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Abstract. Attention Branch Networks (ABNs) have been shown to si-
multaneously provide visual explanation and improve the performance
of deep convolutional neural networks (CNNs). In this work, we intro-
duce Multi-Scale Attention Branch Networks (MSABN), which enhance
the resolution of the generated attention maps, and improve the per-
formance. We evaluate MSABN on benchmark image recognition and
fine-grained recognition datasets where we observe MSABN outperforms
ABN and baseline models. We also introduce a new data augmentation
strategy utilizing the attention maps to incorporate human knowledge
in the form of bounding box annotations of the objects of interest. We
show that even with a limited number of edited samples, a significant
performance gain can be achieved with this strategy.

Keywords: visual explanation, fine-grained recognition, attention map,
human-in-the-loop

1 Introduction

CNNs have established themselves as the benchmark approach in image recog-
nition [13, 20, 33, 30]. However, the interpretation of the decision-making process
still remains elusive. To be able to visualize and verify that the decision of a CNN
is based on correct and meaningful information is important for many computer
vision applications like self-driving cars or automated social media content anal-
ysis, to increase reliability and trust in the system. For biomedical applications,
where instrument settings and small cohorts/datasets easily bias the results this
becomes extremely important. This, in addition to the high cost or risk associ-
ated with erroneous decisions, limit the reliability and hence also the deployment
of CNN-based solutions in clinical diagnostics and biomedical analysis. Tools to
explain the decision and be able to correct erroneous conclusions drawn by CNN
would improve the trustworthiness of the technology.

Visual explanation [35] is used in deep learning to interpret the decisions of
the CNNs. Broadly, these methods can be categorized as either requiring ad-
ditional backpropagation or not. Methods requiring backpropagation [27, 5] can
be used out-of-the-box and don’t require any network architectural or training
method changes. However, they need an extra backpropagation step to find the
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discriminative regions in images. Response-based methods [36, 10] don’t require
backpropagation because they generate explanation and predictions simultane-
ously. In this work, we improve upon [10] and present a response-based visual
explanation method that outperforms previous methods.

To fully utilize the benefits of deep learning in practical settings, it would
also be beneficial to be able to incorporate human knowledge and interact with
the attention maps to correct and improve the networks. One attempt to do this
is presented in [22], where the attention map of the images is manually edited
and then the network is fine-tuned with this human knowledge. This approach,
however, requires manual detailed annotation (drawing) of the attention maps
which becomes tedious for large datasets. Here, we propose a softer form of
user-input in the form of object bounding boxes.

In this paper we build upon the attention branch network structure and
present ways to improve the attention maps and overall network performance
even further. In addition, we present a simple and efficient way to incorporate
human expertise when training/refining the networks. Figure 1 illustrates the
difference in the attention map detail achieved with our proposed multi-scale
attention branch network (MSABN) compared to the attention branch network
(ABN) and the commonly used Class Activation Mapping (CAM).

Our main contributions are:

– With the introduction of MSABN, we increase the performance of the response-
based guided attention models significantly and simultaneously increase the
resolution of attention maps by 4x which has not been achieved with the
response-based methods yet.

– With the introduction of the puzzle module in the attention branch, the per-
formance is improved further and it also adds better localization performance
for fine-grained recognition.

– We provide a human-in-the-loop (HITL) pipeline for inserting human knowl-
edge in the models which require simple annotation (object bounding box)
and achieve performance improvement even by annotating/correcting a small
portion of the dataset.

2 Related Work

Visual explanation: Highlighting the regions or details of an image that are
important for the decision is commonly used to interpret and verify the decision-
making process of CNNs [27, 2]. Overall, the methods for visual explanation fall
in two categories: gradient-based and response-based. Gradient-based methods
(SmoothGrad [28], Guided Backpropagation [29], LIME [25], grad-CAM [27],
gradCAM++ [5], LRP [2]) rely on the backpropagation of auxiliary data like
class index or noise to find the discriminative regions in the image. These meth-
ods do not require training or architectural modifications. However, backpropa-
gation adds another step during inference and increases the computational cost.
Response-based methods, on the other hand, don not require backpropagation
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Fig. 1. Comparison of the MSABN attention map with CAM and ABN attention
outputs. MSABN provides better accuracy and higher resolution attention maps.

and can provide interpretation at the same time as inference. CAM [36], is a
response-based method which provides an attention map for each class by re-
placing the final fully-connected layer of a CNN with a convolutional layer and
global average pooling. The recently proposed attention branch networks [10]
extend the response-based model by adding a branch structure to provide the
attention to the network in a feed-forward way and show that adding attention
in this way improves the performance of the models.

Inserting human knowledge: Human-in-the-loop (HITL) refer to approaches
in the deep learning framework where a prediction model is trained with inte-
grated human knowledge or user guidance. Several HITL approaches [4, 3, 32, 24,
23] have been used to inject human knowledge in different ways to the deep neu-
ral networks. In [21], the ClickMe interface is used to get human annotation in
the form of mouse clicks to get approximate attention regions in an image. They
also modified the model architecture to incorporate this human knowledge and
demonstrated improved performance. In [26], the authors proposed a method
that leverages the explanation generated by the models such that they should
provide the correct explanation for the correct prediction. In [22], Mitsuhara, M.
et al. showed that editing the attention maps and sequentially fine-tuning the
ABN models improve performance as mentioned in the Introduction. However,
their approach involve manually marking the object boundary in a large number
(thousands) of images making it unfeasible in practice. In [15, 1], the authors at-
tempted to improve model performance by using non-strict attention input and
introduce different loss functions and manage to improve performance. In [15],
Dharma et al. use different loss functions for the regions inside and outside the
object bounding box as a way to incorporate human input. Our method is simi-
lar to these methods but focused on augmenting the data rather than changing
the loss function.

Copy-paste augmentation: This refers to an augmentation strategy where a
patch from one image is pasted into another image which is then used for train-
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ing. In [7, 8, 11] this augmentation strategy is used to improve the performance
in instance segmentation and detection tasks. The idea is that by cutting object
instances and pasting them into other images a different context for the objects
is provided. The CutMix [34] augmentation strategy used this idea more gener-
ally and show that simply copying and pasting random patches from one image
to another and modifying the output probabilities improves both the classifi-
cation and localization performance. Finally, PuzzleMix [16] explored CutMix
combined with saliency information and image statistics to further improve the
performance. In the augmentation method we propose, the way to incorporate
human knowledge can be seen as a supervised version of CutMix. We use the
object location to copy and replace the objects in the dataset in the images with
mismatched attention map and true object location.

3 Methods

3.1 Multi-Scale Attention Branch Network

In [10], a dual attention and perception branch architecture is used to generate
the attention map and prediction simultaneously. The output from the third
convolutional block (which is referred to as “feature extractor”) is fed into the
attention branch which produces the CAM output and the attention map. The
attention map is then combined with the feature extractor output and fed into
the perception branch which outputs the probability of each class. The CAM
output from the attention branch and the probability output of the perception
branch are trained on cross-entropy loss simultaneously. The training can then
be done in an end-to-end manner in both branches. The loss can be written as,

L(xi) = Lattn(xi) + Lcls(xi) (1)

where Lattn(xi) and Lcls(xi) are the cross-entropy losses for the attention and
perception branch respectively for a training sample xi.

Unlike [10], where the attention branch is only fed the output of the third
convolutional block, the attention branch of our multi-scale attention branch
network (MSABN) is fed with input from the first and second convolutional
blocks as well. Figure 2 shows the MSABN architecture. The output from the
second and third convolutional blocks are upsampled to match the size of the
first convolutional block. The output from each of the three convolutional blocks
is then passed through 1 × 1 convolutional blocks such that the total number
of channels after concatenating the outputs match the input channels of the
attention branch. Our suggested architecture helps the network accumulate hi-
erarchical information at different scales to produce a fine-grained attention map
and improve performance. The resolution of the attention map in MSABN is also
higher than in ABN as a result of the upsampling.
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Global Average Pooling

Fig. 2. Overview of our proposed MSABN framework.

3.2 Puzzle Module to Improve Fine-grained Recognition

The puzzle module consists of a tiling and a merging module which aims at
minimizing the difference between the merged features from tiled patches in an
image and the features from the original image. The tiling module generates
non-overlapping tiled patches of the input image. The patches are fed into the
network and the merging module merges the patches’ outputs into CAMs. The
L1 loss between the CAM of the target class from the original image and the
reconstruction is then calculated and used for training. Figure 3 illustrates the
puzzle module. The overall loss for training MSABN models with the puzzle
module becomes:

L(xi) = Lattn(xi) + Lcls(xi) + Lre(xi), (2)

where Lre(xi) is the L1 loss between the original image CAM and the recon-
structed CAM.

The puzzle module was introduced in [14] for weakly-supervised segmenta-
tion. It was shown to improve the segmentation performance on the PASCAL
VOC 2012 dataset [9] with CAM based ResNet models. Since the attention
branch is trained similar to CAM models, we decided to applied the puzzle
module to the attention branch to observe the effects on attention maps and the
performance of the models.

3.3 Embedding Human Knowledge with Copy-Replace
Augmentation

We describe a HITL pipeline with the proposed fine-tuning process incorporat-
ing human knowledge. First, the MSABN model is trained with images in the
training set with corresponding labels. Then, the attention maps of the training
samples are obtained from the best performing model. In a real setting, the user
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Fig. 3. Overview of the Puzzle Module. The tiling module divides the image into non-
overlapping tiles which are then fed into the CAM generator and the merging module
merges the tiled CAMs that is then compared with the original CAM.

can then inspect the attention maps and provide corrective input where the at-
tention is mislocated in the form of a bounding box around the object. This is
a softer form of user input compared to object boundary annotation and can be
scaled to some degree without it becoming too cumbersome. Then, the training
images are divided into two pools, one with bounding box annotations provided
by the user and the other without. In the fine-tuning step, we train with all
the training images and labels normally, but we modify the images where the
bounding box annotation was provided. For the images with provided annota-
tions, the patch defined by the bounding box in an image is extracted, resized,
and pasted onto the bounding box of another image from the same pool as il-
lustrated in Figure 4. The resizing to the target bounding box size also acts as
scaling augmentation during the training.

4 Experiments

4.1 Image Classification

Datasets: We evaluate MSABN for image classification on the CIFAR100 [19],
ImageNet [6] and DiagSet-10x [17] datasets. CIFAR100 contains 60,000 images
for training and 10,000 images for testing of 100 classes with image size of 32×32
pixels. ImageNet consists of 1,281,167 training images and 50,000 validation im-
ages of 1000 classes. Finally, the DiagSet-10x dataset is a histopathology dataset
for prostate cancer detection with 256×256 pixel images divided into 9 cate-
gories with different cancer grading, normal tissue, artifacts, and background.
This dataset was included to test the performance of MSABN on texture data
rather than object data. The dataset consists of 132,882 images for training,
25,294 for validation, and 30,086 for testing. In the experiments, the background
class (empty, non-tissue regions of slide) was excluded.

Training details: For the CIFAR100 dataset, ResNet-20,-56,-110 [13] models
were used to evaluate the performance. The models were optimized with stochas-
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Fig. 4. Overview of the copy-paste training scheme. In our case, objects with misaligned
attention are annotated with a bounding box and, cut out, and replaced by other
bounding box annotated objects.

tic gradient descent (SGD) with a momentum of 0.9 and weight decay of 5e-4
for 300 epochs and a batch size of 256. The initial learning rate was set to 0.1
and was divided by 10 at 50% and 75% of the total number of epochs. Random
cropping and horizontal flipping were used as augmentations, and model weights
were initialized with Kaiming initialization [12]. The experiments were repeated
three times with different random seeds and the mean and standard deviation
of the accuracy is reported (mainly to assert stability of the models).

For the DiagSet-10x and ImageNet datasets, ResNet-101 and EfficientNet-
B1 models were used. The models were optimized with SGD with a momentum
of 0.9 and weight decay of 1e-4 for 90 epochs. A batch size of 512 was used
for ResNet-101 experiments and of 256 for EfficientNet-B1 experiments. The
initial learning rate was set to 0.1 and was divided by 10 at 33% and 66% of
the total number of epochs. For both datasets, random cropping of 224×224
and horizontal flipping was used as augmentations. For DiagSet-10x vertical
flipping and color jitter were also used. Due to severe imbalance between classes
in the DiagSet-10x dataset, the loss was weighted by the number of samples
of each class. All model weights were initialized with Kaiming initialization.
These experiments were only performed once due to computational constraints.
EfficientNet-B1+ABN performance was not reported as the authors in [10] didn’t
implement ABN on EfficientNets.



315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV

#6
ECCV

#6

8 ECCV-22 submission ID 6

Analysis of attention mechanism on CIFAR: Following the analysis in [10],
two different attention mechanisms (how to combine the attention map with the
feature maps), namely g(x) · A(x) and g(x) · (1 + A(x)), were compared with
the base (no attention branch) and ABN model which uses the g(x) · (1 +A(x))
mechanism. As can be seen from Table 1, both mechanisms outperform the
ABN for all model versions. g(x) · (1 + A(x)) outperforms g(x) · A(x) slightly
for the Resnet-20 and 110 models but performs slightly worse for ResNet-56 on
average. The standard deviation for g(x) · A(x) mechanism is higher than for
g(x) · (1 +A(x)) for all models. This might be due to greater stability provided
by the residual connection. We also noticed that the attention maps when using
g(x) ·A(x) have values close to 0.5 for the background as compared to g(x) · (1+
A(x)) where they were close to zero. Hence we decided to use g(x) · (1 + A(x))
mechanism as the default for this paper.

Table 1. Comparison of the accuracies (%) on CIFAR100

ResNet-20 ResNet-56 ResNet-110

BaseModel 68.71±0.202 74.92±0.520 76.83±0.233
BaseModel+ABN 68.97±0.074 76.31±0.029 77.92±0.102

BaseModel+MSABN (g(x) ·A(x)) 69.47±0.298 77.16±0.419 78.40±0.254
BaseModel+MSABN (g(x) · (1 + A(x))) 70.06±0.025 76.78±0.149 78.68±0.121

Accuracy on ImageNet and DiagSet-10x: Table 2 summarizes the results of
the experiments on ImageNet. The MSABN model outperforms the ABN model
by 0.35% for ResNet-101 and the base model by 0.76% and 1.41% for ResNet-101
and EfficientNet-B1 respectively. The visual comparison of the attention in ABN
and MSABN models is shown in Figure 5. The MSABN attention has a better
localization performance and highlights the object boundaries better than ABN
attention.

Table 2. Comparison of the accuracies (%) on the ImageNet Dataset

ResNet-101 EfficientNet-B1

BaseModel 77.33 67.61
BaseModel+ABN 77.74 -

BaseModel+MSABN 78.09 69.08

Table 3 summarizes the results of the experiments on DiagSet-10x. In ad-
dition to accuracy, we also report the balanced accuracy to better estimate
the performance on an unbalanced dataset. Here, the MSABN model outper-
forms the ABN model by 4.23%/2.68% for ResNet-101 and the base model by
2.34%/2.72% and 0.09%/1.91% for ResNet-101 and EfficientNet-B1 respectively.
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Fig. 5. Visualization of high attention regions in the images from the ImageNet dataset.

A visual comparison of the attention in ABN and MSABN models is shown in
Figure 6. As compared to ABN, the MSABN attention highlights specific nuclei
important for the grading. ABN attention maps also show an activation along
the image boundary in the images with non-tissue regions present as an artifact.
This artifact was not observed in the MSABN attention maps.

Table 3. Comparison of the accuracies (%) on the DiagSet-10x dataset

ResNet-101
(Accuracy/Balanced Accuracy)

EfficientNet-B1
(Accuracy/Balanced Accuracy)

BaseModel 54.96 / 38.57 56.15 / 40.36
BaseModel+ABN 53.07 / 38.61 -

BaseModel+MSABN 57.30 / 41.29 56.24 / 42.27

4.2 Fine-grained Recognition

Datasets: The performance of MSABN and Puzzle-MSABN was evaluated in
two fine-grained recognition datasets namely CUB-200-2011 [31], and Stanford
Cars [18]. The CUB-200-2011 dataset contains 11788 images of 200 categories,
5994 for training and 5794 for testing. The Stanford Cars dataset contains 16185
images of 196 classes and is split into 8144 training images and 8041 testing
images.

Training details: The models used for evaluation of the fine-grained datasets
were ResNet-50 [13], ResNext-50 (32×4d) [33], and EfficientNet-B3 [30]. The
models showcase different popular architectures and hence were chosen to bench-
mark the results. The models were optimized with SGD with a momentum of



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV

#6
ECCV

#6

10 ECCV-22 submission ID 6

Fig. 6. Visualization of high attention regions in the DiagSet-10x dataset.

0.9 and weight decay of 1e-4 for 300 epochs with a batch size of 16. The initial
learning rate was set to 0.1 and was divided by 10 at 50% and 75% of the total
number of epochs. The images were resized to 352×352 pixels and the augmenta-
tions used were horizontal flip, color jitter, gaussian blur and noise, and solarize.
All model weights were initialized with Kaiming initialisation. The experiments
were run three times with different random seeds and the mean and standard
deviation of the performance is reported.

Table 4 shows the accuracies of the models on the CUB-200-2011 dataset.
MSABN improves upon the average performance of ABN models by 4% and
2% for ResNet-50 and ResNext-50 respectively. The performance gain compared
with the base model is 14%, 12%, and 12% for ResNet-50, ResNext-50, and
EfficientNet-B3 respectively. Furthermore, introduction of the puzzle module
outperforms the ABN models by 6% and 4% respectively. The puzzle module
outperforms the base models by 17%, 14%, and 13% for ResNet-50, ResNext-50,
and EfficientNet-B3, respectively.

Table 4. Comparison of the accuracies (%) on CUB-200-2011 Dataset

ResNet-50 ResNext-50 EfficientNet-B3

BaseModel 40.62±1.985 44.68±0.816 53.41±0.792
BaseModel+ABN 50.96±2.145 54.88±0.700 -

BaseModel+MSABN 54.98±0.219 56.86±0.581 65.28±0.397
BaseModel+MSABN+Puzzle 57.31±0.645 58.87±0.592 66.21±0.615

Table 5, shows the performance of the different models on the Stanford Cars
dataset. The improvement with MSABN compared to the ABN model is not
as significant here but slightly outperform them on average. The performance
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gain compared with the base models however is 8%, 3%, and 2% for ResNet-
50, ResNext-50, and EfficientNet-B3, respectively. The introduction of the puzzle
module outperforms ABN models by 3% and 1% respectively. The puzzle module
outperforms the base models by 10%, 4%, and 3% for ResNet-50, ResNext-50,
and EfficientNet-B3, respectively.

Table 5. Comparison of the accuracies (%) on Stanford Cars Dataset

ResNet-50 ResNext-50 EfficientNet-B3

BaseModel 78.70±1.062 84.00±0.817 86.86±0.495
BaseModel+ABN 85.59±0.396 87.34±0.408 -

BaseModel+MSABN 86.81±0.991 87.39±0.526 88.90±0.246
BaseModel+MSABN+Puzzle 88.25±1.492 88.32±1.184 89.92±0.189

Visualization of the attention maps for CUB-200-2011 and Stanford Cars
datasets are shown in Figure 7. Compared to ABN attention maps, MSABN
maps are able to delineate the object boundaries better and provide informa-
tion about the discriminative regions in the image. For CUB-200-2011 dataset,
most of the attention in MSABN and MSABN+Puzzle is focused on the key
attributes like the bill, wings, or the legs of the bird. The puzzle module per-
forms significantly better than the rest of the model configurations here. This
can be attributed to the effective regularization puzzle module provides in case of
small datasets and the complex images (birds with different angles and actions).
For Stanford Cars, the attention is focused on roughly similar regions depend-
ing on the car pose and form with different configurations. The performance
improvement of MSABN and MSABN+Puzzle is not as significant here as for
CUB-200-2011. This can be attributed to the nature of objects, i.e, cars, which
have a well defined shape as compared to the birds which will have different
shapes depending on the action like, flying, swimming, sitting or standing.

4.3 Attention Editing Performance

Datasets: We used the previously trained MSABN models on the CUB-200-
2011 and Stanford Cars datasets to demonstrate the attention editing process.
In both the datasets, bounding boxes of the objects within the image are avail-
able and are used here to mimic user input in the HITL pipeline in controlled
experiments.

Experimental setup: We measured the accuracy with respect to the number
of annotated samples (bounding boxes) “provided by the user” to estimate the
human effort required to achieve performance gain. To decide which samples to
“annotate”, the attention maps of the training data were saved and a binary
map was created by thresholding the intensity values at 0.2. Next, the ratio
of attention inside and outside the bounding box of the total attention in the
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Fig. 7. Visualization of attention maps on the CUB-200-2011 (a, b, and c) and Stanford
Cars (c, d, and e) dataset.

binary image were calculated. The number of samples for which the fraction of
attention outside fracattn out was above a threshold λout were put in the bin
of copy-replace augmentation for the fine-tuning training step. For the CUB-
200-2011 dataset, the performance at λout ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}
was obtained and for Stanford Cars, the performance was obtained at λout ∈
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. We stopped at 0.7 and 0.5 respectively because the
number of training samples were too low (less than 30) in some configurations to
observe meaningful changes above these thresholds. We chose this way instead of
measuring performance at different fractions of total number of training samples
to better infer the trends of attention localization in the datasets and models.
If the majority of the attention is focused inside the object box, the number of
samples where fracattn out > λout would be much lower for higher thresholds.
This method puts the images with worst attention localization first which of
course “boosts” the reported results. However, a case can be made that this
mimics a potential real scenario where a user corrects or edits discovered errors
for fine-tuning a model: The training samples to show the user can be sorted
either on the basis of wrong predictions first or the amount of overall attention
(since the models might focus on background) to be shown first, which will make
user input a little less time-consuming. The results were compared with results
from vanilla fine-tuning with all the training images to better compare the effects
of the copy-replace augmentation.

Training details: We evaluated all the MSABN models used in the fine-grained
recognition. The models were optimized with SGD with a momentum of 0.9 and
weight decay of 1e-4 for 50 epochs with a batch size of 16. The initial learning
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rate was set to 0.1 and was divided by 10 at 50% and 75% of the total number of
epochs. No augmentations were applied in the retraining to document the effects
of only the copy-replace augmentation. The experiments were repeated three
times for each model’s (Resnet, ResNext, and EfficientNet) three repetitions in
the previous section.

Fig. 8. Fine-tuning performance of different MSABN models on the CUB-200-2011
dataset with different ratios of training samples used for copy-replace augmentation.

Figure 8 and 9 show the results of the fine-tuning with copy-replace augmen-
tation in CUB-200-2011 and Stanford Cars datasets. As can be seen from the
figures, the fine-tuning improves performance of the models. The accuracy gain
compared to vanilla retraining with only 20% of the training data augmented
was approx. 6%, 5%, and 3% for the MSABN models of ResNet-50, ResNext-50,
and EfficientNet-B3 respectively for the CUB-200-2011 dataset. For Stanford
Cars, the accuracy increased by 2%, 1.5% and 0.5% respectively for the same
amount of augmented training samples. Overall gain from augmenting almost
all training samples compared with vanilla retraining was approx. 12.5%, 12.5%,
and 6% for MSABN models of ResNet-50, ResNext-50, and EfficientNet-B3, re-
spectively for the CUB-200-2011 dataset. For the Stanford dataset, the overall
gain was approx. 4.5%, 3.5%, and 1.5%, respectively.

The distribution of data points along the x-axis in Figure 8 is relatively
uniform compared to Figure 9 where most of the datapoints are located between
zero and 0.2. This means that the number of training samples with fracattn out >
λout changes proportionally with λout for the CUB-200-2011 dataset, but doesn’t
change much for the Stanford Cars dataset, which signals that the attention is
more focused on the objects in the Stanford Cars dataset than in the CUB-200-
2011 dataset. This can be attributed to the nature of objects in the datasets as
mentioned earlier.

The experiments showed that a significant performance gain can be achieved
with limited and relatively crude human input. As mentioned earlier, the results
are biased towards the worst examples, so there is a need to develop a smart
sorting system which decides the order of images to be shown to the user.
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Fig. 9. Fine-tuning performance of different MSABN models on the Stanford Cars
dataset with different ratios of training samples used for copy-replace augmentation.

We also noticed an interesting behavior with vanilla retraining on the two
datasets. While the accuracy after retraining in CUB-200-2011 increased, the
accuracy decreased with Stanford Cars dataset for all the models. The training
loss curves (not shown) indicate that both models were destabilized (training loss
increases) at the beginning of the training, however, in CUB-200-2011 dataset
the models converged to a minima with lower validation loss than that of the
initial training of the models. The observed effect in Stanford Cars dataset was
the opposite. Further experiments to determine the cause were not done, instead,
the performance was compared to the vanilla retrain as the benchmark.

Considerations: It’s worth noting that due to upscaling of the outputs of
intermediate blocks, the attention branch now has to process 16x more input
values. This increases the computational cost of the MSABN models. We noticed
that it takes roughly twice the time to train MSABN models compared to ABN
models. The puzzle module increases the cost further as every image is processed
twice, once as original and other as tiled sub-images during training, however,
the model behaves like MSABN model during inference.

5 Conclusion

In this paper, we have presented a multi-scale attention branch network which
greatly improves classification performance and also provide more accurate and
detailed attention maps. We have evaluated the accuracy of MSABN for image
recognition and fine-grained classification on multiple datasets and it was shown
to outperform the ABN models. We also showed that using the puzzle module
for fine-grained recognition increases the performance of the MSABN models.
In addition, we introduced a HITL learning framework which inserts human
knowledge in form of object bounding boxes and show that this is an effective
way of improved the performance further.
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