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Abstract

We introduce UniGen, a unified multimodal large language model (MLLM) ca-
pable of image understanding and generation. We study the full training pipeline
of UniGen from a data-centric perspective, including multi-stage pre-training, su-
pervised fine-tuning, and direct preference optimization. More importantly, we
propose a new Chain-of-Thought Verification (CoT-V) strategy for test-time scal-
ing, which significantly boosts UniGen’s image generation quality using a simple
Best-of-N test-time strategy. Specifically, CoT-V enables UniGen to act as both
image generator and verifier at test time, assessing the semantic alignment between
a text prompt and its generated image in a step-by-step CoT manner. Trained
entirely on open-source datasets across all stages, UniGen achieves state-of-the-art
performance on a range of image understanding and generation benchmarks, with
a final score of 0.78 on GENEVAL and 85.19 on DPG-BENCH. Through extensive
ablation studies, our work provides actionable insights and addresses key chal-
lenges in the full life cycle of building unified MLLMs, contributing meaningful
directions to future research.

GenerationUnderstanding

Figure 1: Comparison against state-of-the-art unified MLLMs. UniGen-1.5B outperforms Show-
o-1.3B, Janus-1.3B and Janus-Pro-1.5B across understanding and generation benchmarks.

1 Introduction
Unifying understanding and generation within a single framework represents a key step toward
general-purpose artificial intelligence models [53]. Pioneering work [9, 16, 67, 83, 84, 87, 96]
has made encouraging progress but relies on distinct training recipes and internal datasets. More
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importantly, they have yet to demonstrate good practice in wisely collaborating these two capabilities
within a unified architecture to achieve substantial performance gains. We advance the development of
unified multimodal large language models (MLLMs) by carefully studying the impact of their training
recipes across different stages and proposing optimizations to improve both image understanding and
generation. We further explore leveraging test-time interaction between understanding and generation
tasks, selecting images with higher quality by using our unified MLLM as the self-verifier.

Specifically, we introduce UniGen, a unified MLLM for image understanding and generation. To
shed light on the impact of different training stages, we walk through the entire life cycle of the
model development, including multi-stage pretraining, supervised fine-tuning [40, 54, 56], and direct
preference optimization [60, 78]. We ablate the impact of each training stage and their design choices
from a data-centric perspective, and draw insightful lessons for building advanced unified MLLMs.
Unlike state-of-the-art models [9, 47, 87, 84] that rely on large-scale internal datasets, we curate new
data mixtures across training stages by using only open-source images. We show that models trained
on publicly available data can also achieve competitive results.

To further enhance image generation quality, we propose a new Chain-of-Thought Verification (CoT-
V) strategy for test-time scaling. The key idea is to leverage UniGen’s inherent understanding ability
as a self-verifier to assess the quality of its own generated images. Specifically, during inference,
UniGen produces N images for a given text prompt, while CoT-V progressively evaluates semantic
coherence between each image-text pair and selects the best. With only lightweight fine-tuning
(e.g., 500 training steps), UniGen is able to achieve the reasoning capability, thinking step-by-step to
verify each atomic fact according to the prompt and each generated image. Importantly, this CoT
verification seamlessly enhances UniGen’s image generation quality while preserving its general
understanding performance. In this way, we collaborate the understanding and generation capabilities
within a unified MLLM, substantially boosting the text-to-image generation quality using a simple
Best-of-N strategy [79, 106] and self-verification [82, 7, 24]. Our experiments show that UniGen’s
performance is consistently improved across various image generation benchmarks.

We evaluate UniGen on various understanding and generation tasks, as shown in Fig. 1. For image
understanding, UniGen outperforms comparable unified MLLMs (e.g. Show-o [87] and Janus-
Pro [9]) across benchmarks and even ties with some strong understanding specialist models, such as
LLaVA-OV [32] and MM1.5 [102], as displayed in Table 1. For text-to-image generation, UniGen
obtains 0.78 on GENEVAL and 85.19 on DPG-BENCH using only open-source data, surpassing
state-of-the-art unified MLLMs [87, 84, 9] by a clear margin.

2 Related Work
Multimodal Large Language Models (MLLMs) have advanced significantly in image [1, 11, 40,
41, 49, 77, 106] and video understanding [42, 103, 89, 90, 101, 108]. Their architecture typically
consists of a vision encoder [59, 100, 72] to extract visual features, a projector [34, 2] to align
image-text embeddings, and a large language model (LLM) [1, 71, 92, 10] to generate responses.
Early work focuses on pre-training using large-scale vision-language corpus [48, 69], then moves
to carefully curated instructional datasets for supervised fine-tuning [32, 102] and reinforcement
learning [27, 60]. Recently, enabling MLLMs to output explicit reasoning trajectories has become a
promising research direction [52, 19, 68]. They explore strategies, such as chain-of-thought (CoT)
prompting [13, 95], reinforcement learning [66, 88], and test-time scaling [106, 79] to enhance the
visual reasoning capabilities of MLLMs.

Unified Understanding and Generation aims to combine visual understanding and generation
within a single MLLM framework [51, 67, 58, 81, 44, 43, 8, 12, 35]. This is often achieved by jointly
optimizing LLMs with multimodal objectives and generation-specific losses, such as autoregressive
decoding [84], diffusion [105], flow-matching [47], and masked image prediction [94, 87]. Visual
tokenizers [14, 45, 50, 73, 75, 98, 104] are critical for enabling both semantic understanding and
high-fidelity generation. Recent efforts explore both decoupled encoders [70, 84] and unified
tokenizers [29, 58, 85] for better task balancing. Integrating CoT into visual generation emerges as
a promising strategy. PARM [20] scales test-time computation by introducing a new verification
process. MINT [81], ImageGen-CoT [38], and Got [15] leverage multimodal reasoning to perform
prompt planning, generation, reflection, and refinement. Despite these advances, using chain-of-
thought for unified understanding and generation remains underexplored. In this work, UniGen
incorporates a CoT-based self-verification strategy via Best-of-N selection during test-time scaling,
which leads to substantial improvements in image generation performance.
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3 Recipe for Building UniGen

3.1 Architecture
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Figure 2: The architecture of UniGen, which is based
on an autoregressive LLM and decoupled vision en-
coders for image understanding and generation tasks.

As shown in Fig. 2, we unify the image un-
derstanding and generation tasks into a pre-
trained LLM. Motivated by prior work [84],
we separate visual encoding for understand-
ing and generation into continuous and dis-
crete embedding spaces, respectively.

For image understanding, we follow the
LLaVA [40] workflow and adopt the next-
token prediction paradigm. Given an in-
put image XU , the understanding encoder
EncU (e.g., SigLIP [100]) extracts its fea-
ture as a vector of continuous tokens XU =
EncU (XU ). The projector PU aligns the
image and text embeddings into the same
space, then the embeddings are fed into
LLM as inputs. We compute the understanding loss using the vanilla autoregressive training objective
Lund. To preserve the LLM’s language modeling capability, we also train UniGen with text-only
data and backpropagate the corresponding loss Ltext.

For text-to-image generation, we employ the masked token prediction [5] as our training objectives.
Unlike the autoregressive decoding for text tokens, this paradigm enables models to generate multiple
image tokens in parallel, significantly accelerating the generation process. During training, for each
image XG ∈ RH×W , the generation encoder EncG (e.g., MAGVIT-v2 [97]) tokenizes it into a
sequence of discrete tokens XG of length N = H/ds ·W/ds, where ds refers to the spatial down-
sampling factor of EncG. Then, given a masking ratio η according to the scheduling function γ(·),
we randomly sample a binary mask M(η) = [m0, · · · ,mN−1], where η ∗N positions are uniformly
set to 1 and others are set to 0. For each position i where mi equals to 1, we replace its corresponding
discrete image token XG

i with a special mask token [MASK] to form the final input image sequence.
Finally, we prepend the textual tokens (e.g., image classes or captions) with the masked sequence XM.
During inference, the image generation starts with all masked tokens XM = [[MASK], · · · , [MASK]],
and gradually fills up the latent representation with scattered predictions in parallel.

3.2 Pre-Training (PT)

The goal of pre-training is to develop UniGen’s visual generation capability while preserving its
potential for multimodal understanding. Thus, we only optimize the generation projector and the
LLM with other parameters frozen. We also include image-to-text and text-only pre-training to
keep UniGen’s language modeling capability. To encourage a better alignment between discrete
image tokens and the text, we directly use the generation encoder for understanding tasks but only
in this stage. We empirically find that this design can significantly improve the image generation
performance. Specifically, we employ an “easy-to-difficult” strategy through a two-stage process.

Pre-training Data. We generate fine-grained captions for images from ImageNet [62] , CC-3M [63],
CC-12M [6] and SAM-11M [31] dataset using Qwen2.5-VL-7B [3] to form a 40M image-text pair
corpus. For text-only pre-training, we use RefinedWeb [55].

PT-1 Stage seeks to align the image and text embeddings and predict the distribution of basic visual
concepts. Similar to prior works [84], we employ ImageNet for generation pre-training warmup
and leverage the full 40M image-text pairs for the understanding task. However, we propose that
using image captions, rather than image categories, for text-to-image generation leads to better
convergence.

PT-2 Stage further facilitates UniGen to generalize to wider visual generation capabilities. We
expand the text-to-image training dataset to the full 40M image-text pairs, while using the same
image-to-text and text-only ones. We argue that training data with a richer distribution enables more
accurate control over generation patterns. We name the model trained in this stage as UniGen-PT.
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Figure 3: The workflow of UniGen using test-time scaling and CoT-V. Left: Illustration of Best-
of-N selection with CoT-V with N = 6. Right: Visualization of the step-by-step reasoning process
in CoT-V for computing the final quality score.

3.3 Supervised Fine-Tuning (SFT)

In the SFT stage, UniGen is jointly trained on the image understanding and generation tasks. We fine-
tune the generation projectors, understanding projectors, and the LLM, while still keeping the vision
encoders frozen. For image understanding, we notice that the knowledge-centric understanding
is limited during pre-training stages. To enhance related capabilities, we adopt the strong image
mixture from SlowFast-LLaVA-1.5 [90], which was carefully curated from open-source datasets with
4.67M multimodal VQA samples. For image generation, prior work [9] uses high-quality synthetic
data that can enable fast and robust training convergence. We share this observation by using the
JourneyDB [64] and text-2-image-2M [28] to improve the aesthetic quality of our generated images.
We name the model trained in this stage as UniGen-SFT.

3.4 Direct Preference Optimization (DPO)

We further enhance UniGen by aligning its outputs with human preference through DPO. We first
discuss how we construct our synthetic preference dataset, then describe our DPO algorithm.

Preference Dataset. We leverage UniGen-SFT to generate the images for our preference dataset.
For a given prompt, 20 images are generated. A preferred and rejected sample pair is constructed by
evaluating the coherence between each image and the prompt. To improve the data robustness, we
collect 6k short prompts from PARM [20], 6k medium-length prompts from T2I-Comp [25] training
set, and 6k long prompts from re-annotated SA1B to generate training image candidates.

For short prompts, we use the GENEVAL metrics to evaluate the generation quality. For prompts of
medium or long lengths, we decompose each prompt into fine-grained visual questions with Qwen2.5-
7B. Then, we assess image-prompt consistency by feeding Qwen2.5VL-7B with the image-question
pair. An output “yes” indicates the image aligns with the description, and “no” otherwise. The final
consistency score S is averaged from these answers. For each prompt, we sample one highest-scored
example as the preferred image and the lowest one as the rejected image. Prompts with no clear
preference are filtered out. Finally, we obtain around 13k triplets for training.

DPO Training. We adopt the vanilla DPO training loss and freeze the understanding encoder and
projector in this stage. The training ends in one epoch with a batch size of 64 and a learning rate
of 1e−5. We empirically find that this DPO training does not impair UniGen’s understanding
performance. We name the model trained in this stage as UniGen-DPO.

4



UniGen

Und Encoder
This image is generated by 
a prompt: a photo of an 
apple above a tv. Does this 
image accurately 
represent the prompt? 
Please answer yes or no.

No 0.0

UniGen

Und Encoder

UniGen

Und Encoder
This image is generated by a 
prompt: a photo of an apple 
above a tv. Please asset the 
image generation quality step 
by step. First breakdown the 
prompt into multiple ...

0.66

<think>Is there a tv? Yes
Is the apple above the tv? No
Is there an Apple? Yes </think>

Is there an apple?

Is there a tv?

Is the apple above the tv?

(a) (b) (c)

3

2

1

0.66Yes    Yes    No   1 2 3

Figure 4: An example of using different image verification methods: (a) Outcome Verification, (b)
Rule-based Verification and (c) Chain-of-Thought Verification.

3.5 Test-Time Scaling
Recent studies have shown the effectiveness of test-time scaling on improving both image understand-
ing [79, 106] and generation [20, 86]. We employ the Best-of-N evaluation strategy and leverage
UniGen’s understanding ability to conduct self-critique for image generation verification. The general
workflow is illustrated in Fig. 3. First, UniGen generates N candidate images for a given prompt.
Second, we input each generated image along with its prompt into UniGen, which evaluates the
alignment between the image and its textual description and outputs a quality score S. Third, we
return the image with the highest score. We propose three verification methods as shown in Fig. 4.

• Outcome Verification (OV) simply prompts UniGen to directly judge the coherence of the input
prompt and each image candidate, giving a binary score (i.e. “yes” for a good match and “no” for
a failure generation). We randomly select one if there are candidates with the same score.

• Rule-based Verification (RV) breaks down each prompt into several atomic questions based on
pre-defined rules, then sequentially feeds them with the generated image into UniGen for quality
verification. The results of all sub-questions are averaged as the final quality score.

• Chain-of-Thought Verification (CoT-V) instructs the model to think step-by-step and verifies
each atomic fact according to the prompt and each generated image, following the CoT format:
<think_start>Q1? A1; · · · Qn? An;<think_end>. We compute the final quality score S by
parsing the CoT outputs. Specifically, given a text prompt T and a generated image I , CoT-
V produces a list of visual questions Q = {Q1, · · · , Qn} and their corresponding answers
A = {A1, · · · , An}. The final score S is computed by averaging the scores in the answer list.

OV relies on UniGen’s pattern-matching capabilities without intermediate reasoning. RV incorporates
a rule-driven reasoning process into test-time scaling. Although effective on well-structured prompts,
RV struggles with free-form or complex instructions, such as those in DPG-Bench [23]. CoT-V
leverages the strengths of both approaches, enabling reasoning-driven image verification without the
need for manual prompt decomposition. Thus, we use CoT-V as our default verification method.

3.5.1 CoT-V Post-Training
UniGen has not been precisely trained to generate CoT responses. Here we introduce a lightweight
post-training strategy upon UniGen-DPO, equipping it with the ability of CoT-based verification.

Data. To construct the CoT-V post-training data, we reuse the image-text pairs collected during the
DPO stage (Sec. 3.4). For prompts sourced from PARM, we extract the question-answer pairs via
rule-based matching, since they are built upon a clear structure [17]. For prompts from T2I-Comp
that are more complicated, we first guide Qwen2.5-7B [91] to generate a series of atomic questions,
then query Qwen2.5-7B-VL with each image-question pair to obtain their binary pseudo labels. We
exclude the prompts from SA-1B due to the lower quality of the decomposed visual questions. We
empirically find that most of the decomposed questions do not fully cover the visual concepts of the
original caption. We totally sample 20K image-question-answer triplets from both prompt sources.

Training. We format the above 20K training pairs as instruction-following conversations, and feed
them into UniGen-DPO for supervised fine-tuning. In this stage, we only optimize the understanding
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Table 1: Comparison with state-of-the-art models on image understanding benchmarks.
∗denotes reproduced results and RW-QA denotes RealWorld-QA.

Model #Params Res. AI2D GQA POPE MMMU MathVista RW-QA ScienceQA Seedbench

Understanding MLLMs

LLaVA-OV [32] 0.5B AnyRes 57.1 - - 31.4 34.8 55.6 67.2 65.5
MM1.5 [102] 1B AnyRes 59.3 - 88.1 35.8 37.2 53.3 82.1 70.2
LLaVA 1.5 [39] 7B 336 55.1* 62.0 86.1 36.3* 26.7* 55.8* 66.8 66.1

Unified MLLMs

Show-o [87] 1.3B 336 36.2* 61.0* 84.5 27.4 22.1* 48.5* 42.7* 61.5*
Janus [84] 1.3B 384 49.0* 59.1 87.0 30.5 33.7* 48.4* 76.5* 63.7
Janus-Pro [9] 1.5B 384 63.7* 59.3 86.2 36.3 36.8* 51.1* 75.5* 68.3
Vila-U [85] 7B 384 - 60.8 85.8 - - - - 56.3
MMAR [93] 7B 256 - - 83.0 - - - - 64.5
UniToken [29] 7B 384 68.7 - - 32.8 38.5 - - 69.9
UniGen 1.5B 384 67.4 62.3 87.8 32.3 44.6 56.7 79.4 70.8

projector and the LLM. To ensure not impairing UniGen’s general understanding capabilities, we
fine-tune UniGen on this CoT-V dataset for only 500 steps using a small learning rate of 1× 10−5.
The model trained after this stage is our final model, and we name it as UniGen.

4 Experiments
4.1 Implementation Details

We use 32 H100-80G GPUs for pre-training stages and 8 H100-80G GPUs for the others. UniGen
is built upon the pre-trained Qwen2.5-1.5B [91]. We adopt MAGVITv2 from Show-o [87] as our
discrete visual encoder with input resolution of 256× 256 and SigLIP [100] as our continuous visual
encoder. As discussed in Sec 3.1, we use MAGVITv2 for both understanding and generation in PT-1
and PT-2, and keep using SigLIP as the understanding encoder after SFT.

Training. We follow Show-o [87] to use a bidirectional attention mask within image tokens, but keep
the causality within text tokens and between multimodal tokens. Detailed hyperparameters for each
training stage are described in Appendix Table 17 with more details in Appendix Sec. E.0.2.

Inference and Evaluation. We follow the common practice of image generation to use classifier-free
guidance [22] and set the scale to 5.0. In addition, we follow MaskGIT [5] to adopt the cosine
masking scheduler in inference and set the default number of steps to T = 50. We use MAGVITv2
decoder to project the visual tokens back to the pixel space. For test-time scaling with CoT-V , we
generate N = 20 image candidates per text prompt and select top-K (K = 5) out of them, sending
for evaluation on GENEVAL and DPG-BENCH.

4.2 Main Results

We report the performance of UniGen on various benchmarks (details are discussed in Appendix
Sec. A) and show qualitative results in Fig 5. We mainly compare UniGen with state-of-the-art
unified LLMs in Table 1 and 2, but also reference strong specialist models to understand our position
in the whole picture of MLLMs. Here we highlight the following observation.

First, UniGen achieves state-of-the-art results across understanding benchmarks compared to
existing unified MLLMs. Specifically, UniGen outperforms Janus-Pro on RealWorld-QA, AI2D and
MathVista by +5.6%, +3.7%, and +7.8%, respectively. We believe our improvements are mainly
driven by using (i) the decoupled generation and understanding encoders and (ii) the stronger SFT
data mixture. Notably, UniGen is even comparable with some strong understanding-only MLLMs,
such as LLaVA-OV-0.5B and MM1.5-1B, even though they use much higher input resolutions.

Second, UniGen significantly outperforms existing unified MLLMs and strong generation-
only models on text-to-image benchmarks. Using GENEVAL in Table 2 as an example, UniGen
achieves the overall score of 0.78, significantly outperforming Janus-Pro by 0.05. Besides, our model
demonstrates an overwhelming advantage on the “Counting” task by +0.27 higher than Janus-Pro.
UniGen even beats a range of superior generation-only models (e.g., outperforming DALLE-2, and
Emu3 by +0.26, and +0.24, respectively), even though they are with much larger model sizes.
Similarly, UniGen outperforms existing models by a clear margin on DPG-BENCH as shown in
Table 2, outperforming Show-o and Janus-Pro by +13.49 and +2.56, respectively.
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Table 2: Comparison with state-of-the-art models on GENEVAL and DPG-BENCH benchmark.

Model # Params GenEval↑ DPG-Bench↑
Two Obj. Counting Position Color Attri. Overall Global Relation Overall

Text-to-Image Generation Models

DALLE-2 [61] 6.5B 0.66 0.49 0.10 0.19 0.52 - - -
DALLE-3[4] - 0.87 0.47 0.43 0.45 0.67 90.97 90.58 83.50
Emu3 [80] 8B 0.71 0.34 0.17 0.21 0.54 85.21 90.22 80.60
SDXL [57] 2.6B 0.74 0.39 0.15 0.23 0.55 83.27 86.76 74.65
SimpleAR [76] 1.5B 0.90 - 0.28 0.45 0.63 87.97 88.33 81.97
Infinity [21] 2B 0.85 - 0.49 0.57 0.73 93.11 90.76 83.46

Unified MLLMs

Show-o [87] 1.3B 0.52 0.49 0.11 0.28 0.53 80.39* 83.36* 71.70*
Janus [84] 1.3B 0.68 0.30 0.46 0.42 0.61 82.33 85.46 79.68
Janus-Pro [9] 1.5B 0.82 0.51 0.65 0.56 0.73 87.58 88.98 82.63
ILLUME [74] 7B 0.86 0.45 0.39 0.28 0.61 - - -
UniToken [29] 7B 0.80 0.35 0.38 0.39 0.63 - - -
VARGPT-v1.1 [107] 9B 0.53 0.48 0.13 0.21 0.53 84.83 88.13 78.59
TokenFlow-XL [58] 13B 0.72 0.45 0.45 0.42 0.63 78.72 85.22 73.38
UniGen 1.5B 0.92 0.68 0.48 0.52 0.74 91.53 91.09 84.89
UniGen + CoT-V 1.5B 0.94 0.78 0.57 0.54 0.78 91.95 92.04 85.19

Table 3: Ablation of different stages of our model on image understanding benchmarks.
Model Stage GenEval DPG-Bench AI2D GQA POPE MMMU MathVista RW-QA ScienceQA Seedbench

UniGen

PT-1 0.53 78.14 - - - - - - - -
PT-2 0.55 80.71 - - - - - - - -
SFT 0.63 82.75 68.0 62.5 87.4 32.4 45.2 58.6 79.7 71.1
DPO 0.73 84.89 67.9 62.4 88.0 32.9 45.0 59.0 79.5 71.0

CoT-V 0.78 85.19 67.4 62.3 87.8 32.3 44.6 56.7 79.4 70.8

4.3 Ablation Studies

4.3.1 Impact of Different Training Stages

We examine our training pipeline by showing the understanding and generation performance after
each stage in Table 3. Here we highlight some key observations.

First, UniGen demonstrates consistent improvements in generation performance across dif-
ferent training stages, as indicated by the increasing numbers of GENEVAL and DPG-BENCH.
The pre-training stages aim to warm up the generation capability of UniGen. The SFT boosts the
GENEVAL and DPG-BENCH by using high-quality generation datasets. With the effectiveness of
our preference data, the DPO stage significantly improves GENEVAL and DPG-BENCH to 0.73
(+0.10) and 84.89 (+2.14), respectively. CoT-V further enhances the scores to 0.78 (+0.05) and
85.19 (+0.3) via test-time scaling.

Second, UniGen’s strong understanding capability is stimulated in the SFT stage and can be
maintained in the following stages. The SFT stage promotes the instruction following capability of
UniGen that leads to strong performance on understanding benchmarks. In the DPO stage, UniGen
successfully maintains the strong understanding capability. CoT-V contains an additional lightweight
fine-tuning to encourage the CoT verification during test-time scaling. The results show that it does
not sacrifice the general understanding capability, except for a slight regression on RealWorld-QA.
We attribute this regression to the distribution gap between CoT-V’s synthetic training data and the
real-world images in RealWorld-QA.

4.3.2 Ablation of CoT-V

Here we evaluate different verification methods discussed in Sec. 3.5 with the following highlights.

First, CoT verification achieves the best performance and prompting UniGen’s thinking process
is important. As shown in Table 4, using Outcome verification shows no improvement, while
using CoT thinking obtains a significant boost of generation performance on both GENEVAL and
DPG-BENCH. We also observe that Rule-based verification is also effective, leading to 0.75 on
GENEVAL. However, it is not general enough to be used on free-form prompts. Comparing the
results from CoT Verification and Rule-based Verification, we can see that prompting the model itself
to think is beneficial for more reliable critique.
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Figure 5: Visual examples of UniGen’s results using CoT-V. The first three rows show examples
for counting, position, and color attribute, respectively, and the last row shows images generated by
free-form prompts. The first column contains images selected by UniGen as the test-time verifier.

Table 4: Ablation of verification methods.
Method Outcome Rule CoT GenEval DPG-Bench

UniGen

✗ ✗ ✗ 0.74 85.02
✓ ✗ ✗ 0.74 85.00
✗ ✓ ✗ 0.75 -
✗ ✗ ✓ 0.78 85.19

Table 5: Ablation of CoT-V post-training.
Method CoT-V Post-train GENEVAL DPG-BENCH

Show-o
✗ 0.64 76.32
✓ 0.66 77.09

UniGen
✗ 0.74 84.89
✓ 0.78 85.19

Second, CoT-V post-training is essential for strong test-time verification. As shown in Table 5,
directly using UniGen without CoT-V post-train leads to notable performance drop, especially for
GENEVAL. This comparison demonstrates that CoT-V post-train is pivotal for CoT verification.

Third, CoT-V can effectively generalize to other models. We finetune Show-o with DPO and
CoT-V with our generated data to boost its generation performance. Results in Table 5 show that
CoT-V is a general technique that can also enhance Show-o’s generation performance.

4.3.3 Ablation of DPO

Table 6: Ablation study of DPO. The results are
from UniGen-DPO without test-time scaling.

Method PARM T2I-Comp SA1B GenEval DPG-bench

UniGen

✗ ✗ ✗ 0.63 82.75
✓ ✗ ✗ 0.73 83.48
✓ ✓ ✗ 0.72 84.09
✓ ✓ ✓ 0.74 84.89

Show-o
✗ ✗ ✗ 0.56 71.70
✓ ✓ ✓ 0.64 76.32

We ablate the contribution of each data source
and demonstrate the effectiveness of our DPO
data on other unified models.

First, every prompt source contributes pos-
itively to generation performance. Table 6
shows that adding only PARM DPO data results
in remarkable improvements (row1 vs. row2),
while further adding T2I-Comp mainly benefits
DPG-BENCH (row2 vs. row3). UniGen-DPO
with all of three prompts, introduces the best
overall performance (row3 vs. row4).

Second, our DPO data also largely improves Show-o, showing that it is generalizable to other
unified models. When fine-tuning Show-o directly with our DPO data, we also observe a notable
gain, from 0.56 to 0.64 on GENEVAL and from 71.70 to 76.32 on DPG-BENCH as shown in Table 6.
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4.4 Ablation of SFT

Table 7: Ablation of SFT stage. PT-2 Data denotes the training data used in the PT-2 Stage. JD and
TI denote JourneyDB and text-2-image-2M, respectively. The results are from UniGen-SFT .

Und Data Gen Data GenEval DPG-Bench AI2D GQA POPE MMMU MathVista RW-QA ScienceQA Seedbench Und Avg.

SlowFast-LLaVA-1.5 PT-2 Data 0.56 79.67 68.3 62.4 87.5 33.3 42.2 54.4 79.6 70.7 62.3
JD+TI 0.63 82.77 68.0 62.5 87.4 32.4 45.2 58.6 79.7 71.1 63.1

LLaVA1.5 JD+TI 0.64 81.82 48.7 62.8 87.4 27.1 22.1 53.7 55.5 64.0 52.7

By default, we use the image mixture from SlowFast-LLaVA-1.5 [90] as understanding datasets and
JourneyDB and text-2-image-2M as the generation datasets. In this section, we ablate the datasets in
Table 7 to evaluate their impacts and draw the following conclusion.

First, using high-quality generation data is necessary for further lifting generation results.
JourneyDB and text-2-image-2M have much higher quality compared to the generation data used
during the PT-2 stage. Table 7 (row1 vs. row2) shows that using high-quality generation data in the
SFT stage results in better image generation performance.

Second, using a stronger data mixture is crucial to improve the understanding performance,
which is also helpful for fine-grained text-to-image generation. As shown in Table 7 (row2 vs.
row3), replacing SlowFast-LLaVA-1.5 mixture with LLaVA1.5’s induces much worse understanding
performance. Also, training with SlowFast-LLaVA-1.5 data produces higher results on DPG-BENCH.
We believe a better understanding capability is important for comprehending the complex text prompts
of DPG-BENCH that can eventually be beneficial for better text-to-image generation.

4.5 Ablation of PT-1 and PT-2

Table 8: Impact of using understanding task in PT stages. The results are from UniGen-SFT .
Und Data

PT-1
Und Data

PT-2 GenEval DPG-bench AI2D GQA POPE MMMU MathVista RW-QA ScienceQA Seedbench Und Avg.

✗ ✗ 0.61 82.51 60.5 59.6 87.4 30.9 38.1 49.0 72.0 66.1 58.0
✓ ✓ 0.63 82.75 68.0 62.5 87.4 32.4 45.2 58.6 79.7 71.1 63.1

Table 9: Ablation of PT-1 stage. Cls and Recap indicate class names and high-quality captions are
used for generating images, respectively. The results are from UniGen-SFT .
Stage I Gen Data GenEval DPG-bench AI2D GQA POPE MMMU MathVista RW-QA ScienceQA Seedbench Und Avg.
✗ – 0.64 82.26 70.3 62.5 87.9 33.7 45.7 54.2 80.5 71.7 63.3
✓ ImageNet(Cls) 0.63 82.75 67.0 62.5 88.0 31.4 41.4 53.6 79.8 71.1 61.8
✓ ImageNet(Recap) 0.63 82.75 68.0 62.5 87.4 32.4 45.2 58.6 79.7 71.1 63.1

We explore the necessity and key factors of UniGen’s pre-training stages. We first discuss whether
we should include the understanding dataset in the pre-training stages as shown in Table 8. Second,
we ablate the impact of the generation datasets to both generation and understanding performance in
Table 9 (for PT-1) and Table 10 (for PT-2). Since PT-1 and PT-2 are early stages in UniGen’s training
pipeline, we continue the training to the SFT stage to verify their impact on the final performance
more reliably. Unless noted otherwise, all ablations in this section use UniGen’s default SFT settings.
Here we highlight the following observations.

First, including understanding data in pre-training stages is crucial for both generation and
understanding performance. In Table 8’s row 1, we keep the default setting and only remove
the understanding loss from the training objectives. We observe a significant performance decrease
across generation and understanding benchmarks at the SFT stage. We attribute this to the fact that
understanding data is important for a better vision-language alignment in early training stages, which
is helpful for both image-to-text and text-to-image tasks.

Second, the high-quality text-to-image task is more effective than the de facto class-to-image
task in PT-1. One common practice of unified MLLMs for pre-training is using the class-to-image
task with ImageNet [84, 87]. However, we find that using ImageNet with fine-grained captions
leads to better performance for understanding tasks in the UniGen-SFT stage as shown in Table 9
(row2 vs. row3). This is a result of better vision-language alignment introduced by the detailed
caption-to-image mapping.
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Table 10: Ablation of PT-2 stage. The reported results are from UniGen-SFT .
Stage II Gen & Und Data GenEval DPG-bench AI2D GQA POPE MMMU MathVista RW-QA ScienceQA Seedbench Und Avg.

✗ – 0.58 79.25 70.2 61.9 87.3 31.6 47.0 54.9 82.5 71.2 63.3
✓ CC+SA+IMN 0.59 80.64 64.5 61.6 87.9 30.8 40.9 54.2 77.0 69.6 60.8
✓ (SA+IMN)(Recap) 0.64 82.63 67.2 62.4 87.5 31.0 40.8 56.5 79.7 71.1 62.0
✓ (CC+IMN)(Recap) 0.63 82.75 67.9 62.1 87.8 31.6 42.0 58.2 80.3 70.8 62.6
✓ (CC+SA)(Recap) 0.62 82.34 68.6 62.2 87.4 30.6 45.4 59.3 80.5 70.8 63.1
✓ (CC+SA+IMN)(Recap) 0.63 82.75 68.0 62.5 87.4 32.4 45.2 58.6 79.7 71.1 63.1

Third, to maintain high performance on generation, we need both PT-1 and PT-2. According to
Table 9 (row1 vs. row3) and Table 10 (row1 vs. row6), we notice that completely removing PT-1
or PT-2 stage will largely decrease the generation metrics. Especially, eliminating PT-2 has a much
bigger negative impact, leading to a dramatic drop of numbers on both GENEVAL and DPG-BENCH.
Excluding PT-1 will not apparently affect GENEVAL, but hurts DPG-BENCH. This is because the
prompts of DPG-BENCH are more complicated, thus more pre-training helps our model to better
comprehend their semantics.

Fourth, to keep a strong understanding performance, we need at least one of the PT-1 and
PT-2. According to Table 8, we infer that the understanding performance will be destroyed if we
remove both PT-1 and PT-2. However, discarding PT-1 or PT-2 in Table 9 and Table 10 does not
impact understanding numbers. As a result, we recommend keeping at least one of them for good
understanding capability and leveraging both of them for the best generation and understanding
performance if the compute budget allows.

Fifth, using high-quality captions in PT-2 is important for understanding and generation
performance. Table 10 (row2 vs. row6) demonstrates that using high-quality image captions results
in stronger performance in both understanding and generation tasks. This is due to the better
text-to-image and image-to-text alignment learned from the fine-grained captions.

Sixth, each data source of PT-2 has meaningful contributions. We remove each data component
from the training set of PT-2 and observe that retaining all of them leads to the best performance as
shown in Table 10 (row3 to row6). This finding supports the usefulness of each dataset we curated.

5 Conclusion

We present UniGen, an MLLM for unified multimodal understanding and generation. We discuss
the key factors along the entire training pipeline and propose optimization methods to improve the
performance. We also make the first attempt to collaborate UniGen’s understanding and generation
capabilities, by enabling UniGen to perform as both image generator and verifier during test-time
scaling. As a result, we successfully further boost the image generation quality by a clear margin.
Trained with only open-source datasets, UniGen achieves the state-of-the-art performance across
extensive understanding and generation benchmarks. We hope our exploration and ablation studies
provide insights into the future development of strong unified MLLMs.

Limitation. First, we instantiate UniGen with only a 1.5B model, since larger scales will impose
much higher demands on the computational cost. However, larger models have been shown effective
for improving both understanding and generation performance [9]. Second, our generation capability
targets at promoting semantic alignment between the input text prompt and the generated image,
therefore we only focus on a resolution of 256× 256. We plan to support higher resolution image
generation, such as 480p or even 1080p, which is valuable for improving the visual fidelity. Third,
although achieving convincing results on DPG-Bench, CoT-V is still limited for complicated text
prompts, due to the noisy CoT data generated by Qwen2.5VL as a pseudo labeler. This could
be largely relieved by using a stronger pseudo labeler or leveraging human filtering in the future.
Equipping UniGen with stronger reasoning and CoT capabilities in an earlier stage is also a promising
direction.

Broader Impact. Unified MLLMs offer scientific benefits by enabling human-AI interaction and
advancing general-purpose multimodal understanding. There are many real-world applications, such
as design assistants, education, and collaborative robots. However, there could be unintended usages
and we advocate responsible usage complying with applicable laws and regulations.

Acknowledgment. We thank Haiming Gang, Jesse Allardice, Shiyu Li, and Yifan Jiang for their
kind help.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction have accurately claimed the contributions of this
work, including the UniGen model and the CoT-V test-time scaling strategy.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations have been discussed in Sec.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results in main paper’s Sec. 3 and Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The paper plans to open-source the code and data after the internal review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper has specified the training and test details in Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Following common practice in the multimodal learning literature, we do not
report error bars in this paper because of the heavy computation overheads.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper has provided the computation information in Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper is under the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Unified MLLMs offer significant scientific benefits by enabling more intuitive
human-AI interaction and advancing general-purpure multimodal understanding. There are
many real-world application scenarios, such as design assistant, education, and collaborative
robots. However, there could be unintended usages and we advocate responsible usage
complying with applicable laws and regulations.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite the original assets in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The details of the newly contributed dataset/code/model have been discussed
in Sec. 3 of the main paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The LLM is used to labeling the training data. We clarified their usage in the
main paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Benchmarks and Evaluation Protocol

For image understanding, we include widely-used (i) general VQA benchmarks, such as GQA [26],
RealWorld-QA [18], and Seedbench [33], (ii) knowledge-based benchmarks, such as AI2D [30],
MMMU [99], and MathVista [46], and (iii) hallucination benchmarks, such as POPE [36]. We
leverage the lmms-eval1 toolkit to compute the results for the above benchmarks.

For text-to-image generation benchmarks, we report results on GENEVAL [17] and DPG-
BENCH [23] to comprehensively evaluate the semantic alignment between a text prompt and the
generated images. To fairly compare with recent unified MLLMs [84, 9, 87], our results are obtained
using the official evaluation repository of GENEVAL2 and DPG-BENCH3.

B More Ablation Studies

Table 11: Ablation of Best-of-N strategy.
The results are from UniGen with CoT-V .

N GenEval DPG-Bench Speed (s/img)

1 0.73 84.89 3.55
3 0.77 85.13 16.59
5 0.78 85.19 27.22

Table 12: Ablation of the order of CoT-V post-
training and DPO training. The results are from
UniGen with CoT-V .

Sequence Und Avg. GenEval DPG-bench

DPO → CoT-V Post-train 62.7 0.78 85.19
CoT-V Post-train → DPO 62.7 0.76 85.20

Choosing N for Best-of-N strategy. We ablate N for Best-of-N selection with CoT-V . As shown
in Table 11, using larger N consistently yields higher performance on GENEVAL benchmark. To
assess the efficiency trade-off, we further measure the inference speed of CoT-V on the same H100
GPU, considering both MLLM execution time and tokenizer decoding overhead. The average speed
is computed across all GENEVAL samples using one prompt per batch. Under the default setting of
(N=5), the total inference time is approximately 8× slower than standard inference, highlighting the
trade-off between increased computational cost and improved accuracy.

Switching the order of CoT-V post-training and DPO training. We reverse the order of DPO
training and CoT-V post-training and present the results in Table 12. The findings indicate that the
training order has minimal impact, with the default setting showing a slight advantage on GENEVAL.

Table 13: Ablation of visual tower for under-
standing. The results are from UniGen-SFT.
Visual Encoder Und Avg. GenEval DPG-Bench

Freeze 63.11 0.63 82.75
Unfreeze 63.16 0.65 82.71

Table 14: Ablation of visual tokenizer for gen-
eration. The results are from UniGen-SFT.

Tokenizer GenEval DPG-bench

MAGViTv2 0.63 82.75
VQ-16 0.62 82.93

Freezing the visual tower for understanding during supervised fine-tuning achieves performance
on par with the unfrozen setting on understanding benchmarks. As reported in Table 13, unfreezing
the visual tower leads to a 2% improvement on GENEVAL, while freezing the encoder reduces
computational cost. These results indicate that the frozen design leads to a more cost-efficient option
with only minor performance differences.

Changing the discrete visual tokenizers. By default, we adopt the MAGViTv2 implementation
from Show-o4. To ablate the impact of discrete visual tokenizer on generation, we further experiment
with the VQ-16 tokenizer from LLamaGen [65]. As shown in Table 14, both tokenizers achieve
comparable performance on GENEVAL and DPG-BENCH after supervised fine-tuning, demonstrating
the robustness and generalizability of our training framework.

1https://github.com/EvolvingLMMs-Lab/lmms-eval
2https://github.com/djghosh13/geneval/tree/main
3https://github.com/TencentQQGYLab/ELLA/tree/main
4https://huggingface.co/showlab/magvitv2
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C More Results

We present the breakdown comparison of UniGen against state-of-the-art models on GENEVAL and
DPG-BENCH in Table 15 and Table 16.

Table 15: Comparison with state-of-the-art models on the GenEval benchmark.

Model #Params Single Obj. Two Obj. Counting Colors Position Color Attri. Overall↑
Text-to-Image Generation Models

DALLE-2 [61] 6.5B 0.94 0.66 0.49 0.77 0.10 0.19 0.52
DALLE-3[4] - 0.96 0.87 0.47 0.83 0.43 0.45 0.67
Emu3 [80] 8B 0.98 0.71 0.34 0.81 0.17 0.21 0.54
SDXL [57] 2.6B 0.98 0.74 0.39 0.85 0.15 0.23 0.55
SimpleAR [76] 1.5B - 0.90 - - 0.28 0.45 0.63
Infinity [21] 2B - 0.85 - - 0.49 0.57 0.73

Unified MLLMs

Show-o [87] 1.3B 0.95 0.52 0.49 0.82 0.11 0.28 0.53
Janus [84] 1.3B 0.97 0.68 0.30 0.84 0.46 0.42 0.61
Janus-Pro [9] 1.5B 0.98 0.82 0.51 0.89 0.65 0.56 0.73
ILLUME [74] 7B 0.99 0.86 0.45 0.71 0.39 0.28 0.61
UniToken [29] 7B 0.99 0.80 0.35 0.84 0.38 0.39 0.63
VARGPT-v1.1 [107] 9B 0.96 0.53 0.48 0.83 0.13 0.21 0.53
TokenFlow-XL [58] 13B 0.93 0.72 0.45 0.82 0.45 0.42 0.63
UniGen 1.5B 1.00 0.92 0.68 0.87 0.48 0.52 0.74
UniGen + CoT-V 1.5B 1.00 0.94 0.78 0.87 0.57 0.54 0.78

Table 16: Comparison with state-of-the-art models on the DPG-bench benchmark.

Model #Params Global Entity Attribute Relation Other Overall↑
Text-to-Image Generation Models

Hunyuan-DiT [37] - 84.59 80.59 88.01 74.36 86.41 78.87
DALLE-3[4] - 90.97 89.61 88.39 90.58 89.83 83.50
Emu3 [80] 8B 85.21 86.68 86.84 90.22 83.15 80.60
SDXL [57] 2.6B 83.27 82.43 80.91 86.76 80.41 74.65
SimpleAR [76] 1.5B 87.97 - - 88.33 - 81.97
Infinity [21] 2B 93.11 - - 90.76 - 83.46

Unified MLLMs

Show-o* [87] 1.3B 80.39 80.94 82.17 83.36 82.88 71.70
Janus [84] 1.3B 82.33 87.38 87.70 85.46 86.41 79.68
Janus-Pro [9] 1.5B 87.58 88.63 88.17 88.98 88.30 82.63
VARGPT-v1.1 [107] 9B 84.83 82.80 84.95 88.13 87.70 78.59
TokenFlow-XL [58] 13B 78.72 79.22 81.29 85.22 71.20 73.38
UniGen 1.5B 91.53 90.39 90.30 91.09 90.86 84.89
UniGen + CoT-V 1.5B 91.95 89.68 90.90 92.04 90.91 85.19

D Details of Test-Time Strategies
D.0.1 Prompts of different verifications for test-time inference

Prompt. 1: Chain-of-Thought Verification

{image} This image is generated by a prompt: {prompt}. Please assess the image generation
quality step by step. First, breakdown the prompt into multiple visual questions and iteratively
answer each question with Yes or No between <think_start> <think_end>. Questions should
cover all-round details about whether the image accurately represents entity categories,
counting of entities, color, spatial relationship in the prompt. Next, output the final result
between <answer_start> <answer_end>. Output Yes if all multi-choice answers equal yes to
show the image has accurate alignment with the prompt. Otherwise answer with No.
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Prompt. 2: Outcome Verification

{image} This image is generated by a prompt: {prompt}. Does this image accurately represent
the prompt? Please answer yes or no.

Prompt. 3: Rule-based Verification

{image} {question} Please answer yes or no with detail explanation.

E Details of Training

Table 17: Hyperparameter setup for different training stages of UniGen. Data ratio refers to the
ratio of image understanding data, pure text data, and image generation data.

Hyperparameters PT-1 PT-2 SFT DPO CoT-V Post-Training
Learning rate 1.0× 10−4 1.0× 10−4 1.0× 10−3 1.0× 10−5 1.0× 10−5

LR scheduler Cosine Cosine Cosine Cosine Cosine
Weight decay 0.01 0.01 0.05 0.05 0.05
Gradient clip 1.0 1.0 1.0 1.0 1.0
Optimizer AdamW AdamW AdamW AdamW AdamW
Warm-up steps 6000 5000 1000 500 0
Training steps 150k 400k 146k 1.6k 0.5k
H100 hours 1.0k 2.8k 240 5 0.7
Batch size 896 512 64 80 64
Data ratio 2:1:4 2:1:4 4:1:3 -:-:1 1:-:-

E.0.1 Training Parameters

Details of hyperparameters during each training stage are presented in Table 17.

E.0.2 Training Data Overview

We list the datasets used in our training stages in Table 18. Refer to Appendix E.0.4 and Ap-
pendix E.0.5 for more details about the preference data and CoT-V data.

E.0.3 Prompts for Generating Pre-Train Data

We use Prompt. 4 to prompt Qwen2.5VL-7B for generating fine-grained captions for CC-3M, CC-
12M, SA-1B and ImageNet that are used in pre-training stages as shown in Table 18.

Prompt. 4: Re-caption

{image} What is the content of this image?

E.0.4 Preference Data Generation for DPO

PARM. GENEVAL metric is used to rate each generated image candidate per prompt. The highest
and lowest rated ones are used as the preferred and rejected samples for this prompt.

T2I-Comp and SA-1B. These prompts are more complex than the prompts of PARM, therefore, it
is difficult to rate each generated image using rule-based metrics. We adopt a two-step approach to
evaluate the coherence between an image and the prompt. First, we use Qwen2.5-7B to decompose
each text prompt into atomic facts represented as questions using Prompt. 5. Then, the image with
each decomposed question is fed into Qwen2.5VL-7B with Prompt. 6. The model responds with
yes if visual generation passes the fact-check and with no otherwise. The final score of an image is
calculated by averaging the results of all fact-checks. We take the most and least aligned images per
prompt as the preferred and rejected sample pairs.
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Prompt. 5: Visual Questions Generation

Now you need to convert an image description into fine-grained, related visual questions. The
questions should comprehensively cover detailed visual facts of entities, attributes (e.g., color,
count, texture, shape, and size), and relationships (e.g., spatial and non-spatial) between the
entities mentioned in the description. Please complete the task by analyzing each clause in
the sentence step by step. For each clause, first raise questions about whether each mentioned
entity exists in the image. Then, raise questions about whether the attributes or relationships
of the entities are accurately represented in the image. For an image accurately aligned
with the description, all questions should be answered with “yes”; otherwise, they should be
answered with “no”.
Make sure all questions are able to be responded with yes or no and are connected with
semicolon. Here are examples:
Example 1:

description: three black keys, four chickens and a fabric blanket
output: Are there keys?; Are there three keys?; Are the keys black?; Are there chickens?;

Are there four chickens?; Is there a blanket?; Is the blanket fabric?
Example 2:

description: A person in a blue shirt and red and black apron is using a power tool, likely
a drill, to assemble a white cabinet or shelving unit indoors. The floor is covered with
light-colored wood or laminate material.

output: Is there a person?; Is the person wearing a shirt; Is the shirt blue?; Is the person
wearing a apron?; Is the apron red and black?; Is the person using a drill?; Is there a white
cabinet or shelving unit?; Is the person using the drill indoors?; Is there light-colored wood
on the floor?; Is there laminate material on the floor?
Example 3:

description: a large Ferris wheel with a digital clock showing the time as 11:00. The Ferris
wheel is located in an urban area, as indicated by the modern buildings in the background.
There is also a tree on the left side of the image, partially obscuring the view of the Ferris
wheel. The sky appears clear, suggesting a sunny day.

output: Is there a Ferris wheel?; Is there a digital clock?; Is the digital clock on the Ferris
wheel?; Is the digital clock showing the time as 11:00?; Is the Ferris wheel located in an
urban area?; Are there modern buildings in the background?; Is there a tree on the left side?;
Is the sky clear and sunny?
Please convert this image description:{description}into fine-grained related visual questions.

Prompt. 6: Visual Fact-Check

{image} {question} Please answer yes or no without explanation.

We display some visual results of DPO preference data in Fig. 6.

Table 18: Training data overview. CC, SA, IMN, JD, T2I indicate CC-3M&CC-12M, SA-1B,
ImageNet, JourneyDB, text-2-image-2M, respectively. Recap denotes that the images are re-captioned
using Qwen2.5VL-7B.

Stage Gen Data Und Data Text-only

PT-1 IMN (Recap) (CC+SA+IMN) (Recap) RefinedWeb
PT-2 (CC+SA+IMN) (Recap) (CC+SA+IMN) (Recap) RefinedWeb
SFT JD+T2I SF-LLaVA1.5 (Image Mixture) [90] RefinedWeb
DPO Preference Data – –
CoT-V – CoT-V data –

E.0.5 CoT-V Post-Training Data

We sample 20K preference data from PARM and T2I-Comp in Appendix E.0.4 to construct our CoT-V
post-train data and use Prompt. 1 to encourage UniGen to generate CoT reasoning during training.
To supervise the training process, we construct the CoT reasoning labels based on decomposed
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Figure 6: Visual examples of our generated preference data for DPO training.

atomic question-answer pairs corresponding to visual facts presented in the image. For PARM, we
separate each prompt into fine-grained sub-questions according to the templates originally used for
generating the prompt. Rules of GENEVAL are used to label each sub-question corresponding to the
image with yes or no. For T2I-Comp, we directly use the decomposed question-answers from the
preference data. The final answer is yes if all the sub-questions are answered with yes and it is no
otherwise. To form the CoT label, the separated question-answers are treated as a thinking process
enclosed within special tokens <think_start><think_end>, and the final answer resides within
<answer_start><answer_end>.

F More Qualitative Results

Figure 7: Successful examples and CoT-V verification on GENEVAL.

29



Figure 8: Successful examples and CoT-V verification on DPG-BENCH.

Figure 9: Failure cases on GENEVAL and DPG-BENCH. The top half of the image shows failed
examples of CoT-V on short prompts. The bottom half of the image shows additional cases with bad
or missing questions when CoT-V parses the complicated and long prompts.

We present qualitative results in Fig. 7 and Fig. 8. They indicate CoT-V’s effectiveness on selecting
images that accurately convey the entities, color, counting and spatial relation. However, as failure
cases shown in Fig. 9, CoT-V may struggle with hallucination in more difficult cases. Particularly,
we acknowledge that UniGen still falls short of generating an accurate reasoning process given
free-form complex prompts. We posit that scaling up the model size or improving our CoT training
via reinforcement learning algorithms could improve the capability of reasoning and image generation,
and consequently enhance the overall performance of CoT-V .
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