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Abstract

We address two problems of domain adaptation001
in neural machine translation. First, we want002
to reach domain robustness, i.e., good quality003
of both domains from the training data, and do-004
mains unseen in the training data. Second, we005
want our systems to be adaptive, i.e., making006
it possible to finetune systems with just hun-007
dreds of in-domain parallel sentences. In this008
paper, we introduce a novel combination of two009
previous approaches, word adaptive modelling,010
which addresses domain robustness, and meta-011
learning, which addresses domain adaptability,012
and we present empirical results showing that013
our new combination improves both of these014
properties.1015

1 Introduction016

The success of Neural Machine Translation (NMT;017

Bahdanau et al., 2015; Vaswani et al., 2017) heav-018

ily relies on large-scale high-quality parallel data,019

which is difficult to obtain in some domains. We020

study two major problems in NMT domain adapta-021

tion. First, models should work well on both seen022

domains (the domains in the training data) and un-023

seen domains (domains which do not occur in the024

training data). We call this property domain ro-025

bustness. Second, with just hundreds of in-domain026

sentences, we want to be able to quickly adapt to a027

new domain. We call this property domain adapt-028

ability. There are a few works attempting to solve029

these two problems. Jiang et al. (2020) proposed030

using individual modules for each domain with031

a word-level domain mixing strategy, which they032

showed has domain robustness on seen domains.033

We show that in fact word-level domain mixing can034

also have domain robustness on unseen domains, a035

new result. Sharaf et al. (2020); Zhan et al. (2021)036

use meta-learning approaches for improving on037

1Our source code is attached and will be made publicly
available.

unseen domains. This work has strengths in adapt- 038

ability to unseen domains but sacrifices robustness 039

on seen domains. 040

Our goal is to develop a method which makes the 041

model domain adaptable while maintaining robust- 042

ness. We show that we can combine meta-learning 043

with a robust word-level domain mixing system to 044

obtain both domain robustness and domain adapt- 045

ability simultaneously in a single model. The rea- 046

sons are as follows: i) word-level domain mixing 047

is better at capturing the domain-specific knowl- 048

edge on seen domains, and is more adaptive in the 049

process of domain knowledge sharing on unseen 050

domains (Jiang et al., 2020); ii) meta-learning fails 051

to work in seen domains, hence we considered us- 052

ing domain-specific knowledge learned from word- 053

level domain mixing to improve the performance in 054

seen domains; iii) meta-learning show its strength 055

in adapting to new domains, allowing us to use the 056

domain knowledge shared from seen domains to 057

improve the performance on new unseen domains. 058

To achieve this, we propose RMLNMT (robust 059

meta-learning NMT), a more robust and adap- 060

tive meta-learning-based NMT domain adaptation 061

framework. We first train a word-level domain 062

mixing model to improve the robustness on seen 063

domains, and show that, surprisingly, this improves 064

robustness on unseen domains as well. Then, we 065

train a domain classifier based on BERT (Devlin 066

et al., 2019) to score training sentences; the score 067

measures similarity between out-of-domain and 068

general-domain sentences. Finally, we improve do- 069

main adaptability by integrating the domain-mixing 070

model into a meta-learning framework with the do- 071

main classifier using a balanced sampling strategy. 072

We evaluate RMLNMT on two translation tasks: 073

English→German and English→Chinese. We con- 074

duct experiments for NMT domain adaptation in 075

two low-resource scenarios. In the first scenario, 076

a word-level domain mixing model is trained, and 077

we carry out an evaluation of domain robustness. 078
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We also show that meta-learning on the seen do-079

mains fails to improve the domain robustness on080

unseen domains. In the second scenario, we com-081

bine domain robust word-level domain mixing with082

meta-learning using only hundreds of in-domain083

sentences, and show that this combination has both084

domain robustness and domain adaptability.085

The rest of the paper is organized as follows: We086

first describe related work (§2) and the models in087

detail (§3). Then we define the experimental setup088

(§4) and evaluate domain robustness and domain089

adaptability (§5). Finally, we analyse the results090

through an ablation study (§6).091

2 Related Work092

Domain Adaptation for NMT. Domain Adapta-093

tion for NMT typically uses additional in-domain094

monolingual data or a small amount of in-domain095

parallel data to improve the performance of do-096

main translation in new domains (Chu and Wang,097

2018). Current approaches can be categorized into098

two groups by granularity: From a sentence-level099

perspective, researchers either use data selection100

methods (Moore and Lewis, 2010; Axelrod et al.,101

2011) to select the training data that is similar to102

out-of-domain parallel corpora or train a classi-103

fier (Rieß et al., 2021) or utilize a language model104

(Wang et al., 2017; Zhan et al., 2021) to better105

weight the sentences. From a word-level perspec-106

tive, researchers try to model domain distribution107

at the word level, since a word in a sentence can108

be related to more domains than just the sentence109

domain (Zeng et al., 2018; Yan et al., 2019; Hu110

et al., 2019; Sato et al., 2020; Jiang et al., 2020).111

In this work, we combine sentence-level (domain112

classifier) and word-level (domain mixing) domain113

information.114

Curriculum Learning for NMT. Curriculum115

learning (Bengio et al., 2009) starts with easier116

tasks and then progressively gain experience to117

process more complex tasks and have proved use-118

ful in NMT domain adaptation. Stojanovski and119

Fraser (2019) utilize curriculum learning to im-120

prove anaphora resolution in NMT systems. Zhang121

et al. (2019) use a language model to compute a122

similarity score between domains, from which a123

curriculum is devised for adapting NMT systems124

to specific domains from general domains. Sim-125

ilarly, Zhan et al. (2021) use language model di-126

vergence scores as the curriculum to improve the127

performance of NMT domain adaptation with meta-128

learning in low-resource scenarios. In this paper, 129

we improve the performance of NMT domain adap- 130

tation using curriculum learning based on a domain 131

classifier. 132

Meta-Learning for NMT. Gu et al. (2018) ap- 133

ply model-agnostic meta-learning (MAML; Finn 134

et al., 2017) to NMT. They show that MAML ef- 135

fectively improves low-resource NMT. Li et al. 136

(2020) and Sharaf et al. (2020) propose to formu- 137

late the problem of low-resource domain adaptation 138

in NMT as a meta-learning problem: the model 139

learns to quickly adapt to an unseen new domain 140

from a general domain. Recently, Zhan et al. (2021) 141

propose to use language model divergence score as 142

the curriculum to improve the performance of NMT 143

domain adaptation. In this paper, we improve the 144

domain robustness through a word-level domain- 145

mixing model and integrate it into a meta-learning 146

framework to improve the domain adaptability. 147

We approach meta-learning similarly to Zhan 148

et al. (2021), which used the language model di- 149

vergence score as curricula for improving the per- 150

formance of NMT domain adaptation. In contrast, 151

we use the probability of being out-of-domain as- 152

signed by the domain classifier to guide the cur- 153

riculum; we also use a balanced sample strategy 154

to split the tasks (see more details in Section 3.3). 155

Furthermore, our meta-learning work does not use 156

a plain transformer as the pre-trained model, but 157

relies on a word-level domain mixing model (Jiang 158

et al., 2020), which we will show is effective and 159

robust in multi-domain adaptation. Finally, we use 160

a stronger baseline, as we will discuss in the evalu- 161

ation section (§4). 162

3 Method 163

In our initial experiments, we observed that the tra- 164

ditional meta-learning approach for NMT domain 165

adaptation sacrifices the domain robustness on seen 166

domains in order to improve the domain adaptabil- 167

ity on unseen domains (see more details in Table 1 168

and Table 2, these will be discussed in Section 5). 169

To address these issues, we propose a novel ap- 170

proach, RMLNMT, which combines meta-learning 171

with a word-level domain-mixing system to im- 172

prove both domain robustness and domain adapt- 173

ability simultaneously in a single model. RML- 174

NMT consists of three parts: Word-Level Domain 175

Mixing, Domain Classification, and Online Meta- 176

Learning. Figure 1 illustrates RMLNMT. 177
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Figure 1: Method overview. The whole procedure mainly consists of three parts: domain classification, word-level
domain mixing and online meta-learning.

3.1 Word-level Domain Mixing178

In order to improve the robustness of NMT domain179

adaptation, we follow the approach of Jiang et al.180

(2020) and train the word-level layer-wise domain181

mixing NMT model. We provide a brief review182

of this approach here; please refer to Jiang et al.183

(2020) for more details.184

Domain Proportion. From a sentence-level per-
spective (i.e., the classifier-based curriculum step),
each sentence has a domain label. However, the
domain of a word in the sentence is not necessarily
consistent with the sentence domain. E.g., the word
doctor shares the same embedding can have a dif-
ferent meaning in the medical domain and the aca-
demic domain. More specifically, for k domains,
the embedding w ∈ Rd of a word, and a matrix
R ∈ Rk×d, the domain proportion of the word is
represented by a smoothed softmax function as:

Φ(w) = (1− ϵ) · softmax(Rw) + ϵ/k,

where ϵ ∈ (0, 1) is a smoothing parameter to pre-185

vent the output of Φ(w) from collapsing towards 0186

or 1.187

Domain Mixing. The standard Transformer
(Vaswani et al., 2017) models the multi-head atten-
tion mechanism to focus on information in different
representation subspaces from different positions:

MultiHead(Q,K, V ) = Concat (h1, . . . , hh)W
O

hi = Attention
(
QWQ

i ,KWK
i , V W V

i

)
,

where WQ
i ,WK

i ,W V
i ∈ Rd×d/m and WO ∈ 188

Rd×d. For the i-th head hi, m is the number of 189

heads, and d is the dimension of the model output. 190

Following Jiang et al. (2020), each domain has
its own multi-head attention modules. Therefore,
we can integrate the domain proportion of each
word into its multi-head attention module. Specif-
ically, we take the weighted average of the linear
transformation based on the domain proportion Φ.
For example, we consider the point-wise linear
transformation {Wi,V,j}kj=1 on the t-th word of the
input, Vt, of all domains. The mixed linear trans-
formation can be written as

V̄i,t =
k∑

j=1

V ⊤
t Wi,V,jΦV,j (Vt) ,

where ΦV,j (Vt) denotes the j-th entry of ΦV (Vt), 191

and ΦV is the domain proportion layer related to 192

V . For other linear transformations, we apply the 193

domain mixing scheme in the same way for all 194

attention layers and the fully-connected layers. 195

Training. The model can be efficiently trained
by minimizing a composite loss:

L∗ = Lgen(θ) + Lmix(θ),

where θ contains the parameter in encoder, de- 196

coder and domain proportion. Lgen (θ) denotes the 197
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cross-entropy loss over training data {xi,yi}ni=1198

and Lmix(θ) denotes the cross-entropy loss over199

the words/domain labels. For Lmix(θ), we com-200

pute the cross-entropy loss of its domain propor-201

tion Φ(w) as − log (ΦJ(w)), which take J as the202

domain label. Hence, Lmix(θ) is computed as the203

sum of the cross-entropy loss over all such pairs of204

word labels of the training data.205

3.2 Domain Classification206

Domain similarity has been successfully applied207

in NMT domain adaptation. Moore and Lewis208

(2010) calculate cross-entropy scores with a lan-209

guage model to represent the domain similarity.210

Rieß et al. (2021) leverage simple classifiers to211

compute similarity scores; these scores are more212

effective than scores from language models for do-213

main adaptation of NMT. Following Rieß et al.214

(2021), we compute domain similarity using a215

sentence-level classifier, but in contrast with their216

work, we based our classifier on a pre-trained lan-217

guage model.218

Given k domain corpora (one general domain
corpus and n out-of-domain corpora), we trained
a sentence classification model M based on BERT
(Devlin et al., 2019). For a sentence x with a do-
main label Lx, a simple softmax is added to the top
of the model M to predict the domain probability
of sentence x:

P (x | h) = softmax(Wh),

where W is the parameter matrix of M and h is the219

hidden state of M . P (x | h) is a probability set,220

which contains k probability scores indicating the221

similarity of sentence x to each domain. A higher222

probability P of general domain means the domain223

of sentence x is more similar to the general domain,224

and vice versa. We finally select the probability of225

the general domain as the score of the sentence x226

and use this score as the curriculum to split the task227

in meta-learning (see more details in Section 3.3).228

A higher score indicates that the sentence is more229

similar to the general domain, so we will select it230

earlier.231

3.3 Online Meta-Learning232

The idea of meta-learning is to use a small set of233

source tasks {T1, . . . , Tn} to find the initialization234

of model parameters θ from which learning a tar-235

get task T0 would require only a small number236

of training examples. Meta-learning algorithms237
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Figure 2: The statistic of samples in the task for
tokenize-based splitting strategy.

consist of three main steps: (i) split the seen do- 238

main corpus into small tasks T containing a small 239

amount of data as Dmeta-train and Dmeta-test to simu- 240

late the low-resource scenarios. Data for each task 241

Ti is decomposed into two sub-sets: a support set 242

Tsupport used for training the model and a query set 243

Tquery used for evaluating the model; (ii) leverage 244

a meta-learning policy to adapt model parameters 245

to different small tasks using Dmeta-train datasets. 246

We use MAML, proposed by Finn et al. (2017), 247

and instantiated for the meta-learning to adapt the 248

NMT systems in different domains; (iii) finetune 249

the model using the support set of Dmeta-test. Algo- 250

rithm 1 shows the complete algorithm. 251

Split Tasks. Zhan et al. (2021) propose a 252

curriculum-based task splitting strategy, which uses 253

divergence scores computed by a language model 254

as the curriculum to split the corpus into small 255

tasks. We follow a similar idea, but propose to use 256

predictions from a domain classifier as the criterion 257

for splitting the data. Concretely, we first train a 258

domain classifier with BERT; the classifier scores 259

sentences, indicating domain similarity between an 260

in-domain sentence and a general domain sentence 261

(see Section 3.2). The tasks are then split according 262

to the scores; sentences more similar to the general 263

domain sentences are selected in early tasks. 264

Balanced Sampling. Traditional meta-learning 265

approaches (Sharaf et al., 2020; Zhan et al., 2021) 266

are based on token-size based sampling, which uses 267

8k or 16k token sizes split into many small tasks. 268

However, the splitting process for the domain is not 269

balanced, since some tasks did not contain all seen 270

domains, especially in the early tasks. As we can 271

see in Figure 2, the token-based splitting methods 272

usually allocate more samples on domain-similar 273
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domains (WMT, Globalvoices) and allocate small274

samples on domain-distant domains (EMEA, JRC)275

in the sampling of early tasks. This can cause prob-276

lems in our method since the model architecture is277

dynamically changing according to the numbers of278

domains (see more details in Section 3.1).279

To address these issues, we sample the data uni-280

formly from the domains to compensate for im-281

balanced domain distributions based on domain282

classifier scores.283

Meta-Training. Following the balanced sam-284

pling, the process of meta-training is to update the285

current model parameter on Tsupport from θ to θ′,286

and then evaluate on Tquery. The model parameter287

θ′ is updated to minimize the meta-learning loss288

through MAML.289

Given a pre-trained model fθ (initialized with
parameter θ trained on word-level domain mixing)
and the meta-train data Dmeta-train, for each task
T , we learn to use one gradient update the model
parameter from θ to θ′ as follows:

θ′ = θ − α∇θLT (fθ)

where α is the learning rate and L is the loss func-
tion. In our methods, we consider both the tradi-
tional sentence-level meta-learning loss LT (fθ)
and the word-level loss ΓT (fθ) (L∗ of T ) cal-
culated from the word-level domain mixing pre-
trained model. More formally, the loss is updated
as follows:

LT (fθ) = LT (fθ) + ΓT (fθ)

Note that the meta-training phrase is not adapted290

to a specific domain, so it can be used as a metric291

to evaluate the domain robustness of the model.292

Meta-Adaptation. After the meta-training293

phase, the parameters are updated to adapt to each294

domain using the small support set of Dmeta-test295

corpus to simulate the low-resource scenarios.296

Then performance is evaluated on the query set297

of Dmeta-test.298

4 Experiments299

Datasets. We experiment with English→German300

(en2de) and English→Chinese (en2zh) translation301

tasks. For the en2de task, we use the same corpora302

as Zhan et al. (2021). The data consists of cor-303

pora in nine domains (Bible, Books, ECB, EMEA,304

1We confirmed with Zhan et al. (2021) via email that they
did not deduplicate the corpus, which is the main reason for
the difference between our results and their results.

Algorithm 1 RMLNMT (Robust Meta-Learning
NMT Domain Adaptation)

Require: Domain classifier model cls; Pretrained
domain-mixing model θ;

1: Score the sentence in Dmeta-train using cls
2: for N epochs do
3: Split corpus into n tasks based on step 1
4: Balance sample through all tasks
5: for task Ti, i = 1 . . . n do
6: Evaluate loss LT (fθ)

= LTi (fθ)+ΓTi (fθ) on support set
7: Update the gradient with parameters

θ′ = θ − α∇θLT (fθ)
8: end for
9: Update the gradient with parameters

θ′ = θ − β∇θLT (fθ) on query set
10: end for
11: return RMLNMT model parameter θ′

GlobalVoices, JRC, KDE, TED, WMT-News) pub- 305

licly available on OPUS2 (Tiedemann, 2012) and 306

COVID-19 corpus3. For en2zh, we use UM-Corpus 307

(Tian et al., 2014) containing eight domains: Edu- 308

cation, Microblog, Science, Subsitles, Laws, News, 309

Spoken, Thesis. We use WMT14 (en2de) and 310

WMT18 (en2zh) corpus published on the WMT 311

website4 as our general domain corpora. We use 312

WMT19 English monolingual corpora to train the 313

LM model so that we can reproduce results from 314

previous work. 315

Data Preprocessing. For English and German, 316

we preprocessed all data with the Moses tokenizer5 317

and use sentencepiece6 (Kudo and Richardson, 318

2018) to encode the corpus with a joint vocabu- 319

lary, with size 40,000. After that, we filter the 320

sentence longer than 175 tokens and deduplicate 321

the corpus. For Chinese, we perform segmenta- 322

tion with pkuseg 7 (Luo et al., 2019). To have 323

a fair comparison with previous methods (Sharaf 324

et al., 2020; Zhan et al., 2021), we use the same set- 325

ting, which randomly sub-sampled Dmeta-train and 326

Dmeta-test for each domain with fixed token sizes in 327

order to simulate domain adaptation tasks in low- 328

resource scenarios. More details for data used in 329

this paper can be found in Appendix A.1. 330

2opus.nlpl.eu
3github.com/NLP2CT/Meta-Curriculum
4http://www.statmt.org
5github.com/moses-smt/mosesdecoder
6github.com/google/sentencepiece
7github.com/lancopku/pkuseg-python

5
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Models Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

1 Vanilla 24.34 12.08 12.61 29.96 27.89 37.27 24.19 39.84 27.75 27.38
2 Meta-MT w/o FT 23.69 11.07 12.10 23.04 26.86 30.94 23.73 38.82 23.04 26.13
31 Meta-Curriculum (LM) w/o FT 23.70 11.16 12.24 28.22 27.21 33.49 24.27 39.21 27.60 25.83
4 Meta-Curriculum (cls) w/o FT 24.03 11.30 12.29 27.49 27.61 32.16 24.55 39.07 26.92 25.83
5 Word-level Adaptive 25.43 12.53 13.11 31.11 28.50 47.28 24.70 50.99 30.93 26.64

Table 1: Domain Robustness: BLEU scores on the English → German translation task. w/o denotes the meta-
learning systems without fine-tuning, FT denotes fine-tuning. Best results are highlighted in bold.

Models Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

1 Plain FT 24.81 12.61 12.78 30.48 28.36 37.26 24.26 40.02 27.99 27.31
2 Meta-MT + FT 25.83 14.20 13.39 30.36 28.57 34.69 24.64 39.15 27.47 26.38
3 Meta-Curriculum (LM) + FT 26.66 14.37 13.70 30.41 28.97 34.00 24.72 39.61 27.37 26.68
4 Meta-Curriculum (cls) + FT 26.14 15.16 13.53 30.72 29.11 33.96 24.72 39.40 27.86 26.45

5
RMLNMT w/o FT 25.48 11.48 13.11 31.42 28.05 47.00 26.35 51.13 32.80 28.37
RMLNMT + FT 26.53 15.37 13.72 31.97 29.47 47.02 26.55 51.13 32.88 28.37

Table 2: Domain Adaptability: BLEU scores on the English → German translation task.

Baselines. We compare RMLNMT with the331

following baselines: i) Vanilla. A standard332

Transformer-based NMT system trained on the333

general domains (WMT14 for en2de, WMT18 for334

en2zh) and Dmeta-train corpus in seen-domains. We335

use the Dmeta-train corpus because meta-learning-336

based methods also use the Dmeta-train corpus, this337

is a more fair and stronger baseline. ii) Plain338

fine-tuning. Fine-tune the vanilla system on sup-339

port set of Dmeta-test . iii) Meta-MT. Standard340

meta-learning approach on domain adaptation task,341

which learns to adapt to new unseen domains based342

on a meta-learned model (Sharaf et al., 2020).343

iv) Meta-Curriculum (LM). Meta-learning ap-344

proach for domain adaptation using LM score as345

the curriculum to sample the task (Zhan et al.,346

2021). v) Meta-Curriculum (cls). Similar to347

Meta-Curriculum (LM), domain classifier score348

is used instead of LM. vi) Meta-based w/o FT.349

This series of experiments uses the meta-learning350

system prior to adaptation to the specific domain.351

This can be used to evaluate the domain robust-352

ness of meta-based models (see more details in the353

meta-training part of Section 3.3). vii) Word-Level354

Adaptive. Multi-domain NMT with word-level355

layer-wise domain mixing (Jiang et al., 2020).356

Implementation. We use the Transformer357

model (Vaswani et al., 2017) implemented in358

fairseq (Ott et al., 2019). For our word-level359

domain-mixing modules, we dynamically adjust360

the network structure according to the number of361

domains since every domain has its multi-head lay-362

ers. Hence, the number of model parameters in363

the attentive sub-layers of RMLNMT is k times 364

the number in the standard transformer (k is the 365

number of domains in the training data). Following 366

Jiang et al. (2020), we enlarged the baseline mod- 367

els to have
√
k times larger embedding dimension, 368

so the baseline has the same number of parame- 369

ters. This should rule out that the improvements 370

are due to increased parameter count rather than 371

modeling improvements. For our meta-learning 372

framework, we consider the general meta loss and 373

word-adaptive loss together (as seen in Section 3.3). 374

More details on hyper-parameters are listed in Ap- 375

pendix A.2. 376

Evaluation. For a fair comparison with previous 377

work, we use the same data from the support set of 378

Dmeta-test to finetune the model and the same data 379

from the query set of Dmeta-test to evaluate the mod- 380

els. We measure case-sensitive detokenized BLEU 381

with SacreBLEU (Post, 2018); beam search with a 382

beam of size five is used. Because of the recent crit- 383

icism of BLEU score (Mathur et al., 2020), we also 384

evaluate our models using chrF (Popović, 2015) 385

and COMET (Rei et al., 2020); the results are listed 386

in Appendix A.5. We evaluated the performance 387

of each model in terms of domain robustness and 388

domain adaptability separately. 389

Domain Robustness. Domain robustness shows 390

the effectiveness of the model both in seen and 391

unseen domains. Hence, we use the model without 392

fine-tuning to evaluate the domain robustness. 393

Domain Adaptability. We evaluate the do- 394

main adaptability by testing that the model quickly 395

adapts to new domains using just hundreds of in- 396
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Models Unseen Seen
Education Microblog Science Subtitles Laws News Spoken Thesis

1 Vanilla 6.46 5.23 7.74 3.07 37.10 6.67 4.14 14.38
2 Meta-MT w/o FT 4.80 4.20 5.25 1.94 10.57 6.52 4.34 6.04
3 Meta-Curriculum (LM) w/o FT 5.65 5.01 5.35 1.87 24.83 6.66 4.38 7.25
4 Meta-Curriculum (cls) w/o FT 4.83 3.84 5.61 2.72 20.37 6.97 4.41 4.87
5 Word-level Adaptive 6.36 5.37 8.09 3.21 38.48 7.82 4.21 14.94

Table 3: Domain Robustness: BLEU scores on English → Chinese translation tasks.

Models Unseen Seen
Education Microblog Science Subtitles Laws News Spoken Thesis

1 Plain FT 6.02 5.95 7.73 3.10 37.06 6.43 5.05 14.68
2 Meta-MT + FT 6.03 5.89 7.34 2.17 30.18 5.93 5.08 11.32
3 Meta-Curriculum (LM) + FT 5.84 5.72 7.25 2.36 31.70 6.85 5.14 12.10
4 Meta-Curriculum (cls) + FT 6.14 5.73 7.70 1.93 30.75 6.58 5.62 12.04

5
RMLNMT w/o FT 6.34 4.54 8.27 3.15 38.70 8.37 6.12 15.21
RMLNMT + FT 7.28 6.21 9.37 4.45 38.73 8.41 6.08 15.28

Table 4: Domain Adaptability: BLEU scores on English → Chinese translation tasks.

domain parallel sentences. Therefore, we fine-tune397

the models on a small amount of domain-specific398

data.399

Cross-Domain Robustness. To better show the400

cross-domain robustness of RMLNMT, we use the401

fine-tuned model of one specific domain to generate402

the translation for other domains. More formally,403

given k domains, we use the fine-tuned model MJ404

with the domain label of J to generate the transla-405

tion of k domains. We calculate the BLEU score406

difference between the translations generated in407

the different domains and the vanilla baseline sepa-408

rately. The results are as shown in Appendix A.4.409

5 Results410

Domain Robustness. Tables 1 and 3 show the411

domain robustness of the models. As we can see,412

the word-level domain mixing model shows the413

best domain robustness compared with other mod-414

els both in seen and unseen domains. In addition,415

the traditional meta-learning approach without fine-416

tuning is even worse than the standard transformer417

model. Note this setup differs from the previous418

work (Sharaf et al., 2020; Zhan et al., 2021) be-419

cause we included the Dmeta-train data to the vanilla420

system to insure all systems in the table use the421

same training data. Interestingly, the translation422

quality in the WMT domain decreases with the in-423

creasing robustness in other domains. We speculate424

this might be due overfiting of the vanilla system425

to the WMT domain.426

Domain Adaptability. Tables 2 and 4 show the427

domain adaptability of the models. We observe428

that the traditional meta-learning approach shows 429

high adaptability to unseen domains but fails on 430

seen domains due to limited domain robustness. In 431

contrast, RMLNMT shows its domain adaptability 432

both in seen and unseen domains, and maintains the 433

domain robustness simultaneously. One interesting 434

observation is that RMLNMT does not improve 435

much on seen domains after finetuning, because the 436

meta-learning model without finetuning is already 437

strong enough due to the domain robustness of 438

word-level domain mixing. 439

The results of both domain robustness and do- 440

main adaptability are consistent for the chrF and 441

COMET evaluation metrics (see more details in 442

Tables 13 and 14 of Appendix A.5). 443

6 Analysis 444

In this section, we conduct additional experiments 445

to better understand the strengths of RMLNMT. We 446

analyze the contribution of different components 447

in RMLNMT, through an ablation study. 448

Different classifiers. Tables 1, 2, 3 and 4 show 449

that the classifier-based curriculum slightly out- 450

performs the curriculum derived from language 451

models. We evaluate the impact of different classi- 452

fiers on translation performance. The main results 453

are as shown in Table 5 (see more details in Ap- 454

pendix A.3). We observed that the performance 455

of RMLNMT is not directly proportional to the 456

accuracy of the classifier. In other words, slightly 457

higher classification accuracy does not lead to bet- 458

ter BLEU scores. This is because the accuracy of 459

the classifier is close between BERT-based models 460
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Classifier Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

CNN 24.12 13.57 12.74 30.31 28.14 46.12 25.17 50.52 31.15 26.34
BERT-many-labels 25.89 14.77 13.71 32.10 29.28 47.41 26.70 51.34 32.76 28.17
BERT-2-labels 26.10 14.85 13.58 31.99 29.17 46.80 26.46 51.56 32.83 28.37
mBERT-many-labels 26.10 14.73 13.69 31.93 29.11 47.02 26.33 51.13 32.69 27.91
mBERT-2-labels 26.53 15.37 13.71 31.97 29.47 47.02 26.55 51.13 32.88 28.37

Table 5: Different classifier: BLEU scores on the English → German translation task.

Sampling Strategy Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

Token-based sampling 25.30 11.38 12.70 31.61 28.01 47.51 26.50 51.31 32.88 28.03
Balance sampling 25.47 11.51 12.79 32.08 28.98 47.64 26.58 51.25 32.91 28.07

Table 6: Different sampling strategy: BLEU scores on the English → German translation task.

Finetune Strategy Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

FT-unseen 25.23 13.18 12.73 32.45 28.41 46.35 25.83 50.85 32.30 26.88
FT-seen 24.58 11.73 12.57 30.79 27.29 46.58 25.73 50.91 31.78 26.51
FT-all 15.00 7.77 9.06 21.33 16.98 24.69 14.63 27.59 12.77 15.75
FT-unseen 26.53 15.37 13.71 31.97 29.47 47.02 26.33 51.13 32.83 28.37

Table 7: Different fine-tuning strategy: BLEU scores on the English → German translation task.

and the primary role of the classifier is to construct461

the curriculum for splitting the tasks. When we use462

a significantly worse classifier, i.e., the CNN in our463

experiments, the overall performance of RMLNMT464

is worse than the BERT-based classifier.465

Balanced sampling vs. Token-based sampling.466

Plain meta-learning uses a token-based sampling467

strategy to split sentences into small tasks. How-468

ever, the token-based strategy could cause unbal-469

anced domain distribution in some tasks, especially470

in the early stage of training due to domain mis-471

matches (see the discussion of balanced sampling472

in Section 3.3). To address this issue, we proposed473

to balance the domain distribution after splitting474

the task. Table 6 shows that our methods can re-475

sult in small improvements in performance. For476

example, in the Books domain, BLEU was 12.70477

with token-based sampling, but with the balanced478

sampling strategy BLEU was 12.79. We keep the479

same number of tasks to have a fair comparison480

with previous methods.481

Different fine-tuning strategies. As described482

in Section 3.1, the model for each domain has its483

own multi-head and feed-forward layers. During484

fine-tuning on one domain corpus (support set of485

Dmeta-test), we devise four strategies: i) FT-unseen:486

fine-tuning using all unseen domain corpora; ii) FT-487

seen: fine-tuning using all seen domain corpora;488

iii) FT-all: fine-tuning using all out-of-domain cor-489

pora (seen and unseen domains); iv) FT-specific:490

using the specific domain corpus to fine-tune the 491

specific models. The results are shown in Table 7. 492

FT-specific obtains robust results among all the 493

strategies. Although other strategies outperform 494

FT-specific in some domains, FT-specific is robust 495

across all domains. Furthermore, FT-specific is the 496

fairest comparison because it uses only a specific 497

domain corpus to fine-tune, which is the same as 498

the baseline systems. 499

7 Conclusion 500

We presented RMLNMT, a robust meta-learning 501

framework for low-resource NMT domain adapta- 502

tion reaching both high domain adaptability and do- 503

main robustness. Unlike previous methods which 504

sacrifice the performance on other domains, our 505

proposed methods keeps robustness on all domains 506

(both in seen and unseen domains). We show con- 507

sistent improvements in translation from English to 508

German and English to Chinese. RMLNMT is rec- 509

ommended for those who would want systems that 510

are domain-robust and domain adaptable in low- 511

resource scenarios. Our future directions include 512

extending RMLNMT to multilingual domain adap- 513

tation, reducing model parameters while ensuring 514

domain robustness and adaptability. 515
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A Appendix705

A.1 Datasets706

For the OPUS corpus used in English → German707

translation task, we deduplicated the corpus, which708

is different from (Zhan et al., 2021) and is the main709

reason that we cannot reproduce the results in the710

original paper. The statistics of the original OPUS711

are shown in Table 8. The seen domains (EMEA,712

Globalvoices, JRC, KDE, WMT) contain a lot of713

duplicated sentences. The scores in the original714

paper are too high because the Dmeta-train dataset715

overlaps with some sentences in Dmeta-test.716

Corpus Original Deduplicated
Covid 3,325 3,312
Bible 62,195 61,585
Books 51,467 51,106
ECB 113,116 113,081
TED 143,830 142,756

EMEA 1,103,807 360,833
Globalvoices 71,493 70,519

JRC 717,988 503,789
KDE 223,672 187,918
WMT 45,913 34,727

Table 8: Data statistic of the original corpus for
English→German translation task

For the meta-learning phase, to have a fair com-717

parison with previous methods, we use the same718

setting. We random split 160 tasks and 10 tasks719

respectively in Dmeta-train and Dmeta-test to simulate720

the low-resource scenarios. For each task, the to-721

ken amount of support set and query set is a strict722

limit to 8K and 16K. Dmeta-dev corpus is limited723

to 5000 sentences for each domain. Table 9 and724

Table 10 shows the detailed statistics of English →725

German and English → Chinese tasks.726

A.2 Model Configuration727

We use the Transformer Base architecture728

(Vaswani et al., 2017) as implemented in fairseq729

(Ott et al., 2019). We use the standard Transformer730

architecture with dimension 512, feed-forward731

layer 2048, 8 attention heads, 6 encoder layers732

and 6 decoder layers. For optimization, we use the733

Adam optimizer with a learning rate of 5 ·10−5. To734

prevent overfitting, we applied a dropout of 0.3 on735

all layers. The number of warm-up steps was set736

to 4000. At the time of inference, a beam search737

of size 5 is used to balance the decoding time and738

Dmeta-train Dmeta-test
Support Query Support Query

Covid / / 309 612
Bible / / 280 548
Books / / 304 637
ECB / / 295 573
TED / / 390 772

EMEA 14856 29668 456 975
Globalvoices 11686 23319 368 699

JRC 7863 15769 254 519
KDE 24078 48284 756 1510
WMT 10939 21874 334 704

Table 9: Data statistic of the meta-learning stage for
English→German translation task

Dmeta-train Dmeta-test
Support Query Support Query

Education / / 395 785
Microblog / / 358 721

Science / / 392 852
Subtitles / / 612 1219

Laws 6379 13001 197 416
News 9004 18362 281 536

Spoken 18270 36569 571 1148
Thesis 8914 17883 298 547

Table 10: Data statistic of the meta-learning stage for
English→Chinese translation task

accuracy of the search. 739

For the word-level domain-mixing model, we 740

use the same setting as Jiang et al. (2020). The 741

number of parameters of our model is dynamically 742

adjusted with the domain numbers and k times 743

higher than standard model architecture, since ev- 744

ery domain has its multi-head attention layer and 745

feed-forward layer. 746

A.3 Different classifiers 747

With a general in-domain corpus and some out- 748

of-domain corpora, we train five classifiers. We 749

experiment with two different labeling schemes: 750

2-labels where we distinguish only two classes: 751

out-of-domain and in-domain; many-labels 752

where sentences are labeled with the respective 753

domain labels. Further, we experiment with two 754

variants of the BERT model: first, we use mono- 755

lingual English BERT on the source side only, and 756

second, we use multilingual BERT (mBERT) to 757

classify the parallel sentence pairs. For further 758

comparison, we include also a CNN-based classi- 759

fier (Kim, 2014). We present the accuracy of the 760

English-German domain classifier in Table 11. 761
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Classifier Acc(%)
CNN 74.91%
BERT: many-labels 96.12%
BERT: 2-labels 95.35%
mBERT: many-labels 95.41%
mBERT: 2-labels 95.26%

Table 11: The accuracy of the different classifiers.

A.4 Cross-Domain Robustness762

Table 12 reports the average difference of k × k763

BLEU scores; a larger positive value means a more764

robust model. We observed that RMLNMT shows765

its robustness on all domains and that the model766

performance fine-tuned in one specific domain is767

not sacrificed in other domains.768

In Figure 3 we show the detailed results (k × k769

scores). We observed that the plain meta-learning770

based methods have a negative value, which means771

the performance gains in the specific domains come772

at the cost of performance decreases in other do-773

mains. In other words, the model is not domain774

robust enough. In contrast, RMLNMT has a pos-775

itive difference with the vanilla system, showing776

that the model is robust.777

Methods Avg
Meta-MT -1.97
Meta-Curriculum (LM) -0.96
Meta-Curriculum (cls) -0.98
RMLNMT 2.64

Table 12: The average improvement over vanilla base-
line.

A.5 Evaluations778

In addition to BLEU, we also use chrF (Popović,779

2015) and COMET (Rei et al., 2020) as evaluation780

metrics. Table 13 and Table 14 show the results.781

Consistently with the BLEU score (Tables 1 and 2),782

we observed that RMLNMT is more effective than783

all previous methods.784
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Models Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

1
Vanilla 0.550 0.418 0.385 0.538 0.542 0.599 0.536 0.614 0.525 0.558
Plain FT 0.555 0.423 0.388 0.540 0.548 0.600 0.536 0.618 0.528 0.558

2
Meta-MT w/o FT 0.545 0.410 0.382 0.498 0.538 0.532 0.531 0.610 0.464 0.553
Meta-MT + FT 0.566 0.432 0.390 0.542 0.556 0.582 0.538 0.613 0.522 0.552

3
Meta-Curriculum (LM) w/o FT 0.548 0.412 0.384 0.523 0.543 0.560 0.536 0.611 0.521 0.554
Meta-Curriculum (LM) + FT 0.567 0.434 0.395 0.544 0.548 0.572 0.539 0.615 0.522 0.553

4
Meta-Curriculum (cls) w/o FT 0.549 0.414 0.385 0.518 0.546 0.559 0.536 0.609 0.516 0.550
Meta-Curriculum (cls) + FT 0.558 0.447 0.394 0.547 0.562 0.574 0.540 0.615 0.527 0.553

5 Word-level Adaptive 0.560 0.418 0.387 0.557 0.551 0.662 0.541 0.705 0.555 0.555

6
RMLNMT w/o FT 0.555 0.405 0.388 0.557 0.544 0.656 0.552 0.702 0.574 0.561
RMLNMT + FT 0.562 0.451 0.395 0.558 0.560 0.656 0.552 0.702 0.574 0.561

Table 13: chrF scores on the English → German translation task.

Models Unseen Seen
Covid Bible Books ECB TED EMEA Globalvoices JRC KDE WMT

1
Vanilla 0.4967 -0.1250 -0.2225 0.3276 0.3400 0.3096 0.3199 0.5430 0.1836 0.4326
Plain FT 0.5066 -0.1105 -0.1985 0.3315 0.3553 0.3177 0.3276 0.5492 0.1813 0.4392

2
Meta-MT w/o FT 0.4850 -0.1454 -0.2228 0.0953 0.3506 0.0524 0.2985 0.5319 0.1304 0.4137
Meta-MT + FT 0.5175 -0.0650 -0.1878 0.3466 0.3824 0.2678 0.3189 0.5509 0.1316 0.4161

3
Meta-Curriculum (LM) w/o FT 0.4879 -0.1365 -0.2122 0.2568 0.3751 0.1968 0.3273 0.5246 0.0962 0.4206
Meta-Curriculum (LM) + FT 0.5193 -0.0604 -0.1773 0.3460 0.3729 0.2366 0.3141 0.5430 0.1467 0.4128

4
Meta-Curriculum (cls) w/o FT 0.4861 -0.1331 -0.2141 0.2496 0.3637 0.1758 0.3171 0.5193 0.0849 0.4120
Meta-Curriculum (cls) + FT 0.5163 -0.0763 -0.1757 0.3421 0.3801 0.2435 0.3235 0.5452 0.1564 0.4174

5 Word-level Adaptive 0.5070 -0.1408 -0.2149 0.3544 0.3678 0.4296 0.3410 0.6838 0.2610 0.4106

6
RMLNMT w/o FT 0.4943 -0.1956 -0.2179 0.3580 0.3394 0.4026 0.3769 0.6797 0.3014 0.4255
RMLNMT + FT 0.5302 -0.0543 -0.1610 0.3547 0.3867 0.4046 0.3771 0.6797 0.3015 0.4256

Table 14: COMET scores on the English → German translation task.
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Figure 3: BLEU scores for one specific finetuned model on other domains for en2de translation.
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