
Under review as a conference paper at ICLR 2021

PRIVATE SPLIT INFERENCE OF DEEP NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Splitting network computations between the edge device and the cloud server is a
promising approach for enabling low edge-compute and private inference of neural
networks. Current methods for providing the privacy train the model to minimize
information leakage for a given set of private attributes. In practice, however, the
test queries might contain private attributes that are not foreseen during training. We
propose an alternative solution, in which, instead of obfuscating the information
corresponding to a set of attributes, the edge device discards the information
irrelevant to the main task. To this end, the edge device runs the model up to a
split layer determined based on its computational capacity and then removes the
activation content that is in the null space of the next layer of the model before
sending it to the server. It can further remove the low-energy components of the
remaining signal to improve the privacy at the cost of reducing the accuracy. The
experimental results show that our methods provide privacy while maintaining the
accuracy and introducing only a small computational overhead.

1 INTRODUCTION

The surge in cloud computing and machine learning in recent years has led to the emergence of
Machine Learning as a Service (MLaaS), where the compute capacity of the cloud is used to analyze
the data that lives on edge devices. One shortcoming of the MLaaS framework is the leakage
of the clients’ private data to the cloud server. To address this problem, several cryptography-
based solutions have been proposed which provide provable security at the cost of increasing the
communication cost and delay of remote inference by orders of magnitude (Juvekar et al. (2018);
Riazi et al. (2019)). The cryptography-based solutions are applicable in use-cases such as healthcare
where a few minutes of delay is tolerable, but not in scenarios where millions of clients request
fast and low-cost responses such as in Amazon Alexa or Apple Siri applications. A light-weight
alternative to cryptographic solutions is to manually hide private information on the edge device; For
instance, sensitive information in an image can be blurred on the edge device before sending it to the
service provider (Vishwamitra et al. (2017)). This approach, however, is task-specific and may not be
viable for generic applications.

The objective of split inference framework, shown in Figure 1, is to provide a generic and computa-
tionally efficient data obfuscation scheme (Kang et al. (2017); Chi et al. (2018)). The service provider
trains the model and splits it into two sub-models, M1 and M2, where M1 contains the first few
layers of the model and M2 contains the rest. The client runs M1 on the edge device and sends the
resulting feature vector z =M1(x) to the server, which computes the public label as ypub =M2(z).
To preserve the privacy, the client desires z to only contain information related to the underlying task.
For instance, when sending facial features for cell-phone authentication, the client does not want to
disclose other information such as their mood. As seen in Figure 1, the privacy leakage is quantified
by an adversary that trains the model M3 to extract private label ypri from feature vector z.

Current methods of private split inference aim to censor the information corresponding to a list of
known private attributes. For example, Feutry et al. (2018) utilize adversarial training to minimize
the accuracy of M3 on the private attribute, and Osia et al. (2018) minimize the mutual information
between the query z and the private label ypri at training time. The set of private attributes, however,
can vary from one query to another. Hence, it is not feasible to foresee all types of attributes that
could be considered private for a specific MLaaS application. Moreover, the need to annotate inputs
with all possible private attributes significantly increases the cost of model training.

1

Under review as a conference paper at ICLR 2021

Figure 1: Split inference setup. Client runs M1 locally and
sends the features z = M1(x) to the server. The server pre-
dicts the intended attribute as ypub = M2(z). An adversary
trains a separate model M3 to predict the private attribute as
ypri = M3(z).

In this paper, we propose an alternative solution where, instead of censoring the information that is
utilized to predict known private attributes, we discard the information that is not used by the main
model for predicting the public attribute. Our contributions are summarized in the following.

• We characterize the information that is not relevant to the prediction of the public attribute as
part of the content of the feature vector z that will be removed by the server-side model. We then
define the null content of the feature vector, zN , as the content in z that is in the null-space of the
following linear layer. The remaining content is called signal content and is denoted by zS . We
have M2(z) =M2(zS + zN) =M2(zS).

• We propose to remove zN from features, z, and show that it reduces the accuracy of the adversary
(M3), while maintaining the accuracy of the main model (M2). To further discard the private
information in z, we propose to remove the low-energy components of zS , through which we
achieve higher privacy (lower accuracy of M3) at the cost of a small reduction in utility (lower
accuracy of M2).

• We show our methods provide tradeoffs between edge-computation efficiency, privacy, and
accuracy. Specifically, with higher edge computation (more layers on the edge device), the client
achieves better privacy at the same accuracy. Also, with the same edge computation (a given split
layer), removing more components from the signal content provides better privacy at the cost of
reduced accuracy.

• We perform extensive experiments on several datasets and show that our methods provide better
tradeoffs between accuracy and privacy compared to existing approaches such as adversarial
training, despite having no knowledge of the private attribute at training or inference times.

2 BACKGROUND AND RELATED WORK

We consider the supervised learning setting of Figure 1, where the model M2 ◦M1 is trained with a
set of examples {xi}Ni=1 and their corresponding public labels {ypubi }Ni=1. At inference phase, the
client runs M1 on their data and sends the intermediate feature vector z =M1(x) to the server. The
goal of private inference is to ensure that z does not contain information about private attributes.

2.1 MEASURING PRIVACY

Several methods have been proposed to measure the privacy leakage of the feature vector. One
approach is computing the mutual information between the query x and the feature vector z (Kraskov
et al. (2004)). In practice, measuring the mutual information is not tractable for high-dimensional
random variables, unless certain assumptions are made about the probability distribution of the
random variables of interest. A more practical approach measures privacy based on the reconstruction
error, ||x̃− x||, where x̃ is estimated based on z (Mahendran & Vedaldi (2015)). Finally, attribute
privacy is defined based on the accuracy of an adversary model that takes z as input and predicts the
private label.

In this paper, we use the attribute privacy notion as it applies to a wide range of applications. Assume
each example {xi}Ni=1 has one or multiple private labels {yprii }Ni=1. The adversary trains a separate
model M3 with (zi, y

pri
i) where zi = M1(xi), as shown in Figure 1. Note that M3 is used as an

aftermath process to evaluate the privacy of the model M2 ◦M1. The split learning framework should
achieve high utility, i.e., the server should be able to infer the public attribute from z accurately, while
providing privacy, i.e., z should not contain information about ypri. We refer to the accuracy of
M2 ◦M1 on ypub as public accuracy and the accuracy of M3 ◦M1 on ypri as private accuracy.

2

Under review as a conference paper at ICLR 2021

2.2 THREAT MODEL

Honest-but-curious server. The server performs the inference of the public attribute but will
potentially try to extract private information from the features, z, as well.

Client capabilities. Upon providing the service, the server also provides a profile of the utility
(accuracy on the public attributes), privacy (accuracy on several private attributes), and computation
of the edge device. The client then decides on the best tradeoff based on the computational resources
and also the desired level of privacy. Such mechanisms are already in use in ML-on-the-edge
applications. For example, in the application of unlocking the phone by face recognition, the client
can specify the required precision in face recognition, where a lower precision will provide higher
utility at the cost of lower security (Chokkattu, 2019).

2.3 RELATED WORK

Prior work has shown that the representations learned by deep neural networks can be used to extract
private information (Song & Shmatikov (2019)) or even reconstruct the raw data (Mahendran &
Vedaldi (2015)). Current methods for private inference can be categorized as follows.

Cryptography-based solutions. Since the server is not trusted, solutions based on public key
encryption (Al-Riyami & Paterson (2003)) are not applicable. We consider scenarios where the server
provides service to millions of users (e.g., in cases of Amazon Alexa or Apple Siri), and users expect
low communication and fast response. Therefore, classic two-party cryptographic solutions for secure
function evaluation (Juvekar et al. (2018); Riazi et al. (2019)) are also not applicable to our scenario.

Noise Injection. A line of work suggests obfuscating private attributes by adding noise to the
features, i.e., instead of z, the client sends z + µ to the server, with the noise designed to maintain
public accuracy while reducing private accuracy (Mireshghallah et al. (2020)). While noise addition
improves privacy, it has been shown to reduce the public accuracy significantly (Liu et al. (2019)).

Information Bottleneck. The notion of mutual information can be used to train private models. Let
I(a, b) denote the mutual information between random variables a and b. The idea is to train M1

that maximizes I(z, ypub) while minimizing I(z, ypri) (Osia et al. (2018); Moyer et al. (2018)). The
optimization is formulated as follows:

max
M1

Ex,ypub,ypri [I(M1(x), y
pub)− γI(M1(x), y

pri)− βI(M1(x), x)]. (1)

The use of mutual information for privacy, however, has been challenged by practical attacks that
extract secret information even when I(z, ypri) is small (Song & Shmatikov (2019)).

Adversarial Training. This defense solves the following min-max optimization problem:

max
M1,M2

min
M3

Ex,ypub,ypri [γL(ypri,M3 ◦M1(x))− L(ypub,M2 ◦M1(x))], (2)

where L denotes the cross-entropy loss and γ is a scalar. The above objective can be achieved through
adversarial training (Edwards & Storkey (2016); Hamm (2017); Xie et al. (2017); Li et al. (2018);
Feutry et al. (2018); Li et al. (2019)). At convergence, the trained M1 generates z such that M3(z) is
not an accurate estimation of ypri while M2(z) accurately describes ypub.

Existing methods for private split inference have several limitations. First, the underlying assumption
in above learning-based defenses is that a set of private attributes along with the public label are
provided at training time. In practice, however, it might not be feasible to foresee and identify all
possible private attributes and annotate the training data accordingly. It also contradicts deployment
at-scale since whenever a new private attribute is identified, the model M1 needs to be retrained and
re-distributed to all edge devices that use the service. Second, current approaches for private inference
often provide a poor tradeoff between accuracy and privacy. Moreover, the tradeoff of accuracy and
privacy with the client-side computation is not well studied in the split learning framework. In this
paper, we characterize this tradeoff and propose an alternative approach that, instead of obfuscating
the information related to the private attributes, the edge device removes the feature content that is
irrelevant to the public task. We empirically show our method successfully reduces the accuracy on
private attributes at a small or no cost to public accuracy.

3

Under review as a conference paper at ICLR 2021

3 PROPOSED METHODS

3.1 SIGNAL AND NULL CONTENTS OF FEATURE VECTOR

Let z ∈ Rn be a feature vector and W ∈ Rm×n be a matrix. The operation of fully-connected and
convolutionals layers can be expressed as matrix-vector and matrix-matrix multiplication. Herein, we
let z represent the vector in fully-connected layer and a column of the second matrix in convolution
layer. Let the singular value decomposition (SVD) of W be W = U · S · V . Since the rows of V
form an orthonormal basis, we can write the feature vector as

z =

n∑
i=1

αiv
T
i , αi =< vTi , z >, (3)

where vi is the i-th row of V and the < ·, · > operator denotes inner-product.
Definition 1. The signal content of z with respect to matrix W , or simply the signal content of z,
denoted by zS is defined as

zS = argmin
h

‖h‖2, s.t., W · (z − h) = 0. (4)

The null content of z is also defined as zN = z − zS .
Lemma 1. We have

zS =

m∑
i=1

αiv
T
i and zN =

n∑
i=m+1

αiv
T
i . (5)

Proof. We write h as the composition of orthonormal vectors vi’s as h =
∑n
i=1 βiv

T
i . We have

W (z − h) =
n∑
i=1

(αi − βi)WvTi =

n∑
i=1

(αi − βi)US V vTi︸︷︷︸
qi∈Rn

(6)

Since the rows of V are orthonormal, then qi = V vTi is a one-hot vector with its i-th element equal to
1. By substituting qi in (6) we obtain

W (z − h) =
n∑
i=1

(αi − βi)US[:,i] =

m∑
i=1

(αi − βi)US[:,i] =

m∑
i=1

si(αi − βi)U[:,i], (7)

where S[:,i] and U[:,i] are the i-th columns of S and U , respectively. Note that, since S is a diagonal
matrix, we have S[:,i] = 0,∀i ∈ {m + 1, · · · , n}, thus reducing the summation from n to m
components. Also, for i ∈ {1, · · · ,m}, S[:,i] is a column vector with only one non-zero element, si,
at the i-th dimension.

As a result, to obtain W (z − h) = 0, we must have βi = αi,∀i ∈ {1, · · · ,m}. Since vi’s
are orthonormal, we have ‖h‖2 =

√∑n
i=1 β

2
i . Hence, to minimize ‖h‖2, we set βi = 0,∀i ∈

{m + 1, · · · , n}. Therefore, zS =
∑m
i=1 αiv

T
i . The null content zN can be then computed as

zN = z − zS =
∑n
i=m+1 αiv

T
i .

Definition 2. The normalized signal and null contents of z are defined as CS(z) =
||zS ||22
||z||22

and

CN (z) =
||zN ||22
||z||22

, respectively. We have CS(z) + CN (z) =
∑m

i=1 α
2
i∑n

i=1 α
2
i
+

∑n
i=m+1 α

2
i∑n

i=1 α
2
i

= 1.

3.2 DEFENSE 1: OBFUSCATING NULL CONTENT OF FEATURE VECTOR

We propose to remove all the content in feature vector that is irrelevant to the public attribute. To do
so, given a feature vector z, we find a minimum-norm vector z′ that generates the same prediction for
the public attribute as z, i.e., M2(z

′) =M2(z). Formally,

z′ = argmin
h

‖h‖2, s.t., M2(h) =M2(z). (8)

4

Under review as a conference paper at ICLR 2021

Removing null content
Training:

Server trains M2 ◦M1 with (xi, y
pub
i), i ∈ [N]

Adversary computes zi =M1(xi), i ∈ [N]
Adversary computes zi → ziS , i ∈ [N]

Adversary trains M3 with (ziS , y
pri
i), i ∈ [N]

Inference:
Client computes z =M1(x)
Client computes z → zo
Client sends zo to server
Server computes ŷpub =M2(zo)
Adversary computes zo → zS
Adversary computes ŷpri =M3(zS)

Removing part of signal content
Training:

Server trains M2 ◦M1 using (xi, y
pub
i), i ∈ [N]

Server augments M1 → M̃1

Server freezes M̃1 and fine-tunes M2 ◦ M̃1

Adversary computes z̃i = M̃1(xi), i ∈ [N]

Adversary trains M3 with (z̃i, y
pri
i), i ∈ [N]

Inference:
Client computes z̃ = M̃1(x)
Client sends z̃ to server
Server computes ŷpub =M2(z̃)
Adversary computes ŷpri =M3(z̃)

Figure 2: (left): Training and inference for defense 1 (client removes null content of z). (right): Training and
inference for defense 2 (client removes low-energy content of z). zo is the feature vector in which the null
content is obfuscated. M̃1 is constructed by augmenting M1 with the module that removes the signal content.

Due to the complex (nonlinear) nature of deep networks, finding such a vector would require doing
multiple backpropagations on M2 for each given z. This is, however, not feasible for resource-
constrained edge devices. To address this problem, we relax (8) such that the constraint holds for
the first layer of M2 (server-side model), i.e., we modify the constraint to Wz′ =Wz, where W is
the weight matrix of the first layer of M2. As discussed in Section 3.1, the solution to this relaxed
optimization problem is zS , the signal content of z. Removing or obfuscating the null content of
z does not change the model prediction on public attribute. It, however, might harm the private
accuracy since part of the null content of zN might fall into the signal content of the first linear layer
of M3. The method is described in Figure 2 (left).

At inference time, to obfuscate zN , the client constructs zo using either of the following methods.

• Client constructs µ =
∑n
i=m+1 ηiv

T
i , with coefficients, ηi, chosen at random, and sends zo =

z + µ to the server. The adversary can recover zS = V T1:m · V1:m · zo but cannot recover zN .
• Client computes the signal content of z and sends zo = zS =

∑m
i=1 αiv

T
i to the server.

For the first case, since µ is independent of z, the client can compute it offline, e.g., when the edge
device is plugged in and not in use, and store it for later use. The second approach does not require
storage on the edge device, but an extra computation, equal to the complexity of computing the first
layer of M2, has to be done during inference to extract zS . We next propose a method that reduces
the extra cost to only a fraction of the computation cost of the first layer of M2.

3.3 DEFENSE 2: DISCARDING LOW-ENERGY SIGNAL CONTENT OF FEATURE VECTOR

In the first defense method, we proposed to discard the content of the feature vector that will be
removed by the first layer of M2. The following layers of M2 will further remove more content from
feature vector. Hence, we can potentially discard more content from z and still get similar prediction
as the original feature vector. For a linear layer, following the same process in Section 3.1, the output
is computed as:

W · z =W · zS =

m∑
i=1

αiU · S · qi =
m∑
i=1

αiU · S[:,i] =

m∑
i=1

siαiU[:,i], (9)

where si is the i-th eigenvalue in S, αi is defined in (3), and U[:,i] denotes the i-th column of U .
From (9) we observe that components with larger siαi are contributing more to the layer output
since ||U[:,i]||2 = 1 for all columns of U . As such, we approximate z → z̃ by only keeping m′ < m
components of the right-hand-side of (9) that have the largest coefficients. Unlike null content
filtering, removing signal content will affect the public accuracy as it changes the main network
output, but can further reduce the private accuracy. To improve public accuracy when removing
signal content of features, the server fine-tunes M2 on z̃. The method is described in Figure 2 (right).

5

Under review as a conference paper at ICLR 2021

Since si and U[:,i] are fixed at the inference time, the client only needs to send the selected αi values
along with their indices to the server; the server knows si and U , and can reconstruct z̃ accordingly.
The edge-computation cost of this process is m′/m times the computation cost of the first layer of
the server model. We do experiments in settings where m′/m is about 1%. Hence, the computation
cost of our method is only a small fraction of computing a single layer of the network. Moreover,
since m′ � m, our method also incurs a much smaller communication cost compared to sending the
entire feature vector to the server.

4 EXPERIMENTS

4.1 SETUP

Datasets. We perform our experiments on four visual datasets listed below.

• EMNIST (Cohen et al. (2017)) is an extended version of the MNIST dataset where the labels are
augmented with writer IDs. We selected 13000 samples from EMNIST written by 100 writers
with 130 examples per writer. We then split this dataset into 10000, 1500, and 1500 training,
validation, and test sets. We use the digit label and writer ID as the public and private attributes,
respectively.

• FaceScrub (Ng & Winkler (2014); FaceScrub (2020)) is a dataset of celebrity faces labeled with
gender and identity. We use gender and identity as the public and private attributes, respectively.
In experiments, we cropped the face region using the bounding boxes in the image annotations
and resized images to 50× 50.

• UTKFace (Zhang et al. (2017)) is a dataset of face images labeled with gender and race, which
we use as the public and private attributes, respectively. We cropped the face region using the
bounding boxes in the image annotations and resized images to 50× 50.

• CelebA (Liu et al. (2015)) is a dataset of celebrity images. Each image is labeled with 40 binary
attributes. Out of these, we select “Smiling” as the public attribute and {Male, Heavy Makeup,
High Cheekbones, Mouth Slightly Open, Wearing Lipstick, Attractive} as private attributes.
These attributes have near balanced distribution of positive and negative examples. In experiments,
we cropped the face region using the bounding boxes in the image annotations and resized images
to 73× 60.

Model architecture. We present the experimental results on a model used in prior work (Song &
Shmatikov (2019)). The model architecture and baseline test accuracy results are summarized in
Table 1 and Table 2 in Appendix.

Adversary capabilities. We use the same architecture for adversary’s model M3 as the server model
M2. The model M3 is trained using the features extracted by M1 and the associated private labels.
We also assume that the adversary knows the parameters of M1 and M2.

Training settings. We use Adam optimizer with an initial learning rate of 0.001 and drop the learning
rate by a factor of 10 after 20 and 40 epochs. All models including the adversary and main models
are trained for 50 epochs unless stated otherwise.

4.2 EVALUATIONS

We start our analysis by computing the null and signal contents in every layer of M = M2 ◦M1.
Figure 3 (left) shows the content of the input remained at each layer; for the i-th layer, this content
is computed as

∏i
j=1 CS(zj) where zj denotes the activation vector at the j-th layer and CS(·) is

defined in Section 3.1. As the feature vector propagates through network layers, more content is
gradually removed from z until the model outputs the prediction on the public task. We also split the
network at different layers and measure the private accuracy of M3 trained with the feature vector.
As seen in Figure 3 (right), the private accuracy also decreases as we get closer to the output layer,
indicating that the discarded content contained information relevant to the private attribute.

To reduce the privacy leakage, we proposed to filter out the null content of the feature vector. Figure 4
shows the private accuracy for different split layers. Removing the null content reduces the private

6

Under review as a conference paper at ICLR 2021

Figure 3: (left) Remaining signal content at the output of each layer of the main model, (right) private accuracy
for different split layers. The content of the input significantly decreases in deeper layer. Similarly, the private
accuracy decreases, indicating that the discarded content contained information relevant to the private attribute.

Figure 4: The effect of removing the null content on the private accuracy with different split layers.

accuracy without affecting the public accuracy. Moreover, splitting the network in deeper layers
improves the privacy. To further reduce the private accuracy, we discard the low-energy components
of the signal content and only keep m′ features. Figure 5 illustrates the effect of m′ on the public and
private accuracy, when the network is split at the CONV-3 layer. As seen, by setting m′ to a small
value, our method achieves high privacy (low private accuracy) at the cost of a small reduction in
public accuracy. In general, the privacy can be controlled using two factors:

• The split layer: As we go deeper in the network, i.e., when the edge device performs more
computation, better tradeoffs can be achieved. To show this effect, we perform signal-content
removal at different layers, with m′ set such that the public accuracy is reduced by 1%. The
corresponding private accuracy is shown in Figure 6.

• Number of signal components sent to the server: For the same edge-computation (a given
split layer), the number of preserved features (m′) can be tuned so as to achieve a desired tradeoff
between utility (higher public accuracy) and privacy (lower private accuracy). Figure 5 shows
the results for the setting that the network is split at the input of the CONV-3 layer.

Figure 6: Privacy accuracy versus split layer.
The number of preserved components of sig-
nal content is set such that the public accu-
racy is reduced by 1%.

Comparison to Pruning. Similar to our approach, prun-
ing network layers can eliminate features that do not con-
tribute to the public attributed. In the following, we com-
pare our method with pruning in terms of public and pri-
vate accuracy. We split the network from the middle layer,
i.e., at the input of the FC-1 layer. For our method, we
keep the top m′ components of z from its signal content
and filter out the rest. For pruning, we keepm′ elements in
z and set the rest to zero. We adopt the pruning algorithm
proposed by (Li et al. (2016)) which works based on the
L1 norm of the columns of the following layer’s weight
matrix. After pruning, we fine-tune M2 to improve the
public accuracy. Figure 7 shows the public and private
accuracy for each dataset. As seen, with small m′, both
our method and pruning achieve a low private accuracy.
Pruning, however, significantly reduces the public accu-
racy as well. For example, for the UTKFace dataset, with m′ = 1, both methods result in a private
accuracy close to the random guess. However, pruning reduces the public accuracy from 92.25% to
53% (also close to random guess), whereas our method keeps the public accuracy at 88.63%.

7

Under review as a conference paper at ICLR 2021

Figure 5: The effect of the number of preserved features (m′) on the public and private accuracy when the
network is split at the input of CONV-3 layer.

Figure 7: Comparison between our method and feature pruning. Both methods reduce the private accuracy.
Pruning, however, significantly reduces the public accuracy.

Comparison with adversarial training. We implement adversarial training framework proposed
by (Feutry et al. (2018)) and present the utility-privacy tradeoff in Figure 8. To achieve the best
tradeoff for adversarial training, we train the models in multiple settings with different γ parameters
(Eq. 2) in range of [0.1, 1]. Note that, unlike our method, adversarial training assumes that the private
attribute is known at training time. Despite this, Figure 8 shows that our method achieves a better
utility-accuracy tradeoff than adversarial training.

We also do experiments for the case with multiple (unseen) private labels. Specifically, we consider
the CelebA model trained to detect “smiling” and evaluate two methods, 1) our method: we keep
only m′ = 1 component from the signal content of feature vector and then train one adversary model
per private attribute, and 2) adversarial training: we first adversarially train an M1 model to obfuscate
“gender,” and then train one model for each private attribute.

For both of the above methods, the network is split at the input of the FC-1 layer. Figure 9 shows the
results. Our method outperforms adversarial training method on both public and private accuracy.
In our method, the accuracy on all private attributes are significantly lower than the baseline private
accuracy. The only exceptions are “high cheekbones” and “mouth open” attributes, which have
correlations with public attribute, that is, a smiling person likely has high cheekbones and their
mouth open. The correlation between public and private attributes causes the signal content of server
and adversary’s models to have large overlaps and, hence, results in high private accuracy. The
adversarially trained model successfully hides the information that it has been trained to obfuscate
(the “gender” attribute). Such a model, however, fails to remove information of other attributes such
as “makeup” or “lipstick”. This highlights the applicability of our method in practical setting as a
generic obfuscator compared to specialized techniques such as adversarial training.

Ablation study on CONV and FC layers. We compare the performance of our method on CONV
and FC layers. To do so, we train two networks on the UTKFace task, (1) a network with 10 CONV

8

Under review as a conference paper at ICLR 2021

Figure 8: Comparison between our method and adversarial training. For a given privacy level, our method
provides higher utility (higher public accuracy) compared to adversarial training method.

Figure 9: Accuracy on public (“smiling”) and private attributes. Our method obfuscates the feature vector
without the knowledge of private attribute at training or inference times. Adversarial training method maximizes
the accuracy on “smiling,” while minimizing the accuracy on “gender.” As can be seen, our method reduces
accuracy on all private attributes. The adversarially trained model successfully reduces accuracy on “gender”
attribute, but fails to remove information of other attributes. This highlights the applicability of our method in
practical settings as a generic obfuscator compared to specialized techniques such as adversarial training.

layers each with 16 output channels, and (2) a network with 10 FC layers each with 2304 neurons.
Both networks have an extra FC layer at the end for classification. The number of channels/neurons
are chosen such that the total number of output features at each layer is the same for the two networks.
The public accuracy of the 10-CONV and 10-FC networks is 89.26% and 89.07%, respectively.
Figure 10 shows the public and private accuracy when we remove low-energy components of the
signal space at different layers. The number of preserved features, m′, at each layer is chosen such
that the public accuracy is maintained. As seen, the 10-FC network achieves a lower private accuracy
compared to the 10-CONV network. The reason is that CONV layers are known to be generic feature
extractors, while FC layers are more specialized toward the public attribute.

5 CONCLUSION

Figure 10: Comparing the performance of our
method on the 10-FC and 10-CONV networks.
The number of preserved features at each layer
is set such that the public accuracy is maintained.

We proposed a private inference framework, in which
edge devices run several layers locally and obfuscate
the intermediate feature vector before sending it to
the server to execute the rest of the model. For ob-
fuscation, we proposed to remove information that
is not relevant to the main task or does not signifi-
cantly change the predictions. Specifically, we de-
veloped two methods of removing the content of the
feature vector in the null space of the following linear
layer and also removing the low-energy content of
the remaining signal. We showed that, unlike existing
methods, our methods improve privacy without re-
quiring the knowledge of private attributes at training
or inference times.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Sattam S Al-Riyami and Kenneth G Paterson. Certificateless public key cryptography. In International
conference on the theory and application of cryptology and information security, 2003.

Jianfeng Chi, Emmanuel Owusu, Xuwang Yin, Tong Yu, William Chan, Patrick Tague, and Yuan
Tian. Privacy partitioning: Protecting user data during the deep learning inference phase. arXiv
preprint arXiv:1812.02863, 2018.

Julian Chokkattu. How to make face unlock more secure in the Samsung
Galaxy S10 line, 2019. https://www.digitaltrends.com/mobile/
how-to-make-face-unlock-secure-galaxy-s10-s10-plus-s10e/.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. EMNIST: Extending MNIST
to handwritten letters. In International Joint Conference on Neural Networks, 2017.

Harrison Edwards and Amos Storkey. Censoring representations with an adversary. In International
Conference on Learning Representations, 2016.

FaceScrub. The FaceScrub dataset, 2020. http://engineering.purdue.edu/˜mark/
puthesis, (accessed July 3, 2020).

Clément Feutry, Pablo Piantanida, Yoshua Bengio, and Pierre Duhamel. Learning anonymized
representations with adversarial neural networks. arXiv preprint arXiv:1802.09386, 2018.

Jihun Hamm. Minimax filter: learning to preserve privacy from inference attacks. The Journal of
Machine Learning Research, 2017.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low latency
framework for secure neural network inference. In USENIX Security Symposium, 2018.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia
Tang. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM
SIGARCH Computer Architecture News, 2017.

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
Physical review E, 2004.

Ang Li, Jiayi Guo, Huanrui Yang, and Yiran Chen. Deepobfuscator: Adversarial training framework
for privacy-preserving image classification. In Advances in Neural Information Processing Systems
Workshops, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2016.

Yitong Li, Timothy Baldwin, and Trevor Cohn. Towards robust and privacy-preserving text represen-
tations. In Annual Meeting of the Association for Computational Linguistics, 2018.

Sicong Liu, Anshumali Shrivastava, Junzhao Du, and Lin Zhong. Better accuracy with quan-
tified privacy: representations learned via reconstructive adversarial network. arXiv preprint
arXiv:1901.08730, 2019.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
International Conference on Computer Vision, 2015.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In Conference on Computer Vision and Pattern Recognition, 2015.

Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash Ramrakhyani, Ali Jalali, Dean
Tullsen, and Hadi Esmaeilzadeh. Shredder: Learning noise distributions to protect inference
privacy. In International Conference on Architectural Support for Programming Languages and
Operating Systems, 2020.

10

https://www.digitaltrends.com/mobile/how-to-make-face-unlock-secure-galaxy-s10-s10-plus-s10e/
https://www.digitaltrends.com/mobile/how-to-make-face-unlock-secure-galaxy-s10-s10-plus-s10e/
http://engineering.purdue.edu/~mark/puthesis
http://engineering.purdue.edu/~mark/puthesis

Under review as a conference paper at ICLR 2021

Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Galstyan, and Greg Ver Steeg. Invariant
representations without adversarial training. In Advances in Neural Information Processing
Systems, 2018.

Hong-Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets. In IEEE
international conference on image processing, 2014.

Seyed Ali Osia, Ali Taheri, Ali Shahin Shamsabadi, Kleomenis Katevas, Hamed Haddadi, and
Hamid R Rabiee. Deep private-feature extraction. In IEEE Transactions on Knowledge and Data
Engineering, 2018.

M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and Farinaz Koushanfar.
XONN: Xnor-based oblivious deep neural network inference. In USENIX Security Symposium,
2019.

Congzheng Song and Vitaly Shmatikov. Overlearning reveals sensitive attributes. In International
Conference on Learning Representations, 2019.

Nishant Vishwamitra, Bart Knijnenburg, Hongxin Hu, Yifang P Kelly Caine, et al. Blur vs. block:
Investigating the effectiveness of privacy-enhancing obfuscation for images. In Conference on
Computer Vision and Pattern Recognition Workshops, 2017.

Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, and Graham Neubig. Controllable invariance
through adversarial feature learning. In Advances in Neural Information Processing Systems, 2017.

Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adversarial
autoencoder. In Conference on Computer Vision and Pattern Recognition, 2017.

A APPENDIX

Table 1: Network Architecture. Each row shows a split layer, e.g., at layer 1, the raw data and, at layer 6, the
input to the last fully-connected layer is sent to the server.

Split Layer
1 CONV (3, 16) ReLU Max-Pooling (2× 2) Batch-Normalization
2 CONV(3, 32) ReLU Max-Pooling (2× 2) Batch-Normalization
3 CONV (3, 64) ReLU Max-Pooling (2× 2) Batch-Normalization
4 FC(128) ReLU - Batch-Normalization
5 FC(64) ReLU - Batch-Normalization
6 FC(n classes) Softmax - -

Table 2: Model accuracy for public and private attributes of different datasets.

Dataset MNIST UTKFace FaceScrub CelebA
number of classes 10 2 2 2
public attribute digit gender gender smiling

public accuracy (%) 98.60 90.25 97.90 92.25
number of classes 100 5 530 2 2 2 2 2 2
private attribute writer race identity gender makeup cheekbones mouth-open lipstick attractive

private accuracy (%) 26.93 79.18 65.52 97.53 90.00 86.29 92.94 93.40 80.46

11

	Introduction
	Background and Related Work
	Measuring Privacy
	Threat Model
	Related Work

	Proposed Methods
	Signal and Null contents of Feature Vector
	Defense 1: Obfuscating Null content of Feature Vector
	Defense 2: Discarding Low-Energy Signal Content of Feature Vector

	Experiments
	Setup
	Evaluations

	Conclusion
	Appendix

