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ABSTRACT

Vector Quantized Variational AutoEncoder (VQ-VAE) is an established technique
in machine learning for learning discrete representations across various modali-
ties. However, its scalability and applicability are limited by the need to retrain
the model to adjust the codebook for different rate requirements or encoding effi-
ciency. We introduce the Rate-Adaptive VQ-VAE (RAQ-VAE) framework, which
addresses this challenge with two novel discrete (codebook) representation meth-
ods: a model-based approach using a clustering technique for existing pre-trained
VQ-VAE models, and a data-driven approach utilizing a sequence-to-sequence
(Seq2Seq) model for variable-rate codebook generation. Our experiments demon-
strate that RAQ-VAE achieves effective reconstruction performance across mul-
tiple rates, often outperforming conventional fixed-rate VQ-VAE models. This
work enhances the adaptability and performance of VQ-VAEs, with broad appli-
cations in data reconstruction, generation, and computer vision tasks.

1 INTRODUCTION

Vector quantization (VQ) (Gray, 1984) is a fundamental technique for learning discrete represen-
tations for various tasks (Krishnamurthy et al., 1990; Gong et al., 2014; Van Niekerk et al., 2020)
in the field of machine learning. The Vector Quantized Variational AutoEncoder (VQ-VAE) (Van
Den Oord et al., 2017; Razavi et al., 2019), which extends the encoder-decoder structure of the Vari-
ational Autoencoder (VAE) (Kingma & Welling, 2013; Rezende & Viola, 2018), introduces discrete
latent representations that have proven effective across multiple domains, including computer vision
(Razavi et al., 2019; Esser et al., 2021), audio (Dhariwal et al., 2020; Yang et al., 2023; Tseng et al.,
2023), and speech (Kumar et al., 2019; Xing et al., 2023). These successes are attributed to the
inherently discrete nature of the data in these domains, which makes VQ well suited to learning
complex inference and prediction tasks.

Recent developments have further enhanced VQ-based discrete representation learning by integrat-
ing it with deep generative models, such as Generative Adversarial Networks (GANs) (Esser et al.,
2021) and Denoising Diffusion Probabilistic Models (DDPMs) (Cohen et al., 2022; Gu et al., 2022;
Yang et al., 2023). As VQ-VAE is integrated into these diverse generative frameworks, its utility and
applicability in various tasks are becoming increasingly evident. However, even with this success,
the scalability of the codebook-driven quantization process poses a significant challenge,further mo-
tivating our approach. With the proliferation of large datasets and the demand for real-time process-
ing, VQ-based architectures struggle with the computational complexity associated with dynamic
compression, including the need to retrain models to adjust computational loads. Consequently,
addressing the scalability of the VQ process is crucial to fully realizing the potential of VQ-VAE,
especially in integrating it with large-scale generative VQ models (Yu et al., 2022).

To address the issues, Li et al. (2023) proposed a method to resize the codebook without retraining
the publicly available VQ models by applying hyperbolic embeddings to enhance the codebook vec-
tor with co-occurrence information and reordering the improved codebook with a Hilbert curve. An-
other approach to achieve more comprehensive codebook representation, the use of multi-codebook
has been an ongoing challenge to achieve richer representations for different tasks (Guo et al., 2022).
Malka et al. (2023) designed and learned a nested codebook based on progressive learning to sup-
port different quantization levels. Guo et al. (2023) proposed a framework for predicting codebook
indexes generated from embeddings of student models using multi-codebook vector quantization
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by reformulating teacher label generation as a codec problem in knowledge distillation. Recently,
Huijben et al. (2024) focused on unsupervised codebook generation based on residual quantization
by studying the vector quantizer itself. However, addressing these issues through multi-codebook or
residual quantization generally entails substantial changes to the existing well-established structure
of VQ-VAEs, or face a reduction in the resolution of the quantized feature map.

To this end, we propose a Rate-Adaptive VQ-VAE (RAQ-VAE) framework that allows discrete
representation at various rates with a single VQ-VAE model. First, we propose model-based RAQ-
VAE that can use the existing VQ-VAE model to obtain rate-adaptive VQ through a differential
k-means clustering (DKM) (Cho et al., 2021) algorithm and its inverse functionalization without
any additional parameters and retraining. Next, we present data-driven RAQ-VAE with Sequence-
to-Sequence (Seq2Seq) (Sutskever et al., 2014) model for rate-adaptive codebook generation. The
data-driven RAQ-VAE can achieve discrete representation at any desired rate through the Seq2Seq
model and approaches or partially outperforms the separately trained conventional VQ-VAE model.
Our framework addresses the challenge of needing multiple VQ-VAE models for different compres-
sion rates, especially in large-scale computer vision tasks that require high-capacity representations.
Additionally, it can be seamlessly integrated into various VQ applications without requiring signifi-
cant modifications to the existing VQ-VAE structure.

Our contributions are summarized as follows:

• We introduce the RAQ-VAE framework with two VQ codebook representation methods:
model-based RAQ-VAE, utilizing an existing trained VQ-VAE model, and data-driven
RAQ-VAE, combining Seq2Seq model with VQ-VAE architecture.

• We propose model-based RAQ-VAE, which adapts the codebook of a VQ-VAE model
using a dynamic codebook clustering method, allowing the quantizer to adjust the rate
without retraining.

• We propose data-driven RAQ-VAE that generates a rate-adaptive codebook via a Seq2Seq
model. This approach uses a single codebook and a training method, cross-forcing, to train
recurrent networks to generate codebooks at different rates.

• Our experiments demonstrate that a single RAQ-VAE model achieves or even outperforms
the performance of multiple VQ-VAE models trained at fixed rates, using the same encoder-
decoder architecture.

2 BACKGROUND

Vector-Quantized Autoencoder VQ-VAEs (Van Den Oord et al., 2017; Razavi et al., 2019) can
successfully represent meaningful features that span multiple dimensions of data space by discretiz-
ing continuous latent variables to the nearest code vector in its codebook. In VQ-VAE, learning
of discrete representations is achieved by quantizing the encoded latent variables to their nearest
neighbors in a trainable codebook and decoding the input data from the discrete latent variables. To
represent the data x ∈ R3×H×W from dataset D discretely, a codebook e consisting of K learnable
code vectors {ei}Ki=1 ⊂ Rd is employed. The quantized discrete latent variable zq(x|e) is decoded
to reconstruct the data x. The quantizer Q modeled as deterministic categorical posterior maps a
continuous latent representation fϕ(x) of the data x by a deterministic encoder fϕ to zq(x|e) by
finding the nearest neighbor in the D-dimensional codebook e = {ei}Ki=1 as

zq(x|e) = Q (fϕ(x)|e) = argmin
ei∈{ei}K

i=1

∥fϕ(x)− ei∥ . (1)

The quantized representation is fixed to log2K bits for the index i of the selected code vector ei
of the codebook of size K. The deterministic decoder fθ reconstruct the data x from the quantized
discrete latent variable zq(x|e) as x̂ = fθ

(
zq(x|e)|e)

)
. During the training process, the encoder fϕ,

decoder fθ, and codebook e are jointly optimized to minimize the loss LVQ
(
ϕ, θ, e;x

)
=

log pθ(x|zq(x|e))︸ ︷︷ ︸
Lrecon

+
∣∣∣∣sg

[
fϕ(x)

]
− zq(x|e)

∣∣∣∣2
2︸ ︷︷ ︸

Lembed

+β
∣∣∣∣sg

[
zq(x|e)

]
− fϕ(x)

∣∣∣∣2
2︸ ︷︷ ︸

Lcommit

(2)

where sg[·] is the stop-gradient operator. The Lrecon is the reconstruction loss between the input
data x and the reconstructed decoder output x̂. The two Lembed and Lcommit apply only to code-
book variables and encoder weight with a weighting hyperparameter β to prevent fluctuations from
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Figure 1: Model-based RAQ-VAE (left): the model-based approach clusters the codebook e of a
trained VQ-VAE model with separate tasks for reducing or increasing to the adapted codebook ẽ and
applies it to the model. Data-driven RAQ-VAE (right): the data-driven approach trains a Seq2Seq-
based codebook adaptation procedure utilizing the baseline VQ-VAE model with data, where the
gradient flow of the codebook passes through the Seq2Seq model.

one code vector to another. Since the quantization process is non-differentiable, the codebook loss
is typically approximated via a straight-through gradient estimator (Bengio et al., 2013), such as
∂L/∂fϕ(x) ≈ ∂L/∂zq(x). Both conventional VAE (Kingma & Welling, 2013) and VQ-VAE (Van
Den Oord et al., 2017) have objective functions consisting of the sum of reconstruction error and
latent regularization. To improve performance and convergence rate, exponential moving average
(EMA) update is usually applied for the codebook optimization (Van Den Oord et al., 2017; Razavi
et al., 2019) (for more details in supplementary material A.1).

Seq2Seq The sequence-to-sequence (Seq2Seq) (Sutskever et al., 2014) model is widely used in
sequence prediction tasks such as language modeling and machine translation (Dai & Le, 2015; Lu-
ong et al., 2016; Ranzato et al., 2016). The model employs an initial LSTM, called the encoder,
to process the input sequence sequentially and produce a substantial fixed-dimensional vector rep-
resentation, called the context vector. The output sequence is then derived by a further LSTM, the
decoder. In particular, the decoder is conditioned on the input sequence, distinguishing it as a dis-
tinct component within the architecture. During training, the Seq2Seq model typically uses teacher
forcing (Williams & Zipser, 1989), where the target sequence is provided to the decoder at each time
step, instead of the decoder using its own previous output as input. This method helps the model
converge faster by providing the correct context during training.

3 RATE-ADAPTIVE VQ-VAE

Although VQ-VAE has been successfully applied to various domains, it still faces scalability limi-
tation. In particular, the common fixed-rate VQ-VAE model requires modifying the codebook size
K when processing different datasets (see (Razavi et al., 2019; Esser et al., 2021), using as many as
16384 and as few as 512 codebook sizes are used). Furthermore, adjusting the computational load
requires retraining the model, which poses additional challenges. To overcome these limitations, we
introduce two Rate-Adaptive VQ-VAE (RAQ-VAE) frameworks, which can adjust the rate of VQ-
VAE through increasing or decreasing of the codebook size K. The outline of the RAQ-VAE frame-
work is shown in Figure 1. RAQ-VAE builds upon a codebook mapping Ψ : (Rd)×K −→ (Rd)×K̃

for any integer K̃ ∈ N that can be either lower, i.e., K̃ < K, or higher, i.e., K̃ > K, than the
original codebook size K. We design the mapping in two ways: (i) model-based RAQ-VAE; (ii)
data-driven RAQ-VAE. Model-based RAQ-VAE (Sec. 3.1) can obtain rate-adaptive VQ through
differentiable k-means clustering (DKM) (Cho et al., 2021) algorithm without any additional pa-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

rameters. In addition, data-driven RAQ-VAE (Sec. 3.2) is an offline-trained RAQ-VAE method that
adopts the codebook generative Sequence-to-Sequence (Seq2Seq) (Sutskever et al., 2014) model.

3.1 MODEL-BASED RATE-ADAPTIVE VQ-VAE

Previous attempts (Łańcucki et al., 2020; Tjandra et al., 2019; Zheng & Vedaldi, 2023) have pro-
posed enhancing codebook learning by periodically clustering the codebook during model training.
In contrast, we propose a model-based rate-adaptive VQ-VAE that performs online codebook clus-
tering after the model has been trained. By loading a VQ-VAE model trained with the original
codebook e and dynamically clustering the codebook to the adapted codebook ẽ. This allows the
vector quantizer to adapt to nuanced patterns within the overall model, providing flexibility and
scalability (See Figure 1).

Codebook Clustering To achieve the desired rate for the adapted codebook size K̃ (= |ẽ|), we
derive the clustered codebook ẽ from the original codebook e. Details of the codebook clustering
formulation are provided in supplementary material A.2. To ensure that the clustering process is
effectively integrated into the trained VQ-VAE model, we employ a differentiable k-means clus-
tering (DKM) algorithm (Cho et al., 2021). This algorithm, originally proposed for DNN model
compression, uses an attention-based weight clustering method. We use the DKM algorithm for
VQ codebook clustering, focusing on the fine-tuning of clustered codebooks and VQ-VAE model
architectures. Additionally, we utilize DKM for codebook incrementation (inverse functionalization
process) to handle scenarios requiring an increase in codebook size.

Reducing the Rate (K̃ < K) In the rate reduction task, DKM can perform iterative differentiable
codebook clustering on K̃ clusters. Let C represent the cluster centers and vector e represent the
original codebook. The DKM algorithm for VQ codebook operates as follows:

• Initialize a centroid C = {cj}K̃j=1 either by randomly selected K̃ codebook vectors from e

or using k-means++. The last known C from the previous batch is used for all following
iterations.

• Calculate the distance between the original codebook vector ei and initialized centroid cj
using Euclidean distance as the distance metric Di,j = −f (ei, cj) with its matrix D.

• To obtain the attention matrix A, derive each row of A where Ai,j =
exp

(
Di,j

τ

)
∑

k exp
(

Di,k
τ

) repre-

sents the attention from ei and cj with a softmax temperature τ .

• Get a centroid candidate C̃ = {c̃j}K̃j=1 by summing all the attentions for each centroid by

computing c̃j =
∑

i Ai,jei∑
i Ai,j

and update C with C̃.

• Repeat this process until |C − C̃| ≤ ϵ at which point DKM has converged or the iteration
limit reached, then compute AC to get ẽ.

The above iterative process can be summarized as follows:

ẽ = argmin
ẽ

LDKM(e; ẽ) = argmin
C

|C−AC| = argmin
C

K̃∑
j=1

∣∣∣∣cj − ∑
iAi,jei∑
iAi,j

∣∣∣∣ (3)

In (Cho et al., 2021), the authors implemented DKM for soft-weighted cluster assignment and hard-
ness can be enforced to provide weighted clustering constraints. In the softmax operation, the tem-
perature τ can be used to control the level of hardness. At the end of the DKM process, we use the
last attention matrix A to snap each codebook vector to the nearest centroid and finish clustering the
codebook.

Increasing the Rate (K̃ > K) While k-means clustering is effective for compressing code vec-
tors, it has algorithmic limitations that prevent the augmentation of additional codebooks. To ad-
dress this, we introduce the inverse functional DKM (IKM), a technique for increasing the number of
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codebooks. This iterative method aims to approximate the posterior distribution of an existing gener-
ated codebook. We use maximum mean discrepancy (MMD) to compare the distribution difference
between the base codebook and the clustered generated codebook, where MMD is a kernel-based
statistical test technique that measures the similarity between two distributions (Gretton et al., 2012).

Assuming the original codebook vector e of size K already trained in the baseline VQ-VAE, the
process of generating the codebook ẽ using the IKM algorithm is performed as follows:

• Initialize a d-dimensional adapted codebook vector ẽ = {ẽi}K̃i=1 as ẽ ∼ N (0, d−
1
2 IK̃)

• Cluster ẽ via the DKM process (equation 3): gDKM(ẽ) = argmin
gDKM(ẽ)

LDKM(ẽ; gDKM(ẽ)).

• Calculate the MMD between the true original codebook e and the DKM clustered gDKM(ẽ).

• Optimize ẽ to minimize the MMD objective LIKM(e; ẽ) = MMD(e, gDKM(ẽ)) + λ||ẽ||2.

where λ is the regularization parameter controlling the strength of the L2 regularization term. The
IKM process can be summarized as ẽ = argmin

ẽ
LIKM(e; ẽ). Since DKM does not block gradient

flow, we easily can update the codebook ẽ using stochastic gradient descent (SGD) as ẽ = ẽ −
η∇LIKM(e, ẽ). With DKM and IKM, the generated codebook ẽ can be used to quantize the encoded
vector as zq(x|ẽ) at different rates without adding any model parameters to the trained VQ-VAE.
Since DKM does not block gradient flow, it is easy to change the codebook cluster assignments
even during offline and online training. During offline training, the clusters that are best suited
in terms of VQ task loss are adopted. Although we do not focus on using multi-codebook with
DKM (aim to leverage rate-adaptive codebook after trained), a multi-codebook VQ-VAE model can
be easily implemented by tuning K̃ with DKM during training and hierarchically optimizing the
multi-codebook clusters with the model.

3.2 DATA-DRIVEN RATE-ADAPTIVE VQ-VAE

Seq2Seq models (Sutskever et al., 2014) have been widely used in machine translation to handle
variable output sequences, where the length of sentences can differ significantly between languages.
Inspired by this, we propose a Seq2Seq-based approach to generate rate-adaptive codebooks within
the VQ-VAE framework. This section introduces the data-driven RAQ-VAE, which integrates a
learning vector quantization layer with Seq2Seq model.

Overview As shown in Figure 1, data-driven RAQ-VAE is constructed with a deterministic
encoder-decoder pair, a trainable original codebook e, and Seq2Seq model. The adapted codebook ẽ
is generated by the Seq2Seq model from the original codebook e. Data-driven RAQ-VAE hierarchi-
cally quantizes the continuous latent representation fϕ(x) of data x into zq(x|e) and zq(x|ẽ) via e
and ẽ, respectively. Building on the conventional VQ-VAE architecture, the data-driven RAQ-VAE
learns the encoder-decoder pair while training the codebook e and its generative process Gψ .

Codebook Encoding The rate-adaptive codebook generation procedure, Gψ , leverages LSTM
cells in the Seq2Seq model to dynamically generate an adapted codebook ẽ from the original code-
book e. The first step is to initialize the target codebook size K̃. During training, the data-driven
RAQ-VAE is trained with arbitrary codebook sizes K̃. In the test phase, the Seq2Seq model gen-
erates the adapted codebook ẽ at the desired rate specified by the user. This initialization sets the
foundation for the encoding and decoding steps in Algorithm 1. Each vector of the original code-
book ei is sequentially encoded by a set of LSTM cells. The hidden and cell states (h, c) capture
the contextual information of each base codebook vector.

Codebook Decoding via cross-forcing The goal of Seq2Seq codebook generation is to reflect as
much information as possible from the original codebook while generating a usable codebook for the
VQ-VAE decoder. However, existing Seq2Seq training methods, such as teacher forcing (Williams
& Zipser, 1989), may not be suitable when the target adapted codebook ẽ consists of sequences that
are much longer than the original codebook. Therefore, we propose cross-forcing, a hybrid approach
combining teacher forcing and free running in professor forcing (Lamb et al., 2016). This is feasible
because, unlike typical sequence prediction tasks, the order of the codebooks does not significantly
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Algorithm 1 Rate-adaptive codebook generation
procedure Gψ

Input: Original codebook e = {ei}Ki=1

Output: Adapted codebook ẽ = {ẽi}K̃i=1

Initialize adapted codebook size K̃,
hidden h = {hi}Ki=1 and cell c = {ci}Ki=1
▷ Codebook encoding
for i = 1 to K do

hi, ci ← LSTMψ(ei)
end for
▷ Codebook decoding via cross-forcing
for i = 1 to K̃ do

if i < 2K and i is odd then
ẽi ← LSTMψ(ei,h, c)

else
ẽi ← LSTMψ(ẽi,h, c)

end if
end for
Return: ẽ = Gψ(e)

Algorithm 2 Training procedure of data-driven
RAQ-VAE

Input: x (batch of training data)
for x ∈ train dataset D do
▷ Quantize encoder output fϕ(x) with e.

zq(x|e)← Q (fϕ(x)|e))

▷ Generate ẽ from Seq2Seq model Gψ .
ẽ← Gψ(e) by Algorithm 1

▷ Quantize encoder output fϕ(x) with ẽ.
zq(x|ẽ)← Q (fϕ(x)|ẽ))

x̂e, x̂ẽ ← fθ(zq(x|e)), fθ(zq(x|ẽ))
Compute LVQ by equation 2.
Compute LRAQ by equation 4.
ϕ, θ, e← Update(LVQ)
ϕ, θ, ψ, e← Update(LRAQ)

end for
Return: fϕ, fθ, Gψ, e

affect the outcome. In the decoding phase (as shown in Algorithm 1), teacher forcing is applied for
odd steps that are less than twice the original codebook size (2K̃), using the base code vector (ei) as
input. For even steps and beyond, free running (using the previous time step decoder output as input)
is performed to dynamically train the VQ-VAE decoder with the generated codebook. The codebook
decoding via cross-forcing is a key component of the data-driven approach. This technique helps
ensure stable codebook generation at different rates. We have empirically validated its effectiveness
in Appendix A.4.5.

Training Procedure To train the data-driven RAQ-VAE, we jointly optimize the base VQ-VAE
and RAQ-VAE objectives to learn a good representation of the original codebook e and the rate-
adaptive codebook generative process Gψ . We formulate the constrained optimization LRAQ to
jointly update Gψ with fϕ, fθ, and e as LVQ

(
ϕ, θ, e;x

)
≥ LRAQ

(
ϕ, θ, ψ, e;x

)
=

log pθ
(
x|zq(x|Gψ(e))

)
+
∣∣∣∣sg [fϕ(x)]− zq(x|Gψ(e))

∣∣∣∣2
2
+ β

∣∣∣∣sg [zq(x|Gψ(e))]− fϕ(x)
∣∣∣∣2
2
. (4)

where sg[·] is the stop-gradient operator. The data-driven RAQ-VAE jointly minimizes LVQ (equa-
tion 2) and LRAQ (equation 4). Back-propagating LVQ induces the same gradient flows as the base
VQ-VAE. Additionally, back-propagating LRAQ induces a gradient flow to the Seq2Seq model, re-
sulting in effective codebook generation. The overall training procedure for the proposed data-driven
RAQ-VAE is summarized in Algorithm 2. During training, the Seq2Seq model dynamically gener-
ates codebooks and adapts to different rates at each training iteration.

4 RELATED WORK

VQ-VAE and its Improvements The VQ-VAE (Van Den Oord et al., 2017) has inspired numerous
developments since its inception. Łańcucki et al. (2020); Williams et al. (2020); Zheng & Vedaldi
(2023) proposed codeword reset and online clustering methods to address the problem of codebook
collapse (Takida et al., 2022), thereby increasing the training efficiency of the codebook. Tjandra
et al. (2019) introduced a conditional VQ-VAE that generates magnitude spectrograms for target
speech using a multi-scale codebook-to-spectrogram inverter given the VQ-VAE codebook. SQ-
VAE (Takida et al., 2022) incorporated stochastic quantization and a trainable posterior categorical
distribution to enhance VQ-VAE performance, while Vuong et al. (2023) proposed VQ-WAE, based
on SQ-VAE, using Wasserstein distance to ensure a uniform distribution of discrete representations.
Several works have introduced substantial structural changes to VQ-VAE. Lee et al. (2022) proposed
a two-step framework with Residual Quantized (RQ) VAE and RQ-Transform to generate high-
resolution images using a single shared codebook. Mentzer et al. (2023) replaced VQ with Finite
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Scalar Quantization (FSQ) to tackle codebook collapse. However, unlike previous works, we focus
on achieving rate-adaptive VQ-VAE within a largely unchanged quantization scheme and VQ-VAE
model architecture to improve its scalability for application not only to basic VQ-VAE models but
also to its advanced models.

Variable-Rate Neural Image Compression Several studies have proposed variable-rate learn-
ing image compression frameworks based on different neural network architectures. Yang et al.
(2020); Choi et al. (2019); Cui et al. (2020) introduced frameworks based on autoencoders, con-
ditional autoencoders, and VAE structures, respectively. Variable-rate image compression has also
been achieved in studies such as Song et al. (2021), which uses models based on the Spatial Fea-
ture Transform (SFT) for compression, and Johnston et al. (2018), which employs recurrent neural
networks (RNNs) to achieve variable-rate compression by evaluating the distortion of individual
patches to compute a weighted distortion. Duong et al. (2023) proposed learned transforms and
entropy coding to enhance the linear transforms in existing codecs by systematizing the process into
a single model that follows the rate-distortion curve. However, the integration of variable-rate im-
age compression within the VQ-VAE framework remains an open question. Unlike these studies,
our work focuses on embedding variable-rate compression directly into the VQ-VAE framework,
maintaining the benefits of VQ while enhancing scalability and adaptability.

5 EXPERIMENTS

Implementation To demonstrate the advancement of the proposed RAQ-VAE, we adapt the con-
ventional VQ-VAE (Van Den Oord et al., 2017) and the two-level hierarchical VQ-VAE (VQ-VAE-
2) (Razavi et al., 2019) as baselines. We perform empirical evaluations on vision datasets: CIFAR10
(32 × 32) (Krizhevsky et al.) and CelebA (64 × 64, 128 × 128) (Liu et al., 2015) for quantitative
evaluation, and ImageNet (256 × 256) (Russakovsky et al., 2015) for qualitative evaluation. We
designed RAQ-VAE to adapt the conventional VQ-VAE and its improved model structures (Tjandra
et al., 2019; Ott et al., 2019; Esser et al., 2021; Ramesh et al., 2021) to achieve multiple rates within
a single model.

Architecture We use identical architecture and parameters for all methods, setting the default
codeword (discrete latent) embedding dimension d to 64 for CIFAR10 and CelebA, and to 128 for
ImageNet. The codebook sizes range from 16 to 1024 for CIFAR10, 32 to 2048 for CelebA, and
128 to 4096 for ImageNet, with conventional VQ-VAE models trained on ’power of 2’ sizes and
RAQ-VAE models set to the middle of the range for both model-based and data-driven approaches.
Details of the experimental settings are provided in supplementary material A.3.

Evaluation Metrics We quantitatively evaluated our method using peak-signal-to-noise-ratio
(PSNR), structural similarity index measure (SSIM), reconstructed Fréchet inception distance (rFID)
(Heusel et al., 2017), and codebook perplexity. PSNR measures the ratio between the maximum
possible power of a signal and the power of the corrupted noise affecting data fidelity (Korhonen
& You, 2012). SSIM assesses structural similarity between two images (Wang et al., 2004; Brunet
et al., 2011). rFID assesses the quality of reconstructed images by comparing the distribution of
features extracted from the test data with that of the original data. Codebook perplexity, defined as
e−

∑K̃
i pei log pei where pei =

Nei∑K̃
j Nej

and Nei represents the encoded number for latent representa-

tion with codebook ei, indicates a uniform prior distribution when the perplexity value reaches the
codebook size (K̃), meaning all codebooks are used equally.

5.1 MAIN RESULTS ON VISION TASKS

Quantitative Evaluation We empirically compare our RAQ-VAE models with the conventional
VQ-VAE (Van Den Oord et al., 2017) for image reconstruction performance. We trained and evalu-
ated each VQ-VAE with different codebook sizes (K) as a quantitative baseline, and then validated
RAQ-VAE by adapting the rate (by adjusting K̃) on a single model-based and data-driven RAQ-
VAE model. Figure 2 shows the results, evaluated on the CIFAR10 and CelebA (64× 64) datasets.
Under same compression rate and network architecture, all proposed RAQ-VAE models achieve
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(a) CIFAR10, baseline model: VQ-VAE (Van Den Oord et al., 2017)

(b) CelebA, baseline model: VQ-VAE (Van Den Oord et al., 2017)

Figure 2: Reconstruction performance at different rates (adapted codebook sizes) evaluated on
(a) CIFAR-10 and (b) CelebA. Higher values are better for PSNR, SSIM, and codebook perplexity,
while lower values are better for rFID. The black lines represent separate VQ-VAE models trained
individually for each codebook size K̃. The colored lines represent a single RAQ-VAE model ini-
tially trained at a original codebook size K and later adapted to different codebook sizes K̃. The
shaded area indicates the 95.45% confidence interval based on 4 runs with different training seeds.

performance close to that of multiple VQ-VAE models. When increasing the rate (codebook size),
the data-driven RAQ-VAE achieves slightly lower results for the PSNR and SSIM metrics but bet-
ter results in terms of rFID score, which evaluates perceptual image quality at the dataset level. In
particular, the perplexity of the conventional VQ-VAE models shows low scores on CelebA, but the
proposed data-driven RAQ-VAE performs better in terms of perplexity and rFID, especially at high
bits per pixel (bpp). The model-based RAQ-VAE performs poorly overall, but in the task of reducing
the rate, it achieves intermittently more reliable results on CIFAR10. Our proposed method is highly
portable and reduces model complexity, considering the resources invested in each single VQ-VAE,
since RAQ-VAE covers multiple fixed-rate VQ-VAE models with only a single model. (The model
complexity of the baseline VQ-VAEs and our RAQ-VAEs are provided in A.3.3.)

Qualitative Evaluation For qualitative evaluation, we compare a single data-driven RAQ-VAE
with VQ-VAEs trained at different rates (0.4375 bpp to 0.75 bpp) on ImageNet (256 × 256). As
seen in Figure 3, the VQ-VAEs (in the first row) are trained for each rate show that the quality
decreases as the rate decreases, which is consistent with the results observed in the quantitative eval-
uation. When randomly selecting codebooks from a VQ-VAE model trained with K = 4096 (in
the second row), we observe significant color changes, particularly at 0.5 bpp, where reconstruc-
tions retain structural similarity but show color distortions. However, the data-driven RAQ-VAE
(K = 512), trained on a low-rate base codebook (0.5625 bpp), preserves the high-level semantic
features and colors of the input image well with only a single model trained on the low-rate base
codebook. Notably, it recovers fine details, like the cat’s whiskers, far better than reconstructions
using randomly selected codebooks. Although the image quality declines slightly at the lowest bpp,
future work combining RAQ-VAE with advanced priors, such as PixelCNN (van den Oord et al.,
2016) or PixelSNAIL (Chen et al., 2018), could further enhance the fidelity of generated images.
Additional reconstructions can be found in the supplementary material A.4.4.

5.2 DETAILED ANALYSIS

Codebook Usability Following the observations of previous works (Wu & Flierl, 2020; Takida
et al., 2022; Vuong et al., 2023), we note that as the codebook size increases, the codebook perplexity
of data-driven RAQ-VAE also increases, leading to better reconstruction performance. In most VQ-
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Figure 3: Reconstructed samples for the ImageNet dataset at different rates.

rFID ↓

Method Dataset K Adapted Codebook Size K̃
2048 1024 512 256 128 64

VQ-VAE-2 (Razavi et al., 2019) CelebA K̃ 10.11§ 11.53 14.10 14.74§§ 17.95 20.95
VQ-VAE-2† (Razavi et al., 2019) CelebA 2048 10.11§ 18.96 24.36 37.34 148.88 215.41

Model-based RAQ* (Ours) CelebA 256 13.76 13.68 14.12 14.74§§ 20.29 53.46
Data-driven RAQ* (Ours) CelebA 256 13.48 13.65 14.18 15.88 19.33 25.24

512 256 128 64 32 -

VQGAN (Esser et al., 2021) ImageNet K̃ 13.71§ 14.38 18.96§§ 22.48 - -
VQGAN† (Esser et al., 2021) ImageNet 512 13.71§ 17.26 23.94 35.92 60.79 -
Model-based RAQ** (Ours) ImageNet 128 18.81 18.89 18.96§§ 24.58 34.16 -
Data-driven RAQ** (Ours) ImageNet 128 15.91 17.54 19.83 22.55 31.54 -

Table 1: Reconstruction performances at different rates (according to K̃) on CelebA (128× 128)
test set and ImageNet (256 × 256) validation set. † uses a single model for reconstructions with
randomly selected codebooks. * denotes models trained with two-level hierarchical VQ-VAE (VQ-
VAE-2) as in Razavi et al. (2019). ** denotes model trained with the stage-1 VQGAN as in Esser
et al. (2021). § and §§ indicate results generated from the same model for the corresponding rates.

VAE frameworks, codebook perplexity is considered optimal when it approaches the codebook size,
effectively utilizing the available resources when the codebook size is limited. As demonstrated in
the main quantitative evaluation (see Figure 2), the data-driven RAQ-VAE outperforms conventional
VQ-VAE in terms of codebook perplexity at higher bits per pixel (bpp). This improvement highlights
the effectiveness of the Seq2Seq model in generating a codebook that the decoder can consistently
and efficiently utilize. The ability of data-driven RAQ-VAE to maintain high codebook perplexity
ensures better representation and reconstruction quality, proving its robustness in handling larger
codebooks.

Rate Adaptation To demonstrate the rate adaptation performance, we validated RAQ-VAE by
varying the adapted codebook size (K̃). For the rate reduction task (K̃ < K), our experiments
show that data-driven RAQ-VAE generally outperforms model-based RAQ-VAE in most aspects.
However, on the CIFAR10, the model-based RAQ-VAE performs better at some rates. When a VQ-
VAE model achieves high codebook perplexity, substantial performance can be achieved by simply
clustering the codebook vectors (see more results in supplementary material A.4.1). For the rate
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increasing task (K̃ > K), a more challenging adaptation task, data-driven RAQ-VAE successfully
generated higher-rate codebooks, outperforming model-based RAQ-VAE and partially surpassing
conventional VQ-VAE models trained at the same codebook size. This capability was especially
pronounced on the CelebA dataset. For model-based RAQ-VAE, increasing the difference between
the original and adjusted codebook sizes resulted in noticeable performance degradation, exposing
the limitations of the current implementation. However, the model-based approach can be advan-
tageous for practitioners with limited computing resources as it allows them to just load and apply
codebook embeddings to the pre-trained VQ-VAE models without the need for additional training.
Although performance limitations remain, we suggest that adapting rates via the model-based ap-
proach could be another promising direction for future research. It is likely that large models such
as ViT-VQGAN (Yu et al., 2022) would experience even greater computational overhead compared
to CNN-based models, making this approach potentially beneficial.

Applicability To demonstrate the broader applicability of our methodology, we extend our ap-
proach to the two-level hierarchical VQ-VAE (VQ-VAE-2) model (Razavi et al., 2019) and the
stage-1 VQGAN model (Esser et al., 2021) as the baseline models. The VQ-VAE-2 model is an ex-
tension of the original VQ-VAE framework by incorporating a hierarchical structure that allows for
improved representation and reconstruction capabilities. The VQGAN enhances the encoding pro-
cess in the first stage by incorporating adversarial and perceptual losses (Johnson et al., 2016; Zhang
et al., 2018), allowing for the generation of images with finer details. Table 1 provides the recon-
struction performance according to the adapted codebook size K̃ for the baseline models. Although
models trained at specific codebook sizes (first rows) achieve slightly better reconstruction, RAQ-
VAE offers a flexible, efficient solution by covering multiple rates with a single adaptive model. In
most cases, the data-driven RAQ method outperforms the model-based approach. As shown in Fig-
ure 3, training with a large codebook and then randomly selecting the codebook leads to significant
degradation when more than half of the codebook is removed. Applying our rate-adaptive quantiza-
tion to VQ-VAE-2 and VQGAN not only preserves the performance of hierarchical or GAN-based
models but also provides the flexibility to adapt to different rates without retraining. This demon-
strates that RAQ-VAE extends beyond VQ-VAE, offering a versatile solution for more advanced
VQ-based models, with significant potential in data reconstruction and generation tasks.

6 CONCLUSION

We introduced the Rate-Adaptive VQ-VAE (RAQ-VAE) framework, which addresses the scalability
limitations of conventional VQ-VAEs through two novel codebook representation methods. Our ex-
periments demonstrate that single RAQ-VAE model achieves superior reconstruction performance
across multiple rates without the need for retraining. The ability to dynamically adjust rates without
retraining makes it particularly beneficial for resource-constrained environments, simplifying model
deployment and management. This rate-adaptive capability provides significant flexibility for appli-
cations that require dynamic compression levels, such as variable-rate image and video compression
(Xu et al., 2023) or real-time end-to-end communication systems (Park et al., 2020). Although
performance limitations remain, future work could further enhance stability and performance, in-
creasing the overall value of our framework. With its proven versatility, RAQ-VAE has the potential
to drive significant advances in both the theoretical and practical fields of machine learning.

Ethics Statement RAQ-VAE is designed as a rate-adaptive extension of VQ-VAE and can be
applied in all domains where VQ-based methods are used. As with all generative models, attention
should be given to potential biases in the training data, as these can affect generated outputs. RAQ-
VAE does not introduce any new ethical concerns beyond those inherent in VQ-VAE models.

Reproducibility Statement Appendix A.3 provides details of the experiments. The complete
code necessary to reproduce our experiments is included in the supplementary material.
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A APPENDIX / SUPPLEMENTARY MATERIAL

A.1 VQ-VAE CODEBOOK UPDATES WITH EXPONENTIAL MOVING AVERAGES (EMA)

At training step t, the ni encoder outputs {fϕ(x1), fϕ(x2), ..., fϕ(xni
)} from codebook ei for the

mini-batch data {x1, x2, ..., xni
} are updated with count N (t)

i and mean value mi
(t) as follows:

N
(t)
i := γ ·N (t−1)

i + (1− γ) · n(t)i

m
(t)
i := γ ·m(t−1)

i + (1− γ) ·
n
(t)
i∑
j

fϕ(xj)
(t) (5)

e
(t)
i :=

m
(t)
i

N
(t)
i

where a γ is a decay factor with a value between 0 and 1 (the default value γ = 0.99 was used in all
of our experiments). The count N (t)

i represents the encoder hidden states that have ei as it’s nearest
neighbor. N (0)

i is initially set as zero.

A.2 CODEBOOK CLUSTERING OF MODEL-BASED RAQ-VAE

Given a set of the original codebook representations e = {ei}Ki=1, we aim to partition the K code
vectors into K̃(≤ K) code vectors ẽ = {ẽi}K̃i=1. Each codebook vector resides in a D-dimensional
Euclidean space. Using the codebook assignment function g(·), then g(ei) = j means i-th given
codebook assigned j-th clustered codebook. Our objective for codebook clustering is to minimize
the discrepancy L between the given codebook e and clustered codebook ẽ:

argmin
ẽ,g

L(e; ẽ) = argmin
ẽ,g

K̃∑
i=1

||ei − ẽg(ei)|| (6)

with necessary conditions

g(ei) = argmin
j∈1,2,...,K̃

||ei − ẽj || , ẽj =

∑
i:g(ei)=j

ei

Nj
(7)

where Nj is the number of samples assigned to the codebook ẽj .

A.3 EXPERIMENT DETAILS

A.3.1 ARCHITECTURES AND HYPERPARAMETERS

The model architecture for this study is based on the conventional VQ-VAE framework outlined in
the original VQ-VAE paper (Van Den Oord et al., 2017), and is implemented with reference to the
VQ-VAE-2 (Razavi et al., 2019) implementation repositories 123. We are using the ConvResNets
from the repositories. These networks consist of convolutional layers, transpose convolutional layers
and ResBlocks. Experiments were conducted on two different computer setups: a server with 4 RTX
4090 GPUs and a machine with 2 RTX 3090 GPUs. PyTorch (Paszke et al., 2019), PyTorch Light-
ning (Falcon, 2019), and the AdamW (Loshchilov & Hutter, 2019) optimizer were used for model
implementation and training. Evaluation metrics such as the Structural Similarity Index (SSIM) and
the Frechet Inception Distance (rFID) were computed using implementations of pytorch-msssim 4

and pytorch-fid 5, respectively. The detailed model parameters are shown in Table 2. RAQ-VAEs
are constructed based on the described VQ-VAE parameters with additional consideration of each
parameter.

1https://github.com/mattiasxu/VQVAE-2
2https://github.com/rosinality/vq-vae-2-pytorch
3https://github.com/EugenHotaj/pytorch-generative
4https://github.com/VainF/pytorch-msssim
5https://github.com/mseitzer/pytorch-fid
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Method Parameter CIFAR10 CelebA ImageNet

VQ-VAE (Van Den Oord et al., 2017)

Input size 32×32×3 64×64×3 224×224×3
Latent layers 8×8 16×16 56×56
Hidden units 128 128 256

Residual units 64 64 128
# of ResBlock 2 2 2

Original codebook size (K) 24 ∼ 210 25 ∼ 211 27 ∼ 212

Codebook dimension (D) 64 64 128
β (Commit loss weight) 0.25 0.25 0.25

Weight decay in EMA (γ) 0.99 0.99 0.99
Batch size 128 128 32
Optimizer AdamW AdamW AdamW

Learning rate 0.0005 0.0005 0.0005
Max. training steps 195K 635.5K 2500K

Model-based RAQ-VAE

Original codebook size (K) 64, 128 128, 256 512
Adapted codebook size (K̃) 24 ∼ 210 25 ∼ 211 26 ∼ 212

Max. DKM iteration 200 200 200
Max. IKM iteration 5000 5000 5000

τ of softmax 0.01 0.01 0.01

Data-driven RAQ-VAE

Original codebook size (K) 64, 128 128, 256 512
Adapted codebook size (K̃) 24 ∼ 210 25 ∼ 211 26 ∼ 212

Max. Codebook size 1024 2048 4096
Min. Codebook size 8 16 64
Input size (Seq2Seq) 64 64 128

Hidden size (Seq2Seq) 64 64 128
# of reccuruent layers (Seq2Seq) 2 2 2

Table 2: Architecture and hyperparameters of baseline VQ-VAE model and its RAQ-VAE model
(Model-based RAQ-VAE and Data-driven RAQ-VAE)

A.3.2 DATASETS AND PREPROCESSING

For the CIFAR10 dataset, the training set is preprocessed using a combination of random cropping
and random horizontal flipping. Specifically, a random crop of size 32 × 32 with padding of 4 us-
ing the ’reflect’ padding mode is applied, followed by a random horizontal flip. The validation and
test sets are processed by converting the images to tensors without further augmentation. For the
CelebA dataset, the training set is preprocessed with a series of transformations. The images are
resized and center cropped to 64 × 64, normalized, and subjected to random horizontal flipping. A
similar preprocessing is applied to the validation set, while the test set is processed without augmen-
tation. For the ImageNet dataset, the training set is preprocessed with a series of transformations.
The images are resized 256 × 256 and center cropped to 224 × 224, normalized, and subjected to
random horizontal flipping. A similar preprocessing is applied to the validation set, while the test
set is processed without augmentation. These datasets are loaded into PyTorch using the provided
data modules, and the corresponding data loaders are configured with the specified batch sizes and
learning rate for efficient training (described in Table 2. The datasets are used as input for training,
validation, and testing of the VQ-VAE model.

A.3.3 MODEL COMPLEXITY

To provide a comprehensive understanding of the model complexity for the different datasets used
in our experiments, we detail the number of parameters in the Encoder, Decoder, Quantizer, and
Seq2Seq components of the trained models in Table 3 and 4. The table summarizes the number of
model parameters counts for the CIFAR10 and CelebA datasets.

Moreover, we show the training/inference time in Table 5 and 6. The training and inference times
were measured for both model-based and data-driven RAQ-VAE methods. These results highlight
the trade-offs between our two methods and their potential applications depending on resource avail-
ability and performance requirements. Although the results show that the data-driven method has
a higher computational cost, we expect that the benefit of achieving the rate will provide better
flexibility and performance in different scenarios.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Method # params
Encoder Decoder Quantizer Seq2Seq Total

VQ-VAE (K = 1024) 196.3K 262K 65.5 K - 525K

VQ-VAE (K = 512) 196.3K 262K 32.8K - 492K

VQ-VAE (K = 256) 196.3K 262K 16.4K - 476K

VQ-VAE (K = 128) 196.3K 262K 8.2K - 468K

VQ-VAE (K = 64) 196.3K 262K 4.1K - 463K

VQ-VAE (K = 32) 196.3K 262K 2.0K - 461K

VQ-VAE (K = 16) 196.3K 262K 1.0K - 460K

VQ-VAE (K = 1024) (randomly selected codebook) 196.3K 262K 65.5 K - 525K

Data-driven RAQ-VAE (K = 128) 196.3K 262K 8.2K 263.7K 732K

Data-driven RAQ-VAE (K = 64) 196.3K 262K 4.1K 263.7K 728K

Model-based RAQ-VAE (K = 128) 196.3K 262K 8.2K - 468K

Model-based RAQ-VAE (K = 64) 196.3K 262K 4.1K - 463K

Table 3: Number of parameters for training our models on CIFAR10 dataset.

Method # params
Encoder Decoder Quantizer Seq2Seq Total

VQ-VAE (K = 2048) 196.3K 262K 131K - 590K

VQ-VAE (K = 1024) 196.3K 262K 65.5 K - 525K

VQ-VAE (K = 512) 196.3K 262K 32.8K - 492K

VQ-VAE (K = 256) 196.3K 262K 16.4K - 476K

VQ-VAE (K = 128) 196.3K 262K 8.2K - 468K

VQ-VAE(K = 64) 196.3K 262K 4.1K - 463K

VQ-VAE (K = 32) 196.3K 262K 2.0K - 461K

VQ-VAE (K = 2048) (randomly selected codebook) 196.3K 262K 131K - 590K

Data-driven RAQ-VAE (K = 256)) 196.3K 262K 16.4K 263.7K 740K

Data-driven RAQ-VAE (K = 128) 196.3K 262K 8.2K 263.7K 732K

Model-based RAQ-VAE (K = 256) 196.3K 262K 16.4K - 476K

Model-based RAQ-VAE (K = 128) 196.3K 262K 8.2K - 468K

Table 4: Number of parameters for training our models on CelebA dataset.

Method K Training time per epoch (s) # params

VQ-VAE / Model-based RAQ-VAE 64 18.09± 0.256 463K
VQ-VAE / Model-based RAQ-VAE 256 18.43± 0.1 476K
VQ-VAE / Model-based RAQ-VAE 1024 21.64± 0.11 525K
Data-driven RAQ-VAE 256 514.97± 08.17 740K

Table 5: Training time per epoch on on CelebA train set using a Nvidia RTX 3090 GPU.

A.4 ADDITIONAL EXPERIMENTS

A.4.1 REDUCING THE RATE

As analyzed in Section 5.1, data-driven RAQ-VAE generally outperforms model-based RAQ-VAE,
but some rate-reduction results on CIFAR10 show that model-based RAQ-VAE performs much more
stably than in the codebook increasing task. This indicates that simply clustering codebook vectors,
without additional neural models like Seq2Seq, can achieve remarkable performance.
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Method K̃ Inference time per epoch (s)

VQ-VAE (K = 64) - 1.86± 0.10
VQ-VAE (K = 256) - 1.91± 0.12
VQ-VAE (K = 1024) - 1.86± 0.09
Model-based RAQ-VAE (K = 256) 64 1.98± 0.09
Data-driven RAQ-VAE (K = 256) 64 3.05± 0.11
Model-based RAQ-VAE (K = 256) 1024 70.91± 11.82
Data-driven RAQ-VAE (K = 256) 1024 33.21± 0.27

Table 6: Inference time per epoch on CelebA test set using a Nvidia RTX 3090 GPU.

Method K̃
CIFAR10 (K = 1024)

PSNR ↑ rFID ↓ Perplexity ↑
VQ-VAE (baseline model) - 25.48 51.90 708.60

512 24.35 63.67 289.29
VQ-VAE (random select) 256 22.81 78.00 111.77

128 20.87 93.57 48.87

512 24.62 55.78 285.68
Model-based RAQ-VAE 256 23.81 62.53 134.54

128 23.07 69.45 73.17

Method K̃
CelebA (K = 2048)

PSNR ↑ rFID ↓ Perplexity ↑
VQ-VAE (baseline model) - 28.26 22.89 273.47

1024 24.02 38.92 103.50
VQ-VAE (random select) 512 18.99 71.64 49.59

256 23.54 115.12 27.86

1024 26.40 31.37 102.36
Model-based RAQ-VAE 512 25.24 39.07 53.45

256 24.36 45.54 32.86

Table 7: Reconstuction performances for rate-reduction task according to adapted codebook size
K̃. The distortion (PSNR), perceptual similarity (rFID), and codebook usability (perplexity) are
evaluated using the test set on CIFAR-10 an CelebA. Higher values are better for PSNR,and per-
plexity, while lower values are better for rFID.

In Table 7, the performance via codebook clustering was evaluated with different original/adapted
codebook sizes K: 1024 / K̃: 512, 256, 128 on CIFAR10 and K: 2048 / K̃: 1024, 512, 256, 128
on CelebA. The conventional VQ-VAE preserved as many codebooks in the original codebook as in
the adapted codebook, while randomly codebook-selected VQ-VAE results remained meaningless.
Model-based RAQ-VAE adopted this baseline VQ-VAE model and performed clustering on the
adapted codebook. Model-based RAQ-VAE shows a substantial performance difference in terms of
reconstructed image distortion and codebook usage compared to randomly codebook-selected VQ-
VAE. Even when evaluating absolute performance, it is intuitive that online codebook representation
via model-based RAQ-VAE provides some performance guarantees.

A.4.2 INCREASING THE RATE

In our proposed RAQ-VAE scenario, increasing the codebook size beyond the base size is a more
demanding and crucial task than reducing it. The crucial step in building data-driven RAQ-VAE
is to achieve higher rates from a fixed model architecture and compression rate, ensuring usability.
Therefore, the codebook increasing task was the main challenge. The Seq2Seq decoding algorithm
based on cross-forcing is designed with this intention.

In Figure 2, the codebook generation performance was evaluated with different original/adapted
codebook sizes K: 64, 128 / K̃: 64, 128, 256, 512, 1024 on CIFAR10 and K: 128, 256 / K̃: 128,
256, 512, 1024, 2048 on CelebA datasets. As discussed in Section 5.1, data-driven RAQ-VAE out-
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Figure 4: Reconstruction performance at different rates (adapted codebook sizes) evaluated on
CelebA (64 × 64) test set. In the graph, the black VQ-VAE-2s (Razavi et al., 2019) are separate
models trained on each codebook size, while the RAQ-VAEs are one model per line.

performs model-based RAQ-VAE in the rate-increasing task and partially outperforms conventional
VQ-VAE trained on the same codebook size (K = K̃). This effect is particularly pronounced on
CelebA.

However, increasing the difference between the original and adapted codebook sizes leads to a degra-
dation of RAQ-VAE performance. This effect is more dramatic for model-based RAQ-VAE due to
its algorithmic limitations, making its performance less stable at high rates. Improving the per-
formance of model-based RAQ-VAE, such as modifying the initialization of the codebook vector,
remains a limitation.

A.4.3 ADDITIONAL QUANTITATIVE RESULTS

In Table 8 and 9, we present additional quantitative results for the reconstruction on CIFAR10 and
CelebA datasets. The error indicates a 95.45% confidence interval based on 4 runs with different
training seeds. Figure 4 shows the reconstruction performance using VQ-VAE-2 as the baseline
model. The results demonstrate that the data-driven RAQ-VAE model significantly outperforms the
original VQ-VAE-2 across multiple rates on the CelebA (64× 64)dataset.

A.4.4 ADDITIONAL QUALITATIVE RESULTS

In Figure 5, we present additional qualitative results for the reconstruction on ImageNet dataset.

A.4.5 EFFECTIVENESS OF Cross-forcing

We conducted additional experiments to demonstrate the effectiveness of the cross-forcing strategy,
following a concern about the learning stability of this approach. In Table 10, the results compare
the reconstruction performance of the data-driven RAQ-VAE (K = 128) with and without cross-
forcing on the CelebA test dataset.

Our experiments demonstrate that the cross-forcing strategy is no less stable than the data-driven ap-
proach without cross-forcing when trained with the same four seeds. Furthermore, the performance
improvement from cross-forcing becomes significant, particularly when operating with a codebook
size equal to or larger than twice the original codebook size, as intended. This is in line with the
general goal in machine learning of training models with a smaller original codebook size while
still achieving better reconstruction performance at higher bitrates. It consistently improves perfor-
mance metrics such as MSE, PSNR and rFID as the codebook size increases, making it an effective
approach for tasks that demand higher bitrates without compromising model efficiency.
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Method Bit Rate Codebook Usability Distortion Perceptual Similarity

K̃(bpp) Usage Perplexity PSNR rFID SSIM

VQ-VAE (K = K̃) 1024 (0.625) 972.66±2.97 708.60±7.04 25.48±0.02 51.90±0.51 0.8648±0.0005

VQ-VAE (K = K̃) 512 (0.5625) 507.52±0.51 377.08±5.92 24.94±0.01 56.65±0.91 0.8490±0.0003

VQ-VAE (K = K̃) 256 (0.5) 256±0 204.43±4.36 24.43±0.02 61.40±0.78 0.8310±0.0006

VQ-VAE (K = K̃) 128 (0.4375) 128±0 106.44±1.54 23.85±0.01 66.70±1.12 0.8096±0.0009

VQ-VAE (K = K̃) 64 (0.375) 64±0 55.64±0.27 23.24±0.01 74.00±1.64 0.7849±0.0009

VQ-VAE (K = K̃) 32 (0.3125) 32±0 29.25±0.13 22.53±0.02 81.68±1.01 0.7545±0.0009

VQ-VAE (K = K̃) 16 (0.25) 16±0 15.01±0.21 21.76±0.01 89.75±0.83 0.7156±0.0024

1024 (0.625) 972.66±2.97 708.60±7.04 25.48±0.02 51.90±0.51 0.8648±0.0005
512 (0.5625) 498.38±1.85 289.29±16.67 24.35±0.11 63.67±2.49 0.8305±0.0056

VQ-VAE 256 (0.5) 253.01±0.66 111.77±21.53 22.81±0.38 78.00±5.07 0.7822±0.0100
(K = 1024) 128 (0.4375) 127.34±0.33 48.87±11.31 20.87±0.73 93.57±9.87 0.7254±0.0235
(random select) 64 (0.375) 64±0 24.31±5.26 19.46±0.98 109.90±14.20 0.6720±0.0309

32 (0.3125) 32±0 13.50±1.45 17.76±1.12 126.57±15.89 0.6102±0.0350

1024(0.625) 971.21±4.14 724.91±15.34 24.85±0.02 57.03±1.34 0.8420±0.0008
512 (0.5625) 503.48±0.75 380.02±6.82 24.57±0.02 59.36±0.62 0.8326±0.0008

Data-driven 256 (0.5) 253.45±0.50 194.27±2.38 24.12±0.02 62.18±1.09 0.8193±0.0009
RAQ-VAE 128 (0.4375) 128±0 109.65±3.50 23.71±0.01 66.89±1.07 0.8071±0.0014
(K = 128) 64 (0.375) 64±0 55.64±0.27 23.08±0.02 71.84±0.31 0.7855±0.0005

32 (0.3125) 32±0 29.50±0.21 21.76±0.06 82.85±0.87 0.7384±0.0007
16 (0.25) 16±0 15.11±0.67 20.79±0.18 104.86±5.91 0.6918±0.0084

1024 (0.625) 744.36±18.74 395.23±2.77 24.15±0.03 63.88±1..26 0.8213±0.0014
512 (0.5625) 430.06±11.58 256.23±7.50 24.04±0.03 64.74±0.96 0.8177±0.0012

Model-based 256 (0.5) 244.61±3.13 185.02±3.31 23.93±0.01 65.65±1.12 0.8139±0.0010
RAQ-VAE 128 (0.4375) 128±0 106.44±1.54 23.85±0.01 66.70±1.12 0.8096±0.0009
(K = 128) 64 (0.375) 64±0 49.55±1.29 22.85±0.55 72.61±0.77 0.7780±0.0013

32 (0.3125) 32±0 25.65±0.76 21.88±0.75 82.12±1.74 0.7405±0.0046
16 (0.25) 16±0 13.79±0.06 20.89±0.04 95.03±0.34 0.6972±0.0010

1024 (0.625) 972.14±6.49 725.55±10.90 25.04±0.01 55.34±1.48 0.8487±0.0012
512 (0.5625) 506.38±1.23 382.43±10.58 24.70±0.02 57.91±1.42 0.8387±0.0011

Data-driven 256 (0.5) 255.52±0.48 196.17±9.95 24.25±0.02 61.96±1.00 0.8245±0.0012
RAQ-VAE 128 (0.4375) 128±0 109.65±3.50 23.71±0.01 66.89±1.07 0.8071±0.0014
(K = 64) 64 (0.375) 64±0 56.31±0.46 23.23±0.01 71.17±1.17 0.7897±0.0013

32 (0.3125) 32±0 29.62±0.66 21.84±0.09 90.04±1.44 0.7350±0.0038
16 (0.25) 16±0 15.11±0.67 20.79±0.18 104.86±5.91 0.6918±0.0084

1024 (0.625) 706.20±115.18 345.50±107.06 23.65±0.13 70.30±2.02 0.8013±0.0051
512 (0.5625) 428.39±12.29 231.41±14.64 23.55±0.04 71.01±1.38 0.7988±0.0005

Model-based 256 (0.5) 233.75±4.63 140.19±2.82 23.39±0.05 71.72±1.43 0.7935±0.0012
RAQ-VAE 128 (0.4375) 125.07±1.58 101.16±16.04 23.32±0.05 72.68±1.47 0.7901±0.0008
(K = 64) 64 (0.375) 64±0 55.64±0.27 23.24±0.01 74.00±1.64 0.7849±0.0009

32 (0.3125) 32±0 26.21±0.95 22.07±0.13 81.61±2.26 0.7569±0.0014
16 (0.25) 16±0 13.59±0.85 20.88±0.23 92.84±3.30 0.7004±0.0063

Table 8: Reconstruction performance on CIFAR10 dataset. The 95.45% confidence interval is
provided based on 4 runs with different training seeds.
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Method Bit Rate Codebook Usability Distortion Perceptual Similarity

K̃(bpp) Usage Perplexity PSNR rFID SSIM

VQ-VAE (K = K̃) 2048 (0.6875) 779.07±8.35 273.47±6.86 28.26±0.03 22.89±0.71 0.8890±0.0027

VQ-VAE (K = K̃) 1024 (0.625) 456.86±3.53 160.35±2.73 27.73±0.05 26.67±1.43 0.8763±0.0029

VQ-VAE (K = K̃) 512 (0.5625) 259.59±3.99 95.09±1.28 27.11±0.01 29.77±0.95 0.8636±0.0022

VQ-VAE (K = K̃) 256 (0.5) 144.44±2.49 57.86±0.91 26.46±0.03 31.53±1.01 0.8481±0.0009

VQ-VAE (K = K̃) 128 (0.4375) 80.26±0.99 34.98±0.39 25.72±0.04 36.25±0.98 0.8279±0.0027

VQ-VAE (K = K̃) 64 (0.375) 44.94±1.03 20.04±0.37 24.78±0.03 41.22±0.77 0.7986±0.0037

VQ-VAE (K = K̃) 32 (0.3125) 25.48±0.69 12.69±0.31 23.76±0.06 46.56±1.97 0.7660±0.0032

2048 (0.625) 779.07±8.35 273.47±6.86 28.26±0.03 22.89±0.71 0.8890±0.0027
VQ-VAE 1024 (0.5625) 384.31±6.76 103.50±3.28 24.02±1.10 38.92±3.27 0.7963±0.0201
(K = 2048) 512 (0.5) 210.69±9.23 49.59±4.54 18.99±1.40 71.64±8.27 0.7037±0.0221
(random select) 256 (0.4375) 115.33±7.73 27.86±3.39 16.33±0.61 115.12±11.93 0.6353±0.0173

2048 (0.625) 885.53±6.76 347.99±5.17 27.96±0.14 23.02±0.33 0.8858±0.0033
1024 (0.5625) 490.86±4.98 187.33±10.37 27.51±0.13 25.08±0.23 0.8758±0.0036

Data-driven 512 (0.5) 275.84±1.72 104.61±5.00 26.95±0.086 27.96±0.49 0.8637±0.0045
RAQ-VAE 256 (0.4375) 144.79±1.21 52.63±0.28 26.29±0.054 32.34±0.86 0.8463±0.0030
(K = 256) 128 (0.375) 80.21±4.27 32.23±3.87 25.13±0.26 39.67±2.29 0.8162±0.0071

64 (0.3125) 42.93±1.61 20.85±1.22 24.09±0.21 51.57±6.66 0.7912±0.0094
32 (0.25) 22.76±1.57 12.32±0.91 22.62±0.27 69.65±9.49 0.7479±0.0129

2048 (0.625) 704.17±108.04 117.53±33.57 26.54±0.10 30.34±1.39 0.8507±0.0041
1024 (0.5625) 460.77±26.98 134.48±11.26 26.59±0.06 30.49±1.10 0.8509±0.0021

Model-based 512 (0.5) 279.53±9.48 100.64±08.94 26.40±0.08 30.95±0.98 0.8488±0.0017
RAQ-VAE 256 (0.4375) 144.44±2.49 57.86±0.91 26.46±0.03 31.53±1.01 0.8481±0.0009
(K = 256) 128 (0.375) 75.31±3.09 25.05±1.95 24.44±0.25 38.95±2.91 0.7890±0.0141

64 (0.3125) 41.66±1.22 14.73±0.56 3 22.85±0.36 48.96±1.13 0.7391±0.0192
32 (0.25) 22.96±0.90 10.16±0.95 21.81±0.45 62.46±0.00 0.7077±0.0195

2048 (0.625) 891.13±7.11 345.25±5.15 27.91±0.04 22.64±0.76 0.8810±0.0013
1024 (0.5625) 490.15±14.39 176.71±6.19 27.47±0.07 24.67±0.80 0.8710±0.0016

Data-driven 512 (0.5) 272.60±2.08 96.87±2.68 26.90±0.05 26.90±0.04 0.8589±0.0044
RAQ-VAE 256 (0.4375) 152.65±2.45 60.90±2.18 26.18±0.18 30.81±1.59 0.8391±0.0125
(K = 128) 128 (0.375) 79.17±0.93 31.36±0.77 25.53±0.06 36.30±1.12 0.8209±0.0072

64 (0.3125) 42.71±1.66 19.78±2.31 24.10±0.11 47.63±5.82 0.7892±0.0067
32 (0.25) 22.42±1.92 11.43±2.14 22.74±0.54 62.39±3.76 0.7414±0.0304

2048 (0.625) 350.02±100.57 64.87±21.22 22.77±0.78 52.37±10.94 0.7463±0.0347
1024 (0.5625) 432.15±45.80 102.79±17.34 25.57±0.19 35.62±1.46 0.8296±0.0062

Model-based 512 (0.5) 262.78±29.47 75.63±12.04 25.50±0.29 36.82±0.73 0.8265±0.0026
RAQ-VAE 256 (0.4375) 153.16±5.46 53.22±4.62 25.42±0.28 36.78±1.27 0.8285±0.0022
(K = 128) 128 (0.375) 80.26±0.99 34.98±0.39 25.72±0.04 36.25±0.98 0.8279±0.0027

64 (0.3125) 41.88±0.72 16.70±0.43 23.63±0.16 47.09±4.09 0.7736±0.0080
32 (0.25) 23.31±0.89 9.56±0.77 21.64±0.13 64.85±6.92 0.7037±0.0102

Table 9: Reconstruction performance on CelebA dataset. The 95.45% confidence interval is pro-
vided based on 4 runs with different training seeds.

Method K̃ MSE ↓ PSNR ↑ rFID ↓ SSIM ↑
2048 (↑) 1.618±0.016 27.91±0.04 22.64±0.76 0.8810±0.0013
1024 (↑) 1.794±0.027 27.47±0.07 24.67±0.80 0.8710±0.0016
512 (↑) 2.042±0.021 26.90±0.05 26.90±0.04 0.8589±0.0044

w/ cross-forcing 256 (↑) 2.412±0.101 26.18±0.18 30.81±1.59 0.8391±0.0125
128 (-) 2.801±0.039 25.53±0.06 36.30±1.12 0.8209±0.0072
64 (↓) 3.895±0.095 24.10±0.11 47.63±5.82 0.7892±0.0067
32 (↓) 5.357±0.630 22.74±0.54 62.39±3.76 0.7414±0.0304

2048 (↑) 1.661±0.056 27.80±0.14 23.58±0.26 0.8789±0.0030
1024 (↑) 1.815±0.050 27.42±0.12 25.46±0.26 0.8705±0.0024
512 (↑) 2.068±0.059 26.85±0.12 27.81±0.42 0.8567±0.0046

w/o cross-forcing 256 (↑) 2.449±0.052 26.12±0.09 32.32±1.20 0.8407±0.0031
128 (-) 2.779±0.015 25.57±0.02 36.08±0.98 0.8261±0.0019
64 (↓) 3.860±0.237 24.15±0.26 45.13±2.79 0.7942±0.0154
32 (↓) 6.289±0.709 22.04±0.47 72.85±16.69 0.7338±0.0225

Table 10: Reconstruction performance of data-driven RAQ-VAE (K = 128) with or without cross-
forcing on the CelebA test dataset
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Figure 5: Reconstructed images for ImageNet dataset at different rates.
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