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Abstract

We address two problems of domain adaptation
in neural machine translation. First, we want
to reach domain robustness, i.e., good quality
of both domains from the training data, and do-
mains unseen in the training data. Second, we
want our systems to be adaptive, i.e., making
it possible to finetune systems with just hun-
dreds of in-domain parallel sentences. In this
paper, we introduce a novel combination of two
previous approaches, word adaptive modelling,
which addresses domain robustness, and meta-
learning, which addresses domain adaptability,
and we present empirical results showing that
our new combination improves both of these
properties.!

1 Introduction

The success of Neural Machine Translation (NMT;
Bahdanau et al., 2015; Vaswani et al., 2017) heav-
ily relies on large-scale high-quality parallel data,
which is difficult to obtain in some domains. We
study two major problems in NMT domain adapta-
tion. First, models should work well on both seen
domains (the domains in the training data) and un-
seen domains (domains which do not occur in the
training data). We call this property domain ro-
bustness. Second, with just hundreds of in-domain
sentences, we want to be able to quickly adapt to a
new domain. We call this property domain adapt-
ability. There are a few works attempting to solve
these two problems. Jiang et al. (2020) proposed
using individual modules for each domain with
a word-level domain mixing strategy, which they
showed has domain robustness on seen domains.
We show that in fact word-level domain mixing can
also have domain robustness on unseen domains, a
new result. Sharaf et al. (2020); Zhan et al. (2021)
use meta-learning approaches for improving on

'Our source code is attached and will be made publicly
available.

unseen domains. This work has strengths in adapt-
ability to unseen domains but sacrifices robustness
on seen domains.

Our goal is to develop a method which makes the
model domain adaptable while maintaining robust-
ness. We show that we can combine meta-learning
with a robust word-level domain mixing system to
obtain both domain robustness and domain adapt-
ability simultaneously in a single model. The rea-
sons are as follows: i) word-level domain mixing
is better at capturing the domain-specific knowl-
edge on seen domains, and is more adaptive in the
process of domain knowledge sharing on unseen
domains (Jiang et al., 2020); ii) meta-learning fails
to work in seen domains, hence we considered us-
ing domain-specific knowledge learned from word-
level domain mixing to improve the performance in
seen domains; iii) meta-learning show its strength
in adapting to new domains, allowing us to use the
domain knowledge shared from seen domains to
improve the performance on new unseen domains.

To achieve this, we propose RMLNMT (robust
meta-learning NMT), a more robust and adap-
tive meta-learning-based NMT domain adaptation
framework. We first train a word-level domain
mixing model to improve the robustness on seen
domains, and show that, surprisingly, this improves
robustness on unseen domains as well. Then, we
train a domain classifier based on BERT (Devlin
et al., 2019) to score training sentences; the score
measures similarity between out-of-domain and
general-domain sentences. Finally, we improve do-
main adaptability by integrating the domain-mixing
model into a meta-learning framework with the do-
main classifier using a balanced sampling strategy.

We evaluate RMLNMT on two translation tasks:
English—German and English—Chinese. We con-
duct experiments for NMT domain adaptation in
two low-resource scenarios. In the first scenario,
a word-level domain mixing model is trained, and
we carry out an evaluation of domain robustness.



We also show that meta-learning on the seen do-
mains fails to improve the domain robustness on
unseen domains. In the second scenario, we com-
bine domain robust word-level domain mixing with
meta-learning using only hundreds of in-domain
sentences, and show that this combination has both
domain robustness and domain adaptability.

The rest of the paper is organized as follows: We
first describe related work (§2) and the models in
detail (§3). Then we define the experimental setup
(84) and evaluate domain robustness and domain
adaptability (§5). Finally, we analyse the results
through an ablation study (§6).

2 Related Work

Domain Adaptation for NMT. Domain Adapta-
tion for NMT typically uses additional in-domain
monolingual data or a small amount of in-domain
parallel data to improve the performance of do-
main translation in new domains (Chu and Wang,
2018). Current approaches can be categorized into
two groups by granularity: From a sentence-level
perspective, researchers either use data selection
methods (Moore and Lewis, 2010; Axelrod et al.,
2011) to select the training data that is similar to
out-of-domain parallel corpora or train a classi-
fier (RieB et al., 2021) or utilize a language model
(Wang et al., 2017; Zhan et al., 2021) to better
weight the sentences. From a word-level perspec-
tive, researchers try to model domain distribution
at the word level, since a word in a sentence can
be related to more domains than just the sentence
domain (Zeng et al., 2018; Yan et al., 2019; Hu
et al., 2019; Sato et al., 2020; Jiang et al., 2020).
In this work, we combine sentence-level (domain
classifier) and word-level (domain mixing) domain
information.

Curriculum Learning for NMT. Curriculum
learning (Bengio et al., 2009) starts with easier
tasks and then progressively gain experience to
process more complex tasks and have proved use-
ful in NMT domain adaptation. Stojanovski and
Fraser (2019) utilize curriculum learning to im-
prove anaphora resolution in NMT systems. Zhang
et al. (2019) use a language model to compute a
similarity score between domains, from which a
curriculum is devised for adapting NMT systems
to specific domains from general domains. Sim-
ilarly, Zhan et al. (2021) use language model di-
vergence scores as the curriculum to improve the
performance of NMT domain adaptation with meta-

learning in low-resource scenarios. In this paper,
we improve the performance of NMT domain adap-
tation using curriculum learning based on a domain
classifier.

Meta-Learning for NMT. Gu et al. (2018) ap-
ply model-agnostic meta-learning (MAML; Finn
et al., 2017) to NMT. They show that MAML ef-
fectively improves low-resource NMT. Li et al.
(2020) and Sharaf et al. (2020) propose to formu-
late the problem of low-resource domain adaptation
in NMT as a meta-learning problem: the model
learns to quickly adapt to an unseen new domain
from a general domain. Recently, Zhan et al. (2021)
propose to use language model divergence score as
the curriculum to improve the performance of NMT
domain adaptation. In this paper, we improve the
domain robustness through a word-level domain-
mixing model and integrate it into a meta-learning
framework to improve the domain adaptability.

We approach meta-learning similarly to Zhan
et al. (2021), which used the language model di-
vergence score as curricula for improving the per-
formance of NMT domain adaptation. In contrast,
we use the probability of being out-of-domain as-
signed by the domain classifier to guide the cur-
riculum; we also use a balanced sample strategy
to split the tasks (see more details in Section 3.3).
Furthermore, our meta-learning work does not use
a plain transformer as the pre-trained model, but
relies on a word-level domain mixing model (Jiang
et al., 2020), which we will show is effective and
robust in multi-domain adaptation. Finally, we use
a stronger baseline, as we will discuss in the evalu-
ation section (§4).

3 Method

In our initial experiments, we observed that the tra-
ditional meta-learning approach for NMT domain
adaptation sacrifices the domain robustness on seen
domains in order to improve the domain adaptabil-
ity on unseen domains (see more details in Table 1
and Table 2, these will be discussed in Section 5).
To address these issues, we propose a novel ap-
proach, RMLNMT, which combines meta-learning
with a word-level domain-mixing system to im-
prove both domain robustness and domain adapt-
ability simultaneously in a single model. RML-
NMT consists of three parts: Word-Level Domain
Mixing, Domain Classification, and Online Meta-
Learning. Figure 1 illustrates RMLNMT.
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Figure 1: Method overview. The whole procedure mainly consists of three parts: domain classification, word-level

domain mixing and online meta-learning.

3.1 Word-level Domain Mixing

In order to improve the robustness of NMT domain
adaptation, we follow the approach of Jiang et al.
(2020) and train the word-level layer-wise domain
mixing NMT model. We provide a brief review
of this approach here; please refer to Jiang et al.
(2020) for more details.

Domain Proportion. From a sentence-level per-
spective (i.e., the classifier-based curriculum step),
each sentence has a domain label. However, the
domain of a word in the sentence is not necessarily
consistent with the sentence domain. E.g., the word
doctor shares the same embedding can have a dif-
ferent meaning in the medical domain and the aca-
demic domain. More specifically, for £ domains,
the embedding w € R¢ of a word, and a matrix
R € R¥**4_ the domain proportion of the word is
represented by a smoothed softmax function as:

&(w) = (1 —¢€) - softmax(Rw) + €/k,

where € € (0, 1) is a smoothing parameter to pre-
vent the output of ®(w) from collapsing towards 0
or 1.

Domain Mixing. The standard Transformer
(Vaswani et al., 2017) models the multi-head atten-
tion mechanism to focus on information in different
representation subspaces from different positions:

MultiHead(Q, K, V) = Concat (hi, ..., hy) W©

hi = Attention (wa?, KWK, VWZV) ,

where W WK WY e RI¥4/m and WO ¢
R4%d_ For the i-th head h;, m is the number of
heads, and d is the dimension of the model output.

Following Jiang et al. (2020), each domain has
its own multi-head attention modules. Therefore,
we can integrate the domain proportion of each
word into its multi-head attention module. Specif-
ically, we take the weighted average of the linear
transformation based on the domain proportion ®.
For example, we consider the point-wise linear
transformation {W; v/ ; }?:1 on the ¢-th word of the
input, V4, of all domains. The mixed linear trans-
formation can be written as

k
Vie =Y V' Wiv;®v; (Vi)
j=1

where @y ; (V;) denotes the j-th entry of @y (V;),
and Py is the domain proportion layer related to
V. For other linear transformations, we apply the
domain mixing scheme in the same way for all
attention layers and the fully-connected layers.

Training. The model can be efficiently trained
by minimizing a composite loss:

L* = Lgen(e) + LmiX(0)7

where 6 contains the parameter in encoder, de-
coder and domain proportion. L, (6) denotes the



cross-entropy loss over training data {x;,y;},,
and Ly,ix(0) denotes the cross-entropy loss over
the words/domain labels. For L,ix(6), we com-
pute the cross-entropy loss of its domain propor-
tion ¢(w) as — log (P ;7(w)), which take J as the
domain label. Hence, Lyix(#) is computed as the
sum of the cross-entropy loss over all such pairs of
word labels of the training data.

3.2 Domain Classification

Domain similarity has been successfully applied
in NMT domain adaptation. Moore and Lewis
(2010) calculate cross-entropy scores with a lan-
guage model to represent the domain similarity.
Riel3 et al. (2021) leverage simple classifiers to
compute similarity scores; these scores are more
effective than scores from language models for do-
main adaptation of NMT. Following Riel} et al.
(2021), we compute domain similarity using a
sentence-level classifier, but in contrast with their
work, we based our classifier on a pre-trained lan-
guage model.

Given k£ domain corpora (one general domain
corpus and n out-of-domain corpora), we trained
a sentence classification model M based on BERT
(Devlin et al., 2019). For a sentence x with a do-
main label L,, a simple softmax is added to the top
of the model M to predict the domain probability
of sentence z:

P(z | h) = softmax(Wh),

where W is the parameter matrix of M and £ is the
hidden state of M. P(z | h) is a probability set,
which contains & probability scores indicating the
similarity of sentence x to each domain. A higher
probability P of general domain means the domain
of sentence x is more similar to the general domain,
and vice versa. We finally select the probability of
the general domain as the score of the sentence z
and use this score as the curriculum to split the task
in meta-learning (see more details in Section 3.3).
A higher score indicates that the sentence is more
similar to the general domain, so we will select it
earlier.

3.3 Online Meta-Learning

The idea of meta-learning is to use a small set of
source tasks {71, ..., 7} to find the initialization
of model parameters 6 from which learning a tar-
get task 7o would require only a small number
of training examples. Meta-learning algorithms
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Figure 2: The statistic of samples in the task for
tokenize-based splitting strategy.

consist of three main steps: (i) split the seen do-
main corpus into small tasks 7 containing a small
amount of data as Dyeta-train aNd Dpeta-test tO SImMu-
late the low-resource scenarios. Data for each task
T; is decomposed into two sub-sets: a support set
Tsupport used for training the model and a query set
Tquery used for evaluating the model; (ii) leverage
a meta-learning policy to adapt model parameters
to different small tasks using Dieta-train datasets.
We use MAML, proposed by Finn et al. (2017),
and instantiated for the meta-learning to adapt the
NMT systems in different domains; (iii) finetune
the model using the support set of Dypeta-test- Algo-
rithm 1 shows the complete algorithm.

Split Tasks. Zhan et al. (2021) propose a
curriculum-based task splitting strategy, which uses
divergence scores computed by a language model
as the curriculum to split the corpus into small
tasks. We follow a similar idea, but propose to use
predictions from a domain classifier as the criterion
for splitting the data. Concretely, we first train a
domain classifier with BERT; the classifier scores
sentences, indicating domain similarity between an
in-domain sentence and a general domain sentence
(see Section 3.2). The tasks are then split according
to the scores; sentences more similar to the general
domain sentences are selected in early tasks.

Balanced Sampling. Traditional meta-learning
approaches (Sharaf et al., 2020; Zhan et al., 2021)
are based on token-size based sampling, which uses
8k or 16k token sizes split into many small tasks.
However, the splitting process for the domain is not
balanced, since some tasks did not contain all seen
domains, especially in the early tasks. As we can
see in Figure 2, the token-based splitting methods
usually allocate more samples on domain-similar



domains (WMT, Globalvoices) and allocate small
samples on domain-distant domains (EMFEA, JRC)
in the sampling of early tasks. This can cause prob-
lems in our method since the model architecture is
dynamically changing according to the numbers of
domains (see more details in Section 3.1).

To address these issues, we sample the data uni-
formly from the domains to compensate for im-
balanced domain distributions based on domain
classifier scores.

Meta-Training. Following the balanced sam-
pling, the process of meta-training is to update the
current model parameter on 7gypport from 6 to ¢,
and then evaluate on 7yyery. The model parameter
¢’ is updated to minimize the meta-learning loss
through MAML.

Given a pre-trained model fy (initialized with
parameter # trained on word-level domain mixing)
and the meta-train data Dyeta-train, fOr each task
T, we learn to use one gradient update the model
parameter from 6 to 6’ as follows:

6' =0 — aVyLr (fy)

where « is the learning rate and L is the loss func-
tion. In our methods, we consider both the tradi-
tional sentence-level meta-learning loss L7 (fg)
and the word-level loss T'7 (fp) (L* of T) cal-
culated from the word-level domain mixing pre-
trained model. More formally, the loss is updated
as follows:

L1 (fo) = L7 (fo) + T'7 (fo)

Note that the meta-training phrase is not adapted
to a specific domain, so it can be used as a metric
to evaluate the domain robustness of the model.

Meta-Adaptation. After the meta-training
phase, the parameters are updated to adapt to each
domain using the small support set of Dpeta-test
corpus to simulate the low-resource scenarios.
Then performance is evaluated on the query set
of Dmeta-test-

4 Experiments

Datasets. We experiment with English—German
(en2de) and English—Chinese (en2zh) translation
tasks. For the en2de task, we use the same corpora
as Zhan et al. (2021). The data consists of cor-
pora in nine domains (Bible, Books, ECB, EMEA,

"We confirmed with Zhan et al. (2021) via email that they

did not deduplicate the corpus, which is the main reason for
the difference between our results and their results.

Algorithm 1 RMLNMT (Robust Meta-Learning
NMT Domain Adaptation)

Require: Domain classifier model cls; Pretrained
domain-mixing model 6;

1: Score the sentence in Dypea-train USING cls

2: for N epochs do

3 Split corpus into n tasks based on step 1
4: Balance sample through all tasks
5
6

fortask 7;,7=1...ndo
Evaluate loss L7 (fp)

= L7, (fo) +'1; (fo) on support set

7: Update the gradient with parameters
0 =60 —aVeLt (fo)

8: end for

9: Update the gradient with parameters

0 =60 — BVyL7 (fg) on query set
10: end for
11: return RMLNMT model parameter 6’

GlobalVoices, JRC, KDE, TED, WMT-News) pub-
licly available on OPUS? (Tiedemann, 2012) and
COVID-19 corpus?®. For en2zh, we use UM-Corpus
(Tian et al., 2014) containing eight domains: Edu-
cation, Microblog, Science, Subsitles, Laws, News,
Spoken, Thesis. We use WMT14 (en2de) and
WMT18 (en2zh) corpus published on the WMT
website* as our general domain corpora. We use
WMT19 English monolingual corpora to train the
LM model so that we can reproduce results from
previous work.

Data Preprocessing. For English and German,
we preprocessed all data with the Moses tokenizer’
and use sentencepiece® (Kudo and Richardson,
2018) to encode the corpus with a joint vocabu-
lary, with size 40,000. After that, we filter the
sentence longer than 175 tokens and deduplicate
the corpus. For Chinese, we perform segmenta-
tion with pkuseg 7 (Luo et al., 2019). To have
a fair comparison with previous methods (Sharaf
et al., 2020; Zhan et al., 2021), we use the same set-
ting, which randomly sub-sampled Dpyeta-train and
Dineta-test for each domain with fixed token sizes in
order to simulate domain adaptation tasks in low-
resource scenarios. More details for data used in
this paper can be found in Appendix A.1.

2opus.nlpl.eu
3github.com/NLP2CT/Meta-Curriculum
*http://www.statmt.org
Sgithub.com/moses-smt/mosesdecoder
6github.com/google/sentencepiece
7github.com/lancopku/pkuseg—python
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Models . 4 Unseen 4 Seen
Covid Bible Books ECB TED | EMEA Globalvoices JRC KDE WMT
1 Vanilla 2434 12.08 12.61 2996 27.89 | 37.27 24.19 39.84 27.75 27.38
Meta-MT w/o FT 23.69 11.07 12.10 23.04 26.86 | 30.94 23.73 38.82 23.04 26.13
31 Meta-Curriculum (LM) w/o FT | 23.70 11.16 1224 2822 27.21 | 33.49 24.27 39.21 27.60 25.83
4 Meta-Curriculum (cls) w/o FT | 24.03 11.30 1229 2749 27.61 | 32.16 24.55 39.07 2692 25.83
5  Word-level Adaptive 2543 12,53 13.11 31.11 28.50 | 47.28 24.70 50.99 30.93 26.64

Table 1: Domain Robustness: BLEU scores on the English — German translation task. w/o denotes the meta-
learning systems without fine-tuning, FT denotes fine-tuning. Best results are highlighted in bold.

Models . Unseen Seen
Covid Bible Books ECB TED | EMEA Globalvoices JRC KDE WMT
1 Plain FT 24.81 12.61 12.78 30.48 2836 | 37.26 24.26 40.02 27.99 2731
2  Meta-MT + FT 25.83 1420 13.39 30.36 28.57 | 34.69 24.64 39.15 2747 26.38
3 Meta-Curriculum (LM) + FT | 26.66 14.37 13.70 30.41 28.97 | 34.00 24.72 39.61 27.37 26.68
4 Meta-Curriculum (cls) + FT | 26.14 15.16 13.53 30.72 29.11 | 33.96 24.72 39.40 27.86 26.45
5 RMLNMT w/o FT 2548 1148 13.11 31.42 28.05| 47.00 26.35 51.13 32.80 28.37
RMLNMT + FT 26.53 15.37 13.72 31.97 2947 | 47.02 26.55 51.13 32.88 28.37

Table 2: Domain Adaptability: BLEU scores on the English — German translation task.

Baselines. We compare RMLNMT with the
following baselines: i) Vanilla. A standard
Transformer-based NMT system trained on the
general domains (WMT14 for en2de, WMT18 for
en2zh) and Dipeta-train COrpus in seen-domains. We
use the Dieta-train COrpus because meta-learning-
based methods also use the Dieta-train cOrpus, this
is a more fair and stronger baseline. ii) Plain
fine-tuning. Fine-tune the vanilla system on sup-
port set of Dpetarest - 111) Meta-MT. Standard
meta-learning approach on domain adaptation task,
which learns to adapt to new unseen domains based
on a meta-learned model (Sharaf et al., 2020).
iv) Meta-Curriculum (LM). Meta-learning ap-
proach for domain adaptation using LM score as
the curriculum to sample the task (Zhan et al.,
2021). v) Meta-Curriculum (cls). Similar to
Meta-Curriculum (LM), domain classifier score
is used instead of LM. vi) Meta-based w/o FT.
This series of experiments uses the meta-learning
system prior to adaptation to the specific domain.
This can be used to evaluate the domain robust-
ness of meta-based models (see more details in the
meta-training part of Section 3.3). vii) Word-Level
Adaptive. Multi-domain NMT with word-level
layer-wise domain mixing (Jiang et al., 2020).

Implementation. We use the Transformer
model (Vaswani et al., 2017) implemented in
fairseq (Ott et al., 2019). For our word-level
domain-mixing modules, we dynamically adjust
the network structure according to the number of
domains since every domain has its multi-head lay-
ers. Hence, the number of model parameters in

the attentive sub-layers of RMLNMT is k times
the number in the standard transformer (k is the
number of domains in the training data). Following
Jiang et al. (2020), we enlarged the baseline mod-
els to have v/% times larger embedding dimension,
so the baseline has the same number of parame-
ters. This should rule out that the improvements
are due to increased parameter count rather than
modeling improvements. For our meta-learning
framework, we consider the general meta loss and
word-adaptive loss together (as seen in Section 3.3).
More details on hyper-parameters are listed in Ap-
pendix A.2.

Evaluation. For a fair comparison with previous
work, we use the same data from the support set of
Dineta-test to finetune the model and the same data
from the query set of Dieta-test t0 evaluate the mod-
els. We measure case-sensitive detokenized BLEU
with SacreBLEU (Post, 2018); beam search with a
beam of size five is used. Because of the recent crit-
icism of BLEU score (Mathur et al., 2020), we also
evaluate our models using chrF (Popovi¢, 2015)
and COMET (Rei et al., 2020); the results are listed
in Appendix A.5. We evaluated the performance
of each model in terms of domain robustness and
domain adaptability separately.

Domain Robustness. Domain robustness shows
the effectiveness of the model both in seen and
unseen domains. Hence, we use the model without
fine-tuning to evaluate the domain robustness.

Domain Adaptability. We evaluate the do-
main adaptability by testing that the model quickly
adapts to new domains using just hundreds of in-



Models Unseen Seen
Education Microblog Science Subtitles | Laws News Spoken Thesis
1 Vanilla 6.46 5.23 7.74 3.07 37.10  6.67 4.14 14.38
2 Meta-MT w/o FT 4.80 4.20 5.25 1.94 10.57 6.52 434 6.04
3 Meta-Curriculum (LM) w/o FT 5.65 5.01 5.35 1.87 2483  6.66 4.38 7.25
4  Meta-Curriculum (cls) w/o FT 4.83 3.84 5.61 2.72 20.37 6.97 4.41 4.87
5 Word-level Adaptive 6.36 5.37 8.09 3.21 3848 7.82 421 14.94
Table 3: Domain Robustness: BLEU scores on English — Chinese translation tasks.
Models Unseen Seen
Education Microblog Science Subtitles | Laws News Spoken Thesis
1 Plain FT 6.02 5.95 7.73 3.10 37.06 643 5.05 14.68
2 Meta-MT + FT 6.03 5.89 7.34 2.17 30.18  5.93 5.08 11.32
3 Meta-Curriculum (LM) + FT 5.84 5.72 7.25 2.36 31.70 6.85 5.14 12.10
4  Meta-Curriculum (cls) + FT 6.14 5.73 7.70 1.93 30.75 6.58 5.62 12.04
5 RMLNMT w/o FT 6.34 4.54 8.27 3.15 38.70  8.37 6.12 15.21
RMLNMT + FT 7.28 6.21 9.37 4.45 38.73 8.41 6.08 15.28

Table 4: Domain Adaptability: BLEU scores on English — Chinese translation tasks.

domain parallel sentences. Therefore, we fine-tune
the models on a small amount of domain-specific
data.

Cross-Domain Robustness. To better show the
cross-domain robustness of RMLNMT, we use the
fine-tuned model of one specific domain to generate
the translation for other domains. More formally,
given k domains, we use the fine-tuned model M ;
with the domain label of J to generate the transla-
tion of k£ domains. We calculate the BLEU score
difference between the translations generated in
the different domains and the vanilla baseline sepa-
rately. The results are as shown in Appendix A.4.

5 Results

Domain Robustness. Tables 1 and 3 show the
domain robustness of the models. As we can see,
the word-level domain mixing model shows the
best domain robustness compared with other mod-
els both in seen and unseen domains. In addition,
the traditional meta-learning approach without fine-
tuning is even worse than the standard transformer
model. Note this setup differs from the previous
work (Sharaf et al., 2020; Zhan et al., 2021) be-
cause we included the Dpera-train data to the vanilla
system to insure all systems in the table use the
same training data. Interestingly, the translation
quality in the WMT domain decreases with the in-
creasing robustness in other domains. We speculate
this might be due overfiting of the vanilla system
to the WMT domain.

Domain Adaptability. Tables 2 and 4 show the
domain adaptability of the models. We observe

that the traditional meta-learning approach shows
high adaptability to unseen domains but fails on
seen domains due to limited domain robustness. In
contrast, RMLNMT shows its domain adaptability
both in seen and unseen domains, and maintains the
domain robustness simultaneously. One interesting
observation is that RMLNMT does not improve
much on seen domains after finetuning, because the
meta-learning model without finetuning is already
strong enough due to the domain robustness of
word-level domain mixing.

The results of both domain robustness and do-
main adaptability are consistent for the chrF and
COMET evaluation metrics (see more details in
Tables 13 and 14 of Appendix A.5).

6 Analysis

In this section, we conduct additional experiments
to better understand the strengths of RMLNMT. We
analyze the contribution of different components
in RMLNMT, through an ablation study.
Different classifiers. Tables 1, 2, 3 and 4 show
that the classifier-based curriculum slightly out-
performs the curriculum derived from language
models. We evaluate the impact of different classi-
fiers on translation performance. The main results
are as shown in Table 5 (see more details in Ap-
pendix A.3). We observed that the performance
of RMLNMT is not directly proportional to the
accuracy of the classifier. In other words, slightly
higher classification accuracy does not lead to bet-
ter BLEU scores. This is because the accuracy of
the classifier is close between BERT-based models



Classifier . 4 Unseen . Seen

Covid Bible Books ECB TED | EMEA Globalvoices JRC KDE WMT
CNN 2412 13.57 1274 30.31 28.14 | 46.12 25.17 50.52 31.15 26.34
BERT-many-labels 25.89 14.77 13.71 32.10 29.28 | 47.41 26.70 51.34 3276 28.17
BERT-2-labels 26.10 14.85 13.58 31.99 29.17 | 46.80 26.46 51.56 32.83 28.37
mBERT-many-labels | 26.10 14.73 13.69 31.93 29.11 | 47.02 26.33 51.13 32.69 2791
mBERT-2-labels 26.53 15.37 13.71 3197 2947 | 47.02 26.55 51.13 32.88 28.37

Table 5: Different classifier: BLEU scores on the English — German translation task.

Sampling Strategy - - Unseen - Seen

Covid Bible Books ECB TED | EMEA Globalvoices JRC KDE WMT
Token-based sampling | 2530 11.38 12.70 31.61 28.01 | 47.51 26.50 51.31 32.88 28.03
Balance sampling 2547 11.51 12.79 32.08 28.98 | 47.64 26.58 51.25 3291 28.07

Table 6: Different sampling strategy: BLEU scores on the English — German translation task.

Finetune Strategy - - Unseen - Seen

Covid Bible Books ECB TED | EMEA Globalvoices JRC KDE WMT
FT-unseen 2523 13.18 12.73 3245 2841 | 46.35 25.83 50.85 32.30 26.88
FT-seen 2458 11.73 12.57 30.79 27.29 | 46.58 25.73 5091 31.78 26.51
FT-all 15.00 7.77 9.06 21.33 1698 | 24.69 14.63 27.59 12.77 15.75
FT-unseen 26.53 15.37 13.71 3197 2947 | 47.02 26.33 51.13 32.83 28.37

Table 7: Different fine-tuning strategy: BLEU scores on the English — German translation task.

and the primary role of the classifier is to construct
the curriculum for splitting the tasks. When we use
a significantly worse classifier, i.e., the CNN in our
experiments, the overall performance of RMLNMT
is worse than the BERT-based classifier.

Balanced sampling vs. Token-based sampling.
Plain meta-learning uses a token-based sampling
strategy to split sentences into small tasks. How-
ever, the token-based strategy could cause unbal-
anced domain distribution in some tasks, especially
in the early stage of training due to domain mis-
matches (see the discussion of balanced sampling
in Section 3.3). To address this issue, we proposed
to balance the domain distribution after splitting
the task. Table 6 shows that our methods can re-
sult in small improvements in performance. For
example, in the Books domain, BLEU was 12.70
with token-based sampling, but with the balanced
sampling strategy BLEU was 12.79. We keep the
same number of tasks to have a fair comparison
with previous methods.

Different fine-tuning strategies. As described
in Section 3.1, the model for each domain has its
own multi-head and feed-forward layers. During
fine-tuning on one domain corpus (support set of
Dineta-test), We devise four strategies: i) FT-unseen:
fine-tuning using all unseen domain corpora; ii) FT-
seen: fine-tuning using all seen domain corpora;
iii) FT-all: fine-tuning using all out-of-domain cor-
pora (seen and unseen domains); iv) FT-specific:

using the specific domain corpus to fine-tune the
specific models. The results are shown in Table 7.
FT-specific obtains robust results among all the
strategies. Although other strategies outperform
FT-specific in some domains, FT-specific is robust
across all domains. Furthermore, FT-specific is the
fairest comparison because it uses only a specific
domain corpus to fine-tune, which is the same as
the baseline systems.

7 Conclusion

We presented RMLNMT, a robust meta-learning
framework for low-resource NMT domain adapta-
tion reaching both high domain adaptability and do-
main robustness. Unlike previous methods which
sacrifice the performance on other domains, our
proposed methods keeps robustness on all domains
(both in seen and unseen domains). We show con-
sistent improvements in translation from English to
German and English to Chinese. RMLNMT is rec-
ommended for those who would want systems that
are domain-robust and domain adaptable in low-
resource scenarios. Our future directions include
extending RMLNMT to multilingual domain adap-
tation, reducing model parameters while ensuring
domain robustness and adaptability.
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A Appendix

A.1 Datasets

For the OPUS corpus used in English — German
translation task, we deduplicated the corpus, which
is different from (Zhan et al., 2021) and is the main
reason that we cannot reproduce the results in the
original paper. The statistics of the original OPUS
are shown in Table 8. The seen domains (EMEA,
Globalvoices, JRC, KDE, WMT) contain a lot of
duplicated sentences. The scores in the original
paper are too high because the Dyeta-train dataset

overlaps with some sentences in Dypeta-test-

Corpus Original | Deduplicated
Covid 3,325 3,312
Bible 62,195 61,585
Books 51,467 51,106
ECB 113,116 113,081
TED 143,830 142,756

EMEA 1,103,807 360,833

Globalvoices 71,493 70,519
JRC 717,988 503,789
KDE 223,672 187,918

WMT 45913 34,727

Table 8: Data statistic of the original corpus for
English—German translation task

For the meta-learning phase, to have a fair com-
parison with previous methods, we use the same
setting. We random split 160 tasks and 10 tasks
respectively in Dpeta-train a0d Dpeta-test t0 Simulate
the low-resource scenarios. For each task, the to-
ken amount of support set and query set is a strict
limit to 8K and 16 K. Dyyeta-dev cOrpus is limited
to 5000 sentences for each domain. Table 9 and
Table 10 shows the detailed statistics of English —
German and English — Chinese tasks.

A.2 Model Configuration

We use the Transformer Base architecture
(Vaswani et al., 2017) as implemented in fairseq
(Ott et al., 2019). We use the standard Transformer
architecture with dimension 512, feed-forward
layer 2048, 8 attention heads, 6 encoder layers
and 6 decoder layers. For optimization, we use the
Adam optimizer with a learning rate of 5- 107>, To
prevent overfitting, we applied a dropout of 0.3 on
all layers. The number of warm-up steps was set
to 4000. At the time of inference, a beam search
of size 5 is used to balance the decoding time and
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Dmeta—train Dmeta—test
Support Query Support Query
Covid / / 309 612
Bible / / 280 548
Books / / 304 637
ECB / / 295 573
TED / / 390 772
EMEA 14856 29668 456 975
Globalvoices 11686 23319 368 699
JRC 7863 15769 254 519
KDE 24078 48284 756 1510
WMT 10939 21874 334 704

Table 9: Data statistic of the meta-learning stage for
English—German translation task

Dmeta»train Dmeta-test
Support Query Support Query

Education / / 395 785
Microblog / / 358 721
Science / / 392 852
Subtitles / / 612 1219
Laws 6379 13001 197 416
News 9004 18362 281 536
Spoken 18270 36569 571 1148
Thesis 8914 17883 298 547

Table 10: Data statistic of the meta-learning stage for
English—Chinese translation task

accuracy of the search.

For the word-level domain-mixing model, we
use the same setting as Jiang et al. (2020). The
number of parameters of our model is dynamically
adjusted with the domain numbers and £ times
higher than standard model architecture, since ev-
ery domain has its multi-head attention layer and
feed-forward layer.

A.3 Different classifiers

With a general in-domain corpus and some out-
of-domain corpora, we train five classifiers. We
experiment with two different labeling schemes:
2-1labels where we distinguish only two classes:
out-of-domain and in-domain; many-labels
where sentences are labeled with the respective
domain labels. Further, we experiment with two
variants of the BERT model: first, we use mono-
lingual English BERT on the source side only, and
second, we use multilingual BERT (mBERT) to
classify the parallel sentence pairs. For further
comparison, we include also a CNN-based classi-
fier (Kim, 2014). We present the accuracy of the
English-German domain classifier in Table 11.



Classifier Acc(%)
CNN 74.91%
BERT: many-labels 96.12%
BERT: 2-labels 95.35%
mBERT: many-labels | 95.41%
mBERT: 2-labels 95.26%

Table 11: The accuracy of the different classifiers.

A.4 Cross-Domain Robustness

Table 12 reports the average difference of k£ x k
BLEU scores; a larger positive value means a more
robust model. We observed that RMLNMT shows
its robustness on all domains and that the model
performance fine-tuned in one specific domain is
not sacrificed in other domains.

In Figure 3 we show the detailed results (k x k
scores). We observed that the plain meta-learning
based methods have a negative value, which means
the performance gains in the specific domains come
at the cost of performance decreases in other do-
mains. In other words, the model is not domain
robust enough. In contrast, RMLNMT has a pos-
itive difference with the vanilla system, showing
that the model is robust.

Methods Avg
Meta-MT -1.97
Meta-Curriculum (LM) | -0.96
Meta-Curriculum (cls) | -0.98
RMLNMT 2.64

Table 12: The average improvement over vanilla base-
line.

A.5 Evaluations

In addition to BLEU, we also use chrF (Popovic¢,
2015) and COMET (Rei et al., 2020) as evaluation
metrics. Table 13 and Table 14 show the results.
Consistently with the BLEU score (Tables 1 and 2),
we observed that RMLNMT is more effective than
all previous methods.
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Models Unseen Seen
Covid Bible Books ECB TED | EMEA Globalvoices JRC KDE WMT
1 Vanilla 0.550 0.418 0.385 0.538 0.542 | 0.599 0.536 0.614 0.525 0.558
Plain FT 0.555 0.423 0.388 0.540 0.548 | 0.600 0.536 0.618 0.528 0.558
) Meta-MT w/o FT 0.545 0.410 0.382 0.498 0.538 | 0.532 0.531 0.610 0.464 0.553
Meta-MT + FT 0.566 0.432 0390 0.542 0.556 | 0.582 0.538 0.613 0.522 0.552
3 Meta-Curriculum (LM) w/o FT | 0.548 0412 0.384 0.523 0.543 | 0.560 0.536 0.611 0.521 0.554
Meta-Curriculum (LM) + FT 0.567 0.434 0395 0544 0548 | 0.572 0.539 0.615 0.522 0.553
4 Meta-Curriculum (cls) w/o FT | 0.549 0414 0.385 0.518 0.546 | 0.559 0.536 0.609 0.516 0.550
Meta-Curriculum (cls) + FT 0.558 0.447 0394 0.547 0562 | 0.574 0.540 0.615 0.527 0.553
5 Word-level Adaptive 0.560 0.418 0.387 0.557 0.551 | 0.662 0.541 0.705 0.555 0.555
6 RMLNMT w/o FT 0.555 0.405 0.388 0.557 0.544 | 0.656 0.552 0.702 0.574 0.561
RMLNMT + FT 0.562 0.451 0.395 0.558 0.560 | 0.656 0.552 0.702 0.574 0.561

Table 13: chrF scores on the English — German translation task.

Models Unseen Seen
Covid Bible Books ECB TED | EMEA Globalvoices JRC KDE WMT
1 Vanilla 0.4967 -0.1250 -0.2225 0.3276 0.3400 | 0.3096 0.3199 0.5430 0.1836 0.4326
Plain FT 0.5066 -0.1105 -0.1985 0.3315 0.3553 | 0.3177 0.3276 0.5492 0.1813 0.4392
2 Meta-MT w/o FT 0.4850 -0.1454 -0.2228 0.0953 0.3506 | 0.0524 0.2985 0.5319 0.1304 0.4137
Meta-MT + FT 0.5175 -0.0650 -0.1878 0.3466 0.3824 | 0.2678 0.3189 0.5509 0.1316 0.4161

Meta-Curriculum (LM) w/o FT | 04879 -0.1365 -0.2122 0.2568 0.3751 | 0.1968 0.3273 0.5246  0.0962 0.4206
Meta-Curriculum (LM) + FT 0.5193 -0.0604 -0.1773 0.3460 0.3729 | 0.2366 0.3141 0.5430 0.1467 0.4128

Meta-Curriculum (cls) w/o FT | 04861 -0.1331 -0.2141 0.2496 0.3637 | 0.1758 0.3171 0.5193 0.0849 0.4120

4 Meta-Curriculum (cls) + FT 0.5163 -0.0763 -0.1757 0.3421 0.3801 | 0.2435 0.3235 0.5452 0.1564 0.4174
5 Word-level Adaptive 0.5070 -0.1408 -0.2149 0.3544 0.3678 | 0.4296 0.3410 0.6838 0.2610 0.4106
6 RMLNMT w/o FT 0.4943  -0.1956 -0.2179 0.3580 0.3394 | 0.4026 0.3769 0.6797 0.3014 0.4255

RMLNMT + FT 0.5302 -0.0543 -0.1610 0.3547 0.3867 | 0.4046 0.3771 0.6797 0.3015 0.4256

Table 14: COMET scores on the English — German translation task.
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Figure 3: BLEU scores for one specific finetuned model on other domains for en2de translation.
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