Koopman Autoencoders Learn Neural Representation Dynamics

Nishant Suresh Aswani!2 Saif Eddin Jabari ! 2

Abstract

This paper explores a simple question: can we model the internal transformations of a neural network using
dynamical systems theory? We introduce Koopman autoencoders to capture how neural representations evolve
through network layers, treating these representations as states in a dynamical system. Our approach learns a
surrogate model that predicts how neural representations transform from input to output, with two key advantages.
First, by way of lifting the original states via an autoencoder, it operates in a linear space, making editing the
dynamics straightforward. Second, it preserves the topologies of the original representations by regularizing the
autoencoding objective. We demonstrate that these surrogate models naturally replicate the progressive topological
simplification observed in neural networks. As a practical application, we show how our approach enables targeted
class unlearning in the Yin-Yang and MNIST classification tasks.

1 Introduction

Neural networks are defined by compositions. At each step, they transform their inputs, increasing the complexity of the
overall transformation applied to data. Remarkably, these transformations have the effect of producing simple shapes at
the output (Papyan et al., 2020), when quantified by topology (Naitzat et al., 2020). In fact, the neural representations
(i.e., outputs of intermediate layers) of a network progressively simplify until a network arrives at the final output. This
progression, along with the compositional nature of these networks, inspires an intuitive ‘path’ perspective (Lange et al.,
2023). In other words, there is a notion of ‘traveling’ some distance from the input to the output, along the path defined
by these neural representations. Our work further explores this path analogy by asking: Can we discover a dynamics that
generates this path?

And, when equipped with the dynamics, we press on, exploring: Can we edit these dynamics to produce a different output
than what was originally intended? To elaborate on the significance of our second question: editing, updating, or unlearning
specific knowledge contained within neural networks prevents expensive retraining or removes harmful undesired outputs
for model alignment (Yao et al., 2023; Gupta et al., 2024).

Contributions. Our main contributions are as follows:

* We introduce Koopman autoencoder surrogates as a framework for interpolating and editing the neural representations
of a trained neural network. Our Koopman autoencoders generate realistic dynamics, producing intermediate outputs
which follow our established understanding of how neural representations topologically simplify as they progress
through the layers of a neural network.

* We develop an encoder isometry objective to supplement the optimization process of Koopman autoencoders, preserving
the original topology of neural representations in observable space.

* We demonstrate how our Koopman autoencoders can be used to edit neural representations in observable space, leading
to fast, targeted class unlearning.

"New York University Tandon, Brooklyn, USA *New York University Abu Dhabi, Abu Dhabi, UAE. Correspondence to: Nishant
Suresh Aswani <nishantaswani@nyu.edu>.

Accepted at Methods and Opportunities at Small Scale (MOSS), ICML 2025, Vancouver, Canada.

Koopman Autoencoders Learn Neural Representation Dynamics

Original ResNet Observables
,,
:q:-J R ;". '-'{" y
Res Res | Res 2 vt g
©
o\ ... 4 N g
| | |
""" 1 2
¢ K ¢ 7
Reduction Scaling Alignment 2
Preprocessing Koopman Autoencoder

Figure 1. A summary of our framework presented in Section 3. We gather neural representations from a trained, residual network and
preprocess them to bring them into the same space. Afterwards, we train a Koopman autoencoder on a pair of the representations, resulting
in predictive autoencoder with manipulable and visualizable observabe space.

2 Related Work

Topology and dynamics. Our work is most closely aligned with literature that highlights topological and geometric
perspectives in deep learning. Primarily inspired by Naitzat et al. (2020), we demonstrate how the shape of a data manifold
can transform as it is processed by the layers of a neural network (NN). As advanced by Lange et al. (2023), we envision the
outputs of each NN layer as forming a ‘path’, arising naturally from the compositional structure of NNs. Additionally, we
put to work an established dynamics perspective in deep learning. With a spotlight on deep residual networks (ResNets) (He
et al., 2016), there is growing evidence (Gai & Zhang, 2021; Li & Papyan, 2023) that treats ResNet activations as traveling
on a ‘conveyor belt’ to their final output. This dynamics view plays nicely with the topological vantage, with Naitzat et al.
(2020) positing that “[network] depth plays the role of time,” in the sense that additional layers “afford additional time to
transform the data.”

Koopman-based approaches. At the heart of our method is a Koopman autoencoder (KAE). KAEs have been employed
in machine learning problems to forecast physical systems (Takeishi et al., 2017; Lusch et al., 2018; Azencot et al., 2020),
disentangle latent factors in sequential datasets (Berman et al., 2023), and generate time-series (Naiman et al., 2024).
Traditionally, Koopman approaches find application in control tasks due to their predictive nature. Generally, practical
approaches (Budisi¢ et al., 2012; Brunton et al., 2022), developed atop Koopman theory (Koopman, 1931), work within a
latent space equipped with linear dynamics allowing one to study, and potentially shape, these dynamics via linear control
and spectral tools. Our work is unique in proposing a KAE to interpolate between and manipulate the topology of neural
representations.

We provide more background on both topics in Appendix A.

3 Koopman Autoencoders as Surrogates

Consider a trained neural network A% composed of L € Z7 layers, where each layer f; is indexed by i € {1,2, ..., L}. The
network is defined by successive compositions, giving rise to the form

NE@) = fro...f20 fi(%0), (D

where X is an input. The output of f; is the i-th neural representation x; € R%+1, where d;, 1 is the input dimension of the
subsequent layer f; ;. Inspired by Li & Papyan (2023), we work with deep multi-layer perceptrons (MLPs) comprised
of residual blocks, a form of residual networks (ResNets). Figure 3 plots the top three principal components of neural
representations from each residual block, visualizing how the data transform across the layers of a residual network.

2

Koopman Autoencoders Learn Neural Representation Dynamics

MLP Betti Numbers KAE Betti Numbers
1044 . 8594 4 8633 7455

2487

9103
©
£
a 123
w
o 10?
(<=8
10% 4 10 n
0 1 2 3 4 0 1 2 é 4 5 6 7 8 9 10
Layer Iteration
Iter. 0 Iter. 3 Iter. 6 Iter. 10
7 s
R * . 4
& [)
(i “d o
K * X r'.

Figure 2. (Top left) The o Betti numbers of the neural representations from each residual block of a residual MLP trained on MNIST.
The Betti numbers are computed using the Vietoris-Rips complex at a filtration € = 0.166. (Top right) The average /3o Betti numbers of
intermediate outputs, projected into state space, for five KAEs trained on the first and penultimate layer representations of the residual
MLP. The Betti numbers are computed using the Vietoris-Rips complex at a filtration ¢ = 0.14. (Bottom) Select intermediate outputs from
an MNIST KAE, projected into the state space. At each successive iteration, the topology is simplified until it arrives at the penultimate
layer representations.

We evoke a dynamical systems perspective of these ResNets, treating the neural representations {x1, X3, ...,x} of the
trained network as the states generated by a complex, nonlinear system. Within this context, we introduce a Koopman
autoencoder, consisting of an encoder ¢ : R%+! — RP, a decoder ¢! : R? — R%+1, and a linear operator K : p — p. In
concert, they operate as

xj=¢ 'oKog(x;), Vi,je{1,2,...,L} i <j)

In Equation 2, ¢ embeds a neural representation into a (typically) higher-dimensional observable, after which /C ‘advances’
the observable. Finally, ¢~ returns the observable to the state space. We implement ¢ and ¢! as symmetric, but untied,
MLPs and define C as a learnable square matrix. Hence, the KAE produces a dynamic in the observable space, governed by
the linear operator. We elaborate on our KAE formulation in Appendix C, including the preprocessing steps prior to training
the KAE.

4 Experiments

We work with two residual MLPs, trained on the Yin-Yang (Kriener et al., 2022) and the MNIST classification tasks (Lecun
et al., 1998). Each of the MLPs consist of residual blocks (see Appendix B for details). In all our experiments, we set X; as
the first layer neural representations and X; as the penultimate layer representations of the residual MLP. Here X refers to
the processed neural representation X produced after applying the steps in Appendix C.3. Thus, when given X; as input, our
KAEs are trained to predict X;.

Given the parameterization described in Appendix C.1, our KAEs can predict £ —1 intermediate representations in observable
space, before finally predicting X ;. Each of these observable space predictions can be decoded into state space via the KAE
decoder for analysis. Ultimately, the output X; is fed into the final MLP layer, resulting in a class prediction. So, our KAEs
can act as surrogate models, handling the intermediate computations. The classification accuracy provides a way to measure
the surrogate quality of our KAE. Table 1 demonstrates that our KAEs are able to faithfully produce the penultimate layer
representations for both datasets. We provide more details of the KAE architecture and their training in Appendix C.

Koopman Autoencoders Learn Neural Representation Dynamics

Table 1. Summary of results demonstrating KAE prediction quality. KAEs were trained with five different seeds.

DATASET MLP Tor-1 % Acc. KAE Tor-1 % Acc. (STDEV.) TARGET CLASS EDITED Acc. (STDEV.)
CLASS 0 (YIN) 98.78 (1.18) — 85.01 (1.90)
YIN-YANG 99.31 98.75 (0.15) CLASS 1 (YANG) 98.27 (0.21) — 78.88 (8.53)
CLASS 2 (DoTs) 99.97 (0.05) — 62.52 (1.35)
CLass 1 99.23 (0.04) — 0.0 (0.0)
MNIST 99.03 98.53 (0.04) CLASS 4 98.29 (0.08) — 0.0 (0.0)
CLASS 7 98.01 (0.18) — 0.0 (0.0)

4.1 Simplifying Topology

Given the parameterization described in Section C.1, our KAEs can interpolate between x; and x; to produce intermediate
representations. Remarkably, we demonstrate that the dynamics within our observable space naturally produce intermediate
representations similar to those from the original MLP. To support this claim, we decode the observables into state space
and quantify their topology. In Figure 2A, on the left, we present the 3y Betti numbers of the neural representations from
each block of a residual MLP trained to classify MNIST. As established in Naitzat et al. (2020), and evidenced by our plot,
successive network layers generate increasingly simple topologies. In comparison, we also plot the 8y Betti numbers of the
decoded, intermediate outputs of five KAEs. Despite having no knowledge of the MLP’s intermediate representations and
their topologies, our KAEs still naturally simplify in topology at every step. As a visual aid, Figure 2B plots the top three
principal components of selected iterations from one of the KAEs.

The dynamics learnt by the KAEs produce a trajectory of neural representations with sound topologies, in line with what
is found within a residual MLP. When paired with dimensionality reduction techniques, they provide an approximate
visualization of how data is being transformed within a neural network. We hypothesize that the KAE dynamics can be
made more faithful to the original residual network by regularizing the KAE’s intermediate representations; for example, the
KAE could be trained to predict all the neural representations from a residual network.

4.2 Application: Model Editing

The penultimate layer representations of well-trained classification models experience neural collapse (NC) (Papyan et al.,
2020), effectively ‘clustering’ outputs, as seen at the bottom of Figure 2. In our case, the encoder isometry helps preserve
this NC topology in observable space. As a result, identifying a class of ‘undesired’ outputs in the penultimate layer is a
straightforward task. Further, the dynamics that generate the outputs in observable space are governed by a linear operator.
Hence, finding the undesired inputs, corresponding to the unwanted outputs, is a matter of applying the inverse operator
K~!. To summarize, in observable space, we can quickly identify the unwanted outputs in a neural representation (due
to NC) along with their corresponding inputs (by applying the inverse linear operator). Then, with the aid of a model
editing algorithm, such as EMMET (Gupta et al., 2024), we can learn an edited linear operator which generates an updated
representation—sans the unwanted outputs. If the edited linear operator can maintain the rest of the topology, we can
unlearn a specific class without affecting the model’s performance on the other classes. We elaborate on our methodology in
Appendix E.

Table 1 reports our model editing efforts for two datasets, with starkly different results, highlighting the importance of the
neural collapse property. For the Yin-Yang dataset, we use the most strongly regularized KAE (see Figure 5). Despite
performing sufficient class separation, the neural representation of the original MLP (and the KAEs), do not exhibit neural
collapse; there is a large within-class variance in the penultimate layer. On the other hand, the representations of the MLP
(and our KAESs) trained on MNIST exhibit strong neural collapse (see Figure 2). As a result, model editing is successful on
the MNIST dataset but performs poorly on the Yin-Yang dataset. In Figure 6, we show the top three principal components
of the penultimate representations before and after the linear operator is edited. Here, we edit the operator to remove class 4
(violet) by redirecting it to the class 9 (light blue) cluster, effectively merging the two classes. As a result, the KAE surrogate
unlearns class 4. We found that the modified representations do not affect the performance of the KAE decoder and the
subsequent MLP classifier on the remaining classes.

Koopman Autoencoders Learn Neural Representation Dynamics

5 Limitations and Future Work

Tying together interpretability insights from the perspectives of topology and dynamical systems, our work introduces Koop-
man autoencoders as surrogate models, which learn the dynamics underlying a deep network’s neural representations. By
parameterizing the linear operator, we can interpolate an arbitrary number of steps between neural representations. And, our
experiments validate that the generated interpolation follows the established principle of progressively simplifying topology.
Additionally, we demonstrate how linear dynamics in observable space can enable editing the neural representations, leading
to class unlearning. For future work, several directions emerge:

* Representation regularization: Currently, our approach is limited to interpolating between two neural representations.
How do we regularize the dynamics to interpolate through all the intermediate representations of a model?

¢ Operator interpretability: Given that a Koopman operator governs our dynamics, does spectral analysis of the
operator offer insights into the original model’s mechanism?

* Observable space shaping: Since we have the freedom to shape how neural representations look in observable space,
are there other favorable topologies that enable certain goals (e.g., disentanglement, interpretability, unlearning)?

* Architecture extensions: Extending our approach to models with different architectures (e.g., convolutional layers,
transformer blocks, etc.) could enable more sophisticated model editing applications beyond classification tasks. Can
we extend our framework to unlearn concepts in language models?

In conclusion, our work demonstrates how Koopman theory can provide a practical framework for working with neural
representations, opening new avenues for analyzing deep networks through the lens of dynamical systems.

Acknowledgement

This work was supported by the NYUAD Center for Interacting Urban Networks (CITIES), funded by Tamkeen under the
NYUAD Research Institute Award CG001. The views expressed in this article are those of the authors and do not reflect the
opinions of CITIES or their funding agencies.

References

Azencot, O., Erichson, N. B., Lin, V., and Mahoney, M. Forecasting sequential data using consistent koopman autoencoders.
In International Conference on Machine Learning, pp. 475-485. PMLR, 2020.

Berman, N., Naiman, L., and Azencot, O. Multifactor sequential disentanglement via structured koopman autoencoders. In
The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023, 2023.

Brunton, S. L., Budis$i¢, M., Kaiser, E., and Kutz, J. N. Modern koopman theory for dynamical systems. SIAM Review, 64
(2):229-340, 2022.

Budisié, M., Mohr, R., and Mezi¢, I. Applied koopmanism. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22
4), 2012.

Gai, K. and Zhang, S. A mathematical principle of deep learning: Learn the geodesic curve in the wasserstein space. arXiv
preprint arXiv:2102.09235, 2021.

Gupta, A., Sajnani, D., and Anumanchipalli, G. A unified framework for model editing. In Al-Onaizan, Y., Bansal, M., and
Chen, Y.-N. (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 15403-15418, Miami,
Florida, USA, November 2024. Association for Computational Linguistics.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

Koopman, B. O. Hamiltonian systems and transformation in hilbert space. Proceedings of the National Academy of Sciences,
17(5):315-318, 1931.

Kriener, L., G6ltz, J., and Petrovici, M. A. The yin-yang dataset. In Neuro-Inspired Computational Elements Conference,
NICE 2022, pp. 107-111. ACM, 2022.

Koopman Autoencoders Learn Neural Representation Dynamics

Lange, R. D., Kwok, D., Matelsky, J. K., Wang, X., Rolnick, D., and Kording, K. Deep networks as paths on the manifold
of neural representations. In Doster, T., Emerson, T., Kvinge, H., Miolane, N., Papillon, M., Rieck, B., and Sanborn,
S. (eds.), Proceedings of 2nd Annual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML),
volume 221 of Proceedings of Machine Learning Research, pp. 102—133. PMLR, 28 Jul 2023.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278-2324, 1998.

Li, J. and Papyan, V. Residual alignment: uncovering the mechanisms of residual networks. Advances in Neural Information
Processing Systems, 36:57660-57712, 2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Lusch, B., Kutz, J. N., and Brunton, S. L. Deep learning for universal linear embeddings of nonlinear dynamics. Nature
communications, 9(1):4950, 2018.

Naiman, L., Erichson, N. B., Ren, P., Mahoney, M. W., and Azencot, O. Generative modeling of regular and irregular time
series data via koopman vaes. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024.

Naitzat, G., Zhitnikov, A., and Lim, L.-H. Topology of deep neural networks. Journal of Machine Learning Research, 21
(184):1-40, 2020.

Papyan, V., Han, X. Y., and Donoho, D. L. Prevalence of neural collapse during the terminal phase of deep learning training.
Proceedings of the National Academy of Sciences, 117(40):24652-24663, 2020.

Takeishi, N., Kawahara, Y., and Yairi, T. Learning koopman invariant subspaces for dynamic mode decomposition. In
Guyon, 1., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Yao, Y., Wang, P, Tian, B., Cheng, S., Li, Z., Deng, S., Chen, H., and Zhang, N. Editing large language models: Problems,
methods, and opportunities. In Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, Singapore, 2023. Association for Computational Linguistics.

Koopman Autoencoders Learn Neural Representation Dynamics

A Preliminaries

A.1 Topology

Our concrete measure of an object’s topology refers to its Betti numbers. For a k-dimensional manifold, one can compute
k Betti numbers, defining its topological signature. The zero-th Betti number, 3y, of a manifold refers to the number of
unconnected components. The k-th Betti number, for £ > 1, quantifies the number of k-dimensional holes in the manifold.
This manifests in the popular, though counterintuitive, quip that ‘a donut is topologically equivalent to a coffee mug.” Both
objects have one connected component, a single 1-D hole, and zero 2-D holes, giving them the Betti number sequence

B ={1,1,0}.

When working with discrete manifolds, such as neural representations from a network, quantifying topology relies on
persistence homology. Very simply, the approach computes k-dimensional simplices (e.g., points, lines, triangles, tetrahedra,
etc.) of an object at varying scales, which determine an object’s homologies. These homologies are closely related to the
Betti numbers; by tracking these homology groups across scales, one can make claims about an object’s topology. We rely
on the Vietoris-Rips (VR) complex, a particular method of computing the simplices, which in turn informs the Betti numbers.
The VR complex requires a distance metric (in our case Euclidean) and a scale parameter €. For a more detailed background
on algebraic topology we refer to Naitzat et al. (2020).

A.2 Koopman theory

In a typical discrete dynamical system, we observe measurements of a state x;, € M C R™ at time ¢ € Z*, which evolve
under a mapping 7 : M — M, such that
X1 = T (X).- 3)

When 7 is nonlinear, these systems are often analyzed using linear approximations near fixed points, often to control the
underlying nonlinear system.

Koopman operator theory suggests an alternative global linearization of the dynamics by finding a map in the observable
space, ¢(xy) : M — F C C. In this space, the linear map K : F — F, which evolves the observables, is defined as the
Koopman operator. If we assume our observables as vectors, we obtain the form

P(Xpy1) = Ko o(xz), 4

where ¢ “lifts” our original system states into the observable space resulting in a system that evolves under a linear operator.
The forecast can be obtained in the state space by applying an inverse operation ¢~! : F — M to the result of the forward
dynamic. Brunton et al. (2022) provide a fuller view of modern applications of Koopman theory, along with its rich history
in machine learning.

B Dataset and model details

B.1 Yin-Yang task

The Yin-Yang dataset (Kriener et al., 2022) is a task with two-dimensional inputs consisting of three classes, allowing for
easy visualization of the model’s decision boundary and topology. For our experiments, we use a residual MLP architecture

Residual MLP : R? — Linear(2 — 10, ReLU) — 4 x [ResBlock(10, ReLU)] — Linear(10 — 2)

We generate a training dataset of 5 x 103 samples, with roughly equal distribution among the three classes. For the test
dataset, we generate another set of 5 x 10% samples with a different seed. The network is trained to a test accuracy of
99.31% using SGD with momentum (set to 0.9) for 500 epochs. We use a batch size of 512 samples, a weight decay set to
5 x 1074, and a cyclic learning rate peaking at 10~!. Figure 3 shows the neural activation

B.2 MNIST task
For the MNIST task (Lecun et al., 1998), we train a residual MLP with four blocks

Residual MLP : R? — Linear(2 — 784, ReLU) — 4 x [ResBlock(784, ReLU)] — Linear(784 — 2)

7

Koopman Autoencoders Learn Neural Representation Dynamics

Figure 3. The top three principal components of the neural representations from the first layer (L0) and all residual blocks (L1-5) of a
multi-layer perceptron (MLP) with a ResNet-style architecture. Each plot contains 2 x 10% points and undergoes the preprocessing
steps outlined in Section C.3 before PCA for plotting. The model is trained on the Yin-Yang dataset (Kriener et al., 2022), a three-way
classification task. See Appendix B for details on architecture and dataset.

The model is trained to a test accuracy of 99.03% using SGD with momentum (set to 0.9) for 30 epochs on a batch size of
128 samples, a weight decay set to 5 x 10™%, and a cyclic learning rate peaking at 1071

Similar to Figure 3, we show the neural activations from each output layer of the MNIST model in Figure 4.

L3 L4

Figure 4. The top three principal components of the neural representations from the first layer (LO) and all residual blocks (L1-4) of a

residual multi-layer perceptron (MLP). Each plot consists of 2 x 10% points and undergoes the preprocessing steps outlined in Section C.3
before PCA. The model is trained on the MNIST digits task.

Koopman Autoencoders Learn Neural Representation Dynamics

C Koopman autoencoder details

C.1 Architecture

Table 2 outlines the architecture of the Koopman autoencoders used in both tasks.

Table 2. KAE architecture

Component Yin-Yang MNIST
batch xR"® batch xR"™*

Encoder Linear(10 — 30) — LeakyReLU Linear(784 — 1000) — LeakyReLU
Linear(30 — 20) Linear(1000 — 800)

Koopman Matrix batch xR?° batch xR8%°
Linear(20 — 20) Linear(800 — 800)
batch xR* batch xR

Decoder Linear(20 — 30) — LeakyReLU Linear(800 — 1000) — LeakyReLU
Linear(30 — 10) Linear(1000 — 784)

We parameterize the Koopman operator as

K = exp (G/k)", ®)

where G is another linear operator of the same shape and &k determines the number of steps that X; is advanced in observable
space. When coupled with dimensionality reduction, this parameterization allows for a smooth k-step transformation of the
neural activations, enabling an explicit visualization of topological changes. The parameterization is not restrictive: we can
obtain the final prediction by directly applying the k-powered matrix.

C.2 Objectives

The KAE is optimized with the objective functions

Lrecon = ||X{i,j} - ¢71 © ¢(X{7]})||2) (6)
Elinear = HQS(XJ) - ’C © (rb(xl)”Q) (7)
Lowe = x5 = 07 0 Ko p(x:)],)
2
Las = [y |” = lloGeiapll’|| ©)
resulting in a combined loss
Etolal =)\1 £recon +)\2 AClinear + >\3£state +)\4£dist~ (10)

The {\;}}_; act as weighting hyperparameters. We use the AdamW optimizer (Loshchilov & Hutter, 2019) to train our
KAEs. Table 3 presents the hyperparameter choices.

Equation 6 encourages the KAE to reconstruct states in the absence of any dynamics, promoting autoencoding. The linear
prediction loss (Eq. 7) ensures that the observables evolve linearly in the latent space, while the state prediction loss (Eq. 8)
aids end-to-end prediction accuracy when mapping back to the state space. Finally, the encoder isometry (Eq. 9) encourages
preservation of inter-point distances even in the observable space. We discuss the significance of encoder isometry in Section
D.

C.3 Preprocessing Representations

Given we are working with neural representations, we draw from tools in RSA metrics literature. Permitting intra-layer
comparison, these metrics first require embedding neural representations in a common space R9. Only then is a distance
metric defined. Lange et al. (2023) detail the intricacies and variations in this class of approaches.

9

Koopman Autoencoders Learn Neural Representation Dynamics

Table 3. KAE hyperparameter details

Dataset batch observable dim. #epochs Arccon Alinear Astate Adist learning rate weight decay
Yin-Yang 1024 20 1000 1 1 1 1 1x 107t 5x 1074
MNIST 512 800 100 1 1 1 1073 5x 1073 5x 1074

Our work is concerned solely with the initial embedding step. To avoid confusion with ‘embedding’ in the context of
Koopman approaches, we refer to this as preprocessing. To elaborate, we apply the following preprocessing to X;, X;, before
they are fed into a KAE:

1. Mean-centering: X = x — E[x] (11)
2. Projection: X = XU.,, given Usv’ = svd(X) (12)
3. Normalizing: X = %/||%|| (13)

4. Procrustes alignment: X = XR,

where R € O(q) solves m}%n I — ¥R||F (14

Overall, we shift, project, and scale the representations before finding the best (rotational) alignment, making the rep-
resentations more suited for comparison. In addition to affording us invariance properties, the preprocessing allows for
learning a KAE on neural representations with originally non-uniform dimensions; i.e., outputs of differently-sized NN
layers. However, we do not include models with non-uniform dimensions in our experiments.

D Encoder Isometry

Typical implementations of KAEs (Takeishi et al., 2017; Lusch et al., 2018; Azencot et al., 2020; Berman et al., 2023) do not
consider encoder isometry. However, neural representations are topological objects; our isometry objective (Eq. 9) promotes
the observables to carry over the original shape of the representation.

iﬁﬁ‘%

Original = =1073 =0

—— Original
— A=1
_10 3 &

Filtration Filtration

Bo

Figure 5. (A) Each scatter plot displays 2 x 10% points projected onto the top three principal components (PCs) derived from representations
in the penultimate layer. The leftmost plot shows PCs from the original MLP representations, while the remaining show PCs computed
after embedding the representations into observable space via different KAEs. All PCs are aligned via the orthogonal Procrustes problem.
(B) Betti curves, for 0 and 31, across a filtration threshold of ¢ = 4 for the penultimate layer representations of the original model
(black) and the observable space representations via different KAEs.

To demonstrate, we train 3 KAE variants with different penalization strengths (A4 = {0,1073,1}) on the encoder isometry
objective. The KAEs are trained to predict (and reconstruct) the penultimate layer representations of a residual MLP. Figure
5A displays the top three principal components of the penultimate layer representations in observable space. Figure 5B
presents the Betti curves of these same models, demonstrating that the most strongly penalized encoder (red) exhibits
the closest topological similarity to the original model (black). These results indicate that increasing A4 leads to more
topologically faithful representations in observable space. As a result, we expect that topological edits in the observable
space will also be reflected in the state space.

10

Koopman Autoencoders Learn Neural Representation Dynamics

E Model Editing

We outline the steps of our model editing approach in Algorithm 1.

Algorithm 1 Model Editing with KAEs

Input: trained KAE {¢, K, p~ 1}, reprs. {x;, x;}, target class c
Output: Updated output reprs. X;

// 1dentify unwanted outputs
Zgel <+ {¢(x;) | x; belongs to class ¢}
Zkeep < {0(x;) | x; not in class ¢}

/I Compute corresponding inputs
Xmem <~ K:_l o Zdel
Xkeep ¢ {x; | x; notin X,epm }

/I Select alternative outputs
Znew + altoutput(X,)

// Edit operator
L+ EMMET(]C, {Xmevm Znew}; {Xkee;n Zkeep})

/I ' Update reprs.
Xj < Lox;

» V.
#
¢ L

k. *

Before Edit : After Edit :

Figure 6. 10" points projected on the top three principal components of the neural representations produced by the Koopman operator in
observable space before editing (left) and after editing (right). The KAE is trained on the first and penultimate-layer representations of a
MNIST classifier. The operator is edited to forget class 4 (violet) by merging the outputs of that class with those of class 9 (light blue).
The result of the merge is visible on the top right corner.

11

