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ABSTRACT

Quadratic programming (QP) is the most widely applied category of problems
in nonlinear programming. Many applications require real-time/fast solutions,
though not necessarily with high precision. Existing methods either involve ma-
trix decomposition or use the preconditioned conjugate gradient method. For rela-
tively large instances, these methods cannot achieve the real-time requirement un-
less there is an effective preconditioner. Recently, graph neural networks (GNNs)
opened new possibilities for QP. Some promising empirical studies of applying
GNNss for QP tasks show that GNNs can capture key characteristics of an opti-
mization instance and provide adaptive guidance accordingly to crucial configu-
rations during the solving process, or directly provide an approximate solution.
Despite notable empirical observations, theoretical foundations are still lacking.

In this work, we investigate the expressive or representative power of GNNs, a cru-
cial aspect of neural network theory, specifically in the context of QP tasks, with
both continuous and mixed-integer settings. We prove the existence of message-
passing GNNs that can reliably represent key properties of quadratic programs,
including feasibility, optimal objective value, and optimal solution. Our theory is
validated by numerical results.

1 INTRODUCTION

Quadratic programming (QP) is an important type of optimization problem, with extensive appli-
cations across domains such as graph matching, portfolio optimization, and dynamic control (Vogel-
stein et al., [2015; Markowitz, 1952} [Rockafellar, |1987). The goal of QP is to minimize a quadratic
objective function while satisfying specified constraints. These constraints can vary, leading to dif-
ferent subcategories of QP. When all the constraints are linear, we call a QP problem a linearly
constrained quadratic program (LCQP). When they also involve quadratic inequalities, we call the
problem a quadratically constrained quadratic program (QCQP). Furthermore, if the problem re-
quires some variables to be integers, we call it mixed-integer QP. In this study, we focus on LCQP
and its mixed-integer variant MI-LCQP.

In many real-world applications, finding solutions quickly is crucial, even if they are not perfectly
precise. For example, in transportation systems, such as ride-hailing platforms like Uber or Lyft,
matching drivers with passengers requires quick decision-making to minimize waiting times, even
if the optimal solution is not attained. Similarly, in financial trading, algorithms must swiftly adjust
investment portfolios in response to market changes, even if it is not the most optimal move.

Unfortunately, existing methods for solving QP often rely on some computationally expensive tech-
niques such as matrix decomposition and the preconditioned conjugate gradient method. For in-
stance, matrix decomposition techniques like LU decomposition typically require O(n?) opera-
tions for a matrix with size n x n (Golub & Van Loan, 2013)), although more advanced algorithms
can achieve lower complexities. Similarly, the preconditioned conjugate gradient method involves
O(n?) operations per iteration, and a high condition number of the matrix can lead to slow conver-
gence or numerical instability (Shewchuk et al.,|1994). These considerations underscore the clear
need for novel techniques to address the demands of real-time applications.

Machine learning (ML) brings new chances to QP. Recent research indicates that deep neural
networks (DNNs) can significantly improve the efficiency of the QP solving process. Based on the
role of DNNSs in the solving process, these studies can be broadly categorized into two classes:
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» Type I: DNNs are used to accelerate an existing QP solver by generating adaptive configu-
rations tailored to the specific instance and context, speeding up the solving process (Bonami
et al., 2018; 2022} [Ichnowski et al.l |2021} |Getzelman & Balaprakash, 2021; Jung et al.| [2022;
King et al., 2024). The success of such an approach relies on DNNs’ capacity to capture in-
depth features of QP instances and provide customized guidance to the solver.

* Type II: DNNs replace or warm-start a QP solver. Here, DNNs take in a QP instance and
directly output an approximate solution. This approximate solution can be used directly or as
an initial solution for further refinement by a QP solver (Nowak et al.| 2017} |Chen et al.} 2018}
Karg & Lucia, |2020; [Wang et al., 2020azb}, 20215 |Qu et al.| 2021} |Gao et al.| 2021} Bertsimas
& Stellatol 2022; [Liu et al.l 2022a; Sambharya et al., [2023} |Pei et al., [2023} [Tan et al., [2024).

Among the various types of DNNSs, this paper focuses

on graph neural networks (GNNs) (Scarselli et al. 101 7
2008)), an architecture designed for graphs and widely ap- ~ ming [+ 72 73] [01 1 }
plied across various domains. By conceptualizing QPs 1
as graphs (Figure [T), GNNs can efficiently handle these
QP tasks (Nowak et al., 2017} |Wang et al., 2020b; 2021}
Qu et al., 20215 |Gao et al., 2021} Tan et al., [2024} Jung
et al., [2022)). For instance, (Wang et al., |2021) demon-
strates using GNNs to solve Lawler’s QAP (Lawler}
1963) with up to 1502 variables, while (Wang et al.L[2019;
Yu et al., 2020) apply GNNs to Koopman-Beckmann’s
QAP (Loiola et al..[2007)) with 2562 variables, all employ-
ing 3-layer GNNs with hidden dimensions of 512, 1024,
or 2048. They exploits key strengths of GNNs: adapt-
ability to varying graph sizes, allowing the same model
applied to various QPs, and permutation invariance, en- Figure 1: An illustrative example of
suring consistent outputs regardless of node order. LCQP and its graph representation.

However, despite notable empirical results, a systematic understanding of GNN for QP is still lack-
ing. To thoroughly understand its pros and cons, some critical questions must be addressed:
» (Existence). Are there GNNs that can either capture the essential characteristics of QPs or
provide approximate solutions? This question is named the expressive power of GNNs.
¢ (Trainability). If such GNNs exist, can we find them? The process of finding such GNNss is
named training, which involves gathering data, creating a method to measure success or failure
(a loss function), and then refining the GNN to reduce the loss function.
* (Generalization). Can a trained GNN perform effectively on QP instances it has not previously
encountered? This concerns the generalization ability of GNNs.

This paper primarily addresses the first question about expressive power. For Type I applications,
we investigate whether GNNs can accurately map a QP to its crucial features, focusing on feasibility
and the optimal objective value. For Type II, we examine whether GNNs can map a QP to one of its
optimal solutions. Formally, the question motivating this paper is:

Are there GNN s that can accurately predict the feasibility, (L.1)

The literature has explored the expressive capabilities of GNNs on general graph tasks (Xu et al.,
2019; |Azizian & Lelarge| [2021; |Geerts & Reutter, [2022; [Zhang et al.,|2023; |Li & Leskovecl 2022
Sato), |2020) and their ability to approximate continuous functions on graphs (Azizian & Lelarge,
20215 Geerts & Reutter,2022). However, significant gaps remain in understanding how these results
relate to QP, as the connections between QP features (such as feasibility and optimal objective value)
and graph properties have not been established. The most relevant works [Chen et al.| (2023agb)
investigate the representation power of GNNs for (mixed-integer) linear programs, but their analysis
highly depends on the linear structure and does not cover nonlinear programs like QP.

optimal objective value, and an optimal solution of a QP?

Contributions. Overall, as several studies have empirically shown that incorporating a GNN can
greatly improve the performance of a QP solver on specific datasets — either via GNN-generated
real-time warm starts or GNN-suggested adaptive configurations — our primary aim is to theoreti-
cally investigate the expressive power of GNNS in these tasks and to determine if there is room for
improvement or any considerations to be aware of. Specifically, contributions of this paper include:

¢ (GNN for LCQP). We provide an affirmative answer to question (I.1J), establishing a theoretical
foundation for using GNNs for LCQP, across both Type I and II applications.
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* (GNN for MI-LCQP). In the case of MI-LCQP, our findings generally suggest a negative an-
swer to question (L.I)). However, we identify specific, precisely defined subclasses of MI-LCQP
where GNNs can accurately predict feasibility, boundedness, and an optimal solution.

* (Experimental Validation). We conduct experiments that directly validate the above results.

2 PRELIMINARIES

This section introduces foundational concepts and preliminary definitions. We focus on linearly
constrained quadratic programming (LCQP), which is formulated as follows:
1
m%@n ixTQm +c'z, st Azob, <z <u, 2.1
zeR™
where Q € R™*™", c e R", A e R™*", b e R™, [ € (RU{—0o0})", u € (RU {+00})", and
o € {<,=,>}"™. In this paper, we always assume that () is symmetric.

Basic concepts of LCQPs. An z satisfying all constraints of (2.1) is named a feasible solution. The
set of all feasible solutions, defined as X =: {x € R" : Az o b, | < z < u}, is referred to as the
feasible set. The LCQP is considered feasible if this set is non-empty; otherwise, it is infeasible. The
value of %xTQx + ¢z is named the objective (function) value. Its infimum across the feasible set
is termed the optimal objective value. If this infimum is —oo, suggesting the objective value could
indefinitely decrease, the LCQP is deemed unbounded. Conversely, when the optimal objective
value is finite, the corresponding z is identified as an optimal solution.

Graph representation of LCQPs. We present a graph structure, termed the LCQP-graph G cqp =
(V.W, A,Q, Hy, Hw ), that encodes all the elements of a LCQP (2.I). Particularly,

* The graph contains two distinct types of nodes. Nodes in V' = {1,2,...,m}, labeled as 1,
represent the i-th constraint and are called constraint nodes. Nodes in W = {1,2,...,n},
labeled as j, represent the j-th variable and are known as variable nodes. The union set V.U W
includes all the vertices of the entire LCQP-graph G cqp.

» The graph comprises two distinct edge types. An edge connects i € V to j € W if A;; is
nonzero, with A;; serving as the edge weight. Similarly, the edge between nodes j,j' € W
exists if Q;;+ # 0, with Q;;- as the edge weight. Self loops (j = j) are permitted.

* Attributes/features v; = (b;, 0;) are attached to the i-th constraint node for ¢ € V. The collec-

tion of all such attributes is denoted as Hy = (v1,v2, ..., Um).
* Attributes/features w; = (c;,¢;,u;) are attached to the j-th variable node for j € W. The
collection of all such attributes is denoted as Hyy = (wq, wa, ..., wy).

Such a representation is illustrated by an example shown in Figure [T] and it can be regarded as
fundamental since it is minimal in the sense that every entry in (A,b, ¢, @Q,l, u,0) is used exactly
once. To the best of our knowledge, this particular representation is only detailed in Jung et al.
(2022), yet it forms the foundation or core module for numerous related studies. For instance,
removing nodes in V' and their associated edges reduces the graph into the assignment graph used
in graph matching problems (Nowak et al., 2017; Wang et al., [2020b; 2021} |Qu et al., 2021} |Gao
et all 2021} Tan et al.| [2024). In these cases, the linear constraints Az o b are typically bypassed by
applying the Sinkhorn algorithm to ensure that = meets these constraints. Another scenario involves
LP and MILP: removing edges associated with Q) simplifies the graph to a bipartite structure, which
reduces the LCQP to an LP (Chen et al.,[2023a; [Fan et al.l[2023; |Liu et al., {2024} |Q1an et al., [ 2024)).
Further, by incorporating an additional node feature, an approach detailed in Sectionf] this bipartite
graph is also capable of representing MILP (Gasse et al., [2019;|Chen et al.,[2023bj Nair et al., 2020;
Gupta et al., [2020; [Shen et al., 2021} |(Gupta et al., [2022; |Khalil et al., |2022} |Paulus et al.l 2022;
Scavuzzo et al.,[2022; [Liu et al.}|2022b; Huang et al.| 2023)).

GNNs for solving LCQPs. Building on the established concepts, we present message-passing
graph neural networks (hereafter referred to simply as GNNs) tailored for LCQPs using LCQP-
graphs. These GNNs take in an LCQP-graph Gy cgp (including all the node attributes and edge
weights) as input and update node attributes sequentially across layers via a message-passing mech-

anism. Initially, node attributes s?, tg-) are computed using embedding mappings fy, foV:

« 89 = fo/(vi) fori € V,and t] = f3" (w;) for j € W.
The architecture includes L standard message-passing layers where each layer (where 1 <[ < L)
updates node attributes by locally aggregating neighbor information:

o sb=fYV (s, iew Aijglw(té_l)) fori € V, and

- - - .
o th = [V ey Al (s 1)7ijew ij/ng(tj' h)) forj e W.
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Finally, there are two types of output layers. For applications where the GNN maps LCQP-graphs
to a singular real value, such as evaluating properties like feasibility of the LCQP, a graph-level
output layer is employed that computes a single real number encompassing the entire graph:

tY= Tl(zievsfvzjewtf) €eR.
Alternatively, if the GNN is required to map the LCQP-graph to a vector y € R", assigning a real
number to each variable node as its output (as is typical in applications where GNNs are used to
predict solutions), then a node-level output should be utilized. This output layer computes the
value for the j-th output as follows:

* Y= T2(Eiev SiL7Zj€Wt]L’t]L)'
In our theoretical analysis, we assume all the mappings f¥, fV (0 <1 < L), g, le,ng (1<
I < L), and r1,r to be continuous. In practice, these continuous mappings are learned from data.
We aim to find mappings that enable all the LCQP-graphs G cqp from a dataset to be mapped accu-
rately to their desired outputs y. To achieve this, we parameterize these mappings using multilayer
perceptrons (MLPs) and optimize them within the parametric space.

Definition 2.1 (Space of LCQP-graphs and space of GNNs). The set of all LCQP-graphs, denoted
as Qfégpﬂ comprises graphs with m constraints and n variables, where the matrix @ is symmetric.

Definition 2.2 (Spaces of GNNSs). The collection of all message-passing GNNs, denoted as Fi cqp
for graph-level outputs (or -FLVEQP for node-level outputs), consists of all GNNs constructed using

continuous mappings fV, fV (0 <1< L), g/, ZW,ng (1<I1< L), andry (orrs).
Note that the input graph size for GNNs within Fj cqp and ]-'LVgQP is unspecified, as the functions

VoV 0<i<L), glv,flw,ng (1 <1< L), and r (or 3) are independent of m,n. This
independence highlights a key advantage of GNNs discussed in Section [T} their adaptability to
various graph sizes, allowing the same model to be consistently applied across different QPs.

Definition 2.3 (Target mappings). We define three mappings for LCQPs.

o Feasibility mapping: ®reas(GLegp) = 1 if the LCQP problem associated to Gycqp is feasible
and Preas(GLege) = 0 if it is infeasible.

* Optimal objective value mapping: ®oi(Gregr) € R U {£00} computes the optimal objective
value of the LCQP problem associated to Gicgp. Pobj(GLogp) = +00 means the problem is
infeasible and @ y; (GLcgp) = —oo means the problem is unbounded.

* Optimal solution mapping: For a feasible and bounded LCQP problem (i.e., i (Gregp) € R),
an optimal solution exists (Eaves| |1971) though it might not be unique. However, the optimal
solution with the smallest {3-norm must be unique if Q > 0 and we define it as Po1(GLcop).

Given the definitions above, we can formally pose the question in (1.1 as follows: Is there any
F € Ficgp that well approximates ®re,s or ®opi? Similarly, is there any function Fyy € fngP that
well approximates P01 (GLcop)?

3 UNVERSAL APPROXIMATION OF GNNS FOR LCQPs

This section presents our main theoretical results for the expressive power of GNNs for representing
properties of LCQPs. In particular, we show that for any LCQP data distribution, there always be a
GNN that can predict LCQP properties, in the sense of universally approximating target mappings
in Definition [2.3] within given error tolerance. Although it is known in the previous literature that
there exists some continuous function that cannot be approximated by GNNs with arbitrarily small
error, see e.g., | Xu et al.| (2019); |Azizian & Lelarge| (2021)); |Geerts & Reutter| (2022)), our results in
this section indicate that approximating the target mappings of LCQPs (defined in Definition[2.3)) do
not suffer from this fundamental limitation. Such results answer the question positively.

Assumption 3.1. P is a Borel regular probability measure on g&’gp.
The assumption of Borel regularity is generally satisfied for most data distributions in practice,
including discrete distributions, gaussian distributions, etc. With this assumption, we have:

Theorem 3.2. For any probability measure P satisfying Assumption and any € > 0, there exists

F € Frcqp such that HF(GLCQP)>% acts as a classifier for LCQP-feasibility, with an error of up to €:

'The space g['ég}, is equipped with the subspace topology induced from the product space
{(A,b,¢,Q,l,u,0) : A€ R™ ™ be R™,ce R",Q e R"",l € (RU{—o0})",u € (RU{+o0})",0€
{<,=,>" }, where all Euclidean spaces have standard Eudlidean topologies, discrete spaces { —oo}, {+0o0},
and {<, =, >} have the discrete topologies, and all unions are disjoint unions.
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]P)I:]IF(GLCQP)>% 7& cbfeaS(GLCQP)] <e¢
where 1L is the indicator function: Ipg, o)1 = 1if F(GLegp) > oE Ip(Grege)> 3 = 0 otherwise.

This result suggests that a GNN is a universal classifier for LCQP feasibility: for any data distri-
bution of LCQPs satisfying Assumption there exists a GNN that can classify LCQP feasibility
with arbitrarily high accuracy. This is a natural extension of the feasibility classification for linear
programs (Chen et al [2023al), as feasibility is solely determined by the constraints, independent of
the objective function, and all LCQP constraints are linear.

However, using GNNSs to predict the optimal objective value or an optimal solution is highly non-
trivial due to the nonlinear term xTQaz. Fortunately, when restricting LCQPs to convex cases, GNNs
can universally represent the optimal objective value and an optimal solution for these LCQPs.
Theorem 3.3. Let PP be a probability measure on g{’}:’gp satisfying Assumption with P[Q = 0] =
1, i.e., Q is positive semidefinite almost surely. For any € > 0, there exists F\ € Fycqp such that

IPU[FI(GLCQP)>% a Hq)obi(GLCQP)GR] <€ 3.1
Addtitionally, if P[®obi(GLogp) € R] = 1, then for any €,6 > 0, there exists F» € Ficqp such that
P [|F2(GLCQP) — (I)obj(GLCQP)| > (5] < €. (3.2)

This theorem indicates that GNNs can approximate the optimal objective value mapping ®y; very
well in two senses: (1) GNN can predict whether the optimal objective value is a real number or
400, i.e., whether the LCQP problem is feasible and bounded or not. (2) For a data distribution over
feasible and bounded LCQP problems, GNN can approximate the real-valued mapping ®y;.

Our last theorem for LCQP is that GNN can approximate the optimal solution map ® that returns
the optimal solution with the smallest ¢2-norm of feasible and bounded LCQP problems.

Theorem 3.4. Let P be a probability measure on gfé’gp satisfying Assumptionand PlQ = 0] =
P[®opj(Gregr) € R] = 1. For any €,6 > 0, there exists Fyy € }"ﬁ/gQP such that

P [|[Fw (GLcp) — Psot (GLege) || > 0] < e.

The proofs of Theorems [3.3]and [3.4] will be presented in Appendix[A] We briefly describe the main
idea here. The Stone-Weierstrass theorem and its variants are a powerful tool for proving universal-
approximation-type results. Recall that the classic version of the Stone-Weierstrass theorem states
that under some assumptions, a function class F can uniformly approximate every continuous func-
tion if and only if it separates points, i.e., for any x # ', one has F'(x) # F(z’) for some F € F.
Otherwise, we say x and z’ are indistinguishable by any F' € F. Therefore, the key component in
the proof is to establish some separation results in the sense that two LCQP-graphs with different
optimal objective values (or different optimal solutions with the smallest £5-norm) must be distin-
guished by some GNN in the class Fi cqp (or ]—"II’EQP). It is first established in (Xu et al.| (2019)) that

the separation poweq of GNN s is equivalent to the Weisfeiler-Lehman (WL) test (Weisfeiler & Le-
man, [1968)), a classical algorithm for the graph isomorphism problem, which is further developed in
many recently works, see e.g. |Azizian & Lelarge (2021); |Geerts & Reutter| (2022). We show that,
any two LCQP-graphs that are indistinguishable by the WL test, or equivalently by all GNNs, even
if they are not isomorphic, some of their structures must be identical, which guarantees that they
must have identical optimal objective value and identical optimal solution with the smallest {5-norm
(see Definition [A.T} Theorem[A.2] and Theorem [A-3).

The universal approximation results of GNNs for LCQPs can be extended to quadratically con-
strained quadratic programs (QCQPs) that have additional quadratic terms in the constraints com-
pared to LCQPs. Specifically, we modify the graph representation with additional hyperedges to
represent the quadratic terms in the constraints, and modify the GNN architecture that updates both
vertex features and edge features layer by layer. The details are deferred to Appendix

4 THE CAPACITY OF GNNS FOR MI-LCQPs

In this section, we discuss the expressive power of GNNs for mixed-integer linearly constrained
quadratic programs (MI-LCQPs), for which the general form is almost the same as (2.1) except

2Given two sets of functions, F and F', both defined over the same domain X, if F separating points « and
x’ implies that F” also separates x and z’ for any x, ' € X, then the separation power of F” is considered to
be stronger than or at least equal to that of F.
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that some entries of x are constrained to be integers: z; € Z, ¥V j € I, where I C {1,2,...,n}
collects the indices of all integer variables. Before proceeding, we extend LCQP-graphs and the
corresponding GNNss and target mappings to the MI-LCQP setting.

MI-LCQP-graph is modified from the LCQP-graph (Section [2] and Figure [I)) by adding a new
entry to the feature of each variable node j € W. The new feature is w; = (¢;,1;,u;,07(j)) where
6r(j) = 1if j € I and &7(j) = O otherwise. We use Gyy/'i'cop to denote the collection of all
MI-LCQP-graphs with m constraints, n variables, and symmetric and positive semi-definite ).

GNNs for MI-LCQP-graphs are constructed following the same mechanism as for LCQP-graphs,
with the difference that the message-passing layer is modified as

e sb=fY (s, D jenw gV (71, Ayj)) fori € V, and

< th=fY (té'il’zie./\fj‘/ gl‘/<5271’Aij)aZj/eN]W gt Qjy)) for j € W,
where NV = {j e W : Ay 0}, N ={j e V: A #0}, and N}V = {j' e W : Q5 # 0}

are the sets of neighbors. We use Fy...cqp and f%_LCQP to denote the GNN classes for MI-LCQP-
graphs with graph-level and node-level output, respectively.

Target mappings for MI-LCQPs considered in this section are also similar to those in Definition[2.3]
In particular, the feasibility mapping ®r,s and the optimal objective value mapping ®; are defined
in the same way as in Definition 2.3} while the optimal solution mapping P can only be defined
on a subset of the class of feasible and bounded MI-LCQPs, which will be discussed in Appendix [C}

4.1 GNNS CANNOT UNIVERSALLY REPRESENT MI-LCQPs

In this subsection, we answer the question (I.I) for MI-LCQP. When integer variables are intro-
duced, the situation changes. Particularly, we present some counter-examples illustrating the funda-
mental limitation of GNNs for representing properties of MI-LCQPs.

Proposition 4.1. There exist two MI-LCQP problems, with one being feasible and the other being
infeasible, such that their graphs are indistinguishable by any GNN in Fui.cLQp-

Proposition 4.2. There exist two feasible MI-LCQP problems, with different optimal objective val-
ues, such that their graphs are indistinguishable by any GNN in Fyi.cLop-

Proposition 4.3. There exist two feasible MI-LCQP problems with the same optimal objectives but
disjoint optimal solution sets, such that their graphs are indistinguishable by any GNN in f%_CLQP.
Propositions .1} 2] and &3] indicate that for some MI-LCQP data distribution, it is impossible to
train a GNN to predict MI-LCQP properties, regardless of the size or the complexity of the GNN. Par-
ticularly, one can choose the uniform distribution over pairs of instances satisfying Propositions 4.1}
[@.2] and[d.3} any GNN making good approximation on one instance must fail on the other.

The detailed proofs of all three propositions are provided in Appendix [B] Here we present a pair of

MI-LCQP instances that prove Proposition[4.3] This pair is the most interesting among those related
to Propositions 4.1} .2} and[A.3] Consider the following two MI-LCQPs:

min lellT:pquTm,
z€ERT
st. x1 —x2 =0, z2 —x1 =0,
I3—I4:0,‘72'4—22'5:07 8
I5—I6:0, 1'6_1'7:07 $7—273:07
T1+T2+23+ x4+ 25 +26+27 =6
0<z;<3,2,€Z,Vje{l,2,...,7}

1
min fmTllquLle,
z€RT 2
st. x1 —x2 =0, z2o —23 =0, x3 —x1 =0,
Us

$4—$5=0, 175_176:07

$6—$7=O, 127—124:07

r1+ a2+ T3+ xa+25+26+27 =06

0<zx; <3, xJEZ,VjG{l,Q,...,'?}.
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Firstly, both MI-LCQPs are feasible and share the same optimal objective value, but their op-
timal solutions differ. In the first instance, the unique feasible (and thus optimal) solution is
(3,3,0,0,0,0,0), while in the second instance, it is (2,2,2,0,0,0,0). In both instances, the op-
timal objective values are identical, as 172 = 6 leadsto J2 117z + 1Tz = 24.

Secondly, the two instances cannot be distinguished by any GNN in f%_CLQP. Initially, each variable
node w; is assigned the same attribute, w; = (1,0, 3,1), which represents an objective coefficient
of ¢; = 1, lower bound I; = 0, upper bound u; = 3, and an integral indicator §;(j) = 1. These
concepts are detailed in Section [2] and the beginning of Section d] We refer to these nodes as “red
nodes”. Similarly, the first seven constraint nodes v; (for 1 < ¢ < 7) are assigned the same attribute,
v; = (0,=), which we label as “blue nodes”. The eighth constraint node vg is unique, with the
attribute vg = (6, =), and is called the “brown node”. Based solely on node information, the two
graphs are indistinguishable since both have seven red nodes, seven blue nodes, and one brown node.

Even after multiple rounds of message passing (as described in Section [2), the two graphs remain
indistinguishable. To explain, consider any red node w;, which is connected to a blue node with
weight A;; = 1 (solid lines), another blue node with weight A;; = —1 (dashed lines), the brown
node with weight A;; = 1 (green lines), and all seven red nodes with weights @);;; = 1 (brown
curves). Thus, the red node’s attribute is updated as follows (an informal but illustrative equation):

té» =f" (red node, g (blue node) — g} (blue node) + g, (brown node), 7ng (red node)) .

After the update, all red nodes t;(l < j < 7) in both graphs retain identical attributes and are still
indistinguishable. The same applies to the blue and brown nodes, leading to the conclusion that,
regardless of how many message-passing rounds occur, both graphs will still have seven red nodes,
seven blue nodes, and one brown node. This conclusion holds for any parameterized mappings used
inGNNs (fY, fV, gV, g}V, and g?), meaning no GNN can differentiate between the two instances.
This illustrates a limitation of GNNs in representing MI-LCQP, which is ignored in the literature.

4.2 GNNS CAN REPRESENT PARTICULAR TYPES OF MI-LCQPS

We have shown a fundamental limitation of GNNs to represent properties of general MI-LCQP
problems. Therefore, a natural question is: Whether we can identify a subset of Gumi.Lcqp on which
it is possible to train reliable GNNs. To address this, we need to gain a better understanding for
the separation power of GNNs or equivalently the WL test, according to the discussion following
Theorem@ We state in Algorithmﬂ] the WL test for MI-LCQP-graphs associated to Fyr..cop OF

f%_LCQP, where Cf’v and C]l-’W are understood as the color of ¢ € V and j € W at the [-th iteration.

Algorithm 1 The WL test for MI-LCQP-graphs (Example provided in Appendix [D)
Require: A LCQP-graph G = (V, W, A, Q, Hy, Hy ) and iteration limit L > 0.

1: Initialize with C""" = HASH(v;) and C""" = HASH(w;).

2: forl=1,2,---,Ldo

3 CpY =HASH(C] VY {{(CVY, Ay) 5 e NIVYY).

A 1-1,W -1,V s 1-1,W s

4 Cy7 =HASH(C; 7 {{(C; 7 Ay i e NV (G, Q450) - 5 € NV ).
5
6

. end for '
: return The multisets containing all colors {{C/""} e e JL e }::o

Initially, each vertex is labeled a color according to its attributes (v; or w;). In the case that the hash
functions introduce no collisions, two vertices are of the same color at the [-th iteration if and only
if at the (I — 1)-th iteration, they have the same color and the same information aggregation from
neighbors in terms of multiset of colors and edge weights. This is a color refinement procedure.
One can have a partition of the vertex set V' U W at each iteration based on vertices’ colors: two
vertices are classified in the same class if and only if they are of the same color. Such a partition is
strictly refined in the first O(m + n) iterations and will remain stable or unchanged afterward if no
collision, see e.g. Berkholz et al.| (2017).

Intuitively, vertices in the same class of the final stable partition generated by the WL test will always
have identical attributes in message-passing layers for all GNNs in Fy.rcqp or f%_LCQP, and vice
versa, since the color refinement procedure in Algorithm [I] follows the same mechanism as the
message-passing process. Thus, to identify a subset of Fyy.pcop on which GNNs have sufficiently
strong separation power, we propose the following definition generalized from |Chen et al.| (2024)
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for mixed-integer linear programs (MILPs), which basically states that vertices in the same class
generated by the WL test can indeed be treated same in some sense.

Definition 4.4 (MP-tractable MI-LCQP). Let Guyrrcop € gﬁ’_’ﬁCQp be a MI-LCQP problem and
let (Z,J) be the final stable partition of V.U W generated by WL test without collision, where
I=A{hL,Is,...,Is}isapartition of V. ={1,2,... . m}and J = {J1, Ja, ..., Ji} is a partition of
W =1{1,2,...,n}. We say that Gyyr.Lcop is message-passing-tractable (MP-tractable) if:

(a) Foranyp € {1,2,...,s}and q € {1,2,...,t}, A;j is constant ini € I,, j € J,.

(b) Foranyq,q' € {1,2,...,t}, Q;j isconstantin j € Jy,j € Jy.

We use gg}l;" C QICFI’_ZCQP to denote the collection of all MP-tractable MI-LCQP-graphs.
Under the assumption of MP-tractability, we can establish universal approximation results for GNNs

on MI-LCQPs regarding feasibility and optimal objective value. While GNNs cannot universally
represent all MI-LCQPs, they can represent MP-tractable ones.

Assumption 4.5. P is a Borel regular probability measure on gh”,ﬁifCQPﬂ

Theorem 4.6. Let P be a probability measure satisfying Assumption and P[GmrLcor € Gyp''] =
1, i.e., the MP-tractability holds almost surely. For any € > 0, there exists F' € Fy.Lcop such that

]P [HF(GMI,Lch)>% # @fEaS (GMLLCQP):I < €.

Theorem 4.7. Let P be a probability measure satisfying Assumption and P[GmiLcgp € Gy ] =
1, i.e., the MP-tractability holds almost surely. For any € > 0, there exists Iy € FyrLcop such that

P[HFl(GMl—LCQP)>% 7 ]Lbobj(GMl_Lch)eR} <e€
Additionally, if P[®obj(GmrLcgr) € R] = 1, for any €,6 > 0, there exists Fo € Far.Lcgp such that

P [|F2(GmiLcop) — Povj(GmrLege)| > 6] < e.

To extend these results to predicting optimal solutions with GNNs, we introduce two additional

assumptions. First, we assume the MI-LCQPs have an optimal solution. We define gj’fﬂ’" as the set of
n

MI-LCQPs for which an optimal solution exists. The assumption is expressed as Gmr.Lcop € g;”ol .
The second assumption is that MI-LCQPs are unfoldable, defined below in Deﬁnition extending
the concept from |Chen et al.| (2023b)) for MILPs.

Definition 4.8 (Unfoldable MI-LCQP). In the same setting as in Deﬁnition we say that Gyy.rcop
is unfoldable if t = nand |J1| = |J2| = -+ = || = 1, i.e., all vertices in W have different colors.
We use Gyitia C Guircop 10 denote the collection of all unfoldable MI-LCQP-graphs.

With the two assumptions—that the MI-LCQPs have an optimal solution and are unfoldable—we
can establish a universal approximation result for optimal solution prediction: GNNs can universally
approximate the optimal solutions for this specific class of MI-LCQPs.

Theorem 4.9. Let P be a probability measure on QI\%’_ECQP satisfying Assumption and
P[Gmiicop € Gop' N Goiiyl = 1. For any €,6 > 0, there exists Fyy € f%_LCQP such that

P (| Fw (GmiLcor) — Psol(GmrLegr)|| > 6] < e.
Theorems [4.6| and [4.9] precisely characterize the subsets of MI-LCQPs where GNNs can suc-
ceed and their proofs can be found in Appendix [C|
4.3 PRACTICAL CHARACTERIZATION OF “SOLVABLE” MI-LCQPs

To better illustrate the practical implications of Theorems[4.6| and[4.9] we make more discussion
of MP-tractability and unfoldability in this subsection.

MP-tractability vs unfoldability. While all unfoldable MI-LCQPs must be MP-tractable (strictly
proved in the appendix), not all MP-tractable problems are necessarily unfoldable. This difference
can be clearly illustrated with an example that is MP-tractable but not unfoldable:

o1
min §x§+x1 +xotx3, st.x1+x3 <1, x1—2904+23<1,0<x1,29,23 <1, 1,29,23 € Z.

The related discussions, proofs, and this example are further detailed in Appendix [D]

3The topology of Gur1cop is defined in the same way as Gy'(Gp.-
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Figure 2: Relative errors when training GNNSs to fit @, and P for LCQP (2af2b) and MI-LCQP
(2c2d). GNNs are trained on 100 randomly generated problem instances.

Numerical verification of MP-tractability and unfoldability. In practice, both MP-tractability
and unfoldability can be efficiently verified. In particular, one can apply the WL test, which requires
at most O(m + n) iterations. The complexity of each iteration is bounded by the number of edges in
the graph [Shervashidze et al.|(2011), which, in our context, is the number of nonzeros in matrices A
and Q: nnz(A)-+nnz(Q). Therefore, the overall complexity of Algorithm|[I]is O((m+n)- (nnz(A)+
nnz(Q))). After running Algorithm |1} MP-tractability can be directly verified using Definition
and unfoldability can be directly verified using Definition 4.8]

Frequency of MP-tractability and unfoldability. In practice, the frequency of MP-tractable and
unfoldable instances largely depends on the dataset. In the earlier example, two of three variables,
x1 and x3, display symmetry — they are labeled with the same color by WL test and swapping them
does not alter the problem. Generally, unfoldable problems lack symmetry and MP-tractability al-
lows for some degree of symmetry. Another example in Section [4.1|admits strong symmetry across
all variables, making it neither MP-tractable nor unfoldable. Thus, the frequency of MP-tractability
and unfoldability relates to the level of symmetry in the data. When there is symmetry in MI-LCQP,
it becomes foldable; and higher symmetry increases the risk of being MP-intractable. Fortunately,
unfoldable and MP-tractable instances make up the majority of the MI-LCQP set (shown in Ap-
pendix [D). The dataset used in our experiments, which includes synthetic MI-LCQPs, portfolio
problems, and SVMs, consists entirely of unfoldable and MP-tractable instances. However, it’s im-
portant to note that in some challenging, artificially created datasets like MIPLIB 2017 |Gleixner
et al.| (2021), about 1/4 of the examples exhibit significant symmetry in half of the variables.

How to handle bad instances? Two potential approaches to deal with symmetry. (I) Adding
features: Introducing additional features can differentiate nodes in symmetric graphs. For example,
adding a random feature to nodes with identical attributes ensures they are no longer symmetric
Sato et al.|(2021)). (IT) Using higher-order GNNs: These models can distinguish nodes that standard
message-passing GNNs cannot, enhancing their expressive power |[Morris et al.|(2019).

5 NUMERICAL EXPERIMENTS

Numerical validation of GNNs’ expressive power. We train GNNSs to fit ®p,; or @, for LCQP
or MI-LCQP instancesE] For both LCQP and MI-LCQP, we randomly generate 100 instances, each
of which contains 10 constraints and 50 variables. The generated MI-LCQPs are all unfoldable and
MP-tractable with probability one. The optimal solutions and corresponding objective function val-
ues are collected using existing solvers. Details on the data generation and training schemes can be
found in Appendix [F} We train four GNNs with four different embedding sizes and record their rel-
ative errors averaged on all instances during trainingE] The results are reported in Figure [2] We can
see that GNNs can fit ®gp; and Py, well for both LCQP and MI-LCQP. These results validate The-
orems [3.33.4]4.7 and [4.9] on a small set of instances. We also observe that a larger embedding size
increases the capacity of a GNN, resulting in not only lower final errors but also faster convergence.

Numerical validation on a larger scale. To further validate the theorems, we expand the number
of problem instances to 500 and 2,500, and conduct training on the four GNNs along with a larger
variant with an embedding size of 1,024. The results are reported in Figure[3] We can observe that
GNN can achieve near-zero fitting errors as long as it has a large enough embedding size and thus
enough capacity for approximation, which directly validate Theorems [3.3||3.4}4.7] and

4Since LCQP and MI-LCQP are linearly constrained, predicting feasibility falls to the case of LP and MILP,
which has been numerically investigated in Chen et al.|(2023azb)). Hence we omit the feasibility experiments.

>The relative error of a GNN Fy on a single problem instance G is defined as ||Fw (G) —
®(G)||2/ max(||®(G)]|2, 1), where @ could be either Pop; or Pyor.
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Figure 4: Empirical results on randomly generated portfolio optimization and SVM optimization
problems (see Appendix [F for formulation). The figures illustrate the best relative errors achieved
during training for various combinations of embedding sizes and numbers of training samples. We

can achieve near-zero errors when the GNN is large enough.

Various types of LCQP. Besides the generic LCQP formulation 2.I)), we also extend the numerical
experiments to other types of optimization problems, namely portfolio optimization and support
vector machine (SVM) following Jung et al.| (2022). The results of fitting solutions or objective
values on 100/500/2,500 randomly generated problem instances are illustrated in Figure d] We can
observe similar fitting behaviors as those in the generic LCQP experiments where the expressive
power of GNNs increase as they become larger, evidenced by the fitting errors decreasing to near
zero when the embedding size increases. The formulation of the portfolio and SVM optimization
and how the problem instances are generated are explained in Appendix [

Generalization. Besides investigating GNNs’ expressive capacity, we also explore their general-
ization ability and observed positive results. However, since the generalization ability is out of the
main topic of this work, we refer the interested readers to Appendix [ for details.

Analysis of GNN computation complexity. GNNs are
superior over QP solvers in terms of running time, espe-
cially when we fully exploit parallel computing with GPU

Table 1: Average solving times of GNN
and OSQP on 1,000 LCQP instances.

acceleration. To show this, we measure the average run- Method BE}tCh Solving
ning time using OSQP (Stellato et al.,[2020) and a trained Size  Time (ms)
GNN with different batch sizes over the 1,000 synthetic 0SQP _ 244
LCQP problems generated in the experiment above. We

applied OSQP to solve all instances to a relative error 1 47.56
of 1073, which is slightly less accurate than the trained GNN 10 6.13
GNN (with an average relative error of 6.31 x 10~%). All 100 0.79
running times were measured in milliseconds. The re- 1,000 0.41

sults are shown in the Table [I| The sufficiently acceler-
ated computation validates GNNs’ capacity as a real-time QP solver or fast warm-start, numerically
supporting the rationality of our theoretical study of GNNs for QPs.

6 CONCLUSION

This paper establishes theoretical foundations for using GNNSs to represent the feasibility, optimal
objective value, and optimal solution, of LCQPs and MI-LCQPs. In particular, we prove the exis-
tence of GNNs that can predict those properties of LCQPs universally well and show with explicit
examples that such results are generally not true for MI-LCQPs when integer constraints are intro-
duced. Moreover, we precisely identify subclasses of MI-LCQP problems on which such universal
approximation results are still valid. All our findings are also verified numerically. However, our
universal approximation theorems only show the existence of the GNNs, without discussing the
training, generalization, and the size of GNNs, which are important future directions.

10
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A PROOFS FOR SECTION[3]

In this appendix, we present the proofs for theorems in Section [3] The proofs will based on
Weisfeiler-Lehman (WL) test and its separation power to distinguish LCQP problems with different
properties.

The Weisfeiler-Lehman (WL) test (Weisteiler & Leman,|1968)) is a classical algorithm for the graph
isomorphism problem. In particular, it implements color refinement on vertices by applying a hash
function on the previous vertex color and aggregation of colors from neighbors, and identifies two
graphs as isomorphic if their final color multisets are the same. It is worth noting that WL test may
incorrectly identify two non-isomorphic graphs as isomorphic. We slightly modify the standard WL
test to fit the structure of LCQP-graphs, see Algorithm [2]

We define two equivalence relations as follows. Intuitively, LCQP-graphs in the same equivalence
class will be identified as isomorphic by WL test, though they may be actually non-isomorphic.

Definition A.1. For two LCQP-graphs GLcqp, G’LCQP € g,{’g’gp, let {{Cf’v}};io, {{Cf’w}}?zo
and {{C’fv}};’io, {{C'JLW}};‘ZO be color multisets output by Algorithmon Greop and Gy cop.

1. We say Gicgpr ~ Gicor if {{OiLVV}}?io = {{CA’;LV}};ZO and {{CJ‘L’W}}?:O =
{{CJ.L’W}}?ZO hold for all L € N and all hash functions.
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Algorithm 2 The WL test for LCQP-graphs

Require: A LCQP-graph G = (V, W, A, Q, Hy, Hy ) and iteration limit L > 0.
I: Initialize with C{""" = HASH(v;) and C"" = HASH(uw;).
2: forl=1,2,---,Ldo
3:  Refine the colors

ChV —HASH [ ¢V ZAUHASH (")),
Jj=1

CW —HASH | IV ZA”HASH( civy, Z Qi HASH (Cj ™)
=1 j'=1

4: end for

5: return The multisets containing all colors { {C’lL v } } , { {C’f’w } } .
i=0 : j=0

2. We say Grege ~ Groge if {{C1V 1y = {1y and P = C1Y v j e
{1,2,...,n}, forall L € N and all hash functions.

Our main finding leading to the results in Section[3]is that, for LCQP-graphs in the same equivalence
class, even if they are non-isomorphic, their optimal objective values and optimal solutions must be
the same (up to a permutation perhaps).

Theorem A.2. For any GLCQP,GLCQP € gfggp with Q,Q = 0, if GLcgp ~ G’LCQP, then
Dovj (Gregp) = Pobj(Gregp)-

Theorem A.3. For any Gicgp, GLCQP IS g&’gp with @, Q > 0 that are feasible and bounded,
if GLcop ~ GuLcgp. then there exists some permutation ow € Sy such that ®g(GLegp) =

~ . W ~ A
UW((I)SOI(GLCQP))~ Furthermore, lfGLCQP ~ GLCQP; then (I)sol(GLCQP) = (psol(GLCQP)~

We need the following lemma to prove Theorem[A.2]and Theorem [A.3]
Lemma A.4. Suppose that M € R™™ " is a symmetric and positive semidefinite matrix and that
J = {J1,Ja,...,Ji} is a partition of {1,2,...,n} satisfying that for any q,q' € {1,2,...,t},
> jyres, Mjj is a constant over j € Jq. For any x € R", it holds that

q

1 1,
—x"Mz> =& Mz, (A.1)
2 27
where & € R" is defined via £; = y, = ﬁ Zj'eJq x4 for j € J,.
Proof. Fixe x € R™ and consider the problem
1+
Znel]g% 52 Mz, st sz: ij, q=1,2,...,1, (A2)

J€Jq j€Jq
which is a convex program. The Lagrangian is given by
1 t
L(z,A) = §ZTMZ - Z)\q Z Zj — Z x;
g=1 JjE€Jq jE€Jq
It can be computed that

0 .
a—zjﬁ z,\) Z Mjjizjr—Ng,  § € Jg,

J'=1

15
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and

iz:zA Dowi— Yz,

Jj€Jq Jj€Jq
It is clear that 9
a—/\qﬁ(a},)\) = Z xj — Z i =0,
Jj€Jq Jj€Jq

by the definition of . Furthermore, consider any fixed ¢ € {1,2,...,t} and we have for any j € J,

that
azjﬁ( ; P> My =X =0,

]EJ/

. ¢ .. .. .

ifAg =1 Yo Zj,e]q, M that is independent in j € ¢ since Zj,e]q,
j € Jyforany ¢’ € {1,2,...,¢}. Since the problem (A.2)) is convex and the first-order optimality
condition is satisfied at &, we can conclude that Z is a minimizer of (A.2Z), which implies (A.T). O

M is constant over

Proof of Theorem[&.2] Let GiLcop and Gycgp be the LCQP-graphs associated to (2-1) and

min ~27Qr+é'x, st Avob I<z<a, (A3)
z€R™ 2
Suppose that there are no collisions of hash functions or their linear combinations when applying
the WL test to GlLcop and G‘LCQP and there are no strict color refinements in the L-th iteration.
Since Grcgp ~ G‘LCQP, after performing some permutation, there exist Z = {Iy,I5,...,I;} and
J ={J1,Jo,..., i} that are partitions of {1,2,...,m} and {1,2,...,n}, respectively, such that
the followings hold:

. Cl-L’V = C’iL,’V ifand only if 4,4’ € I, for some p € {1,2,...,s}.

e OBV = CA’ZL,V if and only if 4,4’ € I, for some p € {1,2,...,s}.

(2

. OBV = C’iL,’V if and only if 4,4’ € I, for some p € {1,2,...,s}.

7

cEW = LW if and only if j, j' € J, forsome g € {1,2,...,t}.

CEW = 5 if and only if j, j' € J, forsome g € {1,2,...,t}.

CEW = CLW ifand only if §, j' € J, forsome ¢ € {1,2,...,t}.
Since there are no collisions, we have from the vertex color initialization that

* v; = (b;,0;) = 0; = (b;, 6;) and is constant over ¢ € I, forany p € {1,2,...,s}.

» w; = (¢j,lj,uj) = w; = (&,1;,u,) and is constant over j € J, forany g € {1,2,...,t}.

Forany p € {1,2,...,s} and any 4,4’ € I,, one has

chV =clV = Y agHasu (o M) = 3 AggHasH (¢ )

? 3

JjEW JEW

— 3" A, HASH (C7LW) — " 4,,HASH (Cf’w>
JEW JEW

== ZAij:ZAi’j, Vge{1,2,...,t}.
J€Jq Jj€Jq

L . LV _ ALV ALYV _ ALV
One can obtain similar conclusions from C,;”" = C;”" and C;”" = C}", and hence conclude
that

16



Under review as a conference paper at ICLR 2025

* Foranyp € {1,2,...,s}and g € {1,2,...,t}, > ;e ; Aij = > e, A, and is constant
overi € I,

Similarly, the followings also hold:

* Foranyp € {1,2,...,s}and g € {1,2,....t}, > ic; Aij = > icp) A;; and is constant
over j € Jg.

 Forany ¢,¢' € {1,2,....t5 > ey, Qjjr = Djrey, ij/ and is constant over j € J,.
If GLCQP or @ is infeasible, then (Pobj(GLCQP) = +00 and clearly (I)obj (GLCQP) 2 (I)obj(éLCQP)-

If (2.0) is feasible, let z € R™ be any feasible solution to (2.1) and define & € R" via &; = y, =
ITl\ > e, Ty for j € Jy. By the proofs of Lemma B.2 and Lemma B.3 in|Chen et al.| (I2023a , we

know that  is a feasible solution to (A3) and ¢" z = ¢' 7. In addition, we have

1 1 1< 1<
ngngiﬁTQi= 3 YD D Qi = 5 > vave Y Qiy

q,¢'=1j€Jqj'€Jy q,q9'=1 J'€Jy
t t
1 N 1 N 1 R
_ o s - 7AT A~
=3 E YaYq' E : Qjj = B E E , E T;Qj %5 = 230 Qz,
q,q'=1 J'edy q,9'=1j€Jq ' €Jy

which then implies that

%mTQac +cle> %QTQ:E +é'i,
and hence that (Dobj (GLCQP) > q)obj (GLCQP)~ Till now we have proved (I)obj (GLCQP) > (I)obj (GLCQP)
regardless of the feasibility of Gi.cgp. The reverse direction @i (Gregr) < Pobj(GLege) is also true
and we can conclude that (I)obj (GLCQP) = (Pobj (GLCQP)' O]

Proof of Theorem[A.3] Under the same setting as in the proof of Theorem [A2] the results can be
proved using the same arguments as in the proof of Lemma B.4 and Corollary B.7 in |Chen et al.
(2023a)). We present the proof here for completeness.

Let x € R™ be the optimal solution to (2:1)) with the smallest £2-norm, and let Z € R™ be defined as
in the proof of Theorem[A.2] By the arguments in the proof of Theorem([A.2] Z is an optimal solution

to (A3). In particular, # is also an optimal solution to @) since one can set (A, b,¢,Q,1,4,6) =
(A,b,e,Q,l,u, o). Therefore, by the minimality of ||z||*, we have that

2
t t t
Jol® <l = 3030 8 = oMl (g o | <30 3wk =l
g=1

g=1j€J, i€l g=1jeJ,
which implies that z; is a constant in j € J, and = &. Thus, z is also an optimal solution to (A.3).

Let 2/ € R™ be the optimal solution to (A23) with the smallest £o-norm. Then ||z’ < ||Z| = ||zl
and the reverse direction [|z|| < [|2’|| is also true, which implies that ||z| = ||z’||. Therefore, we
have = 2’ by the uniqueness of the optimal solution with the smallest £5-norm.

Noticing that the above arguments are made after permuting vertices in V and W, we can conclude
that @01 (GLcop) = UW(CPSO](GLCQP)) for some oy € S,,. Additionally, if GLcop i GLCQP, then
there is no need to perform the permutation on W and we have @y (GrLcop) = Psoi(GLcgp)- O
Corollary A.5. For any Gicqe € Gy cop that is feasible and bounded and any j,j' € {1,2,...,n},
lijL’W = CjL,’W holds for all L € N4 and all hash functions, then @1 (GrLcgp); = Psol(Gregr) j7-

Proof. Let @LCQP be the LCQP-graph obtained from GLcqp by relabeling j as j' and relabeling
j as j. By Theorem we have @y (GLcgp) = @SOI(GLCQP), which implies ®go1(GrLegr); =
D01 (Grear)j = Psol(GLegp) ;- O
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It is well-known from previous literature that the separation power of GNNs is equivalent to that
of WL test and that GNNs can universally approximate any continuous function whose separation
is not stronger than that of WL test; see e.g. [Chen et al| (2023a); Xu et al.| (2019);
Lelarge| (2021); [Geerts & Reutter] (2022). We have established in Theorem [A.2] Theorem [A.3]
and Corollary that the separation power of ®.,; and Py is upper bounded by the WL test
(Algorithm that shares the same information aggregation mechanism as the GNNs in i cqp and
]-'LVgQP. Therefore, Theorem and Theorem can be proved using standard arguments in the
previous literature.

Proof of Theorem[3.3] Based on Theorem[A.2] Theorem [3.3|can be proved following the same lines
as in the proof of Theorem 3.4 in [Chen et al.| (2023a), with straightforward modifications to gen-
eralize results for LP-graphs to the LCQP setting. We sketch the proof here for the sake of self-
containedness.

The separation power of GNNs is equivalent to that of the WL test, i.e., for any G cqp, éLch S
Qfé’gp with Q,Q » 0,

Grcge ~ Gregr <= F(Grcgp) = F(Grege), ¥ F € Ficop, (A4)
which combined with Theorem [A.2]leads to that
F(Gregp) = F(Greop), V F € Fioop — Doni(Gregr) = q)obj(GLCQP)7 (AS)

indicating that the separation power of Jcqgp is upper bounded by that of @ ;.

The indicator function I, (yer : gfé’gp — {0,1} C R is measurable, and hence by Lusin’s
theorem, there exists a compact and permutation-invariant subspace X C g&’gp such that
P[G¢op\X] < € and that Iy ()er restricted on .X is continuous. Therefore, by the Stone-
Weierstrass theorem and (AZ3)), we have that there exists F; € Fycqp satisfying

1

Fi(Grege) — Loy, L
Gig}éx’ 1(GLegp) — L (Grogn) <R | >

Therefore, it holds that

P {]IFl(GLch)>% 7é H‘bobj(GLCQP)ER} <P {gl?jégP\X} <€,

which proves (3.I). Additionally, (3:2) can be proved by applying similar arguments to ®gp; :

D (R) = R, where @ (R) C G/'¢p is the collection of feasible and bounded Gregp € Gy ¢igp-
O

Proof of Theorem 3.4} Based on Theorem [A.3]and Corollary [A.5] Theorem [3.4] can be proved fol-
lowing the same lines as in the proof of Theorem 3.6 in|Chen et al.|(2023a)), with trivial modifications
to generalize results for LP-graphs to the LCQP setting. We sketch the proof here for the sake of
self-containedness.

In addition to (AJ), it can be proved that the separation powers of GNNs and the WL test are
equivalent in the following sense:

A mon WA . .
e For any Grcop, Greqp € Gicgps Gregp ~ Gicee if and only if Fyy (Grege) =
Fyw (GLCQP) for all Fy, € ‘FI%QP'

* For any Gicqp € g]t%’gp and any 7,5’ € W, C7LW = C’jL,’W for any L € N and any hash
function if and only if Fy (Gregr); = Fw (Giregp) ;- for all Fyy € fﬁ’ng.

Therefore, with Theorem [A.3]and Corollary [A.3] the separation power of GNNss is upper bounded

by that of @y in the following sense that for any Grcgp, G‘LCQP € G éop With @, Q = 0 and any
J.j €W,
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« F(Gregp) = F(Gregr), ¥ F € Ficop implies @i (Gregp) = ow (Psor(Gregr)) for
some oy € S,.

« Fiw(Greor) = Fw (Gregp), ¥ Fiv € -FI%QP implies B0 (Gregp) = Peor(Grege)-

* Fw(Gureor); = Fw(Grege)y, ¥ Fw € }—LVKQP implies @01 (GrLegr); = Psot(GLegp) ;-

The optimal solution mapping @, : <I>(;)j1 (R) — R is measurable, and hence by Lusin’s theorem,

there exists a compact and permutation-invariant subspace X C <I>(;)j1 (R) such that P[@&jl (R\X] <
€ and that ®4 restricted on X is continuous. Therefore, applying the generalized Stone-Weierstrass
theorem for equivariant functions (Azizian & Lelarge,[2021], Theorem 22), we know that there exists

Fwy e }"L”C/QP satisfying

sup || Fw (Gregp) — Psot(Grege) || < 0.
GrLegpr€X

Therefore, it holds that
P[Fw (Greqp) — Psot(Greer)|| > 6] < P [‘I’&}(R)\X} <€,

which completes the proof. O

B PROOFS FOR SECTION [4_1]

The proof of Proposisition[f.1]is directly from [Chen et al. (2023b) since adding a quadratic term in
the objective function of an MILP problem does not change the feasible region. However, Proposi-
sitions [4.2] and 4.3 are not covered inChen et al| (2023b) and we present their proofs here.

Proof of Proposisition.2] As discussed in Section ff.I} we consider the following two examples
whose optimal objective values are % and 6, respectively.

6 6
o1 2
min — x; + Zi
st. x1+222>1, z2o4+232>1, 23+ 24 > 1,

Ta+wxs > 1, 5 +x6 > 1, 26 + 71 > 1,
z; €{0,1}, Vj e {1,2,...,6}.

6 6
.1 2
min — x; + X4
st. x1+x22>1, za+x3 > 1, 23 +21 > 1,

Ta+x5>1, 25 +76 > 1, 6 + 74 > 1,
z; € {0,1}, Vj e {1,2,...,6}.

Denote Gmi.Lcop and GMI_LCQP as the graph representations of the above two MI-LCQP problems.
Let sé, té» and §é, fé» be the attributes at the [-th layer when apply a GNN F' € Fypicop to GmiLcop

and G’MI_LCQP. We will prove by induction that for any 0 < ! < L, the followings hold:
(a) st = 8! and is constant overi € {1,2,...,6}.
(b) t =t} and is constant over j € {1,2,...,6}.
It is clear that the conditions (a) and (b) are true for [ = 0, since v; = ¥; = (1, >) is constant in

i e€{l,2,...,6},and w; = w; = (1,0,1,1) is constant in j € {1,2,...,6}. Now suppose that

the conditions (a) and (b) are true for I — 1 where 1 < [ < L. We denote that s/~ = sl =

%
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s vie{1,2,...,6}and t!"! = t;ﬁl = féfl, Vje{l,2,...,6}. It can be computed for any
i€{1,2,...,6}and j € {1,2,...,6} that

si= A | s 2 T Ay | = G aa ) = 4

JjeNY
de [0 e Y R
7;6_/\[],‘/ j/GNJW

= 1 (F20 (LgR e ) = B

which proves (a) and (b) for [. Thus, we can conclude that F'(GmrLcop) = F(GMI_LCQP), VF e
FMILCQP- O

Proof of Proposition[d.3] Consider the following two MI-LCQPs:

1
min —2'11" z + lTa:7
z€R7

S.t. $1—$2:O, 1’2—1’1:0,
3 —x4 =0, x4 — x5 =0,
5 —x6 =0, x6 —x7y =0, z7 —x3 =0,
T1+ T2+ 23+ x4+ 25+ 26 +27 =06
0<z;<3,z; €Z,Vje{l,2,...,7}.

and

1
min =z 11z + 1Tm,
z€R7

st. x1 —x2 =0, z2 —23 =0, x3 —x1 =0, [ vg

1‘4—1‘5:0, $5—$6:0,
1'6_1'7:07 $7—$4:0,
T1+z2+23+xsa+ 25+ 26 +27 =06
0<z;<3,z,€Z Vje{l,2,...,7}

As we mentioned in Section i.I] both problems are feasible with the same optimal objective value,
but have disjoint optimal solution sets.

On the other hand, it can be analyzed using the same argument as in the proof of Proposition .2
that for any 0 <! < L that

l

(a) st = 8lisconstantoveri € {1,2,...,7}, and s} = 3.

(b) té = tE is constant over j € {1,2,...,7}.

These two conditions guarantee that F(GmrLcop) = F(GMI_LCQP), V F € Furicopr and
Fw (GmrLcgr) = Fw (Gumricor)s ¥V Fw € FmrLoge- O
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C PROOFS FOR SECTION (4.2

This section collects the proofs of Theorems and Similar to the LCQP case, the proofs
are also based on the WL test (Algorithm [I)) and its separation power to distinguish MI-LCQP
problems with different properties. We define the separation power of Algorithm|[I]as follows.

Definition C.1. Let Gwricop, CA?MI_ECQP € g,(;LI’_QCQP be two MI-LCQP-graphs and let
{{C{‘y}};’;o, {{C'jL’W}}}‘:A0 and {{CiL’V}};’LO, {{C’]-L’W}}};O be color multisets output by Al-
gOVithmOl’l GMI-LCQP and GMI-LCQP-

1. We say Guircop ~ Gaicor if {{C7 1y = {({CF g and ({C7 " 10y =
{{C’f’w}}?:o hold for all L € N and all hash functions.

WA ; A
2. We say Gwrrcor ~ Gwricor if {{CPV 1R, = {{CPV 12, and C]L’W =
C'J-L’W7 Vje{l,2,...,n}, forall L € N and all hash functions.
The key component in the proof is to show that for unfoldable/MP-tractable MI-LCQP problems, if
they are indistinguishable by WL test, then they must share some common properties.

Theorem C.2. For two MP-tractable MI-LCQP-graphs Gyr.Lcqp, GMI—LCQP S (JQI;", if GmrLegp ~
GmrLegp, then Preas(GuiLegp) = Preas(GumiLogr) and Poni(GumiLegp) = Pobj (Gmi-Logp)-

Proof. Let Gymrrcgp and G‘MI_LCQP be the MI-LCQP-graphs associated to
1

m]iRn §mTQx+ch, st. Azob, <z <wu,z;,€Z Vjel (C.1)
z€Rn
and
1 A ~ PUEIN o
min ixTQx +é'w, st Avob I<z<a,z,€Z Vjel (C.2)
zERn

Suppose that there are no collisions of hash functions or their linear combinations when applying
the WL test to Gmr.Lcop and Gurrcgp and there are no strict color refinements in the L-th iteration.

Since GmrLcgp ~ CJMI_LCQP and both of them are MP-tractable, after performing some permutation,
there exist Z = {I1,Is,...,Is} and J = {J1, Ja,..., J¢} that are partitions of {1,2,...,m} and
{1,2,...,n}, respectively, such that the followings hold:

e CFV =5Vt and only if i, i € I, forsome p € {1,2,...,s}.

(3 (3

e OBV = C’f,v if and only if 4,i’ € I, for some p € {1,2,...,s}.

(2

« OBV = CA’lL,V if and only if 4,¢’ € I, for some p € {1,2,...,s}.

. CjL’W = C’jL,’W if and only if j, j' € J, for some ¢ € {1,2,...,t}.

LW
Cj

= C’jL,’W if and only if j, j’ € J, for some g € {1,2,...,t}.

ALW
Cj

=" if and only if j, j' € J, for some g € {1,2,...,t}.
By similar analysis as in the proof of Theorem[A.2] we have

(a) v; = ¥, and is constant over ¢ € I, forany p € {1,2,...,s}.

(b) wj = w; and is constant over j € J, forany g € {1,2,...,t}.

(c) Foranyp € {1,2,...,s}andany g € {1,2,...,t}, {{Ai; : j € J}} = {{Ai; : j € J,}}
and is constant over i € I,.
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(d) Foranyp € {1,2,...,s}andany g € {1,2,...,t}, {{A;; :i € I,}} = {{A;; :i € I,}}
and is constant over j € J,.

(e) Forany q,¢' € {1,2,...,t}, {{Q;; : ' € Jp}} = {{Qj;» : // € J,}} and is constant
over j € Jg.

Note that Gmr.Lcop and GMI_LCQP are both MP-tractable, i.e., all submatrices (Aij)icr, jes,
(.Aij)ielp,jGJ,ﬂ (ij/)jequj/GJq/7 and (ij/)jeij/GJq, have identical entries. The above condi-
tions (c)-(e) suggest that

(f) Forany p € {1,2,...,s} and any ¢ € {1,2,...,t}, 4;; = Aij and is constant over
telp,jedy

(g) Forany ¢,¢' € {1,2,...,t},Qj;s = ij/ and is constant over j € Jg, j' € Jy.

Combining conditions (a), (b), (f), and (g), we can conclude that GmrLcop and GMI_LCQP are
actually identical after applying some permutation, i.e., they are isomorphic, which implies

Deas (GMrLegp) = Preas(GmrLcgr) and Popi(GmiLege) = (bobj(GMI—LCQP)- O

Before stating the next result, we comment on the construction/definition of the MI-LCQP optimal
solution mapping ®,,. Different from the LCQP setting, the optimal solution to an MI-LCQP
problem may not exist even if it is feasible and bounded, i.e., Popj(GmrLcor) € R. Thus, we have

to work with Gli™ C ®..1 (R) C Gy cp Where Gp™ is the collection of all MI-LCQP-graphs for

sol obj sol

which an optimal solution exists. For Gmp.rcop € Q;"ol’”, it is possible that it admits multiple optimal
solution. Moreover, there may even exist multiple optimal solutions with the smallest £5-norm due
to its non-convexity, which means that we cannot define the optimal solution mapping @y, using
the same approach as in the LCQP case. If we further assume that Gpr.Lcop € Qsmol’” is unfoldable,
then using the same approach as in|Chen et al.|(2023b, Appendix C), one can define a total ordering
on the optimal solution set and hence define ®so(GmrLcop) as the minimal element in the optimal
solution set, which is unique and permutation-equivariant, meaning that if one relabels vertices of
Gwmi-Lcgp, then entries of @y (GumrLcgp) are relabelled accordingly.

m,n
sol

Theorem C.3. For any two MI-LCQP-graphs Gwricop, GMI_LCQP €g
foldable with nonempty optimal solution sets, if GvrLcop ~ GwmrLcgp, then there exists some per-

N Guniola that are un-

mutation oy € Sn such that cI)sol(GMI-LCQP) = O'W((bsol(éMI-LCQP))' Furthermore, l'fGM]_LCQp ’VL/
GmiLcgp, then @y (GmiLeor) = Psol (GMmi-Legp)-

Proof. By Proposition GwmrLcop and GMI_LCQP are also MP-tractable, and hence, all analy-

sis in the proof of Theorem applies. If GmrLcop ~ GwmrLcgp. then they are isomorphic and
A . W A

D1 (GmiLcgr) = 0w (Psol (GMi-Lege)) for some permutation oy € Sy, If Gmrcor ~ GmiLcors

then these two graphs will become identical after applying some permutation on V' with the labeling

in W unchanged, which guarantees @01 (Gmr-Lcgp) = Psol (GMr-Lcgp)- O

With Theorem [C.2]and Theorem [C.3] one can adopt standard argument in the previous literature to

prove Theorems 4.6} 4.7, and 4.9

Proof of Theorem Based on Theorem|C.2] Theorem[4.6]can be proved following the same lines
as in the proof of Theorem 3.2 in|Chen et al.|(2023a), with straightforward modifications to general-
ize results for LP-graphs to the MI-LCQP setting. In particular, the proof outline is the same as the
proof of Theorem O

Proof of Theorem Based on Theorem|[C.2] Theorem [4.7]can be proved following the same lines
as in the proof of Theorem 3.4 in|Chen et al.|(2023a)), with straightforward modifications to general-
ize results for LP-graphs to the MI-LCQP setting. In particular, the proof outline is the same as the
proof of Theorem 3.3 O
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Proof of Theorem .9} Based on Theorem [C.3| and the unfoldability assumption that different ver-
tices in W will eventually have different colors in the WL test without collision, which automatically
provides a result of the same spirit as Corollary [A.5] Theorem 4.9 can be proved following the same
lines as in the proof of Theorem 3.6 in [Chen et al.| (2023a)), with straightforward modifications to
generalize results for LP-graphs to the MI-LCQP setting. In particular, the proof outline is the same
as the proof of Theorem [3.4] O

Discussions on various GNN architectures: In our work we use the sum aggregation, and all
results are still valid for the weighted average aggregation. In particular, all our proofs (such as
the proof of Theorem hold almost verbatimly for the average aggregation. The attention ag-
gregation |VelickoviC et al. (2017) has stronger separation power, which implies that all universal
approximation results still hold. Moreover, all the counter examples for MI-LCQPs work for every
aggregation approach, since the color refinement in Algorithm 1 is implemented on multisets, with
separation power stronger than or equal to all aggregations of neighboring information. We have
included the above discussion in our updated draft.

D CHARACTERIZATION OF MP-TRACTABILITY AND UNFOLDABILITY

In this section, we discuss some further characterizations of the MP-tractability and the unfoldability
for MI-LCQP-graphs defined in Section[4.3]

D.1 RELATIONSHIP BETWEEN MP-TRACTABILITY AND UNFOLDABILITY

We first prove that unfoldability implies MP-tractability but they are not equivalent.
Proposition D.1. If Gumiicop € QI\T,?I’_ZCQP is unfoldable, then it is also MP-tractable.

Proof. Let (Z,J) be the final stable partition of V' U W generated by WL test on Gpr.Lcgp Without
collision, where Z = {I, I5, ..., I} isapartitionof V = {1,2,... ,m}and J = {J1, Jo,..., i}
is a partition of W = {1,2,...,n}. Since we assume that GmrLcgp is foldable, we have ¢ = n and
|Ji| = |Jo| = -+ =|J,| = 1. Then for any q,q¢" € {1,2,...,t}, the submatrix (Q;;')jes, i, i
a 1 x 1 matrix and hence has identical entries.

Considerany p € {1,2,...,s}andq € {1,2,...,t}. Suppose that the color positioning is stabilized
at the L-th iteration of WL test. Then for any 7,7’ € I,,, we have

eV =cpY
— {{HasH (c] W a,) eV} = {{HasH (] Y A ) e NV
= {{Aij 1€ Jg}} ={{Av; 1 € Jg}},

which implies that the submatrix (A;;)icr, jes, has identical entries since |.J;| = 1. Therefore,
GMI-LCQP is MP-tractable. O]

Proposition D.2. There exist MP-tractable instances in gl\”;;’_’ﬁCQP that are not unfoldable.

|
|
L os.t. r1+23 <1

|

: $1—LL‘2+$3§1
1 0<z1,m2,23 <1
|
\

T1,To,x3 €L Initialization

MI-LCQP problem MI-LCQP-graph The WL test (Algorithm [T])

Figure 5: Example for proving Proposition
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Proof. Consider the example in Figure [5} for which the final stable partition is Z = {{1},{2}} and
J = {{1,3},{2}}. It is not unfoldable since the class {1, 3} in 7 has two elements. However, it is
MP-tractable since A;; = A1z = 1and Ay = Asz = 1. O

D.2 FREQUENCY OF MP-TRACTABILITY AND UNFOLDABILITY

It can be proved that a generic MI-LCQP-graph in QIGLI’_ZCQP is unfoldable almost surely under some
mild conditions. Intuitively, if ¢ € R" is randomly sampled from a continuous distribution with
density, then almost surely it holds that z; # x;/ for any j # j/, which implies that the vertices in
W have different colors initially and always, if there are no collisions of hash functions.

Proposition D.3. Let IP be a probability measure over Gy cqp such that the marginal distribution
P. of ¢ € R™ has density. Then P[GuiLcqp € Gonjora) = 1-

Proof. Since the marginal distribution P, has density, almost surely we have for any j # j’ that
¢j# ey = COW £ = £V, vixo,

where we assumed that no collisions happen in hash functions. Therefore, any j, j' € W with j # j
are not the in same class of the final stable partition (Z, ), which proves the unfoldability. O

As a direct corollary of Propositionand Proposition a generic MI-LCQP-graph in g;\;}_fCQP
must also be MP-tractable.

Corollary D.4. Let P be a probability measure over Guy.Lcop such that the marginal distribution P,
of ¢ € R™ has density. Then P[GviLcop € G| = 1.

E EXTENSION TO QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMS
A general quadratically constrained quadratic programming (QCQP) is given by
1 1
m]%n §J]TQ{L‘ + cT:L’, s.t. ixTPix + a;ra: <b,1<i1<m, I <z<u, (E.1)
reR™

where Q, P; € R"*™ are symmetric, ¢, a; € R", b, € R,l € (RU{—00})",and u € (RU{+00})™.
Wedenote A = [a1 az --- am]T € R™*™ for consistent notation with (2:1).

E.1 GRAPH REPRESENTATION AND GNNS FOR QCQPs

Graph representation for QCQPs The QCQP-graph for representing (E:I) is based on the
LCQP-graph introduced in Section [2] More specifically, The QCQP graph can be constructed by
incorporating the information from P = (P, Ps, ..., P,,) into the LCQP graph:

* The multiset {{7, j, '} } is viewed as a hyperedge with weight (H;);;  for each i € V and
j,j € W, where j = j' is allowed.

We use Gcgp to denote the set of all QCQP-graphs with 1 constraints and n variables.

GNN: s for solving QCQP  Note GNNs on LCQP-graphs that iterate vertex features with message-
passing mechanism, which does not naturally adapt to the hyperedges in QCQP graphs. Thus, one
idea is to add edge features for each pair (7, ), i € V,j € W. We describe the GNN architecture
for QCQP tasks in detail as follows.

0

The initial layer computes node features sV, ¢ and edge features €

irtj via embedding:

o V= fY(v;) fori eV,
. t? = £V (wj) for j € W, and
e B?j = fOE(AU) forieV,j e W.
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The [-th message-passing layers (I = 1,2,..., L) update the node features using neighbors’ infor-
mation:

o sh=fV (s Y ew gl (t el ) fori eV,

- -1 - I— .
° té = le (t]‘ 1’ZiEV glvv(si 17eij 1)72j/eW ij/ng(tj’ 1)) fOI'j € W’ and
s ey = fE (e S pew (P)ijralf (857)) fori € V.j € W.

Finally, there are two types of output layers. The graph-level output computes a single real number
for the whole graph

o y= Tl(ZiEV SZ-L, Z]EW th) S R,

and the node-level output computes a vector y € R™ with the j-th entry being

sy =r2(Diey siL’ZjGWtJL’tJL)'
We use Focop (or fgéQp) to denote the collection of all message-passing GNNs
with graph-level (or node-level) outputs that are constructed by continuous fJ , f3V, &,
flvvflwvflEaglvvglVVag[Eang (1 S l S L)’ and ] (OI‘ T2)~

E.2 UNIVERSAL APPROXIMATION OF GNNS FOR QCQPs

For QCQPs, we still consider the three target mappings, i.e., the feasible mapping Py : (]8@&, —
{0, 1}, the optimal objective value mapping ®obj : Gocop — R U {Fo0}, and the optimal solution
mapping P, that computes the unique optimal solution with the smallest £3-norm of feasible and
bounded QCQPs with Q, P; = 0, ¢ = 1,2,...,m. The main results that GNNs can universally
approximate these three target mappings are stated as follows.

Assumption E.1. P is a Borel regular probability measure on Gicg

Theorem E.2. Let P be a probability measure satisfying Assumption and P[Q = 0] = P[P,
0]=1,i=1,2,...,m. Foranye > 0, there exists F € FyiLcgp such that

]PJI:I[F(GQCQP)>% # Qfeas(GQCQP)] < €.
Theorem E.3. Let P be a probability measure satisfying Assumption[E.l|and P[Q = 0] = P[P, =
0]=1,i=1,2,...,m. Foranye > 0, there exists Fy € Fqcgp such that

IP)[HFl(GQCQp)>% # Hq)nbj(GQCQP)eR} <e
Additionally, if P[®oj(Gocgr) € R] = 1, for any €, 6 > 0, there exists F» € Focqp such that

P[[F2(Gacqp) — Povj(Gacar)| > 0] < e

Theorem E.4. Let P be a probability measure satisfying Assumption|E.1|and P[Q = 0] = P[P; =

0)=1,i=1,2,...,m. Foranye,d > 0, there exists Fyy € f&:QP such that
P [[lFw (Gacap) — Psal(Gacgr) || > 0] <€

Similarly, the proofs of Theorem|[E.2] and[E-4]are based on showing that the WL test associated
with the GNN classes Fqcqp and Focqp have sufficiently strong separation power to distinguish
QCQP problems with different properties. We will present and prove such separation results (Theo-
rem [E.3] Theorem [E.6] and Corollary [E7) in the rest of this subsection, and do not repeat the same
arguments as described in the Proof of Theorem 3.3]and Theorem [3.4]

We state in Algorithmthe WL test for QCQPs. For QCQP-graphs Gocop, Gocap € Gocops

The space Q&’gp is equipped with the subspace topology induced from the product space
{(A,;b,¢,Q,P,l,u,0) : A€ R™ ™ be R",ce R",Q e R, P e (RV™")™ e (RU{—oc})",uc€
(R U {+0o0})" }, where all Euclidean spaces have standard Eudlidean topologies, discrete spaces { —oc} and
{+0o0} have the discrete topologies, and all unions are disjoint unions.
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I. We say Gocgp ~ Gocor it {({C7 1y = (G 1y and {({C7" 17, =
{{CJL’W}}?:O hold for all L € N and all hash functions.

2. We say Gocor ~ Gocor if {{C/"V )}y = ({C/ Y} img and €Y = CJW, v j e
{1,2,...,n}, forall L € N and all hash functions.

Algorithm 3 The WL test for QCQP-Graphs

Require: A QCQP-graph G = (V,W, A, Q, P, Hy, Hy,) and iteration limit L > 0.
1: Initialize with

0,V 0,W 0,E

2: forl=1,2,---,Ldo
3:  Refine the color

IV =HASH [ €IV, S HASH (¢ MY e |
JjEW

LW —1,W -1,V ~I—1,E N —-1,W
CtW —HASH [ ¢!"'W S HASH (q. Neis ),ZQNIHASH(Cj, )|,
= Jew

l, -1, oW
jrew

4: end for
5: return The multisets containing all vertex colors {{C["V'}}™" | {{c7"} };L:O.

Theorem E.5. Given Gocor, Gocar € Gocop With Q,Q, Py, P = 0 forall i € {1,2,...,m}, if
Gacap ~ Gacap, then i (Gacap) = Preas(Gocop) and Pobi(Gacar) = Pon(Gocap)-

Proof. We Ollly show the pI'OOf of q)obj (GQCQP) = (I)obj (GQCQP) and q)feas(GQCQP) = (I)feas(éQCQP)
will be a direct corollary.

Let Gocop and Giocp be the QCQP-graph associated to and

1 +4 1+ N .
min fxTQx + 6Tx, st —z! P+ d?z <b,1<i<m, I <zx<d, (E.2)
zER" 2 2 )

Suppose that there are no collisions of hash functions or their linear combinations when applying

the WL test to G and G and there are no strict color refinements in the L-th iteration. Since G
and G are indistinguishable by the WL test, after performing some permutation, there exist Z =
{I,I,...,I;} and J = {J1,Jo,...,J;} that are partitions of {1,2,...,m} and {1,2,...,n},
respectively, such that the followings hold:

. Cf’v = C’iL,’V if and only if ¢,i" € I, for some p € {1,2,...,s}.

kY = %V ifand only if 4,7 € I, forsome p € {1,2,...,s}.

(3 (3

. C‘lLv = C’iL,’V ifand only if 4,7’ € I, for some p € {1,2,...,s}.
. C’f’W = C’jL/’W if and only if j, j € J, forsome g € {1,2,...,t}.
. C’fW = C’]L/W if and only if j, j € J, forsome g € {1,2,...,t}.

. C’f’w = C’JL/W if and only if j, j’ € J, forsome g € {1,2,...,t}.
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The followings hold by the same arguments as in the proof of Theorem [A2}

e b = Bi and is constant over i € I, forany p € {1,2,...,s}.
* (¢, lj,u5) = (éj,lAj,ﬁj) and is constant over j € J, forany ¢ € {1,2,...,t}.

e Foranyp € {1,2,...,s}and ¢ € {1,2,...,t}, Zjel,q A = Zjel]q /Alij and is constant
overi € I,

e Forany p € {1,2,...,s}and ¢ € {1,2,...,t}, Eiejp A = Ziejp Aij and is constant
over j € Jg.

* Foranyq,q" € {1,2,....t} 3250, Qi = Xjey, Q,;+ and is constant over j € J,,.

Fixpe {1,2,...,s}and ¢,¢' € {1,2,...,t}. Forany j,j’ € J,, we have

LW L,
C] ’ - C/W

:>ZHASH(CL 1,V CL 1E) ZHASH( oL-1v CL 1E)
eV i€V

— {{chPien}t ={{ch"ien}}

o > (P HASH(C M) rie 1,

Jew
= > (P HASH(CL YY) i b,
jrew
- Z (Pi)jj” 11 € Ip = Z (Pi)j’j” RS Ip
j”e‘]q/ j/lejq/
= D 2P = > D (P
j”EJq/ iel, ”EJ/lEI

and

D 2 By= 3 > (Py

Jj'€d g i€ly J'E€J g i€ly

One can do a similar analysis for
concludes that

ci = ¢ oand OV = CY where j, 5 € J,. This

is constant over j € J,.

Let z € R be any feasible solution to (EI) and define & € R™ via &j =y, = 177 22 /¢, @7 for
q
j € Jy. Forany p € {1,2,...,s}, it follows from

1
—2"Pax+ ag—x <b;, i€l

2
and Lemma[A 4] that
T
1 “ 1 1 1 1
icl, iely zEI el
T T

1 + 1 . 1 R 1 + 1 P 1 . .
>— P1 - i -3 T i - 7
2 |Ip| Z o Ipza v v ‘Ip‘ o Ip'za !

i€lp i€lp i€l, i€l
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Note that for any 7,7’ € I,, and any ¢, ¢’ € {1,2,...,t}, we have

~NL,V AL,V
Ci - O’i/

3 (01 = 3 e (et )
jeEWwW jew

— {{er sea) = {{e <))

—— Z <P1>jJIHASH(é7%_1’W) 1 j € Jq
Jjrew

i/)jj/HASH(éﬁ_17W) 1 j € Jq

I
U

(pi)jj/ 1j € Jq = Z (Pi’)jj’ 1 j € Jq

——
jleJq/ jIGJq/

and hence that
1 N
§5ﬁpﬂe +a; 2 <by, Yi€l,

We thus know that  is a feasible solution to (A23). In addition, we have

1 1 1.+ A
ixTQx +cle > ngQi +cli= ichQ:z + el

which implies that ®qi(Gocop) > Cbobj(éQch). The reverse direction Pupi(Gocgp)

iI’Obj(GQCQp) is also true and we can conclude that ® o (Gocop) = Pobi (GQCQP).

Theorem E.6. For any Gocor, Gacor € Gocap With Q. Q, P, Py = 0, i € {1,2,...,m} that
are feasible and bounded, if Ggcgp ~ G’QCQP, then there exists some permutation oy € S, such

A . W A
that qzsol(GQCQP) = O-W(@SOI(GQCQP))' Furthermore, lfGQCQP ~ GQCQP: then q)sol(GQCQP) =

D1 (Gocap)-

Proof. Based on Theorem|[E-3] Theorem|[E.6|can be proved by the same arguments as in the proof of
Lemma B.4 and Corollary B.7 in[Chen et al.|(20234), which is included in the proof of Theorem[A.2}
O

Corollary E.7. For any Ggcop € ggggp that is feasible and bounded and any j, j' € {1,2,...,n},
ifC'jL’W = CjL,’W holds for all L € N and all hash functions, then ®s1(Gocqr)j = Psol(Gacgp) ;-

Proof. Let GQCQP be the QCQP-graph obtained from Gqcgp by relabeling j as j' and relabeling
j" as j. By Theorem we have D01 (Gocor) = Psoi(Gocgr), which implies $go1(Gocor); =

D1 (Gacgr); = Psol(Gocar)j-
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F IMPLEMENTATION DETAILS AND ADDITIONAL NUMERICAL RESULTS

In this section, we explain how we formulate the optimization problems used in the numerical
experiments and how to randomly generate problem instances. We mainly follow the settings of
OSQP (Stellato et al.,|2020) with slight modifications.

F.1 RANDOM LCQP AND MI-LCQP INSTANCE GENERATION

Generic LCQP and MI-LCQP generation. For all instances generated and used in our numerical
experiments, we set m = 10 and n = 50, which means each instance contains 10 constraints and 50
variables. The sampling schemes of problem components are described below.

* Matrix () in the objective function. We sample sparse, symmetric and positive semidefinite
() using the make_sparse_spd_matrix function provided by the scikit-learn
Python package, which imposes sparsity on the Cholesky factor. We set the alpha value
to 0.95 so that there will be around 10% non-zero elements in the resulting @ matrix.

« The coefficients c in the objective function: ¢; ~ N(0,0.12).

* The non-zero elements in the coefficient matrix: A;; ~ A(0, 1). The coefficient matrix A
contains 100 non-zero elements. The positions are sampled randomly.

e The right hand side b of the linear constraints: b; ~ A (0, 1).

* The constraint types o. We first sample equality constraints following the Bernoulli distri-
bution Bernoulli(0.3). Then other constraints takes the type <. Note that this is equivalent
to sampling < and > constraints separately with equal probability, because the elements in
A and b are sampled from symmetric distributions.

* The lower and upper bounds of variables: 1;,u; ~ N'(0,10%). We swap their values if
l; > u; after sampling.

* (MI-LCQP only) The variable types are randomly sampled. Each type (continuous or inte-
ger) occurs with equal probability.

After instance generation is done, we collect labels, i.e., the optimal objective function values and
optimal solutions, using one of the commercial solvers.

LCQP instance generation for generalization experiments. In this setting, we only sample dif-
ferent coefficients ¢ for different LCQP instances. We sample other components only once, i.e., @,
A, b, 1, u and o in (2.T)), and keep them constant and shared by all instances. We also slightly adjust
the distributions from which these components are sampled as described below.

* Matrix (). We follow the same sampling scheme as above.
* The coefficients ¢ in the objective function: ¢; ~ N(0,1/n).

* The non-zero elements in the coefficient matrix: A;; ~ N(0,1/n). The coefficient matrix
A contains 100 non-zero elements. The positions are sampled randomly.

* The right hand side b of the linear constraints: b; ~ A(0,1/n).
* The constraint types o. We follow the same sampling scheme as above.

* The lower and upper bounds of variables: [;, u; ~ N(0,1). We swap their values if [; > u,
after sampling.

For the generalization experiments, we first generate 25,000 LCQP instances for training, and then
take the first 100/500/25,00/5,000/10,000 instances to form the smaller training sets. This ensures
that the smaller training sets are subsets of the larger sets. The validation set contains 1,000 instances
that are generated separately.

Portfolio optimization formulation and instance generation. The portfolio optimization prob-
lems are formulated as below.

1 1
min —x' Dr+ —y'y—p'x (F.1)
zy 2 2
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st. y=Fux, 1Tz=1, 2>0

Here x € R® and y € R! are the optimization variables, D € R**® is a diagonal matrix with
non-negative diagonal elements, F' € R'*# is the factor modeling matrix. We generate portfolio
optimization instances following the scheme below.

* We set s = 50 and ¢t = 5, resulting in LCQP instances with m = 6 constraints and n = 55
variables.

* The diagonal elements of D are independently sampled from uniform distribution: D;; ~

U(0,+/t). D is then used to form the matrix ) = (D It) .

* The coefficients y in the objective function: p; ~ N(0, 1).

* The non-zero elements in the factor modeling matrix F: F;; ~ N(0,1). The coefficient
matrix F' contains 25 non-zero elements. The positions are sampled randomly.

SVM optimization formulation and instance generation. The support vector machine optimiza-
tion problems are formulated as below.

1
min §xTﬂc +A17¢ (F2)

x,t

s.t. t>diag(y)Dx+1, t>0

Here x € R® and t € R? are the optimization variables, D € R!** is the data matrix, y € R? is the
binary label vector, and ) is a hyperparameter which we set to 1/2. We generate SVM optimization
instances following the scheme below.

e Weset s =5andt = 50.

* The non-zero elements in the data matrix D: D;; ~ N(—0.1,0.1) for i < t/2; D;; ~
N(0.1,0.1) otherwise. The coefficient matrix D contains 100 non-zero elements. The
positions are sampled randomly.

* The binary label vector y: y; = —1 fori < ¢/2; y; = 1 otherwise.

F.2 DETAILS OF GNN IMPLEMENTATION

We implement GNN with Python 3.9 and TensorFlow 2.16.1 (Abadi et al., 2016). Our imple-
mentation is built by extending the GNN implementation in (Gasse et al. (2019) The embedding
mappings fy, foV are parameterized as linear layers followed by a non-linear activation function;
(Y, 1,9V gV, g2 }E | and the output mappings 71, o are parameterized as 2-layer multi-layer
perceptrons (MLPs) with respective learnable parameters. The parameters of all linear layers are
initialized as orthogonal matrices. We use ReLU as the activation function.

In our experiments, we train GNNs with embedding sizes of 64, 128, 256, 512 and 1,024. We show
in Table 2| the number of learnable parameters in the resulting network with each embedding size.

Table 2: Number of learnable parameters in GNN with different embedding sizes.

Embedding size Number of parameters

64 112,320
128 445,824
256 1,776,384
512 7,091,712
1,024 30,436,352

'Seehttps://github.com/ds4dm/learn2branch,
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Figure 6: Training and validation errors when training GNNs with an embedding size of 512 on
different numbers of LCQP problem instances to fit ®.p; and Py

F.3 DETAILS OF GNN TRAINING

We adopt Adam (Kingma & Bal, 2014)) to optimize the learnable parameters during training. We use
an initial learning rate of 5 x 10~% for all networks. We set the batch size to 2,500 or the size of
the training set, whichever is the smaller. In each mini-batch, we combine the graphs into one large
graph to accelerate training. All experiments are conducted on a single NVIDIA Tesla V100 GPU.

We use mean squared relative error as the loss function, which is defined as

[ Fw (G) — 2(G)|I3
max([|®(G)[|,1)* |

where Fyy is the GNN, G is a mini-batch sampled from the whole training set, G is a problem
instance in the mini-batch G, and ®(G) is the label of instance G. During training, we monitor the
average training error in each epoch. If the training loss does not improve for 50 epochs, we will half
the learning rate and reset the parameters of the GNN to those that yield the lowest training error so
far. We observe that this helps to stabilize the training process significantly and can also improve
the final loss achieved.

Lg(Fw) = Egng

(F3)

F.4 GENERALIZATION RESULTS ON LCQP

Figure[6]shows the variations of training and validation errors when training GNNs of an embedding
size of 512 on different numbers of LCQP problem instances. We observe similar trends for both
prediction tasks, that the generalization gap decreases and the generalization ability improves as
more instances are used for training. This result implies the potential of applying trained GNNs to
solve QP problems that are unseen during training but are sampled from the same distribution, as
long as enough training instances are accessible and the instance distribution is specific enough (in
contrast to the generic instances used in experiments of Figure 2]and[3).

F.5 NUMERICAL RESULTS ON MAROS-MESZAROS TEST SET

To show the fitting ability of GNNs on more realistic QP problems, we train GNNs on the Maros
and Meszaros Convex Quadratic Programming Test Problem Set (Maros & Mészaros, [1999), which
contains 138 quadratic programs that are designed to be challenging. We apply equilibrium scal-
ing to each problem and also scale the objective function so that the () matrix will not contain too
large elements. We collect the optimal solutions and objective values of the test instances using an
open-sourced QP solver called PIQP |Schwan et al.| (2023)), which is benchmarked to achieve best
performances on the Maros Meszaros test set among many other solvers (Caron et al., [2024). PIQP
solves 136 problem instances successfully, which are then used to train four GNNs with with em-
bedding size of 64, 128,256, 512. The training protocol follows the experiments using synthesized
QP instances in Section 3]

The results are shown in Figure[7] We observe that while the broad range of numbers of instances
in the Maros Meszaros test set caused numerical difficulties for training, GNNs can still be trained
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Figure 7: Training errors of fitting ®.p; and @y, on the Maros Meszaros test set. We trained four
GNNs with embedding size of 64, 128, 256 and 512, respectively.

to fit the objectives and solutions to some extent. And we can observe similar tendency as in the
synthesized experiments that the expressive power increases as the model capacity enlarges when
we increase the embedding size.
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