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Abstract
Synthesized data from generative models is in-
creasingly considered as an alternative to human-
annotated data for fine-tuning Large Language
Models. This raises concerns about model col-
lapse: a drop in performance of models fine-tuned
on generated data. Considering that it is easier
for both humans and machines to tell between
good and bad examples than to generate high-
quality samples, we investigate the use of feed-
back on synthesized data to prevent model col-
lapse. We derive theoretical conditions under
which a Gaussian mixture classification model
can achieve asymptotically optimal performance
when trained on feedback-augmented synthesized
data, and provide supporting simulations for fi-
nite regimes. We illustrate our theoretical predic-
tions on news summarization with large language
models. We show that training from feedback-
augmented synthesized data, either by pruning
incorrect predictions or by selecting the best of
several guesses, can prevent model collapse, vali-
dating popular approaches like RLHF.

1. Introduction
As generative models for language (Touvron et al., 2023;
Achiam et al., 2023), images (Ramesh et al., 2021; Rombach
et al., 2022), and video (OpenAI, 2024) achieve human-level
performance, a significant fraction of the training data for
future models will be generated by previous models. Chat-
GPT alone generates 0.1% of the tokens currently produced
by humans (Altman, 2024). There is an increasing use
of AI-synthesized data in diverse domains such as coding
(Haluptzok et al., 2022) and mathematics (Trinh et al., 2024)
and strong language models are tauted as a possible replace-
ment for expensive human annotators.
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Figure 1. We propose using a verifier to select generated synthe-
sized data. Human and model reinforcement can enhance perfor-
mance and prevent model collapse, as opposed to the degradation
observed without reinforcement.

This gradual replacement of human-written corpora by
machine-generated tokens gives rise to a number of con-
cerns, notably the risk of “model collapse” (Shumailov et al.,
2023), where iterated training on synthesized data brings a
drop in model performance, and, ultimately, “dumber mod-
els”. This phenomenon was observed empirically (Hataya
et al., 2023; Martı́nez et al., 2023a;b; Bohacek and Farid,
2023; Briesch et al., 2023; Guo et al., 2023) and described
theoretically (Alemohammad et al., 2023; Bertrand et al.,
2023; Dohmatob et al., 2024a). Its main consequence is the
breaking of known scaling laws (Dohmatob et al., 2024b):
as data becomes more synthetic, larger training sets do not
enhance performance.

Meanwhile, we are witnessing the massive use of Reinforce-
ment Learning with Human Feedback (RLHF) (Ouyang
et al., 2022) and its variants, which leverages human feed-
back and annotation to train models well past their perfor-
mance on scraped internet data. As the performance of
language models improves, their use as feedback genera-
tors, replacing human annotators, is increasingly considered.
This leads us to ask the timely question:

Can feedback, from humans or machines, improve
synthesized data, to the point that it can be used to
train new models without fear of collapse?

To study this question, we first provide analytical (affirma-
tive) results in a theoretical setting, where we consider Gaus-
sian mixtures (and generalizations) in the high-dimensional
limit with linear models as classifiers. We allow a possibly
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noisy verifier (e.g. human or oracle) to select (or prune)
generated data. We demonstrate that as the number of syn-
thesized data points approaches infinity, the model trained
on selected data can achieve optimal results, on par with
training on the original data. Specifically, we identify a
sharp phase transition: from zero accuracy due to errors in
the synthesized data and verifier, to optimal accuracy. We
conduct simulations on synthesized data to explore how the
generator and verifier affect performance and scaling rates
in finite regimes. Also here, our results show that oracle
supervision consistently yields near-optimal results com-
pared to using original labels. Since discerning high-quality
data through human supervision is simpler and more cost-
effective than direct human labeling, this provides strong
evidence for the efficacy of human-in-the-loop supervision.

We next examine realistic settings to illustrate our theory on
news summarization with large language models (Llama2).
In this setting, reliance solely on generated data results in
poorer performance compared to using the original dataset,
even with increased data volume, indicating model col-
lapse. Conversely, with oracle supervision, we achieve an
improved synthesized dataset that surpasses the original,
with performance improving as more data is added.

We summarize our contribution as follows:

• We provide theoretical analysis to characterize when
data selection leads to optimal performance in the
high-dimensional limit with unlimited synthesized data.
Simulations on synthesized data extend this to finite-
data regimes to show that oracle (human) selection can
match training with original labels (Section 2).

• We validate these observations with news summariza-
tion using LLaMA-2. Model collapse is observed, or-
acle selection prevents it and improves the selected
dataset beyond the synthesized generator (Section 3).

Crucially, note that all that is needed to re-attain model
performance akin to training on clean original data is the
ability to distinguish high-quality from low quality labels;
arguably, a task much simpler than annotating the labels.
Thus, to go beyond model collapse and continue scaling up
with synthesized data, reinforcement is all you need!

Related Work. For a more extensive reference list, see
Appendix A on data selection and a taxonomy of benefits of
synthesized data.

Model Collapse. With the advancement of generative mod-
els, synthesized data generated by these models has become
increasingly prevalent online, mixing irreversibly into our
training corpora. Recent studies have highlighted the po-
tential for dramatic deterioration in downstream models, a
phenomenon known as “model collapse” (Shumailov et al.,
2023). Empirical studies have demonstrated this issue in var-
ious settings (Hataya et al., 2023; Martı́nez et al., 2023a;b;

Bohacek and Farid, 2023; Briesch et al., 2023). Synthesized
datasets have been shown to reduce diversity (Padmakumar
and He, 2024; Guo et al., 2023) and cause distributional dis-
tortions (LeBrun et al., 2021). Theoretical analyses also ex-
amine the effects of iterative training on self-generated data
(Alemohammad et al., 2023; Bertrand et al., 2023; Dohma-
tob et al., 2024a; Seddik et al., 2024). Notably, (Dohmatob
et al., 2024b) warns that model collapse signifies a break in
the scaling law, where increasing synthesized data volume
does not enhance performance effectively. (Gillman et al.,
2024) propose to use correction function with expert knowl-
edge to modify the synthetic data to prevent model collapse.
In this work, we aim to apply selection techniques to large
synthesized datasets to surpass the quality of the original
data that trained the generator.

Synthesized Data with Selection. Empirical studies have
demonstrated that applying selection techniques to synthe-
sized data can significantly enhance performance, particu-
larly in the domains of code and mathematics where good
verifiers for correctness exist. For instance, (Haluptzok
et al., 2022) generate synthesized code data and filter out
incorrect instances. (Ulmer et al., 2024) leverage conversa-
tional metrics to filter synthetic dialogue data. (Trinh et al.,
2024) leverage a symbolic deduction engine as a verifier to
sample correct solutions for Olympiade geometry problems.
Oracle reinforcement and abundant synthesized input lead
to near-optimal performance. When a verifier does not exist,
(Li et al., 2022) use a high-quality dataset to train a verifier
to select data for self-labeling. Additionally, some studies
achieve data selection by carefully choosing prompts with
high quality and good diversity, employing heuristic veri-
fiers: instruction tuning (Wang et al., 2023), code generation
(Wei et al., 2023), and image synthesis (Hemmat et al., 2023;
Azizi et al., 2023).

2. Theoretical Insights
We theoretically characterize under what conditions data
selection with reinforcement can lead to improvements, for a
family of high-dimensional data distributions. Note that we
model the reinforcement process as a pruning strategy over
synthesized data. Crucially, we will not necessarily assume
that the pruning strategy has access to the ground truth;
rather, we will formulate our theory in sufficient generality
to allow for “intermediate” pruners, which can be viewed as
reinforcement from a different (or even the same) model. A
full exposition of our general theory is provided in Appendix
F; for ease of exposition, we specialize here to Gaussian
Mixtures, with more details on those in Appendix E.

Data Distribution. We consider distributions P over Rd×
{0, 1}. For binary Gaussian Mixtures, features are given
by x | y ∼ N(µy,Σ), where µy = (2y − 1)µ, for some
µ ∈ Rd and Σ is a positive-definite matrix with E ∥x∥2 =

2



∥µ∥22 + trΣ = 1. For further ease of exposition we will
only consider balanced distributions P(y = 1) = P(y =
0) = 1/2, for (x, y) ∼ P.

Synthesized Data. Let DN = {(x1, y1), . . . , (xN , yN )}
be a dataset of N iid pairs from the true distribution P
and let D′

N = {(x1, y′1), . . . , (xN , y′N )} be the synthesized
data generated from the same distribution, but where label
y′i (instead of yi) has been generated by an AI model.

Downstream Model and Pruning. We model our data
selection (with or without feedback) via a pruning strategy
q = (q1, . . . , qN ) where qi is a bit which indicates whether
the ith training example fromD′

N has survived pruning. For
the downstream models we consider the family:

P(y = 1 | x,w) = ŷ := σ(x⊤w) ∈ (0, 1), σ(z) :=
1

1 + e−z

parametrized by a vector of weights w ∈ Rd and sigmoid
non-linearity σ. Let ŵN be obtained via logistic regression
fitted on D′

N with ridge regularization parameter λ > 0.
Thus, ŵ minimizes the following objective function

L(w) :=
1

N

N∑
i=1

qiℓ(σ(x
⊤
i w), y

′
i) +

λ

2
∥w∥2,

where ℓ is the binary cross-entropy. The corresponding
downstream classifier is f̂N = fŵN

, where the notation fw
refers to the linear classifier induced by a weights vector
w ∈ Rd, i.e fw(x) = (sign(x⊤w) + 1)/2.

Test Accuracy. The test accuracy of the downstream
model f̂N is defined by

acc(f̂N ) := P(f̂N (x) = fBayes(x)),

for a random test point (x, y) ∼ P , where fBayes(z) :=
E[y|x = z] is the Bayes-optimal classifier. Note that
acc(fBayes) = 100%. The quantity acc(f̂N ) will be the
main object of our analysis, and we will be interested in
how it depends on errors in the generator P and the choice
of pruning strategy q, in the infinite-sample limit N → ∞.

“RLHF” Pruning Strategy. We consider a wide class of
parametrized pruning strategies q, which we term RLHF-
Pruning, that satisfy the following reasonable property: The
bits q1, . . . , qN ∈ {0, 1} are independent. We shall denote
by p ∈ [0, 1), the probability that the label y′i of a synthe-
sized example (xi, y

′
i) is different from the true label yi. A

symmetric (ϕ, ψ)-RLHF pruning strategy is parametrized
by (ϕ, ψ) defined as: ϕ = P(qi = 1 | y′i = yi) and
ψ = P(qi = 1 | y′i ̸= yi).

Supervised Pruning: qi = 1[yi(x
⊤
i wprune) > 0], (1)

for some weights wprune ∈ Rd is a special case (see Ap-
pendix F on how to obtain (ϕ, ψ) in this case). This pruning
strategy filters out all examples on which there is disagree-
ment on the assigned label.

Oracle Pruning. The case (ϕ, ψ) = (1, 0). We only keep
indices corresponding to examples in the dataset which have
correct label (all corrupted labels are discarded).

Insights from Infinite-Sample Regime The following is
our main theoretical result (see Theorem F.3 for full state-
ment). It characterizes test accuracy acc(f̂N ) of the down-
stream model on pruned data as a function of p (the label
disagreement) and the parameters (ϕ, ψ) of the pruner, in
the theoretical limit of infinite training data (N → ∞).
Theorem 2.1 (Simplified version of Theorem F.3). Define
the breakdown point p⋆ ∈ (0, 1) by p⋆ := 1/(1 + ψ/ϕ). In
the limit N → ∞ it holds a.s that:

(i) If p < p⋆ then acc(f̂N ) = 100%.

(ii) If p > p⋆ then acc(f̂N ) = 0%.

Thus, there is a phase-transition around the corruption level
p⋆ := 1/(1 + ψ/ϕ): as p is increased past level p⋆, the
downstream model f̂N abruptly switches from being per-
fectly accurate, to perfectly inaccurate! The proof com-
putes empirical test accuracy in terms sums of Bernoulli
variables corresponding to constellations of flipped labels,
which follow a binomial distribution, bounding the gap to
the population accuracy, and using concentration of measure
type techniques. Note that the sharp transition is due to the
infinite-sample regime, where we can avoid finite-sample
corrections and the 100% accuracy achievable in the The-
orem is idealized, and is expected to only hold in infinite
sample regime (with large but fixed input dimension).

Some Consequences: Supervised Pruning. Here, pa-
rameters (ϕ, ψ) only depend on the angles θgen, θprune, θ ∈
[0, π] given by

θgen := ∠(wgen, µ), θprune := ∠(wprune, µ),

θ := ∠(wprune, wgen).

This is because ϕ and ψ now correspond to orthant proba-
bilities for a trivariate normal distribution, with correlation
coefficients are given by these angles (see also Figure 5).

Although the generator and verifier are coupled together,
there are some intuitions that help us decouple them: (1) a
better generator always improves performance, (2) when the
verifier is poor, such as in cases of no pruning or random
pruning, we have a low breakdown point and require a good
generator, and (3) when the verifier is sufficiently good,
close to an oracle, the breakdown point is high, and any
non-degenerate generator is sufficient, for example when
ψ/ϕ = 0, f̂N achieves 100% accuracy for any p < 1.
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Simulations on Synthesized Data. Here we show simula-
tions in finite regimes. We initially sample N0 data from the
distribution Porig as the original dataset, Dorig, which is
used to train a linear model ŵ using ordinary least squares.
Subsequently, we use wgen = ŵ to generateN1 synthesized
data points with sigmoid, constituting the datasetDgen. The
data is selected with various wprune in Equation (1) from
w∗ to wθ where θ is the angle between wθ and w∗. n′ is the
number of data points selected.

In Figure 3, we run several simulations with different N0.
A larger N0 corresponds to a better generator trained with
more data. The synthesized data is selected using verifiers
ranging from oracle-level accuracy to various levels of errors
with θprune = π

12 and π
6 . A larger θprune corresponds to a

worse verifier. We have the following observations:

Oracle Supervision Matches Training with Oracle La-
bels. The oracle achieves the best performance, matching
training with clean data across all settings and attaining
Bayes optimal accuracy, as predicted by theory.

Weak supervision. Weak supervision results in poorer per-
formance, reflecting the decaying threshold points outlined
in theory. When the generator is sufficiently accurate, us-
ing weak supervision may harm performance due to the
selection of incorrect data points.

3. LLMs for News Summarization
Our experiments on arithmetic problems are given in Ap-
pendix C. Here, we proceed to empirical evaluations using
Llama-2-7B (Touvron et al., 2023) and Llama-3-8B (Meta,
2024). Our experiments utilize the English summarization
subset of the XLSUM dataset (Hasan et al., 2021), which
includes 307,000 training samples and 11,500 test samples.
Each sample in this dataset pairs a news article with a pro-
fessionally annotated summary.

For our experiments, Llama-2 is fine-tuned on 12.5% of the
training data. This fine-tuned model serves as the generator
for creating summaries across the entire training set, form-
ing our synthesized dataset. All the finetuning is with full
parameter tuning with one epoch. Throughout all phases
of evaluation and generation, we employ greedy decoding
to ensure quality generation. The model’s performance is
assessed using the Rouge-1 metric (Lin, 2004).

In line with our theory, we consider three settings: (1) Selec-
tion with Oracle: We calculate the Rouge score between the
generated summary and the ground truth summary, keeping
the data with the highest scores; (2) Selection with Weak
Supervision: We leverage a fine-tuned Llama-3 model with
higher performance than the generator and keep the data
with the lowest perplexity; (3) Self-Selection: We use the
generator to keep the data with the lowest perplexity. We
report the result with selection rate 12.5% in Figure 2.
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Figure 2. Results of news summarization experiments: models
trained on 12.5% of the data. Besides three selection curves, we
also include random selection, the Rouge score of the generator
model (‘generator’), and the Rouge score of a model trained with
100% data with original labels (‘Full Origin’).

Model Collapse. In Figure 2 Left, using the same amount
of synthesized data results in worse performance compared
to using the original data, indicating model collapse (com-
paring ‘Random Selection’ with ‘Generator’). Only with
more data, the Random selection lines improve and nearly
match the performance of the generator.

Selection by Oracle. Employing an oracle for selection
yields the best results. Oracle selection even surpasses the
model trained with 100% of the training set and original
labels, with only 1/8 of the data and training compute.

A Verifier Model with Higher Performance is Not Al-
ways Better. Self-selection surprisingly leads to better per-
formance than the generator. We hypothesize that it tends to
select easy-to-learn samples. In contrast, Llama-3 results in
performance similar to random selection but worse than self-
selection. This outcome aligns with theoretical expectations,
where the effectiveness of a weak supervisor depends on the
angle between all three vectors, as discussed in Section E.4.
Although the model has higher performance, it shows little
correlation with the generator (θ is larger), which implies
that ψ/ϕ might not be better.

4. Conclusion
In this paper, we consider how to prevent model collapse
through data selection. We propose to leverage feedback
from a verifier to reinforce the synthesized data. We em-
phasize that when training new models with synthesized
data, it is crucial to focus not only on the quality of the
generator but also on having a high-quality verifier to select
the data. Our work is of significant theoretical and practical
importance in the era of large models with increasing use of
synthesized data.
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Limitations
One limitation of this study is that we only considered data selection as a means of data curation. Besides data selection,
data curation also includes methods such as data augmentation, data regeneration, and weighting. The exploration of general
data curation methods to avoid model collapse is left for future work. Our experiments also did not consider the impact of
prompt engineering on the generator. This can significantly enhance the generation quality, and according to theoretical
predictions, it would be beneficial for synthesized data.

Broader Impact
The study explores the use of synthesized data from generative models as a cost-effective alternative to human-labeled
data, aiming to address concerns about model collapse where performance degrades despite increased data volumes. By
investigating data selection through reinforcement, the study theoretically and empirically demonstrates that human or
oracle supervision can enhance the quality of synthesized datasets, preventing model collapse and potentially surpassing the
original dataset’s performance. This approach holds significant social impact by proposing a scalable, efficient method to
leverage AI-generated data across various domains, reducing dependency on extensive human labeling efforts and mitigating
the risks associated with iterative training on synthesized data. The reinforcement-guided data selection can foster more
robust and reliable AI models, ultimately contributing to advancements in diverse fields such as language processing, image
recognition, and beyond. However, this method also introduces potential negative social impacts. If the verifier, crucial for
distinguishing high-quality from low-quality synthesized data, is compromised, it could lead to the propagation of erroneous
or malicious data throughout the model. Such vulnerabilities could be exploited through poisoning or targeted attacks,
resulting in significant biases, misinformation, and harmful outcomes in AI-driven decisions, particularly in sensitive sectors
like healthcare, finance, and law enforcement. Moreover, the reliance on synthesized data could amplify existing biases,
reduce cultural and cognitive diversity, and erode public trust in AI technologies, increasing societal vulnerabilities to cyber
threats and compromising the perceived reliability and fairness of AI systems.
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A. More Works on Synthesized Data
A.1. Taxonomy for Synthesized Data

Contrary to the phenomenon of model collapse, synthesized data has been shown to improve performance in numerous
empirical studies. We now provide a taxonomy outlining when and how synthesized data is beneficial. Specifically, we
identify four key components: prompt engineering ●, knowledge from advanced models ▲, distributional shift and targeted
curation ■, and external verifiers ✦. Most empirical studies can be categorized based on one or more of these components.
We use ●▲■and ✦to denote the components each reference leverages.

Code and Math. (Haluptzok et al., 2022) ✦generate synthesized data for codes and use a verifier to filter and show that the
model can ”self-improve” with its own synthesized data. (Gunasekar et al., 2023) ●■filter high-quality data from the web
and prompt GPT-3.5 with a specially curated prompt set covering both quality and diversity. (Wei et al., 2023) ●leverage
a diverse and large set of open-source code snippets to curate code instructions as prompts with good coverage and high
quality. (Zheng et al., 2024; Trinh et al., 2024) ✦leverage a symbolic deduction engine as a verifier to test the correctness of
each branch for solving Olympic geometry problems.

Alignment. During standard fine-tunings, synthesized data is often generated by a stronger model like GPT-4 (Peng et al.,
2023) ▲. (Wang et al., 2023) ●✦use a good set of prompts and inputs with a heuristic verifier to filter out low-quality ones
and maintain high diversity. (Bai et al., 2022) ●■use the model itself to critique whether its own generation is harmful,
given already harmful prompts with gold standards from humans. For alignment with reinforcement learning, (Ouyang et al.,
2022) ●✦use humans as verifiers to compare synthesized data generated by the current model with a good set of prompts.
Some papers propose reinforcement learning with AI feedback (RLAIF) (Lee et al., 2023) ●■that leverages another LLM
as the verifier to match human verification. The verifier is a stronger model, instruct-tuned Palm2 L, while the network
being trained is the Palm2 XS. However, (Yang et al., 2024) ●later found that using better prompts (self-improve) that direct
harmful or harmless responses can surpass RLAIF. (Yuan et al., 2024) ●achieve surprising results with iterative fine-tuning
and generating good prompts with in-context learning.

Knowledge distillation. Most papers in the knowledge distillation area involve using a better model to distill for general
performance or specific tasks, with ●, ▲, and ■involved from case to case. One example is the tiny story cases (Eldan and
Li, 2023) ●▲, where GPT-4 is prompted to generate stories for four-year-olds that are used to train GPT-Neo with good
performance.

Image Domain. (Kirillov et al., 2023) and (Li et al., 2022) ■use a distributional shift from high-quality to low-quality data
to label and curate a vast amount of unlabeled data. Specifically, (Li et al., 2022) also trains a verifier to filters high-quality
data. (Um et al., 2024) ▲■specifically curate minority groups with a diffusion model to enhance performance. (He et al.,
2023; Dunlap et al., 2023) ▲■generate synthesized data that aids in classification tasks by tailoring the synthesized data
to match the model’s learning objectives. (Azizi et al., 2023; Hemmat et al., 2023) ▲■employ guided curation (with
supervision) to curate data from diffusion models. (Burg et al., 2023) find that while synthesized data from a diffusion
model helps improve downstream tasks, such as classification, using the pre-training data of the diffusion model alone gives
even stronger performance.

A.2. Knowledge Distillation with Soft Labels

Related to synthesized data, there is a long history of using synthesized labels in image classifications. In the domains of
self-distillation and knowledge distillation (Hinton et al., 2015; Furlanello et al., 2018), data with soft labels generated from
the teacher model can significantly improve the performance of the student model. These soft labels convey additional
insights—referred to as ’dark knowledge’—that have been theoretically linked to specific advantageous adaptations. These
include implicit biases that mitigate overfitting (Mobahi et al., 2020), mimicry of early stopping (Dong et al., 2019) for
improved optimization under label noise (Das and Sanghavi, 2023), and adjustments to accommodate specific data structures
(Allen-Zhu and Li, 2022). We only consider synthesized data with fixed labels as in the current practice of LLMs and
diffusion models.

A.3. Data Selection

Comprehensive surveys on data selection for language models can be found in (Albalak et al., 2024), along with theoretical
studies on selection in high-dimensional settings (Sorscher et al., 2022; Kolossov et al., 2024). Specifically, (Kolossov et al.,
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Figure 3. Simulations on the scaling with respect to the number of selected data, n′. τ = 0.15, N1 = 106. The Bayes optimal classifier
achieves approximately 94% accuracy on this distribution. The y-axis denotes the relative error, i.e., the accuracy relative to the optimal
accuracy.

2024) also explore the use of surrogate models for producing labels during selection, followed by curation of the original
labels. In our study, selection is applied to synthesized data where original labels are not available, resulting in distinct
phenomena compared to these approaches on original data.

B. Simulations on Synthesized Data
The theoretical results are based on the best-case scenario of having unlimited access to synthesized data and operating in
the high-dimensional limit. In this framework, the generator and verifier’s impact on performance is reflected in binary
outcomes: 100% or 0%. Here, we present simulation results in finite regimes to demonstrate the practical implications of
the theory, specifically how the generator and verifier affect performance and scaling rates with respect to the number of
synthesized data points.

B.1. Setting

Following the theoretical setting, we consider the same Gaussian mixture and linear models for the generator and selector.
Let w∗ be a fixed unit vector in Rd. The distribution Porig is

x|y ∼ N(yτw∗, Id/d), for y ∈ [−1,+1].

Here, τ is a positive scalar that controls the overlap.

Synthesized Data Generation We initially sample N0 data from the distribution Porig as the original dataset, Dorig,
which is used to train a linear model ŵ using ordinary least squares. Subsequently, we use wgen = ŵ to generate N1

synthesized data points with sigmoid, constituting the dataset Dgen.

Reinforcement The data is selected with various wprune in Equation (1) from w∗ to wθ where θ is the angle between wθ

and w∗. n′ is the number of data points selected.

C. Predicting the Eigenvalues
We leverage the code base provided by (Charton, 2022) at https://github.com/facebookresearch/LAWT
under the license CC BY-NC 4.0.

Input and Tokenization. We use the example of solving arithmetic tasks with a transformer, which offers an interpretable
setting to understand the generation quality since we have a clear metric for error and an attainable ground truth. Specifically,
we leverage the problems described in Charton (2022). Transformers (Vaswani et al., 2017) are trained to predict the five
eigenvalues of 5× 5 symmetric real matrices from inputs consisting of the 25 real entries. Model inputs are sequences of 25
real entries, rounded to three significant digits, and tokenized as triplets of signs( + or -), mantissas (from 0 to 999) and
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power of ten exponents (from E-100 to E100). For instance, the 2× 2 matrix,(
2.3 0.6035

0.6035 −3.141

)
will be encoded as the sequence of 12 tokens: + 23 E-1 + 604 E-3 + 604 E-3 - 314 E-2. Model outputs are
vectors of 5 real eigenvalues, rounded to three significant digits, and tokenized as before, as triplets of sign, mantissa and
exponent (the P1000 encoding from (Charton, 2022)). All training, test, and synthesized data are generated by sampling
matrices with independent entries from U [−10, 10]. A prediction is considered correct if the relative error in the L1 norm is
below a certain tolerance τ .

Model and Optimization. We train sequence-to-sequence transformers (Vaswani et al., 2017), with 4 layers in the encoder,
and one in the decoder, 512 dimensions and 8 attention heads, to minimize a cross-entropy loss, using the Adam optimizer
(Kingma and Ba, 2014), with a fixed learning rate of 5 · 10−5, after an initial linear warm-up phase over the first 10,000
optimization steps. The synthesized data generator is trained on a limited sample of about 200,000 examples for 65 epochs
before overfitting. For the results in Table 3, the model is trained with 12M samples for 400 epochs before overfitting.

Evalution. Model accuracies are measured on a held-out test set of examples not seen at training. Model predictions are
evaluated by decoding the output sequence as a vector of 5 real numbers (p1, p2, p3, p4, p5), and assessing that a prediction
p(p1, p2, p3, p4, p5) of eigenvalues v(v1, v2, v3, v4, v5) is correct if the relative error in L1 norms is below some tolerance τ ,
i.e. if

5∑
i=1

|vi − pi| < τ

5∑
i=1

|vi|.

We use tolerances τ of 5, 2, 1 and 0.5%.

In both the theoretical results and the simulations, we examine a classification case where oracle supervision can select
“100% correct” synthesized data. Beyond these settings, the synthesized data can have a continuous spectrum regarding its
distance to the ground truth and the selected data may only be correct to some extent. In this sense, we assess the impact of
reinforcement methods and the generator in two experiments: (1) training a transformer to predict eigenvalues of a matrix
and (2) fine-tuning Llama-2-7B on a news summarization task.

C.1. Understanding the Quality of Synthesized Data

Selection is Crucial. In Table 1, we report the accuracy (on a test set) of generated predictions using greedy decoding and
beam search of various sizes. On the right side, only the best beam solution—the most confident solution by the model—is
evaluated. Increasing the number of beams does not lead to an increase in accuracy, indicating that self-selection on the
prediction does not result in improved predictions. However, on the left side, we evaluate all top-k candidates in the beam
k with respect to the ground truth, and the best one is counted towards the accuracy. When going from greedy (beam 1)
to beam 50, the accuracy improves from 66.9% to 90.4% with τ = 2%. Therefore, we conclude that while the model
demonstrates the potential to generate improved solutions, it lacks the inherent capability to autonomously select superior
predictions. To curate better synthesized data, external supervision is crucial.

Table 1. The Generator’s Accuracies for Different Beam Sizes.
Left: all solutions in beam are evaluated and the best is calculated,
selection with oracle. Right: only the beam solution with the smallest
perplexity is evaluated, same as self-selection.

Verify Verify
all beams the best beam

Tolerance τ 2% 1% 0.5% 2% 1% 0.5%

Beam 50 90.4 60.4 22.9 65.9 19.2 2.4
Beam 35 89.2 56.9 19.8 66.0 19.2 2.4
Beam 25 88.0 53.2 16.8 66.1 19.3 2.4
Beam 10 83.7 43.1 10.5 66.2 19.5 2.5
Beam 5 79.3 34.9 7.1 66.5 19.7 2.4
Greedy 66.9 20.2 2.4 66.9 20.2 2.4

Table 2. Performance of Models Trained on Various Synthe-
sized Data. The models are evaluated using greedy decoding.
”Synthesized Generator” refers to the assessed performance of the
generator as an indicator on generation quality.

Tolerance τ
2% 1% 0.5%

Data Selection 2% 72.1 20.2 2.3

Label Selection

Beam 50 84.0 33.4 4.9
Beam 25 79.9 28.7 4.1
Beam 10 73.9 22.7 2.9
Beam 5 69.1 19.0 2.3

Greedy w/o selection 60.5 14.5 1.7

Synthesized Generator 66.9 20.2 2.4
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Table 3. Performance of Models Trained with More Data and a Stronger Verifier. Synthesized data curated with oracle pruning at 1%
or 2% tolerance. Train from scratch and evaluate using greedy decoding.

Tolerance τ
Method Data Size 2% 1% 0.5%

Data Selection 2% 1M 72.1 20.2 2.3

Data Selection 2% 12M 80.1 26.3 3.4
Data Selection 1% 12M 95.1 50.1 8.6

C.2. Transformer for Math

We now move to generating synthesized data with this problem. We randomly collect more prompts (matrices) and use the
generator to label them. We introduce a verifier that serves as the oracle supervision, measuring the distance between model
predictions and the correct solutions. The data is selected with this verifier via two methods:

• Data Selection: A random set of matrices is created, and the generator computes the eigenvalues using greedy decoding.
Only data with the correct predictions (within a tolerance of τ = 2%, according to the verifier) are retained.

• Label Selection: A random set of matrices is created, and the generator predicts k possible solutions using beam search
(in the top-k generation pool). The verifier selects the best prediction, which is then used for the training data. We
experiment with beam sizes of 5, 10, 25, 35, and 50.

Overall, seven synthesized datasets, each containing one million examples, are created: one using Data Selection, five
using Label Selection with various beam sizes, and one without any selection. In the Data Selection setting, approximately
two-thirds of the data are retained with a tolerance of τ = 2%. Using these datasets, the transformer is trained from scratch
and evaluated with greedy decoding. The accuracy of the trained models is reported in Table 2, showing the best run across
five seeds. These results are compared with the ‘Synthesized Generator’ row from Table 1 to assess the performance of the
generator and as an indicator of generation quality. We observe the following:

Model collapse is observed. Comparing ‘Greedy without selection’ and ‘Synthesized Generator’, training with its own
synthesized data leads to a degradation in performance, even with five times more synthesized data than the amount used to
train the generator. Model collapse happens.

Supervision goes beyond model collapse. When we leverage reinforcement, both data selection and label selection show
considerable improvement compared to using the generated data without selection. According to theory, the effective ψ/ϕ is
much lower. All the selection results surpass the synthesized generator, indicating that we can improve upon the original
data with oracle reinforcement and mitigate model collapse. Additionally, increasing the number of beams consistently
enhances performance, as the quality of the selected synthesized data continues to improve.

How Far Can We Go with Synthesized Data and Verifier? We examine data selection with 30 times more data and with a
stricter verifier tolerance of 1% to investigate the best performance achievable. As shown in Table 3, using more data and a
stronger selection improves performance. A stronger selection corresponds to better oracle-based verifier, aligning with the
theory and simulation.

C.3. Finetuning Models with Synthesized Data

In all previous experiments, the data generated from the generator (using beam or reject sampling) were used to train a new
model. In this section, we consider using data generated from the generator to finetune models pre-trained on a small sample
of ground truth data. We consider four cases:

• Fine-tuning the generator (Model A).

• Fine-tuning a model pre-trained to the same accuracy as the generator (62%, Model B).

• Fine-tuning a model pre-trained to higher accuracy (93%, Model C).

• Fine-tuning a model pre-trained to low accuracy (4%, Model D).

Table 4 compares accuracy of the four fine-tuning cases to that of a model trained from scratch. Fine-tuning only achiueves
better performance when the pre-teained model achieved higher accuracy than model A. In all other cases, fine-tuning brings
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Table 4. Performance of models fine-tuned on 1M examples generated by the generator. τ = 2%

Model A (66%) Model B (62%) Model C (93%) Model D (4%) From scratch

Rejection 61.8 72.9 82.1 66.3 72.1
Beam 50 74.1 82.6 87.3 78.3 84.0
Beam 35 72.7 81.3 86.8 76.8 80.4
Beam 25 71.3 79.8 84.4 73.3 79.9
Beam 10 67.5 75.1 83.5 68.0 73.9
Beam 5 64.9 70.8 80.1 65.6 69.1
Beam 1 61.6 62.1 75.6 55.8 60.5

no improvement. Note that fine-tuning model A on its own generated data achieves the worst result, a clear case of model
collapse.

C.4. Computational Resources

We leverage a V100 GPU with 32GB of memory for all experiments involving linear algebra. The training time ranges
from 1 to 5 days, depending on the data size and the number of epochs. For results in Table 3, it takes 5 days to train on 12
million data points for 400 epochs.

D. News Summarization
We leverage the XLSUM dataset (Hasan et al., 2021) at https://huggingface.co/datasets/csebuetnlp/
xlsum under the license CC-BY-NC-SA 4.0.

Data preprocessing. For each data in both training and test dataset, it consists of a news report and a summarization,
denoted as (news, summarization). We write each data in the following form:

Article: news. A summary of the article: summarization.

Implementation details. We leverage the official implementation in Huggingface 1 for training, under the license Apache
2.0. Specifically, for training the generator, we start our training with the pre-trained llama-2, and set the learning rate to
5e-5, the learning rate scheduler as ‘cosine’, the number of epochs to 1, the total batch size to 32, the block size to 1024 and
the others to the default value. For generating the synthesized data, we use greedy strategy to generate a summarization
for each news in the training set. For training based on the selected synthesized data, we also start our training with the
pre-trained llama-2, and set the learning rate to 2e-5, the learning rate scheduler as ‘constant’ and the others to the same. For
evaluation, we first use greedy strategy to generate a summarization for each news in the test set, and then calculate the
Rouge-1 score between the generated summarization and the corresponding ground truth, and finally report the average
of the Rouge-1 scores of all test data. When calculating the perplexity, we only calculate the perplexity for the generated
summary.

Computational Resources. All experiments were conducted using a dedicated computational cluster equipped with 4
NVIDIA A800 GPUs, each with 80 GB of memory. Our training and inference processes are performed on the cluster.

Estimated Time. Training the whole dataset for an epoch takes about 6 hours. Generating the whole dataset takes about
1 day. During evaluation, we need to first generate and calculate the rouge score, which takes around 40 minutes for one
checkpoint.

We include the full figures with three levels of selection in Figure 4, 12.5%, 25%, and 50%.

1https://github.com/huggingface/transformers/blob/main/examples/pytorch/
language-modeling/run_clm.py
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Figure 4. Results of news summarization experiments: the left figure represents models trained on 12.5% of the data, the middle on 25%
of the data, and the right on 50% of the data. Each figure includes four curves illustrating different training scenarios: (1) selection with
oracle reinforcement, (2) selection with Llama-3 as a weak reinforcement, (3) self-selection by the generator, and (4) random selection.
Additionally, two horizontal lines are included for comparison: one representing the Rouge score of the generator model and the other
representing the Rouge score of a model trained with 100% data with original labels, serving as the optimal line.

E. Theoretical Insights with Gaussian Mixtures
In Section E we have presented a special case of our general theory, which we describe here in more generality and detail.
First, we outline the theory in a simplified setting.

E.1. Setting

Data Distribution. We will consider distributions P over Rd × {0, 1} with certain high dimensional concentration
properties of a general form (Condition F.1). A special case are binary Gaussian Mixtures: features have conditional
distribution given by x | y ∼ N(µy,Σ), where µy = (2y − 1)µ, for some µ ∈ Rd and Σ is a positive-definite matrix with
E ∥x∥2 = ∥µ∥22 + trΣ = 1. For further ease of exposition we will only consider balanced distributions

P(y = 1) = P(y = 0) = 1/2, for (x, y) ∼ P.

Synthesized Data. Let DN = {(x1, y1), . . . , (xN , yN )} be a dataset of N iid pairs from the true distribution P and let
D′

N = {(x1, y′1), . . . , (xN , y′N )} be the synthesized data generated from the same distribution, but where label y′i (instead
of yi) has been generated by an AI model.

Downstream Model and Pruning. We will model our data selection (whether with or without feedback) via a pruning
strategy q = (q1, . . . , qN ) where qi is a bit which indicates whether the ith training example from D′

N has survived pruning.
For the downstream models we consider the family:

P(y = 1 | x,w) = ŷ := σ(x⊤w) ∈ (0, 1), σ(z) :=
1

1 + e−z

parametrized by a vector of weights w ∈ Rd and sigmoid non-linearity σ. Let ŵN be obtained via logistic regression fitted
on D′

N with ridge regularization parameter λ > 0. Thus, ŵ is the unique minimizer of the following objective function

L(w) :=
1

N

N∑
i=1

qiℓ(σ(x
⊤
i w), y

′
i) +

λ

2
∥w∥2, (2)

where ℓ is the binary cross-entropy. The corresponding downstream classifier is f̂N = fŵN
, where the notation fw refers to

the linear classifier induced by a weights vector w ∈ Rd, i.e fw(x) = (sign(x⊤w) + 1)/2.

Test Accuracy. The test accuracy of the downstream model f̂N is defined by

acc(f̂N ) := P(f̂N (x) = fBayes(x)), for a random test point (x, y) ∼ P,
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where fBayes(z) := E[y|x = z] is the Bayes-optimal classifier. In particular, note that acc(fBayes) = 100% by construction.
The quantity acc(f̂N ) will be the main object of our analysis, and we will be interested in how it depends on errors in the
generator P and the choice of pruning strategy q, in the infinite-sample limit N → ∞.

E.2. Pruning Strategy

We consider a wide class of parametrized pruning strategies q, which we term RLHF-Pruning (see Appendix F). They satisfy
the following reasonable property:

Assumption E.1 (Independent Selection). The bits q1, . . . , qN ∈ {0, 1} are independent. Thus, in particular, whether any
training example ei := (xi, y

′
i) ∈ D′

N survives pruning or not is independent of what happens to the other examples ej ̸=i.

We shall denote by p ∈ [0, 1), the probability that the label y′i of a synthesized example (xi, y
′
i) is different from the true

label yi, i.e

p := P(y′i ̸= yi). (3)

Note that p does not dependent on the example index i, due to the iid assumption.

Our RLHF-pruning family (refer to Appendix F for details) is described by four parameters (ϕ0, ϕ1, ψ01, ψ10), defined as
follows

ϕk = P(qi = 1 | y′i = k, yi = k), ψkℓ = P(qi = 1 | y′i = ℓ, yi = k). (4)

For simplicity of exposition, we will focus on symmetric pruning strategies, ϕ1 = ϕ0 = ϕ and ψ01 = ψ10 = ψ. Assumption
E.1 implies that for any class labels k, ℓ ∈ {0, 1}, the random variables (zikℓ)i∈[N ] defined by zikℓ = 1[yi = k, y′i = ℓ, qi =
1] are iid with Bernoulli(pkℓ) distribution, with

pkk = (1− p)ϕk/2, and pkℓ = pψk/2 if k ̸= ℓ. (5)

In this section we focus on a special case of supervised pruning strategies q of the form

Supervised Pruning: qi = 1[yi(x
⊤
i wprune) > 0], (6)

for some weights wprune ∈ Rd. This pruning strategy filters out all examples on which there is disagreement on the assigned
label. In Appendix F we show how we can map this to (ϕ, ψ)-pruning.

Let us provide two more notable examples of (symmetric) pruning strategies.

No Pruning. The case (ϕ, ψ) = (1, 1) corresponds to no pruning, i.e using the entire training dataset.

Oracle Pruning. The case (ϕ, ψ) = (1, 0). The pruning strategy only keeps indices corresponding to examples in the
dataset which have correct label (all corrupted labels are discarded).

E.3. Performance of Models Trained with Pruning: Insights from Infinite-Sample Regime

The following is our main theoretical result (see Theorem F.3 for full statement). It characterizes test accuracy acc(f̂N ) of
the downstream model on pruned data as a function of p (the label disagreement) and the parameters (ϕ, ψ) of the pruner, in
the theoretical limit of infinite training data (N → ∞).

Theorem E.2 (Simplified version of Theorem F.3). Let Assumption E.1 be in order. Fix p, ϕ, ψ and define the breakdown
point p⋆ ∈ (0, 1) by p⋆ := 1/(1 + ψ/ϕ). For the family of data distributions obeying Condition F.1 (including the Gaussian
mixture), for a downstream model f̂N trained on data from a generator with error rate p, pruned with an RLHF-type strategy
with parameters (ϕ, ψ), in the limit N → ∞ it holds a.s that:

(i) If p < p⋆ then acc(f̂N ) = 100%.

(ii) If p > p⋆ then acc(f̂N ) = 0%. The pruner is overwhelmed by so many inaccuracies in the synthesized data, and the
downstream model learns the exact opposite of the true class labels.

15



Thus, there is a sharp phase-transition around the corruption level p⋆ := 1/(1 + ψ/ϕ): as p is increased past level p⋆, the
downstream model f̂N abruptly switches from being perfectly accurate, to perfectly inaccurate! The proof (see Appendix F.7
for a sketch) explicitly computes empirical test accuracy in terms ofNkℓ :=

∑N
i=1 zikℓ, which follow a binomial distribution,

bounding the gap to the population accuracy, and using concentration of measure type techniques. Note that the sharp
transition is due to the infinite-sample regime, where we can avoid finite-sample corrections.

See Figure 5 (and Figure 6 in Appendix F) for an empirical illustration of the theorem.
Remark E.3. Note that the 100% accuracy achievable in Theorem E.2 is idealized, and is expected to only hold in infinite
sample regime (with a possibly large but fixed input dimension).

E.4. Some Consequences of Theorem F.3

We now present some illustrious applications of Theorem F.3. These examples are empirically confirmed in Figure 5 (see
also Figure 6 in Appendix F).

Figure 5. Empirical Confirmation of Theorem E.2. Comparing the breakdown points of different generators and pruners of different
strengths. Synthesized data is generated from a linear model wgen with classification error rate p = θgen/π ∈ [0, 1]. Refer to Equations
(7), and recall that the triplet of angles (θgen, θprune, θ) maps to parameters (ϕ, ψ) for an RLHF-type pruner. The data is pruned with
another linear model wprune which has classification error θprune/π. Broken lines correspond to the prediction of Theorem E.2, while
solid points correspond to experiments. Notice the sharp phase transitions where the model suddenly switches from perfect accuracy to
worse-than-chance, a phenomenon predicated by the theorem.

No Pruning. Here, we have ψ/ϕ = 1 and so the downstream model achieves 100% accuracy for all values of corruption
parameter p up to the breakdown point p⋆ = 1/2 predicted by Theorem F.3 .

Oracle Pruning. For this scenario, ψ/ϕ = 0 and so Theorem F.3 predicts that the downstream model f̂N achieves 100%
accuracy for all values of corruption parameter p up to the breakdown point p⋆ = 1. This is perhaps not so surprising in
hindsight. The point is that even for moderately large values of ψ/ϕ, the breakdown point p⋆ can still be quite close to 1.

Supervised Pruning. Consider isotropic Gaussian mixture data with means ±µ, and a pruning strategy as in Eq. (6). The
parameters (ϕ, ψ) only depend on the angles θgen, θprune, θ ∈ [0, π] given by

θgen := ∠(wgen, µ), θprune := ∠(wprune, µ),

θ := ∠(wprune, wgen).
(7)
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This is because, the pkℓ’s defined in (5) now correspond to orthant probabilities for a trivariate normal distribution, with
correlation coefficients are given by these angles (see also Figure 5).

Decoupling the Generator and Verifier. Although the generator and verifier are coupled together in supervised pruning,
there are some intuitions that help us decouple them: (1) a better generator always improves performance, (2) when the
verifier is poor, such as in cases of no pruning or random pruning, we have a low breakdown point and require a good
generator to achieve good performance, and (3) when the verifier is sufficiently good, close to an oracle, the breakdown
point is high, and any non-degenerate generator is sufficient.

F. A General Theory of Pruning with Reinforcement
We now provide the most general setting in which our theory holds. While some of our exposition here overlaps with Section
E, we prefer to leave it as a complete text that provides a stand-alone overview.

F.1. Data Distribution

Consider a probability distribution P over Rd × {0, 1} with the following high-dimensional property

Condition F.1. Given N ≤ N(d) iid samples (x1, y1), . . . , (xN , yN ) from P with N ≤ N(d), the following hold estimates
w.p 1− o(1) uniformly on all i, j ∈ [N ], in the limit d→ ∞

∥xi∥2 ≃ 1,

x⊤i xj ≃

{
a, if yi = yj ,

b, if yi ̸= yj

where b < a < 1 are constants. For simplicity of presentation of our results, We will further assume that b = −a or b = 0.

The above structural condition is inspired by an assumption in (Das and Sanghavi, 2023).

For simplicity of exposition, we will only consider balanced distributions, meaning that

P(y = 1) = P(y = 0) = 1/2, for (x, y) ∼ P.

Gaussian Mixture Example. As a first example, in the case of Gaussian mixtures where the features have conditional
distribution given by

x | y ∼ N(µy,Σ), (8)
(9)

where µy = (2y − 1)µ, for some µ ∈ Rd and positive-definite matrix Σ with E ∥x∥2 = ∥µ∥2 + trΣ = 1, we may take

a = ∥µ∥2, b = −a. (10)

Condition F.1 then holds thanks to concentration, with N(d) = eΘ(d).

F.2. Training Data, Data Pruning, and Downstream Model

Let DN = {(x1, y1), . . . , (xN , yN )} be a dataset of N iid pairs from the true distribution P and let D′
N =

{(x1, y′1), . . . , (xN , y′N )} a version of the dataset (also iid) with labels y′i instead of yi. For example, this could be
labels generated by an AI trying to reproduce real-world data. D′

N is the data on which the downstream model is trained.

We will consider a family of models given by

P(y = 1 | x,w) = ŷ := σ(x⊤w) ∈ (0, 1),

parametrized by a vector of weights w ∈ Rd. Here, σ is the sigmoid function defined by

σ(z) :=
1

1 + e−z
. (11)
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For the loss function, we use binary cross-entropy (BCE), defined by

ℓ(ŷ, y) = −y log ŷ − (1− y) log(1− ŷ). (12)

Let ŵN be obtained via logistic regression fitted on D′
N with ridge regularization parameter λ > 0. Thus, ŵ is the unique2

minimizer of the following objective function

L(w) :=
1

N

N∑
i=1

qiℓ(σ(x
⊤
i w), y

′
i) +

λ

2
∥w∥2.

Here qi is a bit which indicates whether the ith training example has survived pruning. The numbers q = (q1, . . . , qN ) is
called a pruning strategy. The corresponding downstream classifier is f̂N = fŵN

, where the notation fw refers to the linear
classifier induced by a weights vector w ∈ Rd, i.e

fw(x) :=

{
1, if x⊤w > 0,

0, otherwise.
(13)

The test accuracy of the downstream model f̂N is defined by

acc(f̂N ) := P(f̂N (x) = fBayes(x)), for a random test point (x, y) ∼ P,

where fBayes(z) := E[y|x = z] is the Bayes-optimal classifier. In particular, note that acc(fBayes) = 100% by construction.

This quantity will be the main object of our analysis, and we will be interested in how it depends on the corruption level p
and the choice of pruning strategy q, in the infinite-sample limit N → ∞.

For later reference, we also define an empirical version, namely the accuracy of f̂N evaluated on the clean dataset DN ,
namely

âcc(f̂N ) :=
1

|M |
|{i ∈M | f̂N (xi) = yi}|, (14)

where M := {i ∈ [N ] | qi = 1} collects the indices of training samples which survive pruning by q.

F.3. A Class of Parametrized Pruning Strategies

Given hyper-parameters ϕ0, ϕ1, ψ01, ψ10 ∈ [0, 1], we consider a broad class of parametrized pruning strategies with the
following property. For any class labels k, ℓ ∈ {0, 1}, the random variables (zikℓ)i∈[N ] defined by zikℓ = 1[yi = k, y′i =
ℓ, qi = 1] are iid with Bernoulli distribution Bern(pkℓ), where

pkℓ = P(qi = 1, y′i = ℓ, yi = k)

= P(qi = 1 | y′i = ℓ, yi = k)P(y′i = ℓ | yi = k)P(yi = k)

=

{
ϕk(1− p)/2, if k = ℓ,

ψkℓp/2, else.

(15)

and the numbers p, ϕk and ψkℓ are defined by

p := P(y′i ̸= yi), ϕk = P(qi = 1 | y′i = k, yi = k), ψkℓ = P(qi = 1 | y′i = ℓ, yi = k). (16)

Consequently, if Nkℓ is the number of training examples that have true label k, fake label ℓ, and survive pruning, then

Nkℓ :=

N∑
i=1

zikℓ (17)

2Unicity is due to strong convexity of objective function.
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which is has binomial distribution Bin(N, pkℓ). As mentioned in the main text, for simplicity of exposition we considered
the following simplifying assumption

ϕ1 = ϕ0 = ϕ, ψ01 = ψ10 = ψ. (18)

Such a pruning strategy will be referred to as an RLHF-type strategy with parameter (ϕ, ψ). As usual, RLHF stands for
Reinforcement Learning with Human Feedback. It can be likened to the sense in which the term is classically used, where
one assumes access to a strong oracle (e.g a human) who can tell apart bugguous predictions, but can also make mistakes.

Remark F.2. Note that the parametrization (ϕ, ψ) and (p00, p11) describe the same RLHF-type policy via the following
bijective transformation.

p00 = p11 = (1− p)ϕ/2, p01 = p10 = pψ/2. (19)

F.4. Examples

Let us present some notable examples of pruning RLHF-type pruning strategies.

No Pruning. The case (ϕ, ψ) = (1, 1) corresponds to no pruning, i.e the entire training dataset is used.

Pure RLHF. The case (ϕ, ψ) = (1, 0). The pruning strategy only keeps indices corresponding to examples in the dataset
which have correct label (all corrupted labels discarded).

Supervised ((Margin-Based) Pruning. Let wprune ∈ Rd, and consider the pruning strategy defined by

qi = 1[yi(x
⊤
i wprune) > 0].

This pruning strategy simplify filters out all examples on which it disagrees on the assigned label.

F.5. Performance Bounds for Models Trained with RLHF Pruning

Figure 6. Empirical Confirmation of Theorem F.3. Comparing the breakdown points of different models. Here, the task is classifying a
Gaussian mixture, with infinite training samples from datasets generated from a model with classification error rate p (x-axis). Notice
the sharp phrase-transitions where the model suddenly switches from perfect accuracy to worse-than-chance, a phenomenon predicted
by Theorem F.3. Left. Performance of RLHF-type pruning strategies with different values of the hyper-parameters (ϕ, ψ). Recall that
the case ψ/ϕ = 1 corresponds to no pruning, while ψ/ϕ = 0 corresponds to pure RLHF. Right. Comparing pup, approximated with
sup{p | acc(f̂N ) ≥ 90%} (computed empirically), against the analytic estimate p−⋆ (t) given in Theorem F.3 (for t = 0.1). Again, the
results are in excellent agreement with the predictions of the theorem.

The following is one of our main results (proved in Appendix G).
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Theorem F.3. Suppose Condition F.1 is in order. Fix ϕ, ψ, t ∈ (0, 1) and define p±⋆ (t) ∈ (0, 1) by

p−⋆ (t) :=
1− t

1− t+ (1 + t)ψ/ϕ
, p+⋆ :=

1 + t

1 + t+ (1− t)ψ/ϕ
(20)

If p < p−⋆ (t), then the limit N → ∞ it holds w.p 1− o(1) that the acc(f̂N ) = 100% for a downstream model f̂N trained on
data from a generator with error rate p pruned with an RLHF-type strategy with parameters (ϕ, ψ).

On the other hand, if p > p+⋆ , then in the limit N → ∞ it holds w.p 1 − o(1) that the acc(f̂N ) = 0% for a downstream
model f̂N .

Thus, there is a sharp phase-transition around the corruption level p⋆ := 1/(1 + ψ/ϕ): as p is increased past level p⋆, the
downstream model f̂N abruptly switches from being perfectly accurate, to perfectly inaccurate!

See Figure 6 for an empirical illustration of the theorem.

The thresholds p±⋆ (t) appearing in the above theorem are proxies for the so-called breakdown points pup ≥ pdown defined
by

pup = inf
{
p ∈ [0, 1]

∣∣ acc(f̂N )
a.s→ 0% in the limit N → ∞

}
, (21)

pdown = sup
{
p ∈ [0, 1]

∣∣ acc(f̂N )
a.s→ 100% in the limit N → ∞

}
. (22)

Theorem F.3 implies pdown ≥ p−⋆ (t) and pup ≤ p+⋆ (t) for all t ∈ (0, 1). Consequently,

Corollary F.4. Under the hypotheses of Theorem F.3, it holds that pup = pdown.

F.6. Some Consequences of Theorem F.3

We now present some illustrious applications of Theorem F.3. These examples are empirically confirmed in Figure 6.

No Pruning. Here, we have ψ/ϕ = 1 and so the downstream model achieves 100% accuracy for all values of corruption
parameter p up to the proxy breakdown point predicted by Theorem F.3 is then p−⋆ = 1/2− t/2.

Pure RLHF. For this scenario, ψ/ϕ = 0 and so Theorem F.3 predicts that the downstream model f̂N achieves 100%
accuracy for all values of corruption parameter p up to the breakdown point p−⋆ = 1. This is perhaps not so surprising in
hindsight. The point is that even for moderately large values of ψ/ϕ, the proxy breakdown point p−⋆ given in (20) can still
be quite close to 1.

Self-supervised (Margin-Based) Pruning. Consider Gaussian mixture data with means ±µ, and consider a margin-based
pruning strategy in Equation (6). It is clear that ϕ and ψ only depend on all the 3 angles between the set of vectors
{w∗, wgen, wprune}, with w∗ = µ.

F.7. Sketch of Proof of Theorem F.3

The proof is based on the following representation (refer to Proposition G.2) of the accuracy of the downstream classifier
f̂N evaluated on the the clean training dataset DN , namely

âcc(f̂N ) =
N111A<1/2 +N001D<1/2 +N101B>1/2 +N011C>1/2

N11 +N00 +N10 +N01
, (23)

for some random some random variables A,B,C,D ∈ (0, 1) which depend on the Nkℓ’s defined in (17).

Remark F.5. We only compute the accuracy âcc(f̂N ) of the downstream model f̂N evaluated on the clean training dataset
DN . By classical results in learning theory (McAllester, 2003; Shalev-Shwartz and Ben-David, 2014; Kakade et al., 2008),
we know that the gap to the population version (test accuracy) acc(f̂N ) shrinks to zero at rate O(1/

√
N), and so since the

claim in Theorem F.3 is made only in the limit N → ∞, we are good.
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Next, in Proposition G.3 and Proposition G.4, necessary and sufficient conditions are established to ensure A,D < 1/2

and B,C > 1/2, and therefore âcc(f̂N ) = 100%. These conditions are given explicitly in terms of the Nkℓ’s. Finally, in
Proposition G.5, concentration of measure is used to control the Nkℓ’s, and present the aforementioned conditions in terms
of the pkℓ’s defined in (15), and therefore in terms of p, ϕ, and ψ alone, giving condition (20).

G. Proof of Theorem F.3
Our analysis is based on non-trivial extensions of arguments by Das and Sanghavi (2023). Viz,

• We allow for a pruning mechanism (aforementioned work does study pruning, just self-distillation), and

• We use a careful asymptotic analysis to avoid solving certain complicated fixed-point equations defining the weights
vector ŵN of the downstream model f̂N .

G.1. Preliminary Computations

For later use, given a pruning strategy q, define the following objects

Ik := {j ∈ [N ] | yj = k}, (24)
I ′ℓ := {j ∈ [n] | y′j = ℓ}, (25)

M := {i ∈ [N ] | qi = 1}, (26)

Nkℓ :=
∑

i∈Ik∩I′
ℓ

qi = |Ik ∩ I ′ℓ ∩M |, (27)

R := 1− a > 0. (28)

Thus, Nkℓ is the number of training examples that have true label k, fake label ℓ, and survive pruning. The following result
will be crucial in the sequel.
Proposition G.1. We have the representation ŵ =

∑
i∈M αixi, where

αi =


A, if i ∈ I1 ∩ I ′1 ∩M,

−B, if i ∈ I1 ∩ I ′0 ∩M,

C, if i ∈ I0 ∩ I ′1 ∩M,

−D, if i ∈ I0 ∩ I ′0 ∩M,

(29)

and A,B,C,D ≥ 0 solve the following system of equations

γA = σ(−(aN11A− aN10B + bN01C − bN00D)−RA),

γB = σ(aN11A− aN10B + bN01C − bN00D −RB),

γC = σ(−(bN11A− bN10B + aN01C − aN00D)−RC),

γD = σ(bN11A− bN10B + aN01C − aN00D −RD).

(30)

Proof. The following result is inspired by (Das and Sanghavi, 2023) and the proof is similar. Observe that KKT conditions
∇L(w) = 0 give

∑N
i=1 qi(ŷi − y′i)xi + γw = 0, i.e

w =

N∑
i=1

qiαixi, with αi :=
y′i − ŷi
γ

, ŷi := σ(vi), vi = x⊤i w. (31)

One then computes

vi = x⊤i w =

N∑
j=1

qiαix
⊤
i xj = qiαi +

{
a(s− qiαi) + bt, if i ∈ I1,

a(t− qiαi) + bs, if i ∈ I0,

=

{
as+ bt+Rqiαi, if i ∈ I1,

bs+ at+Rqiαi, if i ∈ I0,

(32)
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where s ≥ 0 and t ≥ 0 are given by

s :=
∑
j∈I1

qjαj , t :=
∑
i∈I0

qjαj . (33)

We deduce that for any i ∈M ,

γαi = y′i − σ(vi) =


1− σ(as+ bt+Rqiαi), if i ∈ I1 ∩ I ′1,
−σ(as+ bt+Rqiαi), if i ∈ I1 ∩ I ′0,
1− σ(bs+ at+Rqiαi), if i ∈ I0 ∩ I ′1,
−σ(bs+ at+Rqiαi), if i ∈ I0 ∩ I ′0.

(34)

Due to monotonicity of σ, we deduce the existence of A,B,C,D ≥ 0 such that

αi =


A, if i ∈ I1 ∩ I ′1 ∩M,

−B, if i ∈ I1 ∩ I ′0 ∩M,

C, if i ∈ I0 ∩ I ′1 ∩M,

−D, if i ∈ I0 ∩ I ′0 ∩M.

(35)

ŷi = y′i − γαi =


1− γA, if i ∈ I1 ∩ I ′1 ∩M,

γB, if i ∈ I1 ∩ I ′0 ∩M,

1− γC, if i ∈ I0 ∩ I ′1 ∩M,

γD, if i ∈ I0 ∩ I ′0 ∩M.

(36)

Furthermore, these scalars must verify

γA = 1− σ(as+ bt+RA) = σ(−(as+ bt)−RA),

γB = σ(as+ bt−RB),

γC = 1− σ(bs+ at+RC) = σ(−(bs+ at)−RC),

γD = σ(bs+ at−RD).

(37)

Finally, observe that,

s = N11A−N10B, t = N01C −N00D, (38)

from which we get

as+ bt = a(N11A−N10B) + b(N01C −N00D)

= aN11A− aN10B + bN01C − bN00D,

bs+ at = b(N11A−N10B) + a(N01C −N00D)

= bN11A− bN10B + aN01C − aN00D.

Plugging this into (37) gives (30).

G.2. Analytic Formula for Accuracy Evaluated Clean Training Data

One computes the accuracy âcc(f̂N ) of the downstream model evaluated on the clean training dataset DN as

âcc(f̂N ) =
1

|M |
(|{i ∈M | yi = 1 ∧ ŷi > 1/2 OR yi = 0 ∧ ŷi < 1/2}|) .

22



We can rewrite this as follows

|M | · âcc(f̂N ) = |{i ∈M | yi = 1 ∧ ŷi > 1/2 OR yi = 0 ∧ ŷi < 1/2}|
= |{i ∈ I1 ∩M | ŷi > 1/2}|+ |{i ∈ I0 ∩M | ŷi < 1/2}|

=
∑

i∈I1∩M

1ŷi>1/2 +
∑

i∈I0∩M

1ŷi<1/2

= |I1 ∩ I ′1 ∩M |1γA<1/2 + |I1 ∩ I ′0 ∩M |1γB>1/2

+ |I0 ∩ I ′1 ∩M |1γC>1/2 + |I0 ∩ I ′0 ∩M |1γD<1/2

= N111γA<1/2 +N001γD<1/2 +N101γB>1/2 +N01AγC>1/2.

(39)

On the other hand, it is clear that the size of the mask is |M | =
∑

k,ℓNkℓ. Putting things together gives the following result
which shall be crucial in the sequel.

Proposition G.2. For any ϕ, ψ ∈ [0, 1], there is a solution (A,B,C,D) of the system of equations (30) such that

âcc(f̂N ) =
N111A<1/2 +N001D<1/2 +N101B>1/2 +N011C>1/2

N11 +N00 +N10 +N01
, (40)

where A := γA, B = γB, C = γC, and D = γD as usual.

Thus, to attain 100% accuracy, it suffices to have A,D < 1/2 and B,C > 1/2. The proof of Theorem F.3 will be all about
establishing sufficient conditions which ensure these inequalities.

G.3. Sufficient Conditions for Perfect Accuracy

Note that since γ = Nλ with λ > 0 fixed and N → ∞, we have γ → ∞ and system of equations (30) simplify to3

B = σ((aN11A− aN10B + bN01C − bN00D)/γ),

A = σ(−(aN11A− aN10B + bN01C − bN00D)/γ) = 1−B,

D = σ((bN11A− bN10B + aN01C − aN00D)/γ),

C = σ(−(bN11A− bN10B + aN01C − aN00D)/γ) = 1−D,

(41)

where A := γA, B = γB, C = γC, D = γD as usual, and we have used the elementary property that σ(−z) = 1− σ(z).
Eliminating A and C, the above equations further collapse to

B = σ((aN11(1−B)− aN10B + bN01(1−D)− bN00D)/γ),

= σ((aN11 + bN01 − a(N11 +N10)B − b(N01 +N00)D)/γ),

D = σ((bN11(1−B)− bN10B + aN01(1−D)− aN00D)/γ)

= σ((bN11 + aN01 − b(N10 +N10)B − a(N01 +N00)D)/γ).

(42)

Two special cases are tractable.

The Symmetric Case: b = −a. We have D = 1−B, and thus the equations become

D = A, C = B, D = 1−B,

B = σ((a(N11 +N00)− a(N11 +N10 +N01 +N00)B)/γ).
(43)

If B ≤ 1/2, then we must have B ≥ (N11 +N00)/(N11 +N10 +N01 +N00), which is impossible if we impose

N10 +N01 < N11 +N00, (44)

i.e the number of bad indices which survive is smaller than the number of good indices which survive pruning. Thus, under
the previous condition, we must have C = B > 1/2 and A = D = 1−B < 1/2. By symmetry of the preceeding argument
we know that the condition is also necessary. We deduce the following result.

3These simplifications are made possible by the Mean Value Theorem.
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Proposition G.3. Suppose b = −a. Then, for any solution (A,B,C,D) of the system of equations (30), the inequalities

C = B > 1/2, D = A < 1/2, (45)

hold if and only iff N10 +N01 < N11 +N00.

Skewed Case: b = 0. Here, we have

B = σ(a(N11 − (N11 +N10)B)/γ),

D = σ(a(N01 − (N01 +N00)D)/γ)
(46)

If B ≤ 1/2, then B ≥ N11/(N11 +N10), which is impossible if we impose

N10 < N11, (47)

i.e the number of examples with true label 1, which are incorrectly labelled as 0 in the dataset, which survive pruning is less
than the number of examples with true label 1, which are correctly labelled and survive pruning. We deduce that B > 1/2
under the above condition.

Similarly, if D ≥ 1/2, then D ≤ N01/(N01 +N00), which is impossible if we impose

N01 < N00, (48)

i.e the number of with true label 0 but incorrectly labelled as 1 in the dataset, which survive pruning is less than the number
of examples with true label 1, which are correctly labelled and survive pruning. We obtain the following result.
Proposition G.4. Suppose b = 0. Then, for any solution (A,B,C,D) of (30), we have

C,B > 1/2 iff N10 < N11, (49)

D,A < 1/2 iff N01 < N00. (50)

G.4. Concentration

We shall now derive conditions which are sufficient to ensure the hypothesis in Propositions G.3 and G.4, namelyNkℓ < Nkk

for all k, ℓ ∈ {0, 1} with k ̸= ℓ. Recall that for any k, ℓ ∈ {0, 1}, the counter Nkℓ is random with binomial distribution
Bin(N, pkℓ). Now, by basic binomial concentration, we know that if p, ψ ∈ [0, 1) and ϕ ∈ (0, 1], then for any fixed
t ∈ (0, 1), it holds w.p 1− o(1) that {

Nkℓ ≤ (1 + t)Npkℓ, if k ̸= ℓ,

Nkℓ ≥ (1− t)Npkℓ, if k = ℓ.
(51)

In particular, w.p 1− o(1), it holds that

Nkℓ ≤ (1 + t)Npkℓ, (52)
Nkk ≥ (1− t)Npkk. (53)

Comparing the above inequalities, we deduce the following result.
Proposition G.5. If the following condition holds

p01 + p10
p00 + p11

<
1− t

1 + t
= 1− ϵ with ϵ :=

2t

1 + t
, (54)

then w.p 1− o(1) it holds that

N10 +N01 < N11 +N00. (55)

G.5. Proof of Theorem F.3

Follows directly from putting together Propositions G.2, G.3, G.4, and G.5, and then solving the inequality

1− t

1 + t
≤ p01 + p10
p00 + p11

=
2pψ

2(1− p)ϕ
=

pψ

(1− p)ϕ

for p.
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