.

v1

v2

v3

v4

v5

v6

v7

v8

w1

w2

w3

w4

w5

w6

w7

and

min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x3 = 0, x3 − x1 = 0,

x4 − x5 = 0, x5 − x6 = 0,

x6 − x7 = 0, x7 − x4 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3, xj ∈ Z, ∀ j ∈ {1, 2, . . . , 7}.

v1

v2

v3

v4

v5

v6

v7

v8

w1

w2

w3

w4

w5

w6

w7

As we mentioned in Section 4.1, both problems are feasible with the same optimal objective value,
but have disjoint optimal solution sets.

On the other hand, it can be analyzed using the same argument as in the proof of Proposition 4.2
that for any 0 ≤ l ≤ L that

(a) sli = ŝli is constant over i ∈ {1, 2, . . . , 7}, and sl8 = ŝl8.

(b) tlj = t̂lj is constant over j ∈ {1, 2, . . . , 7}.

These two conditions guarantee that F (GMI-LCQP) = F (ĜMI-LCQP), ∀ F ∈ FMI-LCQP and
FW (GMI-LCQP) = FW (ĜMI-LCQP), ∀ FW ∈ FMI-LCQP.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C PROOFS FOR SECTION 4.2

This section collects the proofs of Theorems 4.6, 4.7, and 4.9. Similar to the LCQP case, the proofs
are also based on the WL test (Algorithm 1) and its separation power to distinguish MI-LCQP
problems with different properties. We define the separation power of Algorithm 1 as follows.

Definition C.1. Let GMI-LCQP, ĜMI-LCQP ∈ Gm,n
MI-LCQP be two MI-LCQP-graphs and let

{{CL,V
i }}mi=0, {{C

L,W
j }}nj=0 and {{ĈL,V

i }}mi=0, {{Ĉ
L,W
j }}nj=0 be color multisets output by Al-

gorithm 1 on GMI-LCQP and ĜMI-LCQP.

1. We say GMI-LCQP ∼ ĜMI-LCQP if {{CL,V
i }}mi=0 = {{ĈL,V

i }}mi=0 and {{CL,W
j }}nj=0 =

{{ĈL,W
j }}nj=0 hold for all L ∈ N and all hash functions.

2. We say GMI-LCQP
W∼ ĜMI-LCQP if {{CL,V

i }}mi=0 = {{ĈL,V
i }}mi=0 and CL,W

j =

ĈL,W
j , ∀ j ∈ {1, 2, . . . , n}, for all L ∈ N and all hash functions.

The key component in the proof is to show that for unfoldable/MP-tractable MI-LCQP problems, if
they are indistinguishable by WL test, then they must share some common properties.

Theorem C.2. For two MP-tractable MI-LCQP-graphs GMI-LCQP, ĜMI-LCQP ∈ Gm,n
MP , if GMI-LCQP ∼

ĜMI-LCQP, then Φfeas(GMI-LCQP) = Φfeas(ĜMI-LCQP) and Φobj(GMI-LCQP) = Φobj(ĜMI-LCQP).

Proof. Let GMI-LCQP and ĜMI-LCQP be the MI-LCQP-graphs associated to

min
x∈Rn

1

2
x⊤Qx+ c⊤x, s.t. Ax ◦ b, l ≤ x ≤ u, xj ∈ Z, ∀ j ∈ I. (C.1)

and

min
x∈Rn

1

2
x⊤Q̂x+ ĉ⊤x, s.t. Âx ◦̂ b̂, l̂ ≤ x ≤ û, xj ∈ Z, ∀ j ∈ Î . (C.2)

Suppose that there are no collisions of hash functions or their linear combinations when applying
the WL test to GMI-LCQP and ĜMI-LCQP and there are no strict color refinements in the L-th iteration.
Since GMI-LCQP ∼ ĜMI-LCQP and both of them are MP-tractable, after performing some permutation,
there exist I = {I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt} that are partitions of {1, 2, . . . ,m} and
{1, 2, . . . , n}, respectively, such that the followings hold:

• CL,V
i = CL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• ĈL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,W
j = CL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• CL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• ĈL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

By similar analysis as in the proof of Theorem A.2, we have

(a) vi = v̂i and is constant over i ∈ Ip for any p ∈ {1, 2, . . . , s}.

(b) wj = ŵj and is constant over j ∈ Jq for any q ∈ {1, 2, . . . , t}.

(c) For any p ∈ {1, 2, . . . , s} and any q ∈ {1, 2, . . . , t}, {{Aij : j ∈ Jq}} = {{Âij : j ∈ Jq}}
and is constant over i ∈ Ip.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(d) For any p ∈ {1, 2, . . . , s} and any q ∈ {1, 2, . . . , t}, {{Aij : i ∈ Ip}} = {{Âij : i ∈ Ip}}
and is constant over j ∈ Jq .

(e) For any q, q′ ∈ {1, 2, . . . , t}, {{Qjj′ : j
′ ∈ Jq′}} = {{Q̂jj′ : j

′ ∈ Jq′}} and is constant
over j ∈ Jq .

Note that GMI-LCQP and ĜMI-LCQP are both MP-tractable, i.e., all submatrices (Aij)i∈Ip,j∈Jq
,

(Âij)i∈Ip,j∈Jq , (Qjj′)j∈Jq,j′∈Jq′ , and (Q̂jj′)j∈Jq,j′∈Jq′ have identical entries. The above condi-
tions (c)-(e) suggest that

(f) For any p ∈ {1, 2, . . . , s} and any q ∈ {1, 2, . . . , t}, Aij = Âij and is constant over
i ∈ Ip, j ∈ Jq .

(g) For any q, q′ ∈ {1, 2, . . . , t}, Qjj′ = Q̂jj′ and is constant over j ∈ Jq, j
′ ∈ Jq′ .

Combining conditions (a), (b), (f), and (g), we can conclude that GMI-LCQP and ĜMI-LCQP are
actually identical after applying some permutation, i.e., they are isomorphic, which implies
Φfeas(GMI-LCQP) = Φfeas(ĜMI-LCQP) and Φobj(GMI-LCQP) = Φobj(ĜMI-LCQP).

Before stating the next result, we comment on the construction/definition of the MI-LCQP optimal
solution mapping Φsol. Different from the LCQP setting, the optimal solution to an MI-LCQP
problem may not exist even if it is feasible and bounded, i.e., Φobj(GMI-LCQP) ∈ R. Thus, we have
to work with Gm,n

sol ⊂ Φ−1
obj (R) ⊂ Gm,n

MI-LCQP where Gm,n
sol is the collection of all MI-LCQP-graphs for

which an optimal solution exists. For GMI-LCQP ∈ Gm,n
sol , it is possible that it admits multiple optimal

solution. Moreover, there may even exist multiple optimal solutions with the smallest ℓ2-norm due
to its non-convexity, which means that we cannot define the optimal solution mapping Φsol using
the same approach as in the LCQP case. If we further assume that GMI-LCQP ∈ Gm,n

sol is unfoldable,
then using the same approach as in Chen et al. (2023b, Appendix C), one can define a total ordering
on the optimal solution set and hence define Φsol(GMI-LCQP) as the minimal element in the optimal
solution set, which is unique and permutation-equivariant, meaning that if one relabels vertices of
GMI-LCQP, then entries of Φsol(GMI-LCQP) are relabelled accordingly.

Theorem C.3. For any two MI-LCQP-graphs GMI-LCQP, ĜMI-LCQP ∈ Gm,n
sol ∩ Gm,n

unfold that are un-
foldable with nonempty optimal solution sets, if GMI-LCQP ∼ ĜMI-LCQP, then there exists some per-

mutation σW ∈ Sn such that Φsol(GMI-LCQP) = σW (Φsol(ĜMI-LCQP)). Furthermore, if GMI-LCQP
W∼

ĜMI-LCQP, then Φsol(GMI-LCQP) = Φsol(ĜMI-LCQP).

Proof. By Proposition D.1, GMI-LCQP and ĜMI-LCQP are also MP-tractable, and hence, all analy-
sis in the proof of Theorem C.2 applies. If GMI-LCQP ∼ ĜMI-LCQP, then they are isomorphic and

Φsol(GMI-LCQP) = σW (Φsol(ĜMI-LCQP)) for some permutation σW ∈ Sn. If GMI-LCQP
W∼ ĜMI-LCQP,

then these two graphs will become identical after applying some permutation on V with the labeling
in W unchanged, which guarantees Φsol(GMI-LCQP) = Φsol(ĜMI-LCQP).

With Theorem C.2 and Theorem C.3, one can adopt standard argument in the previous literature to
prove Theorems 4.6, 4.7, and 4.9.

Proof of Theorem 4.6. Based on Theorem C.2, Theorem 4.6 can be proved following the same lines
as in the proof of Theorem 3.2 in Chen et al. (2023a), with straightforward modifications to general-
ize results for LP-graphs to the MI-LCQP setting. In particular, the proof outline is the same as the
proof of Theorem 3.3.

Proof of Theorem 4.7. Based on Theorem C.2, Theorem 4.7 can be proved following the same lines
as in the proof of Theorem 3.4 in Chen et al. (2023a), with straightforward modifications to general-
ize results for LP-graphs to the MI-LCQP setting. In particular, the proof outline is the same as the
proof of Theorem 3.3.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof of Theorem 4.9. Based on Theorem C.3 and the unfoldability assumption that different ver-
tices in W will eventually have different colors in the WL test without collision, which automatically
provides a result of the same spirit as Corollary A.5, Theorem 4.9 can be proved following the same
lines as in the proof of Theorem 3.6 in Chen et al. (2023a), with straightforward modifications to
generalize results for LP-graphs to the MI-LCQP setting. In particular, the proof outline is the same
as the proof of Theorem 3.4.

Discussions on various GNN architectures: In our work we use the sum aggregation, and all
results are still valid for the weighted average aggregation. In particular, all our proofs (such as
the proof of Theorem A.2) hold almost verbatimly for the average aggregation. The attention ag-
gregation Veličković et al. (2017) has stronger separation power, which implies that all universal
approximation results still hold. Moreover, all the counter examples for MI-LCQPs work for every
aggregation approach, since the color refinement in Algorithm 1 is implemented on multisets, with
separation power stronger than or equal to all aggregations of neighboring information. We have
included the above discussion in our updated draft.

D CHARACTERIZATION OF MP-TRACTABILITY AND UNFOLDABILITY

In this section, we discuss some further characterizations of the MP-tractability and the unfoldability
for MI-LCQP-graphs defined in Section 4.3.

D.1 RELATIONSHIP BETWEEN MP-TRACTABILITY AND UNFOLDABILITY

We first prove that unfoldability implies MP-tractability but they are not equivalent.

Proposition D.1. If GMI-LCQP ∈ Gm,n
MI-LCQP is unfoldable, then it is also MP-tractable.

Proof. Let (I,J) be the final stable partition of V ∪W generated by WL test on GMI-LCQP without
collision, where I = {I1, I2, . . . , Is} is a partition of V = {1, 2, . . . ,m} and J = {J1, J2, . . . , Jt}
is a partition of W = {1, 2, . . . , n}. Since we assume that GMI-LCQP is foldable, we have t = n and
|J1| = |J2| = · · · = |Jn| = 1. Then for any q, q′ ∈ {1, 2, . . . , t}, the submatrix (Qjj′)j∈Jq,j′∈Jq′ is
a 1× 1 matrix and hence has identical entries.

Consider any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t}. Suppose that the color positioning is stabilized
at the L-th iteration of WL test. Then for any i, i′ ∈ Ip, we have

CL,V
i = CL,V

i′

=⇒
{{

HASH
(
CL−1,W

j , Aij

)
: j ∈ NW

i

}}
=

{{
HASH

(
CL−1,W

j , Ai′j

)
: j ∈ NW

i

}}
=⇒ {{Aij : j ∈ Jq}} = {{Ai′j : j ∈ Jq}} ,

which implies that the submatrix (Aij)i∈Ip,j∈Jq
has identical entries since |Jq| = 1. Therefore,

GMI-LCQP is MP-tractable.

Proposition D.2. There exist MP-tractable instances in Gm,n
MI-LCQP that are not unfoldable.

v1

v2

w1

w2

w3 Initialization l = 1 l = 2

The WL test (Algorithm 1)MI-LCQP-graph

min 1
2x

2
2 + x1 + x2 + x3

s.t. x1 + x3 ≤ 1

x1 − x2 + x3 ≤ 1

0 ≤ x1, x2, x3 ≤ 1

x1, x2, x3 ∈ Z

MI-LCQP problem

Figure 5: Example for proving Proposition D.2

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Proof. Consider the example in Figure 5, for which the final stable partition is I = {{1}, {2}} and
J = {{1, 3}, {2}}. It is not unfoldable since the class {1, 3} in J has two elements. However, it is
MP-tractable since A11 = A13 = 1 and A21 = A23 = 1.

D.2 FREQUENCY OF MP-TRACTABILITY AND UNFOLDABILITY

It can be proved that a generic MI-LCQP-graph in Gm,n
MI-LCQP is unfoldable almost surely under some

mild conditions. Intuitively, if c ∈ Rn is randomly sampled from a continuous distribution with
density, then almost surely it holds that xj ̸= xj′ for any j ̸= j′, which implies that the vertices in
W have different colors initially and always, if there are no collisions of hash functions.

Proposition D.3. Let P be a probability measure over GMI-LCQP such that the marginal distribution
Pc of c ∈ Rn has density. Then P[GMI-LCQP ∈ Gm,n

unfold] = 1.

Proof. Since the marginal distribution Pc has density, almost surely we have for any j ̸= j′ that

cj ̸= cj′ =⇒ C0,W
j ̸= C0,W

j′ =⇒ Cl,W
j ̸= Cl,W

j′ , ∀ l ≥ 0,

where we assumed that no collisions happen in hash functions. Therefore, any j, j′ ∈ W with j ̸= j′

are not the in same class of the final stable partition (I,J), which proves the unfoldability.

As a direct corollary of Proposition D.1 and Proposition D.3, a generic MI-LCQP-graph in Gm,n
MI-LCQP

must also be MP-tractable.

Corollary D.4. Let P be a probability measure over GMI-LCQP such that the marginal distribution Pc

of c ∈ Rn has density. Then P[GMI-LCQP ∈ Gm,n
MP] = 1.

E EXTENSION TO QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMS

A general quadratically constrained quadratic programming (QCQP) is given by

min
x∈Rn

1

2
x⊤Qx+ c⊤x, s.t.

1

2
x⊤Pix+ a⊤i x ≤ bi, 1 ≤ i ≤ m, l ≤ x ≤ u, (E.1)

where Q,Pi ∈ Rn×n are symmetric, c, ai ∈ Rn, bi ∈ R, l ∈ (R∪{−∞})n, and u ∈ (R∪{+∞})n.
We denote A = [a1 a2 · · · am]

⊤ ∈ Rm×n for consistent notation with (2.1).

E.1 GRAPH REPRESENTATION AND GNNS FOR QCQPS

Graph representation for QCQPs The QCQP-graph for representing (E.1) is based on the
LCQP-graph introduced in Section 2. More specifically, The QCQP graph can be constructed by
incorporating the information from P = (P1, P2, . . . , Pm) into the LCQP graph:

• The multiset {{i, j, j′}} is viewed as a hyperedge with weight (Hi)jj′ for each i ∈ V and
j, j′ ∈ W , where j = j′ is allowed.

We use Gm,n
QCQP to denote the set of all QCQP-graphs with m constraints and n variables.

GNNs for solving QCQP Note GNNs on LCQP-graphs that iterate vertex features with message-
passing mechanism, which does not naturally adapt to the hyperedges in QCQP graphs. Thus, one
idea is to add edge features for each pair (i, j), i ∈ V, j ∈ W . We describe the GNN architecture
for QCQP tasks in detail as follows.

The initial layer computes node features s0i , t
0
j and edge features e0ij via embedding:

• s0i = fV
0 (vi) for i ∈ V ,

• t0j = fW
0 (wj) for j ∈ W , and

• e0ij = fE
0 (Aij) for i ∈ V, j ∈ W .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The l-th message-passing layers (l = 1, 2, . . . , L) update the node features using neighbors’ infor-
mation:

• sli = fV
l

(
sl−1
i ,

∑
j∈W gVl (tl−1

j , el−1
ij)

)
for i ∈ V ,

• tlj = fW
l

(
tl−1
j ,

∑
i∈V gWl (sl−1

i , el−1
ij),

∑
j′∈W Qjj′g

Q
l (tl−1

j′)
)

for j ∈ W , and

• elij = fE
l

(
el−1
ij ,

∑
j′∈W (Pi)jj′g

E
l (t

l−1
j′)

)
for i ∈ V, j ∈ W .

Finally, there are two types of output layers. The graph-level output computes a single real number
for the whole graph

• y = r1
(∑

i∈V sLi ,
∑

j∈W tLj
)
∈ R,

and the node-level output computes a vector y ∈ Rn with the j-th entry being

• yj = r2
(∑

i∈V sLi ,
∑

j∈W tLj , t
L
j

)
.

We use FQCQP (or FW
QCQP) to denote the collection of all message-passing GNNs

with graph-level (or node-level) outputs that are constructed by continuous fV
0 , fW

0 , fE
0 ,

fV
l , fW

l , fE
l , gVl , gWl , gEl , g

Q
l (1 ≤ l ≤ L), and r1 (or r2).

E.2 UNIVERSAL APPROXIMATION OF GNNS FOR QCQPS

For QCQPs, we still consider the three target mappings, i.e., the feasible mapping Φfeas : Gm,n
QCQP →

{0, 1}, the optimal objective value mapping Φobj : Gm,n
QCQP → R ∪ {±∞}, and the optimal solution

mapping Φobj that computes the unique optimal solution with the smallest ℓ2-norm of feasible and
bounded QCQPs with Q,Pi ⪰ 0, i = 1, 2, . . . ,m. The main results that GNNs can universally
approximate these three target mappings are stated as follows.
Assumption E.1. P is a Borel regular probability measure on Gm,n

QCQP
6.

Theorem E.2. Let P be a probability measure satisfying Assumption E.1 and P[Q ⪰ 0] = P[Pi ⪰
0] = 1, i = 1, 2, . . . ,m. For any ϵ > 0, there exists F ∈ FMI-LCQP such that

P
[
IF (GQCQP)>

1
2
̸= Φfeas(GQCQP)

]
< ϵ.

Theorem E.3. Let P be a probability measure satisfying Assumption E.1 and P[Q ⪰ 0] = P[Pi ⪰
0] = 1, i = 1, 2, . . . ,m. For any ϵ > 0, there exists F1 ∈ FQCQP such that

P
[
IF1(GQCQP)>

1
2
̸= IΦobj(GQCQP)∈R

]
< ϵ.

Additionally, if P[Φobj(GQCQP) ∈ R] = 1, for any ϵ, δ > 0, there exists F2 ∈ FQCQP such that

P [|F2(GQCQP)− Φobj(GQCQP)| > δ] < ϵ.

Theorem E.4. Let P be a probability measure satisfying Assumption E.1 and P[Q ⪰ 0] = P[Pi ⪰
0] = 1, i = 1, 2, . . . ,m. For any ϵ, δ > 0, there exists FW ∈ FW

QCQP such that

P [∥FW (GQCQP)− Φsol(GQCQP)∥ > δ] < ϵ.

Similarly, the proofs of Theorem E.2, E.3, and E.4 are based on showing that the WL test associated
with the GNN classes FQCQP and FW

QCQP have sufficiently strong separation power to distinguish
QCQP problems with different properties. We will present and prove such separation results (Theo-
rem E.5, Theorem E.6, and Corollary E.7) in the rest of this subsection, and do not repeat the same
arguments as described in the Proof of Theorem 3.3 and Theorem 3.4.

We state in Algorithm 3 the WL test for QCQPs. For QCQP-graphs GQCQP, ĜQCQP ∈ Gm,n
QCQP,

6The space Gm,n
QCQP is equipped with the subspace topology induced from the product space{

(A, b, c,Q, P, l, u, ◦) : A ∈ Rm×n, b ∈ Rm, c ∈ Rn, Q ∈ Rn×n, P ∈ (Rn×n)m, l ∈ (R ∪ {−∞})n, u ∈
(R ∪ {+∞})n

}
, where all Euclidean spaces have standard Eudlidean topologies, discrete spaces {−∞} and

{+∞} have the discrete topologies, and all unions are disjoint unions.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1. We say GQCQP ∼ ĜQCQP if {{CL,V
i }}mi=0 = {{ĈL,V

i }}mi=0 and {{CL,W
j }}nj=0 =

{{ĈL,W
j }}nj=0 hold for all L ∈ N and all hash functions.

2. We say GQCQP
W∼ ĜQCQP if {{CL,V

i }}mi=0 = {{ĈL,V
i }}mi=0 and CL,W

j = ĈL,W
j , ∀ j ∈

{1, 2, . . . , n}, for all L ∈ N and all hash functions.

Algorithm 3 The WL test for QCQP-Graphs

Require: A QCQP-graph G = (V,W,A,Q, P,HV , HW) and iteration limit L > 0.
1: Initialize with

C0,V
i = HASH(vi), C

0,W
j = HASH(wj), C

0,E
ij = HASH(Aij).

2: for l = 1, 2, · · · , L do
3: Refine the color

Cl,V
i = HASH

Cl−1,V
i ,

∑
j∈W

HASH
(
Cl−1,W

j , Cl−1,E
ij

) ,

Cl,W
j = HASH

Cl−1,W
j ,

∑
i∈V

HASH
(
Cl−1,V

i , Cl−1,E
ij

)
,
∑
j′∈W

Qjj′HASH(Cl−1,W
j′)

 ,

Cl,E
ij = HASH

Cl−1,E
ij ,

∑
j′∈W

(Pi)jj′HASH(Cl−1,W
j′)

 .

4: end for
5: return The multisets containing all vertex colors

{{
CL,V

i

}}m

i=0
,
{{

CL,W
j

}}n

j=0
.

Theorem E.5. Given GQCQP, ĜQCQP ∈ Gm,n
QCQP with Q, Q̂, Pi, P̂i ⪰ 0 for all i ∈ {1, 2, . . . ,m}, if

GQCQP ∼ ĜQCQP, then Φfeas(GQCQP) = Φfeas(ĜQCQP) and Φobj(GQCQP) = Φobj(ĜQCQP).

Proof. We only show the proof of Φobj(GQCQP) = Φobj(ĜQCQP) and Φfeas(GQCQP) = Φfeas(ĜQCQP)
will be a direct corollary.

Let GQCQP and ĜQCQP be the QCQP-graph associated to (E.1) and

min
x∈Rn

1

2
x⊤Q̂x+ ĉ⊤x, s.t.

1

2
x⊤P̂ix+ â⊤i x ≤ b̂i, 1 ≤ i ≤ m, l̂ ≤ x ≤ û, (E.2)

Suppose that there are no collisions of hash functions or their linear combinations when applying
the WL test to G and Ĝ and there are no strict color refinements in the L-th iteration. Since G
and Ĝ are indistinguishable by the WL test, after performing some permutation, there exist I =
{I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt} that are partitions of {1, 2, . . . ,m} and {1, 2, . . . , n},
respectively, such that the followings hold:

• CL,V
i = CL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• ĈL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,W
j = CL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• CL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• ĈL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

The followings hold by the same arguments as in the proof of Theorem A.2:

• bi = b̂i and is constant over i ∈ Ip, for any p ∈ {1, 2, . . . , s}.

• (cj , lj , uj) = (ĉj , l̂j , ûj) and is constant over j ∈ Jq for any q ∈ {1, 2, . . . , t}.

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

j∈Jq
Aij =

∑
j∈Jq

Âij and is constant
over i ∈ Ip.

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

i∈Ip
Aij =

∑
i∈Ip

Âij and is constant
over j ∈ Jq .

• For any q, q′ ∈ {1, 2, . . . , t},
∑

j′∈Jq′
Qjj′ =

∑
j′∈Jq′

Q̂jj′ and is constant over j ∈ Jq .

Fix p ∈ {1, 2, . . . , s} and q, q′ ∈ {1, 2, . . . , t}. For any j, j′ ∈ Jq , we have

CL,W
j = CL,W

j′

=⇒
∑
i∈V

HASH
(
CL−1,V

i , CL−1,E
ij

)
=

∑
i∈V

HASH
(
CL−1,V

i , CL−1,E
ij′

)
=⇒

{{
CL,E

ij : i ∈ Ip

}}
=

{{
CL,E

ij′ : i ∈ Ip

}}
=⇒


 ∑

j′′∈W

(Pi)jj′′HASH(CL−1,W
j′′) : i ∈ Ip




=


 ∑

j′′∈W

(Pi)j′j′′HASH(CL−1,W
j′′) : i ∈ Ip




=⇒


 ∑

j′′∈Jq′

(Pi)jj′′ : i ∈ Ip


 =


 ∑

j′′∈Jq′

(Pi)j′j′′ : i ∈ Ip




=⇒
∑

j′′∈Jq′

∑
i∈Ip

(Pi)jj′′ =
∑

j′′∈Jq′

∑
i∈Ip

(Pi)j′j′′ .

One can do a similar analysis for CL,W
j = ĈL,W

j′ and ĈL,W
j = ĈL,W

j′ where j, j′ ∈ Jq . This
concludes that ∑

j′∈Jq′

∑
i∈Ip

(Pi)jj′ =
∑

j′∈Jq′

∑
i∈Ip

(P̂i)jj′

is constant over j ∈ Jq .

Let x ∈ Rn be any feasible solution to (E.1) and define x̂ ∈ Rn via x̂j = yq = 1
|Jq|

∑
j′∈Jq

xj′ for
j ∈ Jq . For any p ∈ {1, 2, . . . , s}, it follows from

1

2
x⊤Pix+ a⊤i x ≤ bi, i ∈ Ip,

and Lemma A.4 that

1

Ip

∑
i∈Ip

b̂i =
1

Ip

∑
i∈Ip

bi ≥
1

2
x⊤

 1

|Ip|
∑
i∈Ip

Pi

x+

 1

Ip

∑
i∈Ip

ai

⊤

x

≥1

2
x̂⊤

 1

|Ip|
∑
i∈Ip

Pi

 x̂+

 1

Ip

∑
i∈Ip

ai

⊤

x̂ =
1

2
x̂⊤

 1

|Ip|
∑
i∈Ip

P̂i

 x̂+

 1

Ip

∑
i∈Ip

âi

⊤

x̂.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Note that for any i, i′ ∈ Ip and any q, q′ ∈ {1, 2, . . . , t}, we have

ĈL,V
i = ĈL,V

i′

=⇒
∑
j∈W

HASH
(
ĈL−1,W

j , ĈL−1,E
ij

)
=

∑
j∈W

HASH
(
ĈL−1,W

j , ĈL−1,E
i′j

)
=⇒

{{
ĈL,E

ij : j ∈ Jq

}}
=

{{
ĈL,E

i′j : j ∈ Jq

}}
=⇒


 ∑

j′∈W

(P̂i)jj′HASH(ĈL−1,W
j′) : j ∈ Jq




=


 ∑

j′∈W

(P̂i′)jj′HASH(ĈL−1,W
j′) : j ∈ Jq




=⇒


 ∑

j′∈Jq′

(P̂i)jj′ : j ∈ Jq


 =


 ∑

j′∈Jq′

(P̂i′)jj′ : j ∈ Jq




=⇒
∑
j∈Jq

∑
j′∈Jq′

(P̂i)jj′ =
∑
j∈Jq

∑
j′∈Jq′

(P̂i′)jj′ .

Therefore, it holds that

1

2
x̂⊤

 1

|Ip|
∑
i′∈Ip

P̂i′

 x̂ =
1

2
x̂⊤P̂ix̂, ∀ i ∈ Ip,

and hence that
1

2
x̂⊤Pix̂+ â⊤i x ≤ b̂i, ∀ i ∈ Ip.

We thus know that x̂ is a feasible solution to (A.3). In addition, we have

1

2
x⊤Qx+ c⊤x ≥ 1

2
x̂⊤Qx̂+ c⊤x̂ =

1

2
x̂⊤Q̂x̂+ ĉ⊤x̂,

which implies that Φobj(GQCQP) ≥ Φobj(ĜQCQP). The reverse direction Φobj(GQCQP) ≤
Φobj(ĜQCQP) is also true and we can conclude that Φobj(GQCQP) = Φobj(ĜQCQP).

Theorem E.6. For any GQCQP, ĜQCQP ∈ Gm,n
QCQP with Q, Q̂, Pi, P̂i ⪰ 0, i ∈ {1, 2, . . . ,m} that

are feasible and bounded, if GQCQP ∼ ĜQCQP, then there exists some permutation σW ∈ Sn such

that Φsol(GQCQP) = σW (Φsol(ĜQCQP)). Furthermore, if GQCQP
W∼ ĜQCQP, then Φsol(GQCQP) =

Φsol(ĜQCQP).

Proof. Based on Theorem E.5, Theorem E.6 can be proved by the same arguments as in the proof of
Lemma B.4 and Corollary B.7 in Chen et al. (2023a), which is included in the proof of Theorem A.2.

Corollary E.7. For any GQCQP ∈ Gm,n
QCQP that is feasible and bounded and any j, j′ ∈ {1, 2, . . . , n},

if CL,W
j = CL,W

j′ holds for all L ∈ N+ and all hash functions, then Φsol(GQCQP)j = Φsol(GQCQP)j′ .

Proof. Let ĜQCQP be the QCQP-graph obtained from GQCQP by relabeling j as j′ and relabeling
j′ as j. By Theorem E.6, we have Φsol(GQCQP) = Φsol(ĜQCQP), which implies Φsol(GQCQP)j =

Φsol(ĜQCQP)j = Φsol(GQCQP)j′ .

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

F IMPLEMENTATION DETAILS AND ADDITIONAL NUMERICAL RESULTS

In this section, we explain how we formulate the optimization problems used in the numerical
experiments and how to randomly generate problem instances. We mainly follow the settings of
OSQP (Stellato et al., 2020) with slight modifications.

F.1 RANDOM LCQP AND MI-LCQP INSTANCE GENERATION

Generic LCQP and MI-LCQP generation. For all instances generated and used in our numerical
experiments, we set m = 10 and n = 50, which means each instance contains 10 constraints and 50
variables. The sampling schemes of problem components are described below.

• Matrix Q in the objective function. We sample sparse, symmetric and positive semidefinite
Q using the make_sparse_spd_matrix function provided by the scikit-learn
Python package, which imposes sparsity on the Cholesky factor. We set the alpha value
to 0.95 so that there will be around 10% non-zero elements in the resulting Q matrix.

• The coefficients c in the objective function: cj ∼ N (0, 0.12).

• The non-zero elements in the coefficient matrix: Aij ∼ N (0, 1). The coefficient matrix A
contains 100 non-zero elements. The positions are sampled randomly.

• The right hand side b of the linear constraints: bi ∼ N (0, 1).

• The constraint types ◦. We first sample equality constraints following the Bernoulli distri-
bution Bernoulli(0.3). Then other constraints takes the type ≤. Note that this is equivalent
to sampling ≤ and ≥ constraints separately with equal probability, because the elements in
A and b are sampled from symmetric distributions.

• The lower and upper bounds of variables: lj , uj ∼ N (0, 102). We swap their values if
lj > uj after sampling.

• (MI-LCQP only) The variable types are randomly sampled. Each type (continuous or inte-
ger) occurs with equal probability.

After instance generation is done, we collect labels, i.e., the optimal objective function values and
optimal solutions, using one of the commercial solvers.

LCQP instance generation for generalization experiments. In this setting, we only sample dif-
ferent coefficients c for different LCQP instances. We sample other components only once, i.e., Q,
A, b, l, u and ◦ in (2.1), and keep them constant and shared by all instances. We also slightly adjust
the distributions from which these components are sampled as described below.

• Matrix Q. We follow the same sampling scheme as above.

• The coefficients c in the objective function: cj ∼ N (0, 1/n).

• The non-zero elements in the coefficient matrix: Aij ∼ N (0, 1/n). The coefficient matrix
A contains 100 non-zero elements. The positions are sampled randomly.

• The right hand side b of the linear constraints: bi ∼ N (0, 1/n).

• The constraint types ◦. We follow the same sampling scheme as above.

• The lower and upper bounds of variables: lj , uj ∼ N (0, 1). We swap their values if lj > uj

after sampling.

For the generalization experiments, we first generate 25,000 LCQP instances for training, and then
take the first 100/500/25,00/5,000/10,000 instances to form the smaller training sets. This ensures
that the smaller training sets are subsets of the larger sets. The validation set contains 1,000 instances
that are generated separately.

Portfolio optimization formulation and instance generation. The portfolio optimization prob-
lems are formulated as below.

min
x,y

1

2
x⊤Dx+

1

2
y⊤y − µ⊤x (F.1)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

s.t. y = Fx, 1⊤x = 1, x ≥ 0

Here x ∈ Rs and y ∈ Rt are the optimization variables, D ∈ Rs×s is a diagonal matrix with
non-negative diagonal elements, F ∈ Rt×s is the factor modeling matrix. We generate portfolio
optimization instances following the scheme below.

• We set s = 50 and t = 5, resulting in LCQP instances with m = 6 constraints and n = 55
variables.

• The diagonal elements of D are independently sampled from uniform distribution: Dii ∼

U(0,
√
t). D is then used to form the matrix Q =

(
D

It

)
.

• The coefficients µ in the objective function: µj ∼ N (0, 1).

• The non-zero elements in the factor modeling matrix F : Fij ∼ N (0, 1). The coefficient
matrix F contains 25 non-zero elements. The positions are sampled randomly.

SVM optimization formulation and instance generation. The support vector machine optimiza-
tion problems are formulated as below.

min
x,t

1

2
x⊤x+ λ1⊤t (F.2)

s.t. t ≥ diag(y)Dx+ 1, t ≥ 0

Here x ∈ Rs and t ∈ Rt are the optimization variables, D ∈ Rt×s is the data matrix, y ∈ Rt is the
binary label vector, and λ is a hyperparameter which we set to 1/2. We generate SVM optimization
instances following the scheme below.

• We set s = 5 and t = 50.

• The non-zero elements in the data matrix D: Dij ∼ N (−0.1, 0.1) for i ≤ t/2; Dij ∼
N (0.1, 0.1) otherwise. The coefficient matrix D contains 100 non-zero elements. The
positions are sampled randomly.

• The binary label vector y: yi = −1 for i ≤ t/2; yi = 1 otherwise.

F.2 DETAILS OF GNN IMPLEMENTATION

We implement GNN with Python 3.9 and TensorFlow 2.16.1 (Abadi et al., 2016). Our imple-
mentation is built by extending the GNN implementation in Gasse et al. (2019).7 The embedding
mappings fV

0 , fW
0 are parameterized as linear layers followed by a non-linear activation function;

{fV
l , fW

l , gVl , gWl , gQl }Ll=1 and the output mappings r1, r2 are parameterized as 2-layer multi-layer
perceptrons (MLPs) with respective learnable parameters. The parameters of all linear layers are
initialized as orthogonal matrices. We use ReLU as the activation function.

In our experiments, we train GNNs with embedding sizes of 64, 128, 256, 512 and 1,024. We show
in Table 2 the number of learnable parameters in the resulting network with each embedding size.

Table 2: Number of learnable parameters in GNN with different embedding sizes.

Embedding size Number of parameters

64 112,320
128 445,824
256 1,776,384
512 7,091,712

1,024 30,436,352

7See https://github.com/ds4dm/learn2branch.

30

https://github.com/ds4dm/learn2branch

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

100 5000 10000 15000 20000 25000
Number of instances

10 6

10 4

10 2

Re
la

tiv
e

er
ro

r

Training
Validation

(a) Fit Φobj for LCQP

100 5000 10000 15000 20000 25000
Number of instances

10 3

10 2

Re
la

tiv
e

er
ro

r

Training
Validation

(b) Fit Φsol for LCQP

Figure 6: Training and validation errors when training GNNs with an embedding size of 512 on
different numbers of LCQP problem instances to fit Φobj and Φsol.

F.3 DETAILS OF GNN TRAINING

We adopt Adam (Kingma & Ba, 2014) to optimize the learnable parameters during training. We use
an initial learning rate of 5 × 10−4 for all networks. We set the batch size to 2,500 or the size of
the training set, whichever is the smaller. In each mini-batch, we combine the graphs into one large
graph to accelerate training. All experiments are conducted on a single NVIDIA Tesla V100 GPU.

We use mean squared relative error as the loss function, which is defined as

LG(FW) = EG∼G

[
∥FW (G)− Φ(G)∥22
max(∥Φ(G)∥, 1)2

]
, (F.3)

where FW is the GNN, G is a mini-batch sampled from the whole training set, G is a problem
instance in the mini-batch G, and Φ(G) is the label of instance G. During training, we monitor the
average training error in each epoch. If the training loss does not improve for 50 epochs, we will half
the learning rate and reset the parameters of the GNN to those that yield the lowest training error so
far. We observe that this helps to stabilize the training process significantly and can also improve
the final loss achieved.

F.4 GENERALIZATION RESULTS ON LCQP

Figure 6 shows the variations of training and validation errors when training GNNs of an embedding
size of 512 on different numbers of LCQP problem instances. We observe similar trends for both
prediction tasks, that the generalization gap decreases and the generalization ability improves as
more instances are used for training. This result implies the potential of applying trained GNNs to
solve QP problems that are unseen during training but are sampled from the same distribution, as
long as enough training instances are accessible and the instance distribution is specific enough (in
contrast to the generic instances used in experiments of Figure 2 and 3).

F.5 NUMERICAL RESULTS ON MAROS-MESZAROS TEST SET

To show the fitting ability of GNNs on more realistic QP problems, we train GNNs on the Maros
and Meszaros Convex Quadratic Programming Test Problem Set (Maros & Mészáros, 1999), which
contains 138 quadratic programs that are designed to be challenging. We apply equilibrium scal-
ing to each problem and also scale the objective function so that the Q matrix will not contain too
large elements. We collect the optimal solutions and objective values of the test instances using an
open-sourced QP solver called PIQP Schwan et al. (2023), which is benchmarked to achieve best
performances on the Maros Meszaros test set among many other solvers (Caron et al., 2024). PIQP
solves 136 problem instances successfully, which are then used to train four GNNs with with em-
bedding size of 64, 128, 256, 512. The training protocol follows the experiments using synthesized
QP instances in Section 5.

The results are shown in Figure 7. We observe that while the broad range of numbers of instances
in the Maros Meszaros test set caused numerical difficulties for training, GNNs can still be trained

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000
Epoch

100

3 × 10 1

4 × 10 1

6 × 10 1
Tr

ai
n

Er
ro

r

Emb. Size = 64
Emb. Size = 128
Emb. Size = 256
Emb. Size = 512

(a) Fit Φobj

0 2000 4000 6000 8000 10000
Epoch

100

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n
Er

ro
r

Emb. Size = 64
Emb. Size = 128
Emb. Size = 256
Emb. Size = 512

(b) Fit Φsol

Figure 7: Training errors of fitting Φobj and Φsol on the Maros Meszaros test set. We trained four
GNNs with embedding size of 64, 128, 256 and 512, respectively.

to fit the objectives and solutions to some extent. And we can observe similar tendency as in the
synthesized experiments that the expressive power increases as the model capacity enlarges when
we increase the embedding size.

32

	Introduction
	Preliminaries
	Unversal approximation of GNNs for LCQPs
	The capacity of GNNs for MI-LCQPs
	GNNs cannot universally represent MI-LCQPs
	GNNs can represent particular types of MI-LCQPs
	Practical characterization of ``solvable" MI-LCQPs

	Numerical experiments
	Conclusion
	Proofs for Section 3
	Proofs for Section 4.1
	Proofs for Section 4.2
	Characterization of MP-tractability and unfoldability
	Relationship between MP-tractability and unfoldability
	Frequency of MP-tractability and unfoldability

	Extension to quadratically constrained quadratic programs
	Graph representation and GNNs for QCQPs
	Universal Approximation of GNNs for QCQPs

	Implementation details and additional numerical results
	Random LCQP and MI-LCQP instance generation
	Details of GNN implementation
	Details of GNN training
	Generalization results on LCQP
	Numerical results on Maros-Meszaros test set

