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ABSTRACT

Quadratic programming (QP) is the most widely applied category of problems
in nonlinear programming. Many applications require real-time/fast solutions,
though not necessarily with high precision. Existing methods either involve ma-
trix decomposition or use the preconditioned conjugate gradient method. For rela-
tively large instances, these methods cannot achieve the real-time requirement un-
less there is an effective preconditioner. Recently, graph neural networks (GNNs)
opened new possibilities for QP. Some promising empirical studies of applying
GNNs for QP tasks show that GNNs can capture key characteristics of an opti-
mization instance and provide adaptive guidance accordingly to crucial configu-
rations during the solving process, or directly provide an approximate solution.
Despite notable empirical observations, theoretical foundations are still lacking.
In this work, we investigate the expressive or representative power of GNNs, a cru-
cial aspect of neural network theory, specifically in the context of QP tasks, with
both continuous and mixed-integer settings. We prove the existence of message-
passing GNNs that can reliably represent key properties of quadratic programs,
including feasibility, optimal objective value, and optimal solution. Our theory is
validated by numerical results.

1 INTRODUCTION

Quadratic programming (QP) is an important type of optimization problem, with extensive appli-
cations across domains such as graph matching, portfolio optimization, and dynamic control (Vogel-
stein et al., 2015; Markowitz, 1952; Rockafellar, 1987). The goal of QP is to minimize a quadratic
objective function while satisfying specified constraints. These constraints can vary, leading to dif-
ferent subcategories of QP. When all the constraints are linear, we call a QP problem a linearly
constrained quadratic program (LCQP). When they also involve quadratic inequalities, we call the
problem a quadratically constrained quadratic program (QCQP). Furthermore, if the problem re-
quires some variables to be integers, we call it mixed-integer QP. In this study, we focus on LCQP
and its mixed-integer variant MI-LCQP.

In many real-world applications, finding solutions quickly is crucial, even if they are not perfectly
precise. For example, in transportation systems, such as ride-hailing platforms like Uber or Lyft,
matching drivers with passengers requires quick decision-making to minimize waiting times, even
if the optimal solution is not attained. Similarly, in financial trading, algorithms must swiftly adjust
investment portfolios in response to market changes, even if it is not the most optimal move.

Unfortunately, existing methods for solving QP often rely on some computationally expensive tech-
niques such as matrix decomposition and the preconditioned conjugate gradient method. For in-
stance, matrix decomposition techniques like LU decomposition typically require O(n3) opera-
tions for a matrix with size n × n (Golub & Van Loan, 2013), although more advanced algorithms
can achieve lower complexities. Similarly, the preconditioned conjugate gradient method involves
O(n2) operations per iteration, and a high condition number of the matrix can lead to slow conver-
gence or numerical instability (Shewchuk et al., 1994). These considerations underscore the clear
need for novel techniques to address the demands of real-time applications.

Machine learning (ML) brings new chances to QP. Recent research indicates that deep neural
networks (DNNs) can significantly improve the efficiency of the QP solving process. Based on the
role of DNNs in the solving process, these studies can be broadly categorized into two classes:
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• Type I: DNNs are used to accelerate an existing QP solver by generating adaptive configu-
rations tailored to the specific instance and context, speeding up the solving process (Bonami
et al., 2018; 2022; Ichnowski et al., 2021; Getzelman & Balaprakash, 2021; Jung et al., 2022;
King et al., 2024). The success of such an approach relies on DNNs’ capacity to capture in-
depth features of QP instances and provide customized guidance to the solver.

• Type II: DNNs replace or warm-start a QP solver. Here, DNNs take in a QP instance and
directly output an approximate solution. This approximate solution can be used directly or as
an initial solution for further refinement by a QP solver (Nowak et al., 2017; Chen et al., 2018;
Karg & Lucia, 2020; Wang et al., 2020a;b; 2021; Qu et al., 2021; Gao et al., 2021; Bertsimas
& Stellato, 2022; Liu et al., 2022a; Sambharya et al., 2023; Pei et al., 2023; Tan et al., 2024).

min 1
2 [x1 x2 x3]

[
1 0.1
0.1 1

1

][
x1

x2

x3

]
+ [1 2 3]

[
x1

x2

x3

]

s.t.
2x1 + x2 ≤ 5

x2 + 3x3 ≥ 0
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Figure 1: An illustrative example of
LCQP and its graph representation.

Among the various types of DNNs, this paper focuses
on graph neural networks (GNNs) (Scarselli et al.,
2008), an architecture designed for graphs and widely ap-
plied across various domains. By conceptualizing QPs
as graphs (Figure 1), GNNs can efficiently handle these
QP tasks (Nowak et al., 2017; Wang et al., 2020b; 2021;
Qu et al., 2021; Gao et al., 2021; Tan et al., 2024; Jung
et al., 2022). For instance, (Wang et al., 2021) demon-
strates using GNNs to solve Lawler’s QAP (Lawler,
1963) with up to 1502 variables, while (Wang et al., 2019;
Yu et al., 2020) apply GNNs to Koopman-Beckmann’s
QAP (Loiola et al., 2007) with 2562 variables, all employ-
ing 3-layer GNNs with hidden dimensions of 512, 1024,
or 2048. They exploits key strengths of GNNs: adapt-
ability to varying graph sizes, allowing the same model
applied to various QPs, and permutation invariance, en-
suring consistent outputs regardless of node order.
However, despite notable empirical results, a systematic understanding of GNN for QP is still lack-
ing. To thoroughly understand its pros and cons, some critical questions must be addressed:

• (Existence). Are there GNNs that can either capture the essential characteristics of QPs or
provide approximate solutions? This question is named the expressive power of GNNs.

• (Trainability). If such GNNs exist, can we find them? The process of finding such GNNs is
named training, which involves gathering data, creating a method to measure success or failure
(a loss function), and then refining the GNN to reduce the loss function.

• (Generalization). Can a trained GNN perform effectively on QP instances it has not previously
encountered? This concerns the generalization ability of GNNs.

This paper primarily addresses the first question about expressive power. For Type I applications,
we investigate whether GNNs can accurately map a QP to its crucial features, focusing on feasibility
and the optimal objective value. For Type II, we examine whether GNNs can map a QP to one of its
optimal solutions. Formally, the question motivating this paper is:

Are there GNNs that can accurately predict the feasibility,
optimal objective value, and an optimal solution of a QP?

(1.1)

The literature has explored the expressive capabilities of GNNs on general graph tasks (Xu et al.,
2019; Azizian & Lelarge, 2021; Geerts & Reutter, 2022; Zhang et al., 2023; Li & Leskovec, 2022;
Sato, 2020) and their ability to approximate continuous functions on graphs (Azizian & Lelarge,
2021; Geerts & Reutter, 2022). However, significant gaps remain in understanding how these results
relate to QP, as the connections between QP features (such as feasibility and optimal objective value)
and graph properties have not been established. The most relevant works Chen et al. (2023a;b)
investigate the representation power of GNNs for (mixed-integer) linear programs, but their analysis
highly depends on the linear structure and does not cover nonlinear programs like QP.
Contributions. Overall, as several studies have empirically shown that incorporating a GNN can
greatly improve the performance of a QP solver on specific datasets — either via GNN-generated
real-time warm starts or GNN-suggested adaptive configurations — our primary aim is to theoreti-
cally investigate the expressive power of GNNs in these tasks and to determine if there is room for
improvement or any considerations to be aware of. Specifically, contributions of this paper include:

• (GNN for LCQP). We provide an affirmative answer to question (1.1), establishing a theoretical
foundation for using GNNs for LCQP, across both Type I and II applications.
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• (GNN for MI-LCQP). In the case of MI-LCQP, our findings generally suggest a negative an-
swer to question (1.1). However, we identify specific, precisely defined subclasses of MI-LCQP
where GNNs can accurately predict feasibility, boundedness, and an optimal solution.

• (Experimental Validation). We conduct experiments that directly validate the above results.

2 PRELIMINARIES

This section introduces foundational concepts and preliminary definitions. We focus on linearly
constrained quadratic programming (LCQP), which is formulated as follows:

min
x∈Rn

1

2
x⊤Qx+ c⊤x, s.t. Ax ◦ b, l ≤ x ≤ u, (2.1)

where Q ∈ Rn×n, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n, and
◦ ∈ {≤,=,≥}m. In this paper, we always assume that Q is symmetric.
Basic concepts of LCQPs. An x satisfying all constraints of (2.1) is named a feasible solution. The
set of all feasible solutions, defined as X =: {x ∈ Rn : Ax ◦ b, l ≤ x ≤ u}, is referred to as the
feasible set. The LCQP is considered feasible if this set is non-empty; otherwise, it is infeasible. The
value of 1

2x
⊤Qx+ c⊤x is named the objective (function) value. Its infimum across the feasible set

is termed the optimal objective value. If this infimum is −∞, suggesting the objective value could
indefinitely decrease, the LCQP is deemed unbounded. Conversely, when the optimal objective
value is finite, the corresponding x is identified as an optimal solution.
Graph representation of LCQPs. We present a graph structure, termed the LCQP-graph GLCQP =
(V,W,A,Q,HV , HW ), that encodes all the elements of a LCQP (2.1). Particularly,

• The graph contains two distinct types of nodes. Nodes in V = {1, 2, . . . ,m}, labeled as i,
represent the i-th constraint and are called constraint nodes. Nodes in W = {1, 2, . . . , n},
labeled as j, represent the j-th variable and are known as variable nodes. The union set V ∪W
includes all the vertices of the entire LCQP-graph GLCQP.

• The graph comprises two distinct edge types. An edge connects i ∈ V to j ∈ W if Aij is
nonzero, with Aij serving as the edge weight. Similarly, the edge between nodes j, j′ ∈ W
exists if Qjj′ ̸= 0, with Qjj′ as the edge weight. Self loops (j = j′) are permitted.

• Attributes/features vi = (bi, ◦i) are attached to the i-th constraint node for i ∈ V . The collec-
tion of all such attributes is denoted as HV = (v1, v2, . . . , vm).

• Attributes/features wj = (cj , ℓj , uj) are attached to the j-th variable node for j ∈ W . The
collection of all such attributes is denoted as HW = (w1, w2, . . . , wn).

Such a representation is illustrated by an example shown in Figure 1 and it can be regarded as
fundamental since it is minimal in the sense that every entry in (A, b, c,Q, l, u, ◦) is used exactly
once. To the best of our knowledge, this particular representation is only detailed in Jung et al.
(2022), yet it forms the foundation or core module for numerous related studies. For instance,
removing nodes in V and their associated edges reduces the graph into the assignment graph used
in graph matching problems (Nowak et al., 2017; Wang et al., 2020b; 2021; Qu et al., 2021; Gao
et al., 2021; Tan et al., 2024). In these cases, the linear constraints Ax ◦ b are typically bypassed by
applying the Sinkhorn algorithm to ensure that x meets these constraints. Another scenario involves
LP and MILP: removing edges associated with Q simplifies the graph to a bipartite structure, which
reduces the LCQP to an LP (Chen et al., 2023a; Fan et al., 2023; Liu et al., 2024; Qian et al., 2024).
Further, by incorporating an additional node feature, an approach detailed in Section 4, this bipartite
graph is also capable of representing MILP (Gasse et al., 2019; Chen et al., 2023b; Nair et al., 2020;
Gupta et al., 2020; Shen et al., 2021; Gupta et al., 2022; Khalil et al., 2022; Paulus et al., 2022;
Scavuzzo et al., 2022; Liu et al., 2022b; Huang et al., 2023).
GNNs for solving LCQPs. Building on the established concepts, we present message-passing
graph neural networks (hereafter referred to simply as GNNs) tailored for LCQPs using LCQP-
graphs. These GNNs take in an LCQP-graph GLCQP (including all the node attributes and edge
weights) as input and update node attributes sequentially across layers via a message-passing mech-
anism. Initially, node attributes s0i , t

0
j are computed using embedding mappings fV

0 , fW
0 :

• s0i = fV
0 (vi) for i ∈ V , and t0j = fW

0 (wj) for j ∈ W .
The architecture includes L standard message-passing layers where each layer (where 1 ≤ l ≤ L)
updates node attributes by locally aggregating neighbor information:

• sli = fV
l

(
sl−1
i ,

∑
j∈W Aijg

W
l (tl−1

j )
)

for i ∈ V , and

• tlj = fW
l

(
tl−1
j ,

∑
i∈V Aijg

V
l (sl−1

i ),
∑

j′∈W Qjj′g
Q
l (tl−1

j′ )
)

for j ∈ W .
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Finally, there are two types of output layers. For applications where the GNN maps LCQP-graphs
to a singular real value, such as evaluating properties like feasibility of the LCQP, a graph-level
output layer is employed that computes a single real number encompassing the entire graph:

• y = r1
(∑

i∈V sLi ,
∑

j∈W tLj
)
∈ R.

Alternatively, if the GNN is required to map the LCQP-graph to a vector y ∈ Rn, assigning a real
number to each variable node as its output (as is typical in applications where GNNs are used to
predict solutions), then a node-level output should be utilized. This output layer computes the
value for the j-th output as follows:

• yj = r2
(∑

i∈V sLi ,
∑

j∈W tLj , t
L
j

)
.

In our theoretical analysis, we assume all the mappings fV
l , fW

l (0 ≤ l ≤ L), gVl , fW
l , gQl (1 ≤

l ≤ L), and r1, r2 to be continuous. In practice, these continuous mappings are learned from data.
We aim to find mappings that enable all the LCQP-graphs GLCQP from a dataset to be mapped accu-
rately to their desired outputs y. To achieve this, we parameterize these mappings using multilayer
perceptrons (MLPs) and optimize them within the parametric space.
Definition 2.1 (Space of LCQP-graphs and space of GNNs). The set of all LCQP-graphs, denoted
as Gm,n

LCQP
1, comprises graphs with m constraints and n variables, where the matrix Q is symmetric.

Definition 2.2 (Spaces of GNNs). The collection of all message-passing GNNs, denoted as FLCQP

for graph-level outputs (or FW
LCQP for node-level outputs), consists of all GNNs constructed using

continuous mappings fV
l , fW

l (0 ≤ l ≤ L), gVl , fW
l , gQl (1 ≤ l ≤ L), and r1 (or r2).

Note that the input graph size for GNNs within FLCQP and FW
LCQP is unspecified, as the functions

fV
l , fW

l (0 ≤ l ≤ L), gVl , fW
l , gQl (1 ≤ l ≤ L), and r1 (or r2) are independent of m,n. This

independence highlights a key advantage of GNNs discussed in Section 1: their adaptability to
various graph sizes, allowing the same model to be consistently applied across different QPs.
Definition 2.3 (Target mappings). We define three mappings for LCQPs.

• Feasibility mapping: Φfeas(GLCQP) = 1 if the LCQP problem associated to GLCQP is feasible
and Φfeas(GLCQP) = 0 if it is infeasible.

• Optimal objective value mapping: Φobj(GLCQP) ∈ R ∪ {±∞} computes the optimal objective
value of the LCQP problem associated to GLCQP. Φobj(GLCQP) = +∞ means the problem is
infeasible and Φobj(GLCQP) = −∞ means the problem is unbounded.

• Optimal solution mapping: For a feasible and bounded LCQP problem (i.e., Φobj(GLCQP) ∈ R),
an optimal solution exists (Eaves, 1971) though it might not be unique. However, the optimal
solution with the smallest ℓ2-norm must be unique if Q ⪰ 0 and we define it as Φsol(GLCQP).

Given the definitions above, we can formally pose the question in (1.1) as follows: Is there any
F ∈ FLCQP that well approximates Φfeas or Φobj? Similarly, is there any function FW ∈ FW

LCQP that
well approximates Φsol(GLCQP)?

3 UNVERSAL APPROXIMATION OF GNNS FOR LCQPS

This section presents our main theoretical results for the expressive power of GNNs for representing
properties of LCQPs. In particular, we show that for any LCQP data distribution, there always be a
GNN that can predict LCQP properties, in the sense of universally approximating target mappings
in Definition 2.3, within given error tolerance. Although it is known in the previous literature that
there exists some continuous function that cannot be approximated by GNNs with arbitrarily small
error, see e.g., Xu et al. (2019); Azizian & Lelarge (2021); Geerts & Reutter (2022), our results in
this section indicate that approximating the target mappings of LCQPs (defined in Definition 2.3) do
not suffer from this fundamental limitation. Such results answer the question (1.1) positively.
Assumption 3.1. P is a Borel regular probability measure on Gm,n

LCQP.
The assumption of Borel regularity is generally satisfied for most data distributions in practice,
including discrete distributions, gaussian distributions, etc. With this assumption, we have:
Theorem 3.2. For any probability measure P satisfying Assumption 3.1 and any ϵ > 0, there exists
F ∈ FLCQP such that IF (GLCQP)>

1
2

acts as a classifier for LCQP-feasibility, with an error of up to ϵ:

1The space Gm,n
LCQP is equipped with the subspace topology induced from the product space{

(A, b, c,Q, l, u, ◦) : A ∈ Rm×n, b ∈ Rm, c ∈ Rn, Q ∈ Rn×n, l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n, ◦ ∈
{≤,=,≥}m

}
, where all Euclidean spaces have standard Eudlidean topologies, discrete spaces {−∞}, {+∞},

and {≤,=,≥} have the discrete topologies, and all unions are disjoint unions.
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P
[
IF (GLCQP)>

1
2
̸= Φfeas(GLCQP)

]
< ϵ,

where I· is the indicator function: IF (GLCQP)>
1
2
= 1 if F (GLCQP) >

1
2 ; IF (GLCQP)>

1
2
= 0 otherwise.

This result suggests that a GNN is a universal classifier for LCQP feasibility: for any data distri-
bution of LCQPs satisfying Assumption 3.1, there exists a GNN that can classify LCQP feasibility
with arbitrarily high accuracy. This is a natural extension of the feasibility classification for linear
programs (Chen et al., 2023a), as feasibility is solely determined by the constraints, independent of
the objective function, and all LCQP constraints are linear.

However, using GNNs to predict the optimal objective value or an optimal solution is highly non-
trivial due to the nonlinear term x⊤Qx. Fortunately, when restricting LCQPs to convex cases, GNNs
can universally represent the optimal objective value and an optimal solution for these LCQPs.
Theorem 3.3. Let P be a probability measure on Gm,n

LCQP satisfying Assumption 3.1 with P[Q ⪰ 0] =
1, i.e., Q is positive semidefinite almost surely. For any ϵ > 0, there exists F1 ∈ FLCQP such that

P
[
IF1(GLCQP)>

1
2
̸= IΦobj(GLCQP)∈R

]
< ϵ. (3.1)

Addtitionally, if P[Φobj(GLCQP) ∈ R] = 1, then for any ϵ, δ > 0, there exists F2 ∈ FLCQP such that
P [|F2(GLCQP)− Φobj(GLCQP)| > δ] < ϵ. (3.2)

This theorem indicates that GNNs can approximate the optimal objective value mapping Φobj very
well in two senses: (1) GNN can predict whether the optimal objective value is a real number or
±∞, i.e., whether the LCQP problem is feasible and bounded or not. (2) For a data distribution over
feasible and bounded LCQP problems, GNN can approximate the real-valued mapping Φobj.

Our last theorem for LCQP is that GNN can approximate the optimal solution map Φsol that returns
the optimal solution with the smallest ℓ2-norm of feasible and bounded LCQP problems.
Theorem 3.4. Let P be a probability measure on Gm,n

LCQP satisfying Assumption 3.1 and P[Q ⪰ 0] =

P[Φobj(GLCQP) ∈ R] = 1. For any ϵ, δ > 0, there exists FW ∈ FW
LCQP such that

P [∥FW (GLCQP)− Φsol(GLCQP)∥ > δ] < ϵ.

The proofs of Theorems 3.3 and 3.4 will be presented in Appendix A. We briefly describe the main
idea here. The Stone-Weierstrass theorem and its variants are a powerful tool for proving universal-
approximation-type results. Recall that the classic version of the Stone-Weierstrass theorem states
that under some assumptions, a function class F can uniformly approximate every continuous func-
tion if and only if it separates points, i.e., for any x ̸= x′, one has F (x) ̸= F (x′) for some F ∈ F .
Otherwise, we say x and x′ are indistinguishable by any F ∈ F . Therefore, the key component in
the proof is to establish some separation results in the sense that two LCQP-graphs with different
optimal objective values (or different optimal solutions with the smallest ℓ2-norm) must be distin-
guished by some GNN in the class FLCQP (or FW

LCQP). It is first established in Xu et al. (2019) that
the separation power2 of GNNs is equivalent to the Weisfeiler-Lehman (WL) test (Weisfeiler & Le-
man, 1968), a classical algorithm for the graph isomorphism problem, which is further developed in
many recently works, see e.g. Azizian & Lelarge (2021); Geerts & Reutter (2022). We show that,
any two LCQP-graphs that are indistinguishable by the WL test, or equivalently by all GNNs, even
if they are not isomorphic, some of their structures must be identical, which guarantees that they
must have identical optimal objective value and identical optimal solution with the smallest ℓ2-norm
(see Definition A.1, Theorem A.2, and Theorem A.3).

The universal approximation results of GNNs for LCQPs can be extended to quadratically con-
strained quadratic programs (QCQPs) that have additional quadratic terms in the constraints com-
pared to LCQPs. Specifically, we modify the graph representation with additional hyperedges to
represent the quadratic terms in the constraints, and modify the GNN architecture that updates both
vertex features and edge features layer by layer. The details are deferred to Appendix E.

4 THE CAPACITY OF GNNS FOR MI-LCQPS

In this section, we discuss the expressive power of GNNs for mixed-integer linearly constrained
quadratic programs (MI-LCQPs), for which the general form is almost the same as (2.1) except

2Given two sets of functions, F and F ′, both defined over the same domain X , if F separating points x and
x′ implies that F ′ also separates x and x′ for any x, x′ ∈ X , then the separation power of F ′ is considered to
be stronger than or at least equal to that of F .

5
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that some entries of x are constrained to be integers: xj ∈ Z, ∀ j ∈ I , where I ⊂ {1, 2, . . . , n}
collects the indices of all integer variables. Before proceeding, we extend LCQP-graphs and the
corresponding GNNs and target mappings to the MI-LCQP setting.

MI-LCQP-graph is modified from the LCQP-graph (Section 2 and Figure 1) by adding a new
entry to the feature of each variable node j ∈ W . The new feature is wj = (cj , lj , uj , δI(j)) where
δI(j) = 1 if j ∈ I and δI(j) = 0 otherwise. We use Gm,n

MI-LCQP to denote the collection of all
MI-LCQP-graphs with m constraints, n variables, and symmetric and positive semi-definite Q.

GNNs for MI-LCQP-graphs are constructed following the same mechanism as for LCQP-graphs,
with the difference that the message-passing layer is modified as

• sli = fV
l

(
sl−1
i ,

∑
j∈NW

i
gWl (tl−1

j , Aij)
)

for i ∈ V , and

• tlj = fW
l

(
tl−1
j ,

∑
i∈NV

j
gVl (sl−1

i , Aij),
∑

j′∈NW
j

gQl (tl−1
j′ , Qjj′)

)
for j ∈ W ,

where NW
i = {j ∈ W : Aij ̸= 0}, N V

j = {j ∈ V : Aij ̸= 0}, and NW
j = {j′ ∈ W : Qjj′ ̸= 0}

are the sets of neighbors. We use FMI-LCQP and FW
MI-LCQP to denote the GNN classes for MI-LCQP-

graphs with graph-level and node-level output, respectively.

Target mappings for MI-LCQPs considered in this section are also similar to those in Definition 2.3.
In particular, the feasibility mapping Φfeas and the optimal objective value mapping Φobj are defined
in the same way as in Definition 2.3, while the optimal solution mapping Φsol can only be defined
on a subset of the class of feasible and bounded MI-LCQPs, which will be discussed in Appendix C.

4.1 GNNS CANNOT UNIVERSALLY REPRESENT MI-LCQPS

In this subsection, we answer the question (1.1) for MI-LCQP. When integer variables are intro-
duced, the situation changes. Particularly, we present some counter-examples illustrating the funda-
mental limitation of GNNs for representing properties of MI-LCQPs.
Proposition 4.1. There exist two MI-LCQP problems, with one being feasible and the other being
infeasible, such that their graphs are indistinguishable by any GNN in FMI-CLQP.
Proposition 4.2. There exist two feasible MI-LCQP problems, with different optimal objective val-
ues, such that their graphs are indistinguishable by any GNN in FMI-CLQP.
Proposition 4.3. There exist two feasible MI-LCQP problems with the same optimal objectives but
disjoint optimal solution sets, such that their graphs are indistinguishable by any GNN in FW

MI-CLQP.
Propositions 4.1, 4.2, and 4.3 indicate that for some MI-LCQP data distribution, it is impossible to
train a GNN to predict MI-LCQP properties, regardless of the size or the complexity of the GNN. Par-
ticularly, one can choose the uniform distribution over pairs of instances satisfying Propositions 4.1,
4.2, and 4.3: any GNN making good approximation on one instance must fail on the other.
The detailed proofs of all three propositions are provided in Appendix B. Here we present a pair of
MI-LCQP instances that prove Proposition 4.3. This pair is the most interesting among those related
to Propositions 4.1, 4.2, and 4.3. Consider the following two MI-LCQPs:

min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x1 = 0,

x3 − x4 = 0, x4 − x5 = 0,

x5 − x6 = 0, x6 − x7 = 0, x7 − x3 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3, xj ∈ Z, ∀ j ∈ {1, 2, . . . , 7}.

v1
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v4
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v7

v8

w1
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w6

w7

min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x3 = 0, x3 − x1 = 0,

x4 − x5 = 0, x5 − x6 = 0,

x6 − x7 = 0, x7 − x4 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3, xj ∈ Z, ∀ j ∈ {1, 2, . . . , 7}.
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v3
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v6

v7
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w1
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w3

w4
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w6

w7
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Firstly, both MI-LCQPs are feasible and share the same optimal objective value, but their op-
timal solutions differ. In the first instance, the unique feasible (and thus optimal) solution is
(3, 3, 0, 0, 0, 0, 0), while in the second instance, it is (2, 2, 2, 0, 0, 0, 0). In both instances, the op-
timal objective values are identical, as 1⊤x = 6 leads to 1

2x
⊤11⊤x+ 1⊤x = 24.

Secondly, the two instances cannot be distinguished by any GNN in FW
MI-CLQP. Initially, each variable

node wj is assigned the same attribute, wj = (1, 0, 3, 1), which represents an objective coefficient
of cj = 1, lower bound lj = 0, upper bound uj = 3, and an integral indicator δI(j) = 1. These
concepts are detailed in Section 2 and the beginning of Section 4. We refer to these nodes as “red
nodes”. Similarly, the first seven constraint nodes vi (for 1 ≤ i ≤ 7) are assigned the same attribute,
vi = (0,=), which we label as “blue nodes”. The eighth constraint node v8 is unique, with the
attribute v8 = (6,=), and is called the “brown node”. Based solely on node information, the two
graphs are indistinguishable since both have seven red nodes, seven blue nodes, and one brown node.

Even after multiple rounds of message passing (as described in Section 2), the two graphs remain
indistinguishable. To explain, consider any red node wj , which is connected to a blue node with
weight Aij = 1 (solid lines), another blue node with weight Aij = −1 (dashed lines), the brown
node with weight Aij = 1 (green lines), and all seven red nodes with weights Qjj′ = 1 (brown
curves). Thus, the red node’s attribute is updated as follows (an informal but illustrative equation):

tlj = fw
l

(
red node, gVl (blue node)− gVl (blue node) + gVl (brown node), 7gQl (red node)

)
.

After the update, all red nodes tlj(1 ≤ j ≤ 7) in both graphs retain identical attributes and are still
indistinguishable. The same applies to the blue and brown nodes, leading to the conclusion that,
regardless of how many message-passing rounds occur, both graphs will still have seven red nodes,
seven blue nodes, and one brown node. This conclusion holds for any parameterized mappings used
in GNNs (fV

l , fW
l , gVl , gWl , and gQl ), meaning no GNN can differentiate between the two instances.

This illustrates a limitation of GNNs in representing MI-LCQP, which is ignored in the literature.

4.2 GNNS CAN REPRESENT PARTICULAR TYPES OF MI-LCQPS

We have shown a fundamental limitation of GNNs to represent properties of general MI-LCQP
problems. Therefore, a natural question is: Whether we can identify a subset of GMI-LCQP on which
it is possible to train reliable GNNs. To address this, we need to gain a better understanding for
the separation power of GNNs or equivalently the WL test, according to the discussion following
Theorem 3.4. We state in Algorithm 1 the WL test for MI-LCQP-graphs associated to FMI-LCQP or
FW

MI-LCQP, where Cl,V
i and Cl,W

j are understood as the color of i ∈ V and j ∈ W at the l-th iteration.

Algorithm 1 The WL test for MI-LCQP-graphs (Example provided in Appendix D)

Require: A LCQP-graph G = (V,W,A,Q,HV , HW ) and iteration limit L > 0.
1: Initialize with C0,V

i = HASH(vi) and C0,W
j = HASH(wj).

2: for l = 1, 2, · · · , L do
3: Cl,V

i = HASH
(
Cl−1,V

i ,
{{

(Cl−1,W
j , Aij) : j ∈ NW

i

}})
.

4: Cl,W
j = HASH

(
Cl−1,W

j ,
{{

(Cl−1,V
i , Aij) : i ∈ N V

j

}}
,
{{

(Cl−1,W
j′ , Qjj′) : j

′ ∈ NW
j

}})
.

5: end for
6: return The multisets containing all colors

{{
CL,V

i

}}m

i=0
,
{{

CL,W
j

}}n

j=0
.

Initially, each vertex is labeled a color according to its attributes (vi or wj). In the case that the hash
functions introduce no collisions, two vertices are of the same color at the l-th iteration if and only
if at the (l − 1)-th iteration, they have the same color and the same information aggregation from
neighbors in terms of multiset of colors and edge weights. This is a color refinement procedure.
One can have a partition of the vertex set V ∪ W at each iteration based on vertices’ colors: two
vertices are classified in the same class if and only if they are of the same color. Such a partition is
strictly refined in the first O(m+n) iterations and will remain stable or unchanged afterward if no
collision, see e.g. Berkholz et al. (2017).

Intuitively, vertices in the same class of the final stable partition generated by the WL test will always
have identical attributes in message-passing layers for all GNNs in FMI-LCQP or FW

MI-LCQP, and vice
versa, since the color refinement procedure in Algorithm 1 follows the same mechanism as the
message-passing process. Thus, to identify a subset of FMI-LCQP on which GNNs have sufficiently
strong separation power, we propose the following definition generalized from Chen et al. (2024)

7
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for mixed-integer linear programs (MILPs), which basically states that vertices in the same class
generated by the WL test can indeed be treated same in some sense.

Definition 4.4 (MP-tractable MI-LCQP). Let GMI-LCQP ∈ Gm,n
MI-LCQP be a MI-LCQP problem and

let (I,J ) be the final stable partition of V ∪ W generated by WL test without collision, where
I = {I1, I2, . . . , Is} is a partition of V = {1, 2, . . . ,m} and J = {J1, J2, . . . , Jt} is a partition of
W = {1, 2, . . . , n}. We say that GMI-LCQP is message-passing-tractable (MP-tractable) if:

(a) For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t}, Aij is constant in i ∈ Ip, j ∈ Jq .

(b) For any q, q′ ∈ {1, 2, . . . , t}, Qjj′ is constant in j ∈ Jq, j
′ ∈ Jq′ .

We use Gm,n
MP ⊂ Gm,n

MI-LCQP to denote the collection of all MP-tractable MI-LCQP-graphs.

Under the assumption of MP-tractability, we can establish universal approximation results for GNNs
on MI-LCQPs regarding feasibility and optimal objective value. While GNNs cannot universally
represent all MI-LCQPs, they can represent MP-tractable ones.

Assumption 4.5. P is a Borel regular probability measure on Gm,n
MI-LCQP

3.

Theorem 4.6. Let P be a probability measure satisfying Assumption 4.5 and P[GMI-LCQP ∈ Gm,n
MP ] =

1, i.e., the MP-tractability holds almost surely. For any ϵ > 0, there exists F ∈ FMI-LCQP such that

P
[
IF (GMI-LCQP)>

1
2
̸= Φfeas(GMI-LCQP)

]
< ϵ.

Theorem 4.7. Let P be a probability measure satisfying Assumption 4.5 and P[GMI-LCQP ∈ Gm,n
MP ] =

1, i.e., the MP-tractability holds almost surely. For any ϵ > 0, there exists F1 ∈ FMI-LCQP such that

P
[
IF1(GMI-LCQP)>

1
2
̸= IΦobj(GMI-LCQP)∈R

]
< ϵ.

Additionally, if P[Φobj(GMI-LCQP) ∈ R] = 1, for any ϵ, δ > 0, there exists F2 ∈ FMI-LCQP such that

P [|F2(GMI-LCQP)− Φobj(GMI-LCQP)| > δ] < ϵ.

To extend these results to predicting optimal solutions with GNNs, we introduce two additional
assumptions. First, we assume the MI-LCQPs have an optimal solution. We define Gm,n

sol as the set of
MI-LCQPs for which an optimal solution exists. The assumption is expressed as GMI-LCQP ∈ Gm,n

sol .
The second assumption is that MI-LCQPs are unfoldable, defined below in Definition 4.8, extending
the concept from Chen et al. (2023b) for MILPs.

Definition 4.8 (Unfoldable MI-LCQP). In the same setting as in Definition 4.4, we say that GMI-LCQP
is unfoldable if t = n and |J1| = |J2| = · · · = |Jn| = 1, i.e., all vertices in W have different colors.
We use Gm,n

unfold ⊂ Gm,n
MI-LCQP to denote the collection of all unfoldable MI-LCQP-graphs.

With the two assumptions—that the MI-LCQPs have an optimal solution and are unfoldable—we
can establish a universal approximation result for optimal solution prediction: GNNs can universally
approximate the optimal solutions for this specific class of MI-LCQPs.

Theorem 4.9. Let P be a probability measure on Gm,n
MI-LCQP satisfying Assumption 4.5 and

P[GMI-LCQP ∈ Gm,n
sol ∩ Gm,n

unfold] = 1. For any ϵ, δ > 0, there exists FW ∈ FW
MI-LCQP such that

P [∥FW (GMI-LCQP)− Φsol(GMI-LCQP)∥ > δ] < ϵ.

Theorems 4.6, 4.7, and 4.9 precisely characterize the subsets of MI-LCQPs where GNNs can suc-
ceed and their proofs can be found in Appendix C.

4.3 PRACTICAL CHARACTERIZATION OF “SOLVABLE” MI-LCQPS

To better illustrate the practical implications of Theorems 4.6, 4.7, and 4.9, we make more discussion
of MP-tractability and unfoldability in this subsection.

MP-tractability vs unfoldability. While all unfoldable MI-LCQPs must be MP-tractable (strictly
proved in the appendix), not all MP-tractable problems are necessarily unfoldable. This difference
can be clearly illustrated with an example that is MP-tractable but not unfoldable:

min
1

2
x2
2+x1+x2+x3, s.t. x1+x3 ≤ 1, x1−x2+x3 ≤ 1, 0 ≤ x1, x2, x3 ≤ 1, x1, x2, x3 ∈ Z.

The related discussions, proofs, and this example are further detailed in Appendix D.

3The topology of Gm,n
MI-LCQP is defined in the same way as Gm,n

LCQP.
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(d) Fit Φsol for MI-LCQP

Figure 2: Relative errors when training GNNs to fit Φobj and Φsol for LCQP (2a-2b) and MI-LCQP
(2c-2d). GNNs are trained on 100 randomly generated problem instances.

Numerical verification of MP-tractability and unfoldability. In practice, both MP-tractability
and unfoldability can be efficiently verified. In particular, one can apply the WL test, which requires
at most O(m+n) iterations. The complexity of each iteration is bounded by the number of edges in
the graph Shervashidze et al. (2011), which, in our context, is the number of nonzeros in matrices A
and Q: nnz(A)+nnz(Q). Therefore, the overall complexity of Algorithm 1 is O((m+n)·(nnz(A)+
nnz(Q))). After running Algorithm 1, MP-tractability can be directly verified using Definition 4.4,
and unfoldability can be directly verified using Definition 4.8.
Frequency of MP-tractability and unfoldability. In practice, the frequency of MP-tractable and
unfoldable instances largely depends on the dataset. In the earlier example, two of three variables,
x1 and x3, display symmetry — they are labeled with the same color by WL test and swapping them
does not alter the problem. Generally, unfoldable problems lack symmetry and MP-tractability al-
lows for some degree of symmetry. Another example in Section 4.1 admits strong symmetry across
all variables, making it neither MP-tractable nor unfoldable. Thus, the frequency of MP-tractability
and unfoldability relates to the level of symmetry in the data. When there is symmetry in MI-LCQP,
it becomes foldable; and higher symmetry increases the risk of being MP-intractable. Fortunately,
unfoldable and MP-tractable instances make up the majority of the MI-LCQP set (shown in Ap-
pendix D). The dataset used in our experiments, which includes synthetic MI-LCQPs, portfolio
problems, and SVMs, consists entirely of unfoldable and MP-tractable instances. However, it’s im-
portant to note that in some challenging, artificially created datasets like MIPLIB 2017 Gleixner
et al. (2021), about 1/4 of the examples exhibit significant symmetry in half of the variables.
How to handle bad instances? Two potential approaches to deal with symmetry. (I) Adding
features: Introducing additional features can differentiate nodes in symmetric graphs. For example,
adding a random feature to nodes with identical attributes ensures they are no longer symmetric
Sato et al. (2021). (II) Using higher-order GNNs: These models can distinguish nodes that standard
message-passing GNNs cannot, enhancing their expressive power Morris et al. (2019).

5 NUMERICAL EXPERIMENTS

Numerical validation of GNNs’ expressive power. We train GNNs to fit Φobj or Φsol for LCQP
or MI-LCQP instances.4 For both LCQP and MI-LCQP, we randomly generate 100 instances, each
of which contains 10 constraints and 50 variables. The generated MI-LCQPs are all unfoldable and
MP-tractable with probability one. The optimal solutions and corresponding objective function val-
ues are collected using existing solvers. Details on the data generation and training schemes can be
found in Appendix F. We train four GNNs with four different embedding sizes and record their rel-
ative errors averaged on all instances during training.5 The results are reported in Figure 2. We can
see that GNNs can fit Φobj and Φsol well for both LCQP and MI-LCQP. These results validate The-
orems 3.3,3.4,4.7 and 4.9 on a small set of instances. We also observe that a larger embedding size
increases the capacity of a GNN, resulting in not only lower final errors but also faster convergence.

Numerical validation on a larger scale. To further validate the theorems, we expand the number
of problem instances to 500 and 2,500, and conduct training on the four GNNs along with a larger
variant with an embedding size of 1,024. The results are reported in Figure 3. We can observe that
GNN can achieve near-zero fitting errors as long as it has a large enough embedding size and thus
enough capacity for approximation, which directly validate Theorems 3.3,3.4,4.7 and 4.9.

4Since LCQP and MI-LCQP are linearly constrained, predicting feasibility falls to the case of LP and MILP,
which has been numerically investigated in Chen et al. (2023a;b). Hence we omit the feasibility experiments.

5The relative error of a GNN FW on a single problem instance G is defined as ∥FW (G) −
Φ(G)∥2/max(∥Φ(G)∥2, 1), where Φ could be either Φobj or Φsol.
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(c) Fit Φobj for MI-LCQP
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(d) Fit Φsol for MI-LCQP

Figure 3: Empirical results on randomly generated generic LCQP and MI-LCQP problems as for-
mulated in (2.1) and (C.1). The figures illustrate the relative errors achieved during training for
various combinations of embedding sizes and numbers of training samples. We can achieve near
zero errors when the GNN is large enough.
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(c) Fit Φobj for SVM
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Figure 4: Empirical results on randomly generated portfolio optimization and SVM optimization
problems (see Appendix F for formulation). The figures illustrate the best relative errors achieved
during training for various combinations of embedding sizes and numbers of training samples. We
can achieve near-zero errors when the GNN is large enough.

Various types of LCQP. Besides the generic LCQP formulation (2.1), we also extend the numerical
experiments to other types of optimization problems, namely portfolio optimization and support
vector machine (SVM) following Jung et al. (2022). The results of fitting solutions or objective
values on 100/500/2,500 randomly generated problem instances are illustrated in Figure 4. We can
observe similar fitting behaviors as those in the generic LCQP experiments where the expressive
power of GNNs increase as they become larger, evidenced by the fitting errors decreasing to near
zero when the embedding size increases. The formulation of the portfolio and SVM optimization
and how the problem instances are generated are explained in Appendix F.

Generalization. Besides investigating GNNs’ expressive capacity, we also explore their general-
ization ability and observed positive results. However, since the generalization ability is out of the
main topic of this work, we refer the interested readers to Appendix F for details.

Table 1: Average solving times of GNN
and OSQP on 1,000 LCQP instances.

Method Batch
Size

Solving
Time (ms)

OSQP - 2.44

GNN

1 47.56
10 6.13
100 0.79

1,000 0.41

Analysis of GNN computation complexity. GNNs are
superior over QP solvers in terms of running time, espe-
cially when we fully exploit parallel computing with GPU
acceleration. To show this, we measure the average run-
ning time using OSQP (Stellato et al., 2020) and a trained
GNN with different batch sizes over the 1,000 synthetic
LCQP problems generated in the experiment above. We
applied OSQP to solve all instances to a relative error
of 10−3, which is slightly less accurate than the trained
GNN (with an average relative error of 6.31× 10−4). All
running times were measured in milliseconds. The re-
sults are shown in the Table 1. The sufficiently acceler-
ated computation validates GNNs’ capacity as a real-time QP solver or fast warm-start, numerically
supporting the rationality of our theoretical study of GNNs for QPs.

6 CONCLUSION

This paper establishes theoretical foundations for using GNNs to represent the feasibility, optimal
objective value, and optimal solution, of LCQPs and MI-LCQPs. In particular, we prove the exis-
tence of GNNs that can predict those properties of LCQPs universally well and show with explicit
examples that such results are generally not true for MI-LCQPs when integer constraints are intro-
duced. Moreover, we precisely identify subclasses of MI-LCQP problems on which such universal
approximation results are still valid. All our findings are also verified numerically. However, our
universal approximation theorems only show the existence of the GNNs, without discussing the
training, generalization, and the size of GNNs, which are important future directions.
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A PROOFS FOR SECTION 3

In this appendix, we present the proofs for theorems in Section 3. The proofs will based on
Weisfeiler-Lehman (WL) test and its separation power to distinguish LCQP problems with different
properties.

The Weisfeiler-Lehman (WL) test (Weisfeiler & Leman, 1968) is a classical algorithm for the graph
isomorphism problem. In particular, it implements color refinement on vertices by applying a hash
function on the previous vertex color and aggregation of colors from neighbors, and identifies two
graphs as isomorphic if their final color multisets are the same. It is worth noting that WL test may
incorrectly identify two non-isomorphic graphs as isomorphic. We slightly modify the standard WL
test to fit the structure of LCQP-graphs, see Algorithm 2.

We define two equivalence relations as follows. Intuitively, LCQP-graphs in the same equivalence
class will be identified as isomorphic by WL test, though they may be actually non-isomorphic.

Definition A.1. For two LCQP-graphs GLCQP, ĜLCQP ∈ Gm,n
LCQP, let {{CL,V

i }}mi=0, {{C
L,W
j }}nj=0

and {{ĈL,V
i }}mi=0, {{Ĉ

L,W
j }}nj=0 be color multisets output by Algorithm 2 on GLCQP and ĜLCQP.

1. We say GLCQP ∼ ĜLCQP if {{CL,V
i }}mi=0 = {{ĈL,V

i }}mi=0 and {{CL,W
j }}nj=0 =

{{ĈL,W
j }}nj=0 hold for all L ∈ N and all hash functions.
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Algorithm 2 The WL test for LCQP-graphs

Require: A LCQP-graph G = (V,W,A,Q,HV , HW ) and iteration limit L > 0.
1: Initialize with C0,V

i = HASH(vi) and C0,W
j = HASH(wj).

2: for l = 1, 2, · · · , L do
3: Refine the colors

Cl,V
i = HASH

Cl−1,V
i ,

n∑
j=1

AijHASH
(
Cl−1,W

j

) ,

Cl,W
j = HASH

Cl−1,W
j ,

m∑
i=1

AijHASH
(
Cl−1,V

i

)
,

n∑
j′=1

Qjj′HASH
(
Cl−1,W

j′

) .

4: end for
5: return The multisets containing all colors

{{
CL,V

i

}}m

i=0
,
{{

CL,W
j

}}n

j=0
.

2. We say GLCQP
W∼ ĜLCQP if {{CL,V

i }}mi=0 = {{ĈL,V
i }}mi=0 and CL,W

j = ĈL,W
j , ∀ j ∈

{1, 2, . . . , n}, for all L ∈ N and all hash functions.

Our main finding leading to the results in Section 3 is that, for LCQP-graphs in the same equivalence
class, even if they are non-isomorphic, their optimal objective values and optimal solutions must be
the same (up to a permutation perhaps).

Theorem A.2. For any GLCQP, ĜLCQP ∈ Gm,n
LCQP with Q, Q̂ ⪰ 0, if GLCQP ∼ ĜLCQP, then

Φobj(GLCQP) = Φobj(ĜLCQP).

Theorem A.3. For any GLCQP, ĜLCQP ∈ Gm,n
LCQP with Q, Q̂ ⪰ 0 that are feasible and bounded,

if GLCQP ∼ ĜLCQP, then there exists some permutation σW ∈ Sn such that Φsol(GLCQP) =

σW (Φsol(ĜLCQP)). Furthermore, if GLCQP
W∼ ĜLCQP, then Φsol(GLCQP) = Φsol(ĜLCQP).

We need the following lemma to prove Theorem A.2 and Theorem A.3.

Lemma A.4. Suppose that M ∈ Rn×n is a symmetric and positive semidefinite matrix and that
J = {J1, J2, . . . , Jt} is a partition of {1, 2, . . . , n} satisfying that for any q, q′ ∈ {1, 2, . . . , t},∑

j′∈Jq′
Mjj′ is a constant over j ∈ Jq . For any x ∈ Rn, it holds that

1

2
x⊤Mx ≥ 1

2
x̂⊤Mx̂, (A.1)

where x̂ ∈ Rn is defined via x̂j = yq = 1
|Jq|

∑
j′∈Jq

xj′ for j ∈ Jq .

Proof. Fixe x ∈ Rn and consider the problem

min
z∈Rn

1

2
z⊤Mz, s.t.

∑
j∈Jq

zj =
∑
j∈Jq

xj , q = 1, 2, . . . , t, (A.2)

which is a convex program. The Lagrangian is given by

L(z, λ) = 1

2
z⊤Mz −

t∑
q=1

λq

∑
j∈Jq

zj −
∑
j∈Jq

xj

 .

It can be computed that

∂

∂zj
L(z, λ) =

n∑
j′=1

Mjj′zj′ − λq, j ∈ Jq,
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and
∂

∂λq
L(z, λ) =

∑
j∈Jq

xj −
∑
j∈Jq

zj ,

It is clear that
∂

∂λq
L(x̂, λ) =

∑
j∈Jq

xj −
∑
j∈Jq

x̂j = 0,

by the definition of x̂. Furthermore, consider any fixed q ∈ {1, 2, . . . , t} and we have for any j ∈ Jq
that

∂

∂zj
L(x̂, λ) =

t∑
q′=1

yq′
∑

j′∈Jq′

Mjj′ − λq = 0,

if λq =
∑t

q′=1 yq′
∑

j′∈Jq′
Mjj′ that is independent in j ∈ q since

∑
j′∈Jq′

Mjj′ is constant over
j ∈ Jq for any q′ ∈ {1, 2, . . . , t}. Since the problem (A.2) is convex and the first-order optimality
condition is satisfied at x̂, we can conclude that x̂ is a minimizer of (A.2), which implies (A.1).

Proof of Theorem A.2. Let GLCQP and ĜLCQP be the LCQP-graphs associated to (2.1) and

min
x∈Rn

1

2
x⊤Q̂x+ ĉ⊤x, s.t. Âx ◦̂ b̂, l̂ ≤ x ≤ û, (A.3)

Suppose that there are no collisions of hash functions or their linear combinations when applying
the WL test to GLCQP and ĜLCQP and there are no strict color refinements in the L-th iteration.
Since GLCQP ∼ ĜLCQP, after performing some permutation, there exist I = {I1, I2, . . . , Is} and
J = {J1, J2, . . . , Jt} that are partitions of {1, 2, . . . ,m} and {1, 2, . . . , n}, respectively, such that
the followings hold:

• CL,V
i = CL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• ĈL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,W
j = CL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• CL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• ĈL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

Since there are no collisions, we have from the vertex color initialization that

• vi = (bi, ◦i) = v̂i = (b̂i, ◦̂i) and is constant over i ∈ Ip for any p ∈ {1, 2, . . . , s}.

• wj = (cj , lj , uj) = ŵj = (ĉj , l̂j , ûj) and is constant over j ∈ Jq for any q ∈ {1, 2, . . . , t}.

For any p ∈ {1, 2, . . . , s} and any i, i′ ∈ Ip, one has

CL,V
i = CL,V

i′ =⇒
∑
j∈W

AijHASH
(
CL−1,W

j

)
=

∑
j∈W

Ai′jHASH
(
CL−1,W

j

)
=⇒

∑
j∈W

AijHASH
(
CL,W

j

)
=

∑
j∈W

Ai′jHASH
(
CL,W

j

)
=⇒

∑
j∈Jq

Aij =
∑
j∈Jq

Ai′j , ∀ q ∈ {1, 2, . . . , t}.

One can obtain similar conclusions from CL,V
i = ĈL,V

i′ and ĈL,V
i = ĈL,V

i′ , and hence conclude
that
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• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

j∈Jq
Aij =

∑
j∈Jq

Âij and is constant
over i ∈ Ip.

Similarly, the followings also hold:

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

i∈Ip
Aij =

∑
i∈Ip

Âij and is constant
over j ∈ Jq .

• For any q, q′ ∈ {1, 2, . . . , t},
∑

j′∈Jq′
Qjj′ =

∑
j′∈Jq′

Q̂jj′ and is constant over j ∈ Jq .

If GLCQP or (2.1) is infeasible, then Φobj(GLCQP) = +∞ and clearly Φobj(GLCQP) ≥ Φobj(ĜLCQP).
If (2.1) is feasible, let x ∈ Rn be any feasible solution to (2.1) and define x̂ ∈ Rn via x̂j = yq =
1

|Jq|
∑

j′∈Jq
xj′ for j ∈ Jq . By the proofs of Lemma B.2 and Lemma B.3 in Chen et al. (2023a), we

know that x̂ is a feasible solution to (A.3) and c⊤x = ĉ⊤x̂. In addition, we have

1

2
x⊤Qx

(A.1)
≥ 1

2
x̂⊤Qx̂ =

1

2

t∑
q,q′=1

∑
j∈Jq

∑
j′∈Jq′

x̂jQjj′ x̂j′ =
1

2

t∑
q,q′=1

yqyq′
∑

j′∈Jq′

Qjj′

=
1

2

t∑
q,q′=1

yqyq′
∑

j′∈Jq′

Q̂jj′ =
1

2

t∑
q,q′=1

∑
j∈Jq

∑
j′∈Jq′

x̂jQ̂jj′ x̂j′ =
1

2
x̂⊤Q̂x̂,

which then implies that
1

2
x⊤Qx+ c⊤x ≥ 1

2
x̂⊤Q̂x̂+ ĉ⊤x̂,

and hence that Φobj(GLCQP) ≥ Φobj(ĜLCQP). Till now we have proved Φobj(GLCQP) ≥ Φobj(ĜLCQP)

regardless of the feasibility of GLCQP. The reverse direction Φobj(GLCQP) ≤ Φobj(ĜLCQP) is also true
and we can conclude that Φobj(GLCQP) = Φobj(ĜLCQP).

Proof of Theorem A.3. Under the same setting as in the proof of Theorem A.2, the results can be
proved using the same arguments as in the proof of Lemma B.4 and Corollary B.7 in Chen et al.
(2023a). We present the proof here for completeness.

Let x ∈ Rn be the optimal solution to (2.1) with the smallest ℓ2-norm, and let x̂ ∈ Rn be defined as
in the proof of Theorem A.2. By the arguments in the proof of Theorem A.2, x̂ is an optimal solution
to (A.3). In particular, x̂ is also an optimal solution to (2.1) since one can set (Â, b̂, ĉ, Q̂, l̂, û, ◦̂) =
(A, b, c,Q, l, u, ◦). Therefore, by the minimality of ∥x∥2, we have that

∥x∥2 ≤ ∥x̂∥2 =

t∑
q=1

∑
j∈Jq

x̂2
j =

t∑
q=1

|Jq|

 1

|Jq|
∑
j∈Jq

xj

2

≤
t∑

q=1

∑
j∈Jq

x2
j = ∥x∥2,

which implies that xj is a constant in j ∈ Jq and x = x̂. Thus, x is also an optimal solution to (A.3).

Let x′ ∈ Rn be the optimal solution to (A.3) with the smallest ℓ2-norm. Then ∥x′∥ ≤ ∥x̂∥ = ∥x∥
and the reverse direction ∥x∥ ≤ ∥x′∥ is also true, which implies that ∥x∥ = ∥x′∥. Therefore, we
have x = x′ by the uniqueness of the optimal solution with the smallest ℓ2-norm.

Noticing that the above arguments are made after permuting vertices in V and W , we can conclude
that Φsol(GLCQP) = σW (Φsol(ĜLCQP)) for some σW ∈ Sn. Additionally, if GLCQP

W∼ ĜLCQP, then
there is no need to perform the permutation on W and we have Φsol(GLCQP) = Φsol(ĜLCQP).

Corollary A.5. For any GLCQP ∈ Gm,n
LCQP that is feasible and bounded and any j, j′ ∈ {1, 2, . . . , n},

if CL,W
j = CL,W

j′ holds for all L ∈ N+ and all hash functions, then Φsol(GLCQP)j = Φsol(GLCQP)j′ .

Proof. Let ĜLCQP be the LCQP-graph obtained from GLCQP by relabeling j as j′ and relabeling
j′ as j. By Theorem A.3, we have Φsol(GLCQP) = Φsol(ĜLCQP), which implies Φsol(GLCQP)j =

Φsol(ĜLCQP)j = Φsol(GLCQP)j′ .

17
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It is well-known from previous literature that the separation power of GNNs is equivalent to that
of WL test and that GNNs can universally approximate any continuous function whose separation
is not stronger than that of WL test; see e.g. Chen et al. (2023a); Xu et al. (2019); Azizian &
Lelarge (2021); Geerts & Reutter (2022). We have established in Theorem A.2, Theorem A.3,
and Corollary A.5 that the separation power of Φobj and Φsol is upper bounded by the WL test
(Algorithm 2) that shares the same information aggregation mechanism as the GNNs in FLCQP and
FW

LCQP. Therefore, Theorem 3.3 and Theorem 3.4 can be proved using standard arguments in the
previous literature.

Proof of Theorem 3.3. Based on Theorem A.2, Theorem 3.3 can be proved following the same lines
as in the proof of Theorem 3.4 in Chen et al. (2023a), with straightforward modifications to gen-
eralize results for LP-graphs to the LCQP setting. We sketch the proof here for the sake of self-
containedness.

The separation power of GNNs is equivalent to that of the WL test, i.e., for any GLCQP, ĜLCQP ∈
Gm,n

LCQP with Q, Q̂ ⪰ 0,

GLCQP ∼ ĜLCQP ⇐⇒ F (GLCQP) = F (ĜLCQP), ∀ F ∈ FLCQP, (A.4)

which combined with Theorem A.2 leads to that

F (GLCQP) = F (ĜLCQP), ∀ F ∈ FLCQP =⇒ Φobj(GLCQP) = Φobj(ĜLCQP), (A.5)

indicating that the separation power of FLCQP is upper bounded by that of Φobj.

The indicator function IΦobj(·)∈R : Gm,n
LCQP → {0, 1} ⊂ R is measurable, and hence by Lusin’s

theorem, there exists a compact and permutation-invariant subspace X ⊂ Gm,n
LCQP such that

P[Gm,n
LCQP\X] < ϵ and that IΦobj(·)∈R restricted on X is continuous. Therefore, by the Stone-

Weierstrass theorem and (A.5), we have that there exists F1 ∈ FLCQP satisfying

sup
GLCQP∈X

∣∣F1(GLCQP)− IΦobj(GLCQP)∈R
∣∣ < 1

2

Therefore, it holds that

P
[
IF1(GLCQP)>

1
2
̸= IΦobj(GLCQP)∈R

]
≤ P

[
Gm,n

LCQP\X
]
< ϵ,

which proves (3.1). Additionally, (3.2) can be proved by applying similar arguments to Φobj :

Φ−1
obj (R) → R, where Φ−1

obj (R) ⊂ Gm,n
LCQP is the collection of feasible and bounded GLCQP ∈ Gm,n

LCQP.

Proof of Theorem 3.4. Based on Theorem A.3 and Corollary A.5, Theorem 3.4 can be proved fol-
lowing the same lines as in the proof of Theorem 3.6 in Chen et al. (2023a), with trivial modifications
to generalize results for LP-graphs to the LCQP setting. We sketch the proof here for the sake of
self-containedness.

In addition to (A.4), it can be proved that the separation powers of GNNs and the WL test are
equivalent in the following sense:

• For any GLCQP, ĜLCQP ∈ Gm,n
LCQP, GLCQP

W∼ ĜLCQP if and only if FW (GLCQP) =

FW (ĜLCQP) for all FW ∈ FW
LCQP.

• For any GLCQP ∈ Gm,n
LCQP and any j, j′ ∈ W , CL,W

j = CL,W
j′ for any L ∈ N and any hash

function if and only if FW (GLCQP)j = FW (GLCQP)j′ for all FW ∈ FW
LCQP.

Therefore, with Theorem A.3 and Corollary A.5, the separation power of GNNs is upper bounded
by that of Φsol in the following sense that for any GLCQP, ĜLCQP ∈ Gm,n

LCQP with Q, Q̂ ⪰ 0 and any
j, j′ ∈ W ,
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• F (GLCQP) = F (ĜLCQP), ∀ F ∈ FLCQP implies Φsol(GLCQP) = σW (Φsol(ĜLCQP)) for
some σW ∈ Sn.

• FW (GLCQP) = FW (ĜLCQP), ∀ FW ∈ FW
LCQP implies Φsol(GLCQP) = Φsol(ĜLCQP).

• FW (GLCQP)j = FW (GLCQP)j′ , ∀ FW ∈ FW
LCQP implies Φsol(GLCQP)j = Φsol(GLCQP)j′ .

The optimal solution mapping Φsol : Φ
−1
obj (R) → R is measurable, and hence by Lusin’s theorem,

there exists a compact and permutation-invariant subspace X ⊂ Φ−1
obj (R) such that P[Φ−1

obj (R)\X] <
ϵ and that Φsol restricted on X is continuous. Therefore, applying the generalized Stone-Weierstrass
theorem for equivariant functions (Azizian & Lelarge, 2021, Theorem 22), we know that there exists
FW ∈ FW

LCQP satisfying

sup
GLCQP∈X

∥FW (GLCQP)− Φsol(GLCQP)∥ < δ.

Therefore, it holds that

P [∥FW (GLCQP)− Φsol(GLCQP)∥ > δ] ≤ P
[
Φ−1

obj (R)\X
]
< ϵ,

which completes the proof.

B PROOFS FOR SECTION 4.1

The proof of Proposisition 4.1 is directly from Chen et al. (2023b) since adding a quadratic term in
the objective function of an MILP problem does not change the feasible region. However, Proposi-
sitions 4.2 and 4.3 are not covered in Chen et al. (2023b) and we present their proofs here.

Proof of Proposisition 4.2. As discussed in Section 4.1, we consider the following two examples
whose optimal objective values are 9

2 and 6, respectively.

min
x∈R6

1

2

6∑
i=1

x2
i +

6∑
i=1

xi,

s.t. x1 + x2 ≥ 1, x2 + x3 ≥ 1, x3 + x4 ≥ 1,

x4 + x5 ≥ 1, x5 + x6 ≥ 1, x6 + x1 ≥ 1,

xj ∈ {0, 1}, ∀ j ∈ {1, 2, . . . , 6}.

min
x∈R6

1

2

6∑
i=1

x2
i +

6∑
i=1

xi,

s.t. x1 + x2 ≥ 1, x2 + x3 ≥ 1, x3 + x1 ≥ 1,

x4 + x5 ≥ 1, x5 + x6 ≥ 1, x6 + x4 ≥ 1,

xj ∈ {0, 1}, ∀ j ∈ {1, 2, . . . , 6}.

v1

v2

v3

v4

v5

v6

w1

w2

w3

w4

w5

w6

v1

v2

v3

v4

v5

v6

w1

w2

w3

w4

w5

w6

Denote GMI-LCQP and ĜMI-LCQP as the graph representations of the above two MI-LCQP problems.
Let sli, t

l
j and ŝli, t̂

l
j be the attributes at the l-th layer when apply a GNN F ∈ FMI-LCQP to GMI-LCQP

and ĜMI-LCQP. We will prove by induction that for any 0 ≤ l ≤ L, the followings hold:

(a) sli = ŝli and is constant over i ∈ {1, 2, . . . , 6}.

(b) tlj = t̂lj and is constant over j ∈ {1, 2, . . . , 6}.

It is clear that the conditions (a) and (b) are true for l = 0, since vi = v̂i = (1,≥) is constant in
i ∈ {1, 2, . . . , 6}, and wj = ŵj = (1, 0, 1, 1) is constant in j ∈ {1, 2, . . . , 6}. Now suppose that
the conditions (a) and (b) are true for l − 1 where 1 ≤ l ≤ L. We denote that sl−1 = sl−1

i =

19
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s̄l−1
i , ∀ i ∈ {1, 2, . . . , 6} and tl−1 = tl−1

j = t̂l−1
j , ∀ j ∈ {1, 2, . . . , 6}. It can be computed for any

i ∈ {1, 2, . . . , 6} and j ∈ {1, 2, . . . , 6} that

sli = fV
l

sl−1
i ,

∑
j∈NW

i

gWl (tl−1
j , Aij)

 = fV
l

(
sl−1, 2gWl (tl−1, 1)

)
= ŝli,

tlj = fW
l

tl−1
j ,

∑
i∈NV

j

gVl (sl−1
i , Aij),

∑
j′∈NW

j

gQl (tl−1
j′ , Qjj′)


= fW

l

(
tl−1, 2gVl (sl−1, 1), gQl (tl−1, 1)

)
= t̂lj ,

which proves (a) and (b) for l. Thus, we can conclude that F (GMI-LCQP) = F (ĜMI-LCQP), ∀ F ∈
FMI-LCQP.

Proof of Proposition 4.3. Consider the following two MI-LCQPs:

min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x1 = 0,

x3 − x4 = 0, x4 − x5 = 0,

x5 − x6 = 0, x6 − x7 = 0, x7 − x3 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3, xj ∈ Z, ∀ j ∈ {1, 2, . . . , 7}.

v1

v2

v3

v4

v5

v6

v7

v8

w1

w2

w3

w4

w5

w6

w7

and

min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x3 = 0, x3 − x1 = 0,

x4 − x5 = 0, x5 − x6 = 0,

x6 − x7 = 0, x7 − x4 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3, xj ∈ Z, ∀ j ∈ {1, 2, . . . , 7}.

v1

v2

v3

v4

v5

v6

v7

v8

w1

w2

w3

w4

w5

w6

w7

As we mentioned in Section 4.1, both problems are feasible with the same optimal objective value,
but have disjoint optimal solution sets.

On the other hand, it can be analyzed using the same argument as in the proof of Proposition 4.2
that for any 0 ≤ l ≤ L that

(a) sli = ŝli is constant over i ∈ {1, 2, . . . , 7}, and sl8 = ŝl8.

(b) tlj = t̂lj is constant over j ∈ {1, 2, . . . , 7}.

These two conditions guarantee that F (GMI-LCQP) = F (ĜMI-LCQP), ∀ F ∈ FMI-LCQP and
FW (GMI-LCQP) = FW (ĜMI-LCQP), ∀ FW ∈ FMI-LCQP.
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C PROOFS FOR SECTION 4.2

This section collects the proofs of Theorems 4.6, 4.7, and 4.9. Similar to the LCQP case, the proofs
are also based on the WL test (Algorithm 1) and its separation power to distinguish MI-LCQP
problems with different properties. We define the separation power of Algorithm 1 as follows.

Definition C.1. Let GMI-LCQP, ĜMI-LCQP ∈ Gm,n
MI-LCQP be two MI-LCQP-graphs and let

{{CL,V
i }}mi=0, {{C

L,W
j }}nj=0 and {{ĈL,V

i }}mi=0, {{Ĉ
L,W
j }}nj=0 be color multisets output by Al-

gorithm 1 on GMI-LCQP and ĜMI-LCQP.

1. We say GMI-LCQP ∼ ĜMI-LCQP if {{CL,V
i }}mi=0 = {{ĈL,V

i }}mi=0 and {{CL,W
j }}nj=0 =

{{ĈL,W
j }}nj=0 hold for all L ∈ N and all hash functions.

2. We say GMI-LCQP
W∼ ĜMI-LCQP if {{CL,V

i }}mi=0 = {{ĈL,V
i }}mi=0 and CL,W

j =

ĈL,W
j , ∀ j ∈ {1, 2, . . . , n}, for all L ∈ N and all hash functions.

The key component in the proof is to show that for unfoldable/MP-tractable MI-LCQP problems, if
they are indistinguishable by WL test, then they must share some common properties.

Theorem C.2. For two MP-tractable MI-LCQP-graphs GMI-LCQP, ĜMI-LCQP ∈ Gm,n
MP , if GMI-LCQP ∼

ĜMI-LCQP, then Φfeas(GMI-LCQP) = Φfeas(ĜMI-LCQP) and Φobj(GMI-LCQP) = Φobj(ĜMI-LCQP).

Proof. Let GMI-LCQP and ĜMI-LCQP be the MI-LCQP-graphs associated to

min
x∈Rn

1

2
x⊤Qx+ c⊤x, s.t. Ax ◦ b, l ≤ x ≤ u, xj ∈ Z, ∀ j ∈ I. (C.1)

and

min
x∈Rn

1

2
x⊤Q̂x+ ĉ⊤x, s.t. Âx ◦̂ b̂, l̂ ≤ x ≤ û, xj ∈ Z, ∀ j ∈ Î . (C.2)

Suppose that there are no collisions of hash functions or their linear combinations when applying
the WL test to GMI-LCQP and ĜMI-LCQP and there are no strict color refinements in the L-th iteration.
Since GMI-LCQP ∼ ĜMI-LCQP and both of them are MP-tractable, after performing some permutation,
there exist I = {I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt} that are partitions of {1, 2, . . . ,m} and
{1, 2, . . . , n}, respectively, such that the followings hold:

• CL,V
i = CL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• ĈL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,W
j = CL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• CL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• ĈL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

By similar analysis as in the proof of Theorem A.2, we have

(a) vi = v̂i and is constant over i ∈ Ip for any p ∈ {1, 2, . . . , s}.

(b) wj = ŵj and is constant over j ∈ Jq for any q ∈ {1, 2, . . . , t}.

(c) For any p ∈ {1, 2, . . . , s} and any q ∈ {1, 2, . . . , t}, {{Aij : j ∈ Jq}} = {{Âij : j ∈ Jq}}
and is constant over i ∈ Ip.
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(d) For any p ∈ {1, 2, . . . , s} and any q ∈ {1, 2, . . . , t}, {{Aij : i ∈ Ip}} = {{Âij : i ∈ Ip}}
and is constant over j ∈ Jq .

(e) For any q, q′ ∈ {1, 2, . . . , t}, {{Qjj′ : j
′ ∈ Jq′}} = {{Q̂jj′ : j

′ ∈ Jq′}} and is constant
over j ∈ Jq .

Note that GMI-LCQP and ĜMI-LCQP are both MP-tractable, i.e., all submatrices (Aij)i∈Ip,j∈Jq
,

(Âij)i∈Ip,j∈Jq , (Qjj′)j∈Jq,j′∈Jq′ , and (Q̂jj′)j∈Jq,j′∈Jq′ have identical entries. The above condi-
tions (c)-(e) suggest that

(f) For any p ∈ {1, 2, . . . , s} and any q ∈ {1, 2, . . . , t}, Aij = Âij and is constant over
i ∈ Ip, j ∈ Jq .

(g) For any q, q′ ∈ {1, 2, . . . , t}, Qjj′ = Q̂jj′ and is constant over j ∈ Jq, j
′ ∈ Jq′ .

Combining conditions (a), (b), (f), and (g), we can conclude that GMI-LCQP and ĜMI-LCQP are
actually identical after applying some permutation, i.e., they are isomorphic, which implies
Φfeas(GMI-LCQP) = Φfeas(ĜMI-LCQP) and Φobj(GMI-LCQP) = Φobj(ĜMI-LCQP).

Before stating the next result, we comment on the construction/definition of the MI-LCQP optimal
solution mapping Φsol. Different from the LCQP setting, the optimal solution to an MI-LCQP
problem may not exist even if it is feasible and bounded, i.e., Φobj(GMI-LCQP) ∈ R. Thus, we have
to work with Gm,n

sol ⊂ Φ−1
obj (R) ⊂ Gm,n

MI-LCQP where Gm,n
sol is the collection of all MI-LCQP-graphs for

which an optimal solution exists. For GMI-LCQP ∈ Gm,n
sol , it is possible that it admits multiple optimal

solution. Moreover, there may even exist multiple optimal solutions with the smallest ℓ2-norm due
to its non-convexity, which means that we cannot define the optimal solution mapping Φsol using
the same approach as in the LCQP case. If we further assume that GMI-LCQP ∈ Gm,n

sol is unfoldable,
then using the same approach as in Chen et al. (2023b, Appendix C), one can define a total ordering
on the optimal solution set and hence define Φsol(GMI-LCQP) as the minimal element in the optimal
solution set, which is unique and permutation-equivariant, meaning that if one relabels vertices of
GMI-LCQP, then entries of Φsol(GMI-LCQP) are relabelled accordingly.

Theorem C.3. For any two MI-LCQP-graphs GMI-LCQP, ĜMI-LCQP ∈ Gm,n
sol ∩ Gm,n

unfold that are un-
foldable with nonempty optimal solution sets, if GMI-LCQP ∼ ĜMI-LCQP, then there exists some per-

mutation σW ∈ Sn such that Φsol(GMI-LCQP) = σW (Φsol(ĜMI-LCQP)). Furthermore, if GMI-LCQP
W∼

ĜMI-LCQP, then Φsol(GMI-LCQP) = Φsol(ĜMI-LCQP).

Proof. By Proposition D.1, GMI-LCQP and ĜMI-LCQP are also MP-tractable, and hence, all analy-
sis in the proof of Theorem C.2 applies. If GMI-LCQP ∼ ĜMI-LCQP, then they are isomorphic and

Φsol(GMI-LCQP) = σW (Φsol(ĜMI-LCQP)) for some permutation σW ∈ Sn. If GMI-LCQP
W∼ ĜMI-LCQP,

then these two graphs will become identical after applying some permutation on V with the labeling
in W unchanged, which guarantees Φsol(GMI-LCQP) = Φsol(ĜMI-LCQP).

With Theorem C.2 and Theorem C.3, one can adopt standard argument in the previous literature to
prove Theorems 4.6, 4.7, and 4.9.

Proof of Theorem 4.6. Based on Theorem C.2, Theorem 4.6 can be proved following the same lines
as in the proof of Theorem 3.2 in Chen et al. (2023a), with straightforward modifications to general-
ize results for LP-graphs to the MI-LCQP setting. In particular, the proof outline is the same as the
proof of Theorem 3.3.

Proof of Theorem 4.7. Based on Theorem C.2, Theorem 4.7 can be proved following the same lines
as in the proof of Theorem 3.4 in Chen et al. (2023a), with straightforward modifications to general-
ize results for LP-graphs to the MI-LCQP setting. In particular, the proof outline is the same as the
proof of Theorem 3.3.
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Proof of Theorem 4.9. Based on Theorem C.3 and the unfoldability assumption that different ver-
tices in W will eventually have different colors in the WL test without collision, which automatically
provides a result of the same spirit as Corollary A.5, Theorem 4.9 can be proved following the same
lines as in the proof of Theorem 3.6 in Chen et al. (2023a), with straightforward modifications to
generalize results for LP-graphs to the MI-LCQP setting. In particular, the proof outline is the same
as the proof of Theorem 3.4.

Discussions on various GNN architectures: In our work we use the sum aggregation, and all
results are still valid for the weighted average aggregation. In particular, all our proofs (such as
the proof of Theorem A.2) hold almost verbatimly for the average aggregation. The attention ag-
gregation Veličković et al. (2017) has stronger separation power, which implies that all universal
approximation results still hold. Moreover, all the counter examples for MI-LCQPs work for every
aggregation approach, since the color refinement in Algorithm 1 is implemented on multisets, with
separation power stronger than or equal to all aggregations of neighboring information. We have
included the above discussion in our updated draft.

D CHARACTERIZATION OF MP-TRACTABILITY AND UNFOLDABILITY

In this section, we discuss some further characterizations of the MP-tractability and the unfoldability
for MI-LCQP-graphs defined in Section 4.3.

D.1 RELATIONSHIP BETWEEN MP-TRACTABILITY AND UNFOLDABILITY

We first prove that unfoldability implies MP-tractability but they are not equivalent.

Proposition D.1. If GMI-LCQP ∈ Gm,n
MI-LCQP is unfoldable, then it is also MP-tractable.

Proof. Let (I,J ) be the final stable partition of V ∪W generated by WL test on GMI-LCQP without
collision, where I = {I1, I2, . . . , Is} is a partition of V = {1, 2, . . . ,m} and J = {J1, J2, . . . , Jt}
is a partition of W = {1, 2, . . . , n}. Since we assume that GMI-LCQP is foldable, we have t = n and
|J1| = |J2| = · · · = |Jn| = 1. Then for any q, q′ ∈ {1, 2, . . . , t}, the submatrix (Qjj′)j∈Jq,j′∈Jq′ is
a 1× 1 matrix and hence has identical entries.

Consider any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t}. Suppose that the color positioning is stabilized
at the L-th iteration of WL test. Then for any i, i′ ∈ Ip, we have

CL,V
i = CL,V

i′

=⇒
{{

HASH
(
CL−1,W

j , Aij

)
: j ∈ NW

i

}}
=

{{
HASH

(
CL−1,W

j , Ai′j

)
: j ∈ NW

i

}}
=⇒ {{Aij : j ∈ Jq}} = {{Ai′j : j ∈ Jq}} ,

which implies that the submatrix (Aij)i∈Ip,j∈Jq
has identical entries since |Jq| = 1. Therefore,

GMI-LCQP is MP-tractable.

Proposition D.2. There exist MP-tractable instances in Gm,n
MI-LCQP that are not unfoldable.

v1

v2

w1

w2

w3 Initialization l = 1 l = 2

The WL test (Algorithm 1)MI-LCQP-graph

min 1
2x

2
2 + x1 + x2 + x3

s.t. x1 + x3 ≤ 1

x1 − x2 + x3 ≤ 1

0 ≤ x1, x2, x3 ≤ 1

x1, x2, x3 ∈ Z

MI-LCQP problem

Figure 5: Example for proving Proposition D.2
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Proof. Consider the example in Figure 5, for which the final stable partition is I = {{1}, {2}} and
J = {{1, 3}, {2}}. It is not unfoldable since the class {1, 3} in J has two elements. However, it is
MP-tractable since A11 = A13 = 1 and A21 = A23 = 1.

D.2 FREQUENCY OF MP-TRACTABILITY AND UNFOLDABILITY

It can be proved that a generic MI-LCQP-graph in Gm,n
MI-LCQP is unfoldable almost surely under some

mild conditions. Intuitively, if c ∈ Rn is randomly sampled from a continuous distribution with
density, then almost surely it holds that xj ̸= xj′ for any j ̸= j′, which implies that the vertices in
W have different colors initially and always, if there are no collisions of hash functions.

Proposition D.3. Let P be a probability measure over GMI-LCQP such that the marginal distribution
Pc of c ∈ Rn has density. Then P[GMI-LCQP ∈ Gm,n

unfold] = 1.

Proof. Since the marginal distribution Pc has density, almost surely we have for any j ̸= j′ that

cj ̸= cj′ =⇒ C0,W
j ̸= C0,W

j′ =⇒ Cl,W
j ̸= Cl,W

j′ , ∀ l ≥ 0,

where we assumed that no collisions happen in hash functions. Therefore, any j, j′ ∈ W with j ̸= j′

are not the in same class of the final stable partition (I,J ), which proves the unfoldability.

As a direct corollary of Proposition D.1 and Proposition D.3, a generic MI-LCQP-graph in Gm,n
MI-LCQP

must also be MP-tractable.

Corollary D.4. Let P be a probability measure over GMI-LCQP such that the marginal distribution Pc

of c ∈ Rn has density. Then P[GMI-LCQP ∈ Gm,n
MP ] = 1.

E EXTENSION TO QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMS

A general quadratically constrained quadratic programming (QCQP) is given by

min
x∈Rn

1

2
x⊤Qx+ c⊤x, s.t.

1

2
x⊤Pix+ a⊤i x ≤ bi, 1 ≤ i ≤ m, l ≤ x ≤ u, (E.1)

where Q,Pi ∈ Rn×n are symmetric, c, ai ∈ Rn, bi ∈ R, l ∈ (R∪{−∞})n, and u ∈ (R∪{+∞})n.
We denote A = [a1 a2 · · · am]

⊤ ∈ Rm×n for consistent notation with (2.1).

E.1 GRAPH REPRESENTATION AND GNNS FOR QCQPS

Graph representation for QCQPs The QCQP-graph for representing (E.1) is based on the
LCQP-graph introduced in Section 2. More specifically, The QCQP graph can be constructed by
incorporating the information from P = (P1, P2, . . . , Pm) into the LCQP graph:

• The multiset {{i, j, j′}} is viewed as a hyperedge with weight (Hi)jj′ for each i ∈ V and
j, j′ ∈ W , where j = j′ is allowed.

We use Gm,n
QCQP to denote the set of all QCQP-graphs with m constraints and n variables.

GNNs for solving QCQP Note GNNs on LCQP-graphs that iterate vertex features with message-
passing mechanism, which does not naturally adapt to the hyperedges in QCQP graphs. Thus, one
idea is to add edge features for each pair (i, j), i ∈ V, j ∈ W . We describe the GNN architecture
for QCQP tasks in detail as follows.

The initial layer computes node features s0i , t
0
j and edge features e0ij via embedding:

• s0i = fV
0 (vi) for i ∈ V ,

• t0j = fW
0 (wj) for j ∈ W , and

• e0ij = fE
0 (Aij) for i ∈ V, j ∈ W .
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The l-th message-passing layers (l = 1, 2, . . . , L) update the node features using neighbors’ infor-
mation:

• sli = fV
l

(
sl−1
i ,

∑
j∈W gVl (tl−1

j , el−1
ij )

)
for i ∈ V ,

• tlj = fW
l

(
tl−1
j ,

∑
i∈V gWl (sl−1

i , el−1
ij ),

∑
j′∈W Qjj′g

Q
l (tl−1

j′ )
)

for j ∈ W , and

• elij = fE
l

(
el−1
ij ,

∑
j′∈W (Pi)jj′g

E
l (t

l−1
j′ )

)
for i ∈ V, j ∈ W .

Finally, there are two types of output layers. The graph-level output computes a single real number
for the whole graph

• y = r1
(∑

i∈V sLi ,
∑

j∈W tLj
)
∈ R,

and the node-level output computes a vector y ∈ Rn with the j-th entry being

• yj = r2
(∑

i∈V sLi ,
∑

j∈W tLj , t
L
j

)
.

We use FQCQP (or FW
QCQP) to denote the collection of all message-passing GNNs

with graph-level (or node-level) outputs that are constructed by continuous fV
0 , fW

0 , fE
0 ,

fV
l , fW

l , fE
l , gVl , gWl , gEl , g

Q
l (1 ≤ l ≤ L), and r1 (or r2).

E.2 UNIVERSAL APPROXIMATION OF GNNS FOR QCQPS

For QCQPs, we still consider the three target mappings, i.e., the feasible mapping Φfeas : Gm,n
QCQP →

{0, 1}, the optimal objective value mapping Φobj : Gm,n
QCQP → R ∪ {±∞}, and the optimal solution

mapping Φobj that computes the unique optimal solution with the smallest ℓ2-norm of feasible and
bounded QCQPs with Q,Pi ⪰ 0, i = 1, 2, . . . ,m. The main results that GNNs can universally
approximate these three target mappings are stated as follows.
Assumption E.1. P is a Borel regular probability measure on Gm,n

QCQP
6.

Theorem E.2. Let P be a probability measure satisfying Assumption E.1 and P[Q ⪰ 0] = P[Pi ⪰
0] = 1, i = 1, 2, . . . ,m. For any ϵ > 0, there exists F ∈ FMI-LCQP such that

P
[
IF (GQCQP)>

1
2
̸= Φfeas(GQCQP)

]
< ϵ.

Theorem E.3. Let P be a probability measure satisfying Assumption E.1 and P[Q ⪰ 0] = P[Pi ⪰
0] = 1, i = 1, 2, . . . ,m. For any ϵ > 0, there exists F1 ∈ FQCQP such that

P
[
IF1(GQCQP)>

1
2
̸= IΦobj(GQCQP)∈R

]
< ϵ.

Additionally, if P[Φobj(GQCQP) ∈ R] = 1, for any ϵ, δ > 0, there exists F2 ∈ FQCQP such that

P [|F2(GQCQP)− Φobj(GQCQP)| > δ] < ϵ.

Theorem E.4. Let P be a probability measure satisfying Assumption E.1 and P[Q ⪰ 0] = P[Pi ⪰
0] = 1, i = 1, 2, . . . ,m. For any ϵ, δ > 0, there exists FW ∈ FW

QCQP such that

P [∥FW (GQCQP)− Φsol(GQCQP)∥ > δ] < ϵ.

Similarly, the proofs of Theorem E.2, E.3, and E.4 are based on showing that the WL test associated
with the GNN classes FQCQP and FW

QCQP have sufficiently strong separation power to distinguish
QCQP problems with different properties. We will present and prove such separation results (Theo-
rem E.5, Theorem E.6, and Corollary E.7) in the rest of this subsection, and do not repeat the same
arguments as described in the Proof of Theorem 3.3 and Theorem 3.4.

We state in Algorithm 3 the WL test for QCQPs. For QCQP-graphs GQCQP, ĜQCQP ∈ Gm,n
QCQP,

6The space Gm,n
QCQP is equipped with the subspace topology induced from the product space{

(A, b, c,Q, P, l, u, ◦) : A ∈ Rm×n, b ∈ Rm, c ∈ Rn, Q ∈ Rn×n, P ∈ (Rn×n)m, l ∈ (R ∪ {−∞})n, u ∈
(R ∪ {+∞})n

}
, where all Euclidean spaces have standard Eudlidean topologies, discrete spaces {−∞} and

{+∞} have the discrete topologies, and all unions are disjoint unions.
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1. We say GQCQP ∼ ĜQCQP if {{CL,V
i }}mi=0 = {{ĈL,V

i }}mi=0 and {{CL,W
j }}nj=0 =

{{ĈL,W
j }}nj=0 hold for all L ∈ N and all hash functions.

2. We say GQCQP
W∼ ĜQCQP if {{CL,V

i }}mi=0 = {{ĈL,V
i }}mi=0 and CL,W

j = ĈL,W
j , ∀ j ∈

{1, 2, . . . , n}, for all L ∈ N and all hash functions.

Algorithm 3 The WL test for QCQP-Graphs

Require: A QCQP-graph G = (V,W,A,Q, P,HV , HW ) and iteration limit L > 0.
1: Initialize with

C0,V
i = HASH(vi), C

0,W
j = HASH(wj), C

0,E
ij = HASH(Aij).

2: for l = 1, 2, · · · , L do
3: Refine the color

Cl,V
i = HASH

Cl−1,V
i ,

∑
j∈W

HASH
(
Cl−1,W

j , Cl−1,E
ij

) ,

Cl,W
j = HASH

Cl−1,W
j ,

∑
i∈V

HASH
(
Cl−1,V

i , Cl−1,E
ij

)
,
∑
j′∈W

Qjj′HASH(Cl−1,W
j′ )

 ,

Cl,E
ij = HASH

Cl−1,E
ij ,

∑
j′∈W

(Pi)jj′HASH(Cl−1,W
j′ )

 .

4: end for
5: return The multisets containing all vertex colors

{{
CL,V

i

}}m

i=0
,
{{

CL,W
j

}}n

j=0
.

Theorem E.5. Given GQCQP, ĜQCQP ∈ Gm,n
QCQP with Q, Q̂, Pi, P̂i ⪰ 0 for all i ∈ {1, 2, . . . ,m}, if

GQCQP ∼ ĜQCQP, then Φfeas(GQCQP) = Φfeas(ĜQCQP) and Φobj(GQCQP) = Φobj(ĜQCQP).

Proof. We only show the proof of Φobj(GQCQP) = Φobj(ĜQCQP) and Φfeas(GQCQP) = Φfeas(ĜQCQP)
will be a direct corollary.

Let GQCQP and ĜQCQP be the QCQP-graph associated to (E.1) and

min
x∈Rn

1

2
x⊤Q̂x+ ĉ⊤x, s.t.

1

2
x⊤P̂ix+ â⊤i x ≤ b̂i, 1 ≤ i ≤ m, l̂ ≤ x ≤ û, (E.2)

Suppose that there are no collisions of hash functions or their linear combinations when applying
the WL test to G and Ĝ and there are no strict color refinements in the L-th iteration. Since G
and Ĝ are indistinguishable by the WL test, after performing some permutation, there exist I =
{I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt} that are partitions of {1, 2, . . . ,m} and {1, 2, . . . , n},
respectively, such that the followings hold:

• CL,V
i = CL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• ĈL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,W
j = CL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• CL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• ĈL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.
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The followings hold by the same arguments as in the proof of Theorem A.2:

• bi = b̂i and is constant over i ∈ Ip, for any p ∈ {1, 2, . . . , s}.

• (cj , lj , uj) = (ĉj , l̂j , ûj) and is constant over j ∈ Jq for any q ∈ {1, 2, . . . , t}.

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

j∈Jq
Aij =

∑
j∈Jq

Âij and is constant
over i ∈ Ip.

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

i∈Ip
Aij =

∑
i∈Ip

Âij and is constant
over j ∈ Jq .

• For any q, q′ ∈ {1, 2, . . . , t},
∑

j′∈Jq′
Qjj′ =

∑
j′∈Jq′

Q̂jj′ and is constant over j ∈ Jq .

Fix p ∈ {1, 2, . . . , s} and q, q′ ∈ {1, 2, . . . , t}. For any j, j′ ∈ Jq , we have

CL,W
j = CL,W

j′

=⇒
∑
i∈V

HASH
(
CL−1,V

i , CL−1,E
ij

)
=

∑
i∈V

HASH
(
CL−1,V

i , CL−1,E
ij′

)
=⇒

{{
CL,E

ij : i ∈ Ip

}}
=

{{
CL,E

ij′ : i ∈ Ip

}}
=⇒


 ∑

j′′∈W

(Pi)jj′′HASH(CL−1,W
j′′ ) : i ∈ Ip




=


 ∑

j′′∈W

(Pi)j′j′′HASH(CL−1,W
j′′ ) : i ∈ Ip




=⇒


 ∑

j′′∈Jq′

(Pi)jj′′ : i ∈ Ip


 =


 ∑

j′′∈Jq′

(Pi)j′j′′ : i ∈ Ip




=⇒
∑

j′′∈Jq′

∑
i∈Ip

(Pi)jj′′ =
∑

j′′∈Jq′

∑
i∈Ip

(Pi)j′j′′ .

One can do a similar analysis for CL,W
j = ĈL,W

j′ and ĈL,W
j = ĈL,W

j′ where j, j′ ∈ Jq . This
concludes that ∑

j′∈Jq′

∑
i∈Ip

(Pi)jj′ =
∑

j′∈Jq′

∑
i∈Ip

(P̂i)jj′

is constant over j ∈ Jq .

Let x ∈ Rn be any feasible solution to (E.1) and define x̂ ∈ Rn via x̂j = yq = 1
|Jq|

∑
j′∈Jq

xj′ for
j ∈ Jq . For any p ∈ {1, 2, . . . , s}, it follows from

1

2
x⊤Pix+ a⊤i x ≤ bi, i ∈ Ip,

and Lemma A.4 that

1

Ip

∑
i∈Ip

b̂i =
1

Ip

∑
i∈Ip

bi ≥
1

2
x⊤

 1

|Ip|
∑
i∈Ip

Pi

x+

 1

Ip

∑
i∈Ip

ai

⊤

x

≥1

2
x̂⊤

 1

|Ip|
∑
i∈Ip

Pi

 x̂+

 1

Ip

∑
i∈Ip

ai

⊤

x̂ =
1

2
x̂⊤

 1

|Ip|
∑
i∈Ip

P̂i

 x̂+

 1

Ip

∑
i∈Ip

âi

⊤

x̂.
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Note that for any i, i′ ∈ Ip and any q, q′ ∈ {1, 2, . . . , t}, we have

ĈL,V
i = ĈL,V

i′

=⇒
∑
j∈W

HASH
(
ĈL−1,W

j , ĈL−1,E
ij

)
=

∑
j∈W

HASH
(
ĈL−1,W

j , ĈL−1,E
i′j

)
=⇒

{{
ĈL,E

ij : j ∈ Jq

}}
=

{{
ĈL,E

i′j : j ∈ Jq

}}
=⇒


 ∑

j′∈W

(P̂i)jj′HASH(ĈL−1,W
j′ ) : j ∈ Jq




=


 ∑

j′∈W

(P̂i′)jj′HASH(ĈL−1,W
j′ ) : j ∈ Jq




=⇒


 ∑

j′∈Jq′

(P̂i)jj′ : j ∈ Jq


 =


 ∑

j′∈Jq′

(P̂i′)jj′ : j ∈ Jq




=⇒
∑
j∈Jq

∑
j′∈Jq′

(P̂i)jj′ =
∑
j∈Jq

∑
j′∈Jq′

(P̂i′)jj′ .

Therefore, it holds that

1

2
x̂⊤

 1

|Ip|
∑
i′∈Ip

P̂i′

 x̂ =
1

2
x̂⊤P̂ix̂, ∀ i ∈ Ip,

and hence that
1

2
x̂⊤Pix̂+ â⊤i x ≤ b̂i, ∀ i ∈ Ip.

We thus know that x̂ is a feasible solution to (A.3). In addition, we have

1

2
x⊤Qx+ c⊤x ≥ 1

2
x̂⊤Qx̂+ c⊤x̂ =

1

2
x̂⊤Q̂x̂+ ĉ⊤x̂,

which implies that Φobj(GQCQP) ≥ Φobj(ĜQCQP). The reverse direction Φobj(GQCQP) ≤
Φobj(ĜQCQP) is also true and we can conclude that Φobj(GQCQP) = Φobj(ĜQCQP).

Theorem E.6. For any GQCQP, ĜQCQP ∈ Gm,n
QCQP with Q, Q̂, Pi, P̂i ⪰ 0, i ∈ {1, 2, . . . ,m} that

are feasible and bounded, if GQCQP ∼ ĜQCQP, then there exists some permutation σW ∈ Sn such

that Φsol(GQCQP) = σW (Φsol(ĜQCQP)). Furthermore, if GQCQP
W∼ ĜQCQP, then Φsol(GQCQP) =

Φsol(ĜQCQP).

Proof. Based on Theorem E.5, Theorem E.6 can be proved by the same arguments as in the proof of
Lemma B.4 and Corollary B.7 in Chen et al. (2023a), which is included in the proof of Theorem A.2.

Corollary E.7. For any GQCQP ∈ Gm,n
QCQP that is feasible and bounded and any j, j′ ∈ {1, 2, . . . , n},

if CL,W
j = CL,W

j′ holds for all L ∈ N+ and all hash functions, then Φsol(GQCQP)j = Φsol(GQCQP)j′ .

Proof. Let ĜQCQP be the QCQP-graph obtained from GQCQP by relabeling j as j′ and relabeling
j′ as j. By Theorem E.6, we have Φsol(GQCQP) = Φsol(ĜQCQP), which implies Φsol(GQCQP)j =

Φsol(ĜQCQP)j = Φsol(GQCQP)j′ .
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F IMPLEMENTATION DETAILS AND ADDITIONAL NUMERICAL RESULTS

In this section, we explain how we formulate the optimization problems used in the numerical
experiments and how to randomly generate problem instances. We mainly follow the settings of
OSQP (Stellato et al., 2020) with slight modifications.

F.1 RANDOM LCQP AND MI-LCQP INSTANCE GENERATION

Generic LCQP and MI-LCQP generation. For all instances generated and used in our numerical
experiments, we set m = 10 and n = 50, which means each instance contains 10 constraints and 50
variables. The sampling schemes of problem components are described below.

• Matrix Q in the objective function. We sample sparse, symmetric and positive semidefinite
Q using the make_sparse_spd_matrix function provided by the scikit-learn
Python package, which imposes sparsity on the Cholesky factor. We set the alpha value
to 0.95 so that there will be around 10% non-zero elements in the resulting Q matrix.

• The coefficients c in the objective function: cj ∼ N (0, 0.12).

• The non-zero elements in the coefficient matrix: Aij ∼ N (0, 1). The coefficient matrix A
contains 100 non-zero elements. The positions are sampled randomly.

• The right hand side b of the linear constraints: bi ∼ N (0, 1).

• The constraint types ◦. We first sample equality constraints following the Bernoulli distri-
bution Bernoulli(0.3). Then other constraints takes the type ≤. Note that this is equivalent
to sampling ≤ and ≥ constraints separately with equal probability, because the elements in
A and b are sampled from symmetric distributions.

• The lower and upper bounds of variables: lj , uj ∼ N (0, 102). We swap their values if
lj > uj after sampling.

• (MI-LCQP only) The variable types are randomly sampled. Each type (continuous or inte-
ger) occurs with equal probability.

After instance generation is done, we collect labels, i.e., the optimal objective function values and
optimal solutions, using one of the commercial solvers.

LCQP instance generation for generalization experiments. In this setting, we only sample dif-
ferent coefficients c for different LCQP instances. We sample other components only once, i.e., Q,
A, b, l, u and ◦ in (2.1), and keep them constant and shared by all instances. We also slightly adjust
the distributions from which these components are sampled as described below.

• Matrix Q. We follow the same sampling scheme as above.

• The coefficients c in the objective function: cj ∼ N (0, 1/n).

• The non-zero elements in the coefficient matrix: Aij ∼ N (0, 1/n). The coefficient matrix
A contains 100 non-zero elements. The positions are sampled randomly.

• The right hand side b of the linear constraints: bi ∼ N (0, 1/n).

• The constraint types ◦. We follow the same sampling scheme as above.

• The lower and upper bounds of variables: lj , uj ∼ N (0, 1). We swap their values if lj > uj

after sampling.

For the generalization experiments, we first generate 25,000 LCQP instances for training, and then
take the first 100/500/25,00/5,000/10,000 instances to form the smaller training sets. This ensures
that the smaller training sets are subsets of the larger sets. The validation set contains 1,000 instances
that are generated separately.

Portfolio optimization formulation and instance generation. The portfolio optimization prob-
lems are formulated as below.

min
x,y

1

2
x⊤Dx+

1

2
y⊤y − µ⊤x (F.1)
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s.t. y = Fx, 1⊤x = 1, x ≥ 0

Here x ∈ Rs and y ∈ Rt are the optimization variables, D ∈ Rs×s is a diagonal matrix with
non-negative diagonal elements, F ∈ Rt×s is the factor modeling matrix. We generate portfolio
optimization instances following the scheme below.

• We set s = 50 and t = 5, resulting in LCQP instances with m = 6 constraints and n = 55
variables.

• The diagonal elements of D are independently sampled from uniform distribution: Dii ∼

U(0,
√
t). D is then used to form the matrix Q =

(
D

It

)
.

• The coefficients µ in the objective function: µj ∼ N (0, 1).

• The non-zero elements in the factor modeling matrix F : Fij ∼ N (0, 1). The coefficient
matrix F contains 25 non-zero elements. The positions are sampled randomly.

SVM optimization formulation and instance generation. The support vector machine optimiza-
tion problems are formulated as below.

min
x,t

1

2
x⊤x+ λ1⊤t (F.2)

s.t. t ≥ diag(y)Dx+ 1, t ≥ 0

Here x ∈ Rs and t ∈ Rt are the optimization variables, D ∈ Rt×s is the data matrix, y ∈ Rt is the
binary label vector, and λ is a hyperparameter which we set to 1/2. We generate SVM optimization
instances following the scheme below.

• We set s = 5 and t = 50.

• The non-zero elements in the data matrix D: Dij ∼ N (−0.1, 0.1) for i ≤ t/2; Dij ∼
N (0.1, 0.1) otherwise. The coefficient matrix D contains 100 non-zero elements. The
positions are sampled randomly.

• The binary label vector y: yi = −1 for i ≤ t/2; yi = 1 otherwise.

F.2 DETAILS OF GNN IMPLEMENTATION

We implement GNN with Python 3.9 and TensorFlow 2.16.1 (Abadi et al., 2016). Our imple-
mentation is built by extending the GNN implementation in Gasse et al. (2019).7 The embedding
mappings fV

0 , fW
0 are parameterized as linear layers followed by a non-linear activation function;

{fV
l , fW

l , gVl , gWl , gQl }Ll=1 and the output mappings r1, r2 are parameterized as 2-layer multi-layer
perceptrons (MLPs) with respective learnable parameters. The parameters of all linear layers are
initialized as orthogonal matrices. We use ReLU as the activation function.

In our experiments, we train GNNs with embedding sizes of 64, 128, 256, 512 and 1,024. We show
in Table 2 the number of learnable parameters in the resulting network with each embedding size.

Table 2: Number of learnable parameters in GNN with different embedding sizes.

Embedding size Number of parameters

64 112,320
128 445,824
256 1,776,384
512 7,091,712

1,024 30,436,352

7See https://github.com/ds4dm/learn2branch.
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Figure 6: Training and validation errors when training GNNs with an embedding size of 512 on
different numbers of LCQP problem instances to fit Φobj and Φsol.

F.3 DETAILS OF GNN TRAINING

We adopt Adam (Kingma & Ba, 2014) to optimize the learnable parameters during training. We use
an initial learning rate of 5 × 10−4 for all networks. We set the batch size to 2,500 or the size of
the training set, whichever is the smaller. In each mini-batch, we combine the graphs into one large
graph to accelerate training. All experiments are conducted on a single NVIDIA Tesla V100 GPU.

We use mean squared relative error as the loss function, which is defined as

LG(FW ) = EG∼G

[
∥FW (G)− Φ(G)∥22
max(∥Φ(G)∥, 1)2

]
, (F.3)

where FW is the GNN, G is a mini-batch sampled from the whole training set, G is a problem
instance in the mini-batch G, and Φ(G) is the label of instance G. During training, we monitor the
average training error in each epoch. If the training loss does not improve for 50 epochs, we will half
the learning rate and reset the parameters of the GNN to those that yield the lowest training error so
far. We observe that this helps to stabilize the training process significantly and can also improve
the final loss achieved.

F.4 GENERALIZATION RESULTS ON LCQP

Figure 6 shows the variations of training and validation errors when training GNNs of an embedding
size of 512 on different numbers of LCQP problem instances. We observe similar trends for both
prediction tasks, that the generalization gap decreases and the generalization ability improves as
more instances are used for training. This result implies the potential of applying trained GNNs to
solve QP problems that are unseen during training but are sampled from the same distribution, as
long as enough training instances are accessible and the instance distribution is specific enough (in
contrast to the generic instances used in experiments of Figure 2 and 3).

F.5 NUMERICAL RESULTS ON MAROS-MESZAROS TEST SET

To show the fitting ability of GNNs on more realistic QP problems, we train GNNs on the Maros
and Meszaros Convex Quadratic Programming Test Problem Set (Maros & Mészáros, 1999), which
contains 138 quadratic programs that are designed to be challenging. We apply equilibrium scal-
ing to each problem and also scale the objective function so that the Q matrix will not contain too
large elements. We collect the optimal solutions and objective values of the test instances using an
open-sourced QP solver called PIQP Schwan et al. (2023), which is benchmarked to achieve best
performances on the Maros Meszaros test set among many other solvers (Caron et al., 2024). PIQP
solves 136 problem instances successfully, which are then used to train four GNNs with with em-
bedding size of 64, 128, 256, 512. The training protocol follows the experiments using synthesized
QP instances in Section 5.

The results are shown in Figure 7. We observe that while the broad range of numbers of instances
in the Maros Meszaros test set caused numerical difficulties for training, GNNs can still be trained
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Figure 7: Training errors of fitting Φobj and Φsol on the Maros Meszaros test set. We trained four
GNNs with embedding size of 64, 128, 256 and 512, respectively.

to fit the objectives and solutions to some extent. And we can observe similar tendency as in the
synthesized experiments that the expressive power increases as the model capacity enlarges when
we increase the embedding size.
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