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Abstract

Large Language Models (LLMs) excel at di-001
verse benchmarking tasks, yet face many de-002
ployment barriers in real-world scenarios, such003
as data privacy and computing resources. On004
the other hand, low-resource learning tech-005
niques like Active Learning (AL) can reduce006
the annotation cost for fine-tuning locally de-007
ployable small models. Subsequently, when008
and how those AL-assisted small models with009
low-resource expert annotations can substitute010
off-the-shelf generic LLMs in real-world sce-011
narios is critical but being overlooked. This em-012
pirical study examines AL-assisted small mod-013
els versus generic LLMs in five real-world tasks014
with expert annotations. Our AL simulation val-015
idates the significance of AL-assisted locally016
deployable small models as well as the impor-017
tance of distinct AL sampling strategies in real-018
world scenarios. We further discuss a promis-019
ing future paradigm that leverages LLMs to020
“warm-up” AL-assisted small models.021

1 Introduction022

Recently, Large Language Models (LLMs) (Brown023

et al., 2020) have shown great capability in a vari-024

ety of tasks. However, while several works allow025

more efficient training and deploying LLMs (Lester026

et al., 2021), there still exists a barrier to deploy-027

ing LLMs in many real-world scenarios, such as028

computational cost (Brown et al., 2020), carbon029

footprint (Luccioni et al., 2023), and lack of do-030

main knowledge (Xu et al., 2023). Also, in nu-031

merous real-world fields such as biomedical and032

legal, it is not viable to employ generic LLMs that033

are hosted by third-party companies (Plant et al.,034

2022). Instead, what consistently shows effective-035

ness in these domains is smaller, locally deployable036

models that are trained on expert annotations.037

However, human experts are usually hard to ac-038

cess (Rasmussen et al., 2022), expensive to recruit039

(Wu et al., 2022), and often unwilling to work as040

a labeler to annotate large-scale and high-quality 041

datasets, especially in many domains that require 042

extensive expertise (e.g., legal, clinical, and edu- 043

cation) (Xu et al., 2022; Pappas et al., 2020). To 044

bridge the gap between the scarcity of high-quality 045

data and the huge data demand for model training, 046

the research communities have widely explored 047

low-resource learning techniques, such as transfer 048

learning and meta-learning. Active Learning (AL, 049

Settles (2009)) stands out due to its human-in-the- 050

loop design (Wu et al., 2022). Thus, a crutial ques- 051

tion araises: when and how those AL-assisted 052

small models with low-resource expert annota- 053

tions can substitute generic LLMs in real-world 054

scenarios? We hypothesize that AL-assisted small 055

language models with a small number of expert 056

annotations can reliably outperform generic LLMs. 057

This work presents an empirical study with AL 058

simulations on five datasets from two real-world 059

specialized domains (Biomedicine and Legal). We 060

probe state-of-the-art (SOTA) LLMs (GPT-3.5 and 061

GPT-4 (OpenAI, 2023)) with their best-performing 062

prompting methodologies and compare them with 063

an AL-assisted T5-base model (Raffel et al., 2020) 064

leveraging two different AL strategies. 065

Our results show that the AL-assisted T5 model 066

with hundreds of human annotations can consis- 067

tently outperform GPT-3.5 and perform on par with 068

GPT-4. Our results justify our hypothesis that lo- 069

cally deployable small models are irreplaceable 070

in real-world domain-specific scenarios as well as 071

the importance of selecting different AL sampling 072

strategies. To better assist human experts’ daily 073

work, we also envision a hybrid paradigm to lever- 074

age LLMs to “warm-up” AL models. 075

2 Empirical Study Design 076

2.1 Datasets 077

We thoroughly examine existing expert-annotated 078

datasets for specific real-world domains that re- 079

1



Pair-wise
Similarity

Average
Similarity Sort Select with

Same Interval

0.1 0.2 0.1

0.9 0.8 ... 0.7

0.2 0.9 0.4

... ...

0.1

0.1

0.2

0.3

0.5

0.2

0.2 0.1 0.9

...

...

...
0.2

0.9

0.5

...

0.3

0.1

0.6

0.1

0.2

0.3

...

0.8

0.9

0.9

Labeled Data

Unlabeled
Data

Figure 1: The sampling process of our data diversity-
based strategy.

quire extensive expertise and choose BioMRC (Pap-080

pas et al., 2020), CUAD (Hendrycks et al., 2021),081

Unfair_tos (Lippi et al., 2019), ContractNLI (Ko-082

reeda and Manning, 2021) and Casehold (Zheng083

et al., 2021) for our evaluation. The datasets are in084

legal and biomedical domains and different types085

of tasks, including Multiple Choice, Classification,086

and Natural Language Inference (MacCartney and087

Manning, 2008). The dataset details are in Table 3.088

2.2 Models089

For the experiments with LLM, we utilize two090

SOTA generic LLMs: GPT-3.5 and GPT-4 (Ope-091

nAI, 2023). We probe the best-performing prompt-092

ing strategy for each dataset with LLMs through093

extensive experiments on GPT-3.5 (reported in Ap-094

pendix B) and apply the same settings for GPT-4.095

We choose T5 (Raffel et al., 2020) as the back-096

bone for AL because existing works demonstrate097

that T5 has strong performance for domain-specific098

fine-tuning (Yao et al., 2022; Mou et al., 2021). We099

initialize the T5 model with T5-base, a pre-trained100

weight that is trained on many general-domain101

downstream tasks.102

2.3 Active Learning Strategies103

Following the established taxonomies of AL strate-104

gies (Schröder and Niekler, 2020), we designed and105

implemented one data diversity-based strategy106

and one model uncertainty-based strategy. The107

diversity-based approach aims to identify the most108

representative examples from the unlabeled data109

space while maximizing the diversity, regardless110

of the model. On the other hand, the uncertainty-111

based approach attempts to locate examples that112

the model is least confident about. We illustrate the113

details of each strategy below and in Algorithm 1.114

Data Diversity-Based Strategy. The process of 115

data diversity-based sampling is illustrated in Fig- 116

ure 1. The objective of the data diversity-based 117

strategy (Schröder et al., 2022) is to identify the 118

most representative and diverse data. During the 119

data pre-processing stage, we utilize Sentence- 120

BERT (Wang et al., 2020) to embed each data con- 121

tent as a vector to prepare for the diversity-based 122

AL sampling. For each iteration of the diversity- 123

based AL sampling strategy, we 1) calculate the 124

average cosine similarity score between each un- 125

used training data and all previously used training 126

data, 2) sort the unused data by the average simi- 127

larity score, and 3) select representative examples 128

with the same interval from the sorted list to ensure 129

diversity. For instance, in order to select 4 exam- 130

ples from 10 unused data, we select the 1st, 4th, 7th 131

and 10th data from the ranked list after Step 2. This 132

strategy design allows us to ensure the diversity and 133

representativeness of selected examples. 134

Model Uncertainty-based Strategy. Model 135

Uncertainty-Based Strategy (Sener and Savarese, 136

2018) aspires to identify samples the model is least 137

confident about. Within each iteration, the model 138

operates on the training data, computing the log- 139

its and locating the samples holding the minimal 140

average probability on the highest-ranked tokens. 141

In addition to the aforementioned two types of 142

AL strategies, we also include a random AL sam- 143

pling baseline. For each iteration in the AL simu- 144

lations, we follow a common practice of sampling 145

16 data samples with a specified strategy and then 146

evaluate the model on the test split. Each AL set- 147

ting was executed 10 times, and we report the mean 148

and standard errors. 149

2.4 Evaluation Methods 150

We utilized the averaged F1 score for each label 151

to evaluate Unfair_TOS to avoid the influence of 152

unbalanced label distribution, which will also be 153

discussed in Section 3.2. We evaluate the other 154

datasets with average prediction accuracy. Detailed 155

task instructions and experiment hyperparameters 156

are shown in Appendix C and D. 157

3 Study Result 158

3.1 LLM vs. AL-Assisted Small Models 159

We plot the results on four legal domain datasets 160

in Figure 2, and the results on BioMRC in Ap- 161

pendix A. The horizontal lines symbolize the best 162

performance of GPT-3.5 and GPT-4, respectively. 163
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Figure 2: AL simulation results. The horizontal line represents two close-domain LLMs’ best performance. We
report the mean value (line) and standard error (colored shaded area) over 10 trials. Each AL iteration comprises
16 examples. We can observe the T5-base with AL can reliably outperform GPT-3.5 and reach a saturated
performance that is compatible with or even exceeds GPT-4 on all four datasets.

Unsurprisingly, all AL approaches suffer from164

the “cold-starting” problem. However, on all four165

datasets, the T5-base with AL can reliably outper-166

form GPT-3.5 and eventually reach a saturated167

performance that is compatible with or even ex-168

ceeds GPT-4, leveraging a total of several hundred169

data selected. For BioMRC, as shown in Figure 3,170

the T5-base can also consistently beat GPT-3.5 but171

is saturated at a slightly lower performance com-172

pared to GPT-4. However, we believe GPT-4 might173

have seen or been trained on most of these datasets174

because they are publically available text corpora.175

Regardless, our fine-tuned T5-base achieves com-176

patible performance with GPT-4 despite having177

hundreds of times fewer parameters and requiring178

significantly less computational power.179

3.2 Further Analysis180

Analysis of AL Strategies on Unfair_TOS. We181

observe the AL models in Unfair_TOS merely out-182

put “None” regardless of the input prior to the183

20th iteration, but we can also observe clear ad-184

vantage differences between AL strategies, where185

the uncertainty-based strategy can lead to better per-186

formance and saturate at higher results compared187

to the other settings.188

The Unfair_TOS dataset consists of around 85%189

Strategy Not-None Ratio None Ratio

Random 0.1247 0.8752
Diversity 0.1255 0.8744
Uncertainty 0.1458 0.8541

Complete dataset 0.1252 0.8747

Table 1: Label distributions of complete dataset and
data sampled by different AL strategies in Unfair_TOS.
The ratio is calculated by dividing the corresponding
data type by all data counts.

of data labeled None, and the rest of the data lies 190

in eight other categories. We believe the AL model 191

will be able to achieve a higher averaged F1 score 192

if the AL strategy can select more Not-None data 193

for the model to learn from. As a result, we cal- 194

culate the label ratio for the original dataset and 195

the data sampled by different AL strategies on 196

the Unfair_TOS dataset, which can be found in 197

Table 1. The ratio is calculated by dividing the 198

corresponding data type by the count of all data. 199

We sum the counts of all other eight data types 200

and denote them as Not-None. We can observe 201

the model uncertainty-based strategy selects sig- 202

nificantly more Not-None labeled data than ran- 203

dom (t(14) = −2.46, p < 0.05) and diversity 204

(t(14) = −2.51, p < 0.05), which justifies the bet- 205

ter performance of the uncertainty-based strategy. 206
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Influence of Different Number of Few-Shot Ex-207

amples. To establish a more solid evaluation,208

we conducted an additional experiment by eval-209

uating GPT-4’s performance when given different210

amounts of few-shot demonstrations. We used 1,211

10, 50, and the maximum amount subject to the212

model input limit. If GPT-4 can only handle less213

than 50 examples, we omit the results for the 50214

shots and report the max-shot results instead. To en-215

sure reproducibility and control cost, we randomly216

sample 200 examples from the original test split217

and set the random seed to 42.218

The result is reported in Table 5. We observe219

that generic LLM’s (GPT-4) performance does not220

always increase when we add more and more data221

into the prompt, and with 10 shots can generally222

result in a saturated performance. Also, in three223

of the five datasets experimented, GPT-4 can only224

fit fewer than 20 few-shot examples in their con-225

text limit, justifying the need for small, fine-tuned226

models for domain-specific tasks.227

3.3 Discussion228

We can observe all AL strategies suffer from well-229

known “cold-start” issues (Chen et al., 2022; Jin230

et al., 2022), where the model performs poorly at231

the early iterations due to potentially under-fitting232

issues as a result of the lack of enough labeled233

data. On the other hand, LLMs, specifically GPT-4234

in our case, yield reasonably good performance235

despite eventually being surpassed by AL models236

fine-tuned on domain-specific datasets.237

We envision a promising future paradigm in real-238

world domain-specific tasks of incorporating LLMs239

and AL fine-tuned smaller models in parallel. At240

first, the LLM’s prediction will be presented to the241

human expert, and the collected annotation will be242

used to train the AL model. When the AL model243

begins to outperform LLM, the system will “switch”244

to present the AL model’s prediction. Thus, the245

LLM’s prediction can help overcome the “cold-246

starting” problem of AL, and the calibration ability247

(Zhu et al., 2023) can also be used to help iden-248

tify the hard-to-answer or the wrong predicted ex-249

amples in the sampling process to be annotated.250

And, the system can still benefit from AL’s contin-251

ually improving and up-to-date performance. The252

“switch” mechanism to efficiently and continually253

evaluate the AL model against the LLM will be a254

crucial component of such a paradigm, which will255

be investigated in our future work.256

4 Related Works 257

Active Learning. Active Learning allows the 258

model to iteratively sample a few annotations to be 259

finetuned on (Shen et al., 2017; Ash et al., 2019; 260

Teso and Kersting, 2019; Kasai et al., 2019; Zhang 261

et al., 2022; Xiao et al., 2023). Thus, the key ele- 262

ment of AL lies in the sampling strategy (Yao et al., 263

2023; Sharma et al., 2015). Many AL surveys cate- 264

gorize AL sampling strategies into three high-level 265

underlying concepts – data diversity-based, model 266

uncertainty-based, and hybrid strategies (Settles, 267

2009; Olsson, 2009; Fu et al., 2013; Schröder and 268

Niekler, 2020; Ren et al., 2021). 269

Large Language Models LLMs (Brown et al., 270

2020; OpenAI, 2023; Touvron et al., 2023a,b) can 271

learn task-solving from the context of few-shot ex- 272

amples and generate high-quality content without 273

fine-tuning (Wei et al., 2021; Chung et al., 2022). 274

Several recent works claim that LLMs can outper- 275

form human annotators for text classification (Gi- 276

lardi et al., 2023), task evaluations (Chiang and 277

Lee, 2023; Liu et al., 2023; Törnberg, 2023), and 278

even in specialized domains (Nori et al., 2023). 279

LLMAAA (Zhang et al., 2023) utilizes LLM as a 280

weak annotator to train a small model with AL. 281

5 Conclusion 282

While LLMs such as GPT-4 have been endorsed 283

to outperform smaller models in many benchmark- 284

ing datasets, whether they can substitute smaller 285

models, especially in real-world tasks and domains 286

requiring extensive domain expertise, is important 287

and debatable. In this work, we present an em- 288

pirical study evaluating the performance between 289

SOTA generic LLMs (GPT-3.5 and GPT-4) and 290

a much smaller language model (T5-base) fine- 291

tuned with different Active Learning strategies on 292

five specialized datasets representing real-world 293

domain-specific tasks. 294

Our evaluation demonstrates that smaller AL- 295

assisted models trained with expert annotation can 296

consistently achieve or exceed best-performing 297

LLMs with only a few hundred expert-annotated 298

data, justifying that human experts remain indis- 299

pensable in domain-specific tasks. Derived from 300

our results, we posit a future paradigm that uti- 301

lizes LLMs to overcome the “cold-start” issue of 302

AL models as a “warm-up” strategy and eventually 303

switch back to small models fine-tuned on domain- 304

specific data once the latter outperforms LLMs. 305
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6 Limitations306

This work primarily presents an empirical study of307

generic LLMs versus AL-assisted small language308

models fine-tuned on experts-annotated domain-309

specific data. Our experiment of AL-assisted mod-310

els solely utilizes a T5-base model, where the per-311

formance of other models, such as BART (Lewis312

et al., 2019) and even LLMs that can be efficiently313

fine-tuned with Parameter-Efficient Fine-Tuning314

techniques (Mangrulkar et al., 2022; Hu et al.,315

2021; Lester et al., 2021), remains to be explored.316

This work only benchmarks two SOTA generic317

LLMs (GPT-3.5 and GPT-4). We are aware other318

LLMs exist that we do not include in this work,319

such as Mistral-7B (Jiang et al., 2023), Llama-320

2 (Touvron et al., 2023b), etc.321

We only implemented and evaluated two funda-322

mental types (data diversity-based and uncertainty-323

based) of Active Learning strategies in our work,324

and we are aware there exist other families of AL325

strategies that could extend our study, e.g., hy-326

brid or ensemble approaches (Krogh and Vedelsby,327

1994; Qian et al., 2020). Nevertheless, our empir-328

ical study with two fundamental Active Learning329

strategies justifies our primary statement that hu-330

man experts are still needed in real-world domain-331

specific data annotation tasks.332

Our evaluation comprises five datasets from333

two specialized real-world domains (legal and bio-334

medical). We identify there are other domains and335

publically available domain-specific datasets, and336

we leave the analysis of the generalizability of our337

observations from this work to other domains and338

tasks as future work. In addition, we primarily339

engage in model comparisons through automated340

metrics. However, these may not necessarily pro-341

vide an accurate representation of a model’s perfor-342

mance. Also, an error analysis on which type of343

questions LLMs may excel or fail is also meaning-344

ful for future work. Therefore, human evaluation345

of these datasets, including human agreement and346

error analysis, might be needed for a more compre-347

hensive assessment.348
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A Empirical Study Result on BioMRC645

For BioMRC, as shown in Figure 3, the T5-base646

with AL can quickly outperform GPT-3.5 and647

eventually reach a saturated performance that is648

slightly lower than GPT-4. We posit that GPT-4649

may have performed exceptionally well due to its650

exposure or training on BioMRC, given its source’s651

public accessibility. Nevertheless, our refined T5-652

base model demonstrates comparable performance653

to GPT-4. Remarkably, this is achieved despite the654

T5-base model’s comparative parameter deficiency655

- in the hundreds of times less - and a significantly656

lower demand for computational resources.657
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Figure 3: Result on BioMRC

B LLM Prompting Experiments658

The LLM prompting experiments can be found in659

Table 2. To obtain the SOTA performance, we660

experiment with GPT-3.5 under zero-shot and few-661

shot (1,3, 10 shots) to find the best-performing662

setting (bolded) for each dataset and execute GPT-663

4 with the same settings.664

C Hyperparameters and Settings665

We report the experiment hyperparameters in Ta-666

ble 4. All our experiments are executed on one of667

two resources: 1) four NVIDIA V100 32G graphic668

cards and 2) eight NVIDIA V100 32G graphic669

cards. For GPT-3.5 and GPT-4, we used GPT-3.5-670

0613 and GPT-4-0613 respectively.671

For model uncertainty-based strategies, we cal-672

culate the model probability on a randomly sam-673

pled subset of the training data to reduce the time674

complexity of the model uncertainty-based data675

sampling process. Compared to the naive ap-676

proach’s O(n2) time complexity, our implemen-677

tation remains to have a time complexity of O(n),678

which is the same as that of non-AL’s (where n is679

the number of training data).680

Algorithm 1 Active Learning Sampling Process

1: function SELECT(Dt, Dp, N, strategy)
2: Dt: unlabeled data in the training split
3: Dp: previously selected data
4: N : number of data needed
5: strategy: Active Learning strategy
6: if strategy = "similarity" then

7: S ←
(∑

dp∈Dp
cos(di,dp)

|Dp|

)
1≤i≤|Dt|

8: id← argsort(S)

9: step← |Dt|
N

10: result← (idi)i≡0(mod step),1≤i≤|Dt|
11: return result, id− result
12: end if
13: if strategy = "uncertainty" then
14: S ← (Uncertainty(di))1≤i≤|Dt|
15: id← argsort(S)
16: return id<N , id≥N

17: end if
18: end function

Dataset Learning Rate Training Epoch

BioMRC 1e-4 20
Unfair_TOS 1.5e-4 12
ContactNLI 1.5e-4 20
Casehold 4e-5 28
CUAD 6e-5 18

Table 4: Hyperparameters for each dataset.

D Prompts Used for Each Dataset 681

Text in [[double brackets]] denotes input data. 682

D.1 BioMRC (Pappas et al., 2020) 683

I want you to act as an annotator for a
question answering system. You will
be given the title and abstract of a
biomedical research paper, along
with a list of biomedical entities
mentioned in the abstract. Your task
is to determine which entity should
replace the placeholder (XXXX) in
the title.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Here's how you should approach this
task:↪→

Carefully read the title and abstract of
the paper.↪→

9



Dataset Metric
GPT-3.5

GPT-4
0 shot 1 shots 3 shots 10 shots

CUAD Accuracy 0.6404 0.8048 0.8293 0.8178 0.8837
BioMRC Accuracy 0.4067 0.5169 0.5040 0.4532 0.8259

Unfair_tos F1 0.4201 0.3847 0.3758 0.4206 0.4863
ContractNLI Accuracy 0.4580 0.5990 0.5750 0.6420 0.8240

Casehold Accuracy 0.3040 0.3020 0.3330 0.4010 0.6970

Table 2: Hyper-parameter tuning experiment results for GPT-3.5 and GPT-4.

Dataset Domain Task # Test Data

BioMRC
Pappas et al. (2020)

Biomed. Multi-Choice 6, 250

CUAD
Hendrycks et al. (2021)

Law Classification 4, 182

Unfair_tos
Lippi et al. (2019)

Law Classification 1, 620

ContractNLI
Koreeda and Manning (2021)

Law NLI 1, 991

Casehold
Zheng et al. (2021)

Law Multi-Choice 3, 600

Table 3: Datasets involved in our empirical study.

Dataset 1-shot 10-shot 50-shot max-shot
(avg. # of shots)

BioMRC 0.835 0.810 - 0.760 (13 shots)
Unfair_tos 0.441 0.488 0.567 0.563 (137 shots)

ContractNLI 0.715 0.750 - 0.740 (47 shots)
CUAD 0.795 0.790 - 0.82 (18 shots)

CaseHOLD 0.660 0.790 - 0.735 (19 shots)

Table 5: GPT-4 result with different number of few-shot
examples

Pay close attention to the context in
which the placeholder (XXXX) appears
in the title.

↪→

↪→

Review the list of biomedical entities
mentioned in the abstract.↪→

Determine which entity from the list
best fits the context of the
placeholder in the title.

↪→

↪→

Output only the identifier for the
chosen entity (e.g., `@entity1`). Do
not output anything else.

↪→

↪→

<INPUT>:
<title>:
[[TITLE]]
<abstract>:
[[ABSTRACT]]
<entities>:
[[ENTITY]]
<OUTPUT>:

D.2 UnfairTOS (Lippi et al., 2019) 684

I want you to act as an annotator for a
Term of Service (ToS) review system.
You will be given a piece of a Term
of Service. Your job is to determine
whether the ToS contains any of the
following unfair terms:

↪→

↪→

↪→

↪→

↪→

Limitation of liability
Unilateral termination
Unilateral change
Content removal
Contract by using
Choice of law
Jurisdiction
Arbitration

If none of the above terms are present,
you should output "None".↪→

Here's how you should approach this
task:↪→

Carefully read the ToS.
Review the list of unfair terms.
For each unfair term, determine whether

it is present in the ToS.↪→

Output only the unfair terms that are
present in the ToS. A ToS may have
multiple unfair terms. \

↪→

↪→

You should output all of them, separated
by a semicolon (;).↪→

Do not output anything else.

<text>:
[[TEXT]]
<OUTPUT>:
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D.3 ContractNLI (Koreeda and Manning,685

2021)686

I want you to act as an annotator for a
question answering system. You will
be given a contract and a hypothesis.
Your task is to determine the
hypothesis is contradictory,
entailed or neutral to the contract.

↪→

↪→

↪→

↪→

↪→

Here's how you should approach this
task:↪→

Carefully read the contract.
Carefully read the hypothesis.
Determine whether the hypothesis is

contradictory, entailed or neutral
to the contract.

↪→

↪→

Output only the label (contradiction,
entailment, neutral). Do not output
anything else.

↪→

↪→

<INPUT>:
<premise>:
[[PREMISE]]
<hypothesis>:
[[HYPOTHESIS]]
<OUTPUT>:

D.4 CUAD (Hendrycks et al., 2021)687

I want you to act as an annotator for a
question answering system. You will
be given the question and a piece of
a contract. You will need to answer
the question based on the contract.
There are only two possible answers,
"Yes" or "No".

↪→

↪→

↪→

↪→

↪→

↪→

Here's how you should approach this
task:↪→

Carefully read the question.
Carefully read the contract.
Determine the answer to the question is

true or not.↪→

Output only the exact answer (one of
"Yes" or "No") of the questions. Do
not output anything else.

↪→

↪→

<INPUT>:
<text>:
[[TEXT]]
<question>:

[[QUESTION]]
<OUTPUT>:

D.5 Casehold (Zheng et al., 2021) 688

I want you to act as an annotator for a
Question Answering system. You will
be given the question and several
answers. Your job is to determine
which answer best answers the
question.

↪→

↪→

↪→

↪→

↪→

Here's how you should approach this
task:↪→

Carefully read the question.
Carefully read the answers.
Output the numeric index of the answers

that best answers the question.↪→

Do not output anything else.

<INPUT>:
<question>:
[[QUESTION]]
<answer>:
[[ANSWER]]
<OUTPUT>:
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