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ABSTRACT

Explaining the characteristics of patients with an unusual disease mortality can be
an important tool to a clinician to understand and treat diseases. More generally,
our goal is to find subsets of the data where the distribution of the target property—
e.g. patient survivability— differs. The discovered subset must also defined by a
human-interpretable rule over some given descriptive features. However, previous
methods typically constrain the property of interest to be a scalar, which must also
follow some standard distribution. Additionally, they require a prohibitive com-
putational complexity for larger number of features, while, invariably, applying
them on numerical features requires their a-priori discretisation.
To this end, we propose SYFLOW, a method which leverages the flexibility of nor-
malising flows to learn any distribution that the property of interest may follow.
With this, we then quantify the KL-divergence of this distribution in the discov-
ered subset, thus yielding an objective that can be directly optimised all the way
back to learnable feature weights. These, in turn, result in interpretable descrip-
tions like “Patients with heart disease and blood cholesterol above 243mg/dL”.
When applied on established real-world datasets, SYFLOW provides easily inter-
pretable descriptions in a fraction of the times of state-of-the-art methods, and
seamlessly extends onto multi-variate target properties, such as images. In evalu-
ating on synthetic datasets, we also outperform the competition, when the target
property does not follow a simple distribution. In general, SYFLOW enables to
find notable trends in their data in a wide range of applications.

1 INTRODUCTION

Let us momentarily step into the shoes of a researcher that has just come across a novel dataset and
tries to understand its inner workings. The, typically, numerous entries of the dataset necessitate
automated tools that can shed light on its particularities. However, even though a multitude of
machine learning methods exist to model the global distribution over all available entries, it is often
important to be able to find only a subset of them: one that behave differently—a task that global
methods have been shown to easily overlook (Kalofolias, 2023).

For instance, when we study patient medical data it becomes important to know which of the patients
have an atypical disease progression: vulnerable minorities (Zeberg & Pääbo, 2020) could receive
additional support from the state or more resilient ones could reveal relevant biomarkers that can
help combat the disease (Goossens et al., 2015; Beigel et al., 2020). In sociology, local deviation
of welfare metrics can pinpoint disadvantaged demographic groups (Boll & Lagemann, 2019; Ortiz
& Cummins, 2011), while in materials science it is of core importance to find a combination of
properties that single out a collection of desirable materials (Sutton et al., 2020). Especially, in such
applications the number of features can easily exceed the thousands, while, for instance, when it
comes to omics processing and the analysis of the respective data, the number of candidate properties
easily reaches the order of tens of thousands or more. Yet, only a handful of mutations may be
enough to single out a small set of drug-resistant species. Importantly, the very same tools can also
aid any user of black box machine learning models, when we need to scrutinise the model for any
subset of the data where it behaves differently—be it with a lower accuracy on a local, difficult
subset of the data, or, before it is used on individuals, a set of them on which it could introduce
demographic disparity (Zachary Izzo & Zou, 2023).
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In the common denominator of all aforementioned applications lies a need to present the relevant
discoveries to a human end-user. In other words, not only do we require that we discover subsets with
exceptional behavior, but also, and above all, that they can clearly be interpreted by the respective
audience. These two conditions, together, give rise to the task of subgroup discovery: the discovery
of a simple description that corresponds to a subset in the data, in which some property of interest
behaves locally exceptionally when contrasted to the entire dataset. Typically, such a description is
adopted to be a simple conjunction of predicates, each of which is based on the available features of
the entities under study. For instance, when the property of interest is such a description for medical
patients could be of the kind: “Patients with heart disease and blood cholesterol above 243mg/dL”.

In its history of more than three decades (Klösgen, 1996), several approaches have been proposed
for subgroup discovery (Atzmueller, 2015). However, they have arguably not kept up with the re-
cent advances in machine learning, which involve not only a large number of features, but also the
use of arbitrary distributions that must be directly learned from the data. Indeed, most previous
methods assume that the property of interest follows a standard distribution, for instance a normal
or a binomial, and is typically limited on only scalar properties. Other works use a proxy instead of
learning the distribution of the property of interest, which renders their results less intuitive. Addi-
tionally, typical solutions only approach this task from the standpoint of combinatorial optimisation,
which often takes a significant toll on the required run times, especially when it comes to the exact
optimisation of the respective objectives. As a result of the combinatorial explosion of the search
space as the number of predicates increases, before any of the previous methods can be applied on
continuous features, it requires a quantisation of the features into a few simple predicates each. As
we show, this quantisation can greatly reduce the quality of the results.

Hence, we focus in the usual case of continuous features, and break with the combinatorial treatment
of this task, whatsoever. Instead, we derive a differentiable objective, which allows us to directly
learn the distribution of the target property in the dataset by fitting a normalising flow (Rezende
& Mohamed, 2015). We also use a soft rule to describe candidate subgroups, which depends on
a learnable lower and an upper bound per feature. Thus, as we tune these bounds for each feature
during optimisation, we consider all possible simple predicates per feature, out of which in previous
methods only a few were available after the quantisation step. These two components work in
tandem, to be able to detect possible deviations in the global distribution of our property of interest,
while at the same time adjusting the soft rule into a ever crisper rule, that in the end results in an
explicit, human-interpretable rule.

A key characteristic of our method is its scalability, when contrasted with exact methods. This fact
is largely due to using a differentiable optimisation objective for this task, which allows the fast
convergence to a good local optimum. In addition, as this enables us to use the mature stochastic op-
timisation machinery, we can benefit also from the existence of highly optimised hardware for such
computations; for instance, our algorithm can readily be offloaded to multiple graphics processing
unit cores, in parallel.
Overall, the main advantages of our method, SYFLOW, can be summarised in its ability

(i) to differentiate between arbitrary distributions for the target property within the subgroup,
(ii) to search over all predicates generated from each feature, avoiding their quantisation, and

(iii) to scale readily to orders of magnitude larger datasets, even in terms of number of features.

2 PRELIMINARIES

We consider a dataset of n pairs (x, y), where x ∈ Rp is a real-valued feature vector and y ∈ Y a
property of interest, the target property. Our goal is to find rules over the values of x that specify
such a subset of the dataset, in which the distribution of the target property y differs from that of
the entire dataset. As a rule we consider a Boolean-valued function σ : Rp → {0, 1}, which
specifies whether a pair belongs to the subset or not. The rules we consider take the form σ :
x 7→ ∧pi=1π(xi;αi, βi), i.e., they are the conjunction of one predicate per feature. The predicates,
themselves, are Boolean-valued functions π : x ∈ R 7→ 1{α < x < β}, which are true when the
value of the specific feature lies in the interval (α, β). Here, we used the indicator function 1{·},
which yields 1 (true) whenever the condition · is true, and 0 (false), otherwise. We hence call a
subgroup any subset of the dataset that can be formed by applying one of our rules over it. This
implies that a subgroup is thus endowed with a human-interpretable description. For instance, in
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a dataset of patients with the two features age and weight, the rule π(x1; 13, 19) ∧ π(x2; 80, 100)
defines the subgroup “teenager patients with weight between 80 and 100”.

From a statistical perspective, we assume that (x, y) is a realisation of a pair of random variables
(X, Y ) ∼ P (X, Y ). We further introduce a binary random variable S ∈ {0, 1} that denotes mem-
bership to a subgroup whenever S = 1. Hence, we seek for a rule that, among other criteria,
maximises a measure of dissimilarity between the distributions P (Y ) and P (Y |S = 1). Here, for
random variables we use capital symbols, for their densities a small p, and for their laws a capital P .

3 A DIFFERENTIABLE OBJECTIVE FOR EXCEPTIONAL SUBGROUPS

We here formalise our goal into a differentiable objective that can be optimised within the framework
of stochastic gradient descent. At the core of this objective lie two key components: 1) a measure
of dissimilarity between the two distributions pY |S=1 and pY , which depends on 2) a differentiable
estimation of the subgroup membership probability s(x) ≈ P (S = 1|X = x). In the following we
present these parts and we finally compose them into our complete objective.

3.1 DIFFERENTIABLE RULE INDUCTION

For the sake of differentiability, instead of modelling the subgroup membership σ, we instead model
its probability. That is, from the statistical inference perspective, we assume that S|X = x ∼
Bernoulli

(
σ(x;α, β)

)
, for α, β ∈ Rp; we then seek α̂, β̂ ∈ Rp so that s(x; α̂, β̂) ≈ σ(x;α, β).

To compose a model for s we follow the derivation of the crisp membership function σ, replacing
each part with an appropriate continuous analogue; we further do so in a way that allows the deriva-
tion of a clear description from the parameters of the function s after its learning. We hence need to
provide such analogues for 1) the per-feature predicates π(x;α, β) and 2) their conjunction. Due to
the logical reasoning in our task, we use concepts from differentiable rule learning (see Sec. 4.1).

Hence, as a differentiable analogue to the per-feature predicate we adopt the soft-binning function
introduced by Yang et al. (2018), which in its original form uses an one-hot bin encoding. For our
needs we adapt it to use a lower and upper bound α, β ∈ R, as well as a temperature parameter t > 0
that controls the binning steepness. Thus, to each feature we associate the soft-binning predicate

π(xi;αi, βi, t) =
exp (2xi − αi)

1/t

exp (xi)
1/t

+ exp (2xi − αi)
1/t

+ exp (3xi − αi − βi)
1/t

. (1)

Importantly, in the limit as t→ 0 each soft-binning predicate converges to a crisp thresholding rule.

Theorem 1 Given its lower and upper bounds αi, βi ∈ R, the soft-binning predicate of Eq. (1)
applied on x ∈ R converges to the crisp rule function that decides whether x ∈ (α, β),

lim
t→0

π̂(xi;αi, βi, t) =


1 if αi < xi < βi

0.5 ifxi = αi ∨ xi = βi

0 else
.

We provide the full proof for the general case with M bins in the Appendix B.

The soft-binning predicate provides a differentiable, adaptable binning function from which we
construct the fuzzy predicate π̂. The rule function σ(x) is a logical conjunction of all fuzzy pred-
icates.To avoid the problem of vanishing gradients when utilizing a multiplication to model the
logical conjunction, we instead propose to utilize the harmonic meanM(x) = p∑p

i=1 π̂(xi;αi,βi,t)−1

to model the logical conjunction. The harmonic mean behaves as desired for strictly binary predi-
cates, i.e. ∃π̂(xi;αi, βi, t) = 0 ⇒ M(x) = 0 and ∀π̂(xi;αi, βi, t) = 1 ⇒ M(x) = 1. Still, for
high dimensional feature spaces X , the harmonic mean may struggle when given many fuzzy predi-
cates π̂(xi;αi, βi, t). Hence, we use the weighted harmonic mean to model the logical conjunction,
and define the fuzzy logical-conjunction as

s(x;α, β, a, t) =

∑p
i=1 ai∑p

i=1 aiπ̂(xi;αi, βi, t)−1
.
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The weights a ∈ Rp, which are constrained to be positive through a ReLU function, allow the
conjunction layer to disable unnecessary predicates. The weights do not affect behavior for strictly
binary predicates, wherever ai > 0. In practice, we observe that the proposed conjunction s finds
good rules for both large logical conjunctions as well as large dimensionality p of the data.

3.2 DENSITY ESTIMATION WITH NORMALISING FLOWS

Besides a differential rule function, our method requires an accurate density estimation of the tar-
get variable in the subgroup and in general. For this, we adopt Normalising Flows, an increasingly
popular class of density estimators (Papamakarios et al., 2021). The fundamental idea behind Nor-
malising Flows is to start with a distribution with a known density function, such as a Gaussian
distribution with pN , and fit an invertible function f to transform it onto the target density function.

The normalising flow architecture of our choice are Neural Spline Flows (Durkan et al., 2019), which
use expressive yet invertible piece-wise, polynomial spline functions, although SYFLOW allows to
seamlessly use any other normalising flow architecture, depending on the input domain. In general,
the idea is to train the function f so that pY ≈ f(pN ). Given a sample y, we can compute the
likelihood of that point under the current function f as pf(N)(y) = pN (f−1(y))|det

(
δf−1(y)

δy

)
|.

Thus, given a sample of P (Y ), we can maximise the likelihood of pf(N)(y) and hence fit pf(N) ≈ pY .

3.3 MEASURING DISSIMILARITY BETWEEN TARGET DISTRIBUTIONS

Next, we provide a measure of dissimilarity between the target distribution within the subgroup
pY |S=1 and the global target distribution pY , both of which we will model using normalising flows
later on. As a measure of their dissimilarity we adopt the Kullback-Leibler (KL) divergence

DKL (PY |S=1∥PY ) =

∫
y∈Y

pY |S=1(y) log

(
pY |S=1(y)

pY (y)

)
dy . (2)

In Eq. (2), however, the dependency on our subgroup model s does not explicitly appear, which is
needed for its optimisation. To amend this, we rewrite the first occurrence of pY |S=1 in Eq. (2) as

pY |S=1(y) =

∫
x∈Rp

pY |S=1,X(y,x)pX|S=1(x)dx =

∫
x∈Rp

pY |S=1,X(y,x)
pS=1|X(x)pX(x)

P (S = 1)
dx , (3)

where we first used the rules of marginal probability and then that of Bayes. We now first approxi-
mate Eq. (3), and then show how we can estimate the KL divergence of Eq. (2) for its optimisation.

To this end, we first note that the latent subgroup indicator random variable S takes only two discrete
values, depending on whether x belongs to the subgroup or not; we use this to partition the domain of
integration Rp into Rp

∈ := {x ∈ Rp|σ(x) = 1} and Rp
/∈ := {x ∈ Rp|σ(x) = 0}. We next introduce

three reasonable assumptions, under which we can approximate the density pY |S=1 of Eq. (3).

First, we assume that both pX and pY |S=1,X are upper bounded by the finite constants CX > 0 and
CY > 0, respectively. Secondly, we assume that in a subset Rp

/∈⊂ ⊂ Rp
/∈ the membership probability

is negligible and, lastly, that Rp
/∈⊂ covers almost all of the non-membership domain Rp

/∈. Formally,

pX(x) ≤ CX, (4)
pY |S=1,X ≤ CY , (5)

∫
x∈Rp

/∈⊂

pS=1|X(x)dx ≤ ϵ1 , (6)
∫
x∈Rp

/∈\Rp
/∈⊂

pX(x)dx < ϵ2 . (7)

Theorem 2 Under the assumptions of Eq. (4), (5), (6), and (7), it is

pY |S=1(y)−
∫
x∈Rp

∈

pY |S=1,X(y,x) ≤
CY (ϵ2 + CXϵ1)

P (S = 1)
dx .

Further, during learning, this bound becomes tighter until it asymptotically vanishes, assuming a
decreasing annealing schedule for the temperature parameter.

We postpone the proof to Appendix A.
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Using the same assumptions, we further approximate for all x ∈ Rp
∈ the target property conditional

pY |X(y,x) = pY |S=1,X(y,x)pS=1|X(x) + pY |S=0,X(y,x)pS=0|X(x) ≈ pY |S=1,X(y,x), x ∈ Rp
∈ ,

which allows us to approximate the subgroup-conditional target distribution as

pY |S=1(y) =

∫
x∈Rp

∈

pY |S=1,X(y,x)
pS=1|X(x)pX(x)

P (S = 1)
dx ≈

∫
x∈Rp

∈

pY,X(y,x)
pS=1|X(x)

P (S = 1)
dx . (8)

Finally, we replace Eq. (8) into Eq. (2) to obtain our final approximation

DKL (PY |S=1∥PY |S=1) =

∫
y∈Y

∫
x∈Rp

∈

pY,X(y,x)
pS=1|X(x)

P (S = 1)
dx log

(
pY |S=1(y)

pY (y)

)
dy .

From this point onward we can use the standard Monte Carlo estimation of this integral, which gives

DKL (PY |S=1∥PY ) ≈
1

s̄

n∑
k=1

s(x(k)) log

(
pY |S=1(y

(k))

pY (y(k))

)
,

where pY and pY |S=1 stand for the models trained from the normalising flows, s is our subgroup
membership model (see Sec. 3.1) and s̄ is estimated as 1

n

∑n
i=1 s(x

(i)).

3.4 RULE GENERALITY

Lastly, we deal with some fine tuning of our main objective. We observe that only maximising our
measure of statistical dissimilarity does not necessarily lead to general rules. In fact, we could easily
craft a small subgroup consisting of the most deviating sample on its own, defined by a rule with
a very narrow scope and relatively low value. In light of this, we employ a common technique in
subgroup discovery (Boley et al., 2017) in order to steer the results of the optimisation toward larger
subgroups: we multiply the statistic of dissimilarity with the size of the subgroup s̄γ . The power γ
tunes the trade-off in the importance between the two factors.

Hence, summarising all the above, we obtain as our final objective our variant of the size-corrected
KL (van Leeuwen & Knobbe, 2011)

DWKL (PY |S=1∥PY ) = s̄γD̂KL (PY |S=1∥PY ) . (9)

3.5 FULL MODEL

In the previous sections, we have detailed our rule learning architecture with differentiable thresh-
olding and aggregation (Sec. 3.1), how to use Neural Spline Flows to obtain non-parametric density
estimates (Sec. 3.2), and finally derived Objective (9), a size aware Kullback-Leibler Divergence
that allows us to optimize our rule function s(x) with gradient descent. From these components,
we build our new architecture for Subgroup discovery with neuro-sYmbolic guided normalizing
FLOWs, or short SYFLOW. Given a dataset {(x(k), y(k))} ∼ P (X, Y )

N
k=1, SYFLOW undergoes the

following three steps for each sample (x(k), y(k)):

1. Feature Thresholding: Initially, all continuous features x
(k)
i are thresholded using the soft-

binning function described in Theorem 1 with learned parameters αi and βi. This operation yields
a fuzzy predicate vector π̂(x(k);α, β, t) ∈ [0, 1]p.

2. Subgroup Rule: Subsequently, our rule learner employs weights ai to combine the individual
predicates πi(x

(k)
i ) into a rule s(x;α, β, a, t) using the harmonic mean. This rule represents the

probability of x(k) pS=1|x(x
(k)) and is used to compute the KL-Divergence.

3. Distribution Difference: Lastly, we estimate the likelihood of pY(y
(k)) and pY|S=1(y

(k)) with
two separately fitted normalising flow models. Then, according to Objective (9), we can estimate
the KL-Divergence between the current subgroup and the general distribution.

By repeating the aforementioned steps over all samples (x(k), y(k)) and summing up the results,
Objective (9) gives us a differentiable estimate of the KL-Divergence in regards to the subgroup
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rule s(x). We optimize s(x) using standard gradient descent techniques with the Adam optimizer
(Kingma & Ba, 2015). After the subgroup rule has been updated, we again update the normalising
flow of the subgroups density as described in Sec. 3.2, and repeat this process for a user-specified
amount of epochs. During the training, we gradually decrease the temperature t by a pre-determined
schedule to obtain increasingly crisp subgroup assignments. Finally, at the last epoch, the discovered
subgroup is then the output of the subgroup rule s(x). We provide a diagram overviewing and the
pseudo-code for SYFLOW in the Appendix E.

4 RELATED WORK

For subgroup discovery (Klösgen, 1996) many approaches have been proposed over the years. These
can largely be classified along two properties: their optimisation scheme and their subgroup quality
measure. When it comes to the optimisation, the majority of methods follow a combinatorial treat-
ment (Helal, 2016) and either use exact search (Atzmueller & Puppe, 2006) or are content with a
locally optimal subgroup (Duivesteijn et al., 2016). However, despite any benefits of exact methods,
since this task is NP-hard, these methods rarely scale beyond a few hundred features (Atzmueller
& Puppe, 2006); this also highly depends on the input domain, e.g., whether the features are dis-
crete or continuous. On the other hand, inexact methods, in which SYFLOW also belongs, can be
applied on practical real-world settings with little discount in quality (Mandros et al., 2017). Here,
other methods have used beam search and other heuristic combinatorial search variants (Duivesteijn
et al., 2016), which still require a prior quantisation method for any real-valued features. In contrast,
SYFLOW directly learning the per-feature bounds that form the predicates, obviating the need for
quantisation, which leads to substantially improved quality (see Sec. 5.1).

When it comes to the quality measure, we do not treat methods that use subjective measures (Atz-
mueller, 2015), as they lack statistical soundedness and objective interpreetation. Indeed, these
methods employ heuristics to define “subgroup interestingness” using arbitrary metrics of prior
knowledge, like surprisal (Freitas, 1998). We hence focus on objective measures, which are based
on statistical tests (Grosskreutz & Rüping, 2009) or measures of distribution dissimilarity (Song
et al., 2016), on which our method also belongs. Out of these methods, those that perform exact
search are limited on standard distributions such as normal (Friedman & Fisher, 1999; Lavrač et al.,
2004), binomial or χ2 (Grosskreutz & Rüping, 2009), and as we show outperform ours in the quality
of the results, when they can actually terminate. Invariantly, however, these methods are impracti-
cally slow, limit themselves to isolated distributions, and additionally require a quantisation step for
continuous features. Out of those, we compare against both state-of-the-art methods on normal data.

Finally, inexact methods have been proposed toward arbitrary distributions, for which they introduce
a proxy for dissimilarity. One line of work performs exceptional model mining (Duivesteijn et al.,
2016): trains a model in the entire dataset and one within the subgroup; then it assesses dissimilar-
ity by looking at the model weights. This approach lacks statistical interpretation and is prone to
weaknesses of the simple models used. Proença et al. (2022) uses the minimum description length
principle (MDL), which models the data distribution using a particular prior, then uses it as a proxy
for KL-divergence. Although using this prior can be ill adapted to certain distributions, this latter
work still remains the most related method of its kind to ours, and we compare against it. To the best
of our knowledge, there have been no prior works that directly approximate the KL-divergence.

4.1 DIFFERENTIABLE RULE INDUCTION

Large part of our novelty lies in the use of a differentiable approach for our task. From this per-
spective, our work is related to differentiable rule induction methods: these also use a differentiable
objective (Riegel et al., 2020), from which they finally extract a crisp rule (Wang et al., 2020; 2021).

Most related to our approach are works that model the logical operation of conjunctions and
disjunctions with continuous analogues (Riegel et al., 2020; Fischer & Vreeken, 2021). There,
for instance, the logical conjunction has been replaced with various t-norms: the product one,
x ∧ y := xy for the task of knowledge base reasoning (Yang et al., 2017) or that of Lukasiewicz,
x∧ y := max(0, x+ y− 1) for semantic image interpretation (Donadello et al., 2017). In our work
we propose a parameterised soft-multiplication that aims at alleviating the vanishing gradient in the
decision boundary, while allowing for a tunable steepness as training progresses.
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Importantly, other works use a neural architecture to learn the slabs of decision trees from data,
which are then combined into a classification tree (Yang et al., 2018; Shi et al., 2022), that is end-to-
end trained using gradient descent. In our work we adopt the learnable soft-binning technique of the
former mutatis mutandis. All in all, however, our method is unique as it does not aim to learn simple
rules to globally classify or regress a target property, but rather a rule that describes a subgroup with
deviating distribution. This, to the best of our knowledge, is a novel contribution.

5 EXPERIMENTS

We evaluate SYFLOW against four state-of-the-art methods on synthetic and real-world data.
We compare against Primp (PRIMP, Friedman & Fisher, 1999), subgroup discovery using mean
shift (SD-µ, Lemmerich & Becker, 2018), subgroup discovery using KL-divergence (SD-KL, Lem-
merich & Becker, 2018) and Robust Subgroup Discovery (RSD, Proença et al., 2022).

5.1 SYNTHETIC DATA

To evaluate our methods on datasets with known ground truth we generate synthetic data. We
conduct three experiments. First, we study the efficacy of the differentiable feature thresholding. In
the second experiment we analyse the robustness towards various target distributions, and then we
investigate the scalability of our methods regarding the number of features that the planted predicate
spans, as well as the number of samples that it affects. As an evaluation measure we use the F1-score
in terms of sample overlap between the discovered subgroup and the planted one as ground truth.

In all three experiments we start with an empty data matrix with 20000 rows and p features. We
sample uniformly from an p dimensional cube with side length 1, i.e., X ∼ U(0, 1)p. The target Y
is initially sampled from U(0, 1). For the subgroup predicate we first sample fp features and then
sample per feature an interval, such that the hypercube described by the predicate has volume 0.2.

Feature Thresholding Here, we fix the number of features at p = 100 and the length of the sub-
group predicate at fp = 4. In this experiment we only compare against SD-µ, which is the best com-
peting method for such data, and we vary the number of its cutpoints cp ∈ {2, 5, 10, 20, 30, 40, 50}.
As we can see in Figure 1b, as the number of cutpoints increase, the F1-score of SD-µ rapidly
improves. However, only after cp = 40 does it achieve a slightly higher F1-score than SYFLOW.
At the same time, as the number of cutpoints increases, the needed runtime increases rapidly (cf.
Figure 1c). In particular, the runtime of SD-µ is ∼ 50 times higher than that of SYFLOW.

Complex Target Distributions Similar to the first experiment, we use 100 features p and set
the subgroup predicate at a length of fp = 4. We run experiments with five different target sub-
group distributions for P(Y |S = 1), namely a GaussianN (1, 0.5), a bi-modal mixture of Gaussians
0.5 · N (−1.5, 0.5) + 0.5 · N (1.5, 0.5), a beta distribution B(0.2, 0.2), which we scaled by 1.2, an
exponential distribution Exp(0.5) and a uniform one U(0.5, 1.5).
We present our results in Figure 1a; Here, we see that for distributions that are well characterized
by their first moment, i.e., the uniform and normal distribution, SD-µ achieves a slightly higher F1-
score than SYFLOW. In contrast, for more complex distributions, such as the bi-modal mixture of
Gaussians or the exponential one, all methods except SYFLOW fail to recover subgroups. Moreover,
the performance of SYFLOW is stable across all target distributions.

Scalability In the final experiment we vary both the number of features f ∈ {10, 50, 100, 250, 500,
750, 1000}, and the number of features used by the subgroup predicate fp ∈ {4, 10}. The distribu-
tion in the subgroup now always follows a uniform distribution P(Y |S = 1) = U(0.5, 1.5). The
experiments are terminated after 24 hours. We present our results in Figure 2.

We observe that SYFLOW is significantly faster than all of its competitors, e.g., SD-µ takes 50 times
longer to finish, while RSD could not finish already for more than 100 features. As expected, SD-µ
achieves the highest F1-score, since the mean is a sufficient statistic to assess the difference between
two uniform distributions. However, we significantly outperform all other competitors.
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Figure 1: Subgroup Predictive Capacity. Method comparison in terms of F1-score against planted
subgroup. Across different distributions: (a) SYFLOW outperforms the competition when these
have higher order moments. Effect of number of cutpoints: as we allow more cutpoints on SD-µ,
it outperforms SYFLOW (b) after 40; however, it already becomes significantly slower after just 5
cutpoints, while to achieve similar performance to SYFLOW it requires 50 times longer (c).

200 400 600 8001,0
00

101

102

103

Number of features |m|

Ti
m

e
(s

)

SYFLOW PRIMP RSD SD-KL SD-µ

(a) Time in s

200 400 600 8001,0
00

0.2
0.4
0.6
0.8
1

Number of features |m|

F1
-s

co
re

(b) F1-score for fp = 4

200 400 600 8001,0
00

0.2

0.4

0.6

0.8

1

Number of features |m|
F1

-s
co

re
(c) F1-score for fp = 10

Figure 2: Scalability. In (a), we plot the runtime as the number of features m increases. SYFLOW is
significantly faster than its competitors. In (b) and (c), we plot the F1-score for fp = 4 and fp = 10.

5.2 REAL WORLD DATA

Next, we evaluate SYFLOW on 6 datasets from the UCI-Machine Learning Repository 1, all datasets
of which are typically used for regression and data analysis tasks (Heskes et al., 2020; Wang et al.,
2021; Heskes et al., 2020; Cortez et al., 2009). We study the same competitors as before. Since
on real life datasets we have no access to ground truth subgroups, we report the size-corrected KL-
divergence (SC-KL) of Eq. (9) between the found subgroup distribution and the overall population
distribution, normalised by the size of the subgroup. In other words, we measure how dissimilar the
distribution of the subgroup is, adjusted by its size. The results can be seen in Table 3a.

We can see that across all datasets, SYFLOW reliably finds subgroups whose target property dis-
tributions diverge from the overall one. That is, SYFLOW is either superior to or on par with its
competitors in this metric. For instance, in the Wages dataset, SYFLOW significantly outperforms
all other methods: as we see in Fig. 3b, the wage distribution resembles an exponential one, which
justifies our superiority to other methods, in accordance with our earlier discoveries in Sec. 5.1.

5.3 CHARACTERIZING CLASSIFICATION ERRORS

Lastly, we perform a qualitative evaluation of SYFLOW by generating insight about the predictive
accuracy of a classifier. We base our analysis on a Covid-19 ICU mortality dataset (Lambert et al.,
2022) and train a random forest model for binary classification. On a separate test set, we take the
predicted probabilities and compute the element-wise cross entropy to the ground truth labels as
target variable Y . Our goal is to reveal demographic groups that our model is (not) able to handle
especially well. The remaining biomarkers, which includes age, sex and pre-existing conditions, are
used as the descriptive features X.

1https://archive.ics.uci.edu/
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Dataset SYFLOW PRIMP RSD SD-KL SD-µ

wine 0.03 0.0 0.02 0.01 0.02
insurance 0.21 0.0 0.09 0.16 0.14
wages 0.12 0.0 0.02 0.03 0.03
mpg 0.24 0.07 0.22 0.32 0.26
life 0.22 0.09 0.06 0.23 0.22
bike 0.18 0.05 0.18 0.06 0.15

Avg. Rank 1.5 4.8 3 2.5 2.2

(a) Qualitative results for real world.
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Figure 3: Real world. In the Table we show, the results on various real-life datasets taken from the
UCI-Machine Learning Repository. We report size corrected KL-divergence of the found subgroup
and overall population. SYFLOW reliably finds subgroups that diverge from overall distribution.
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Figure 4: Covid-19 mortality prediction. The classifier predicts correctly for young surviving pa-
tients (left). Accounting for age, the model classifies patients with both diabetes and heart failure
more accurately (middle), and when they suffer from diabetes and coronary artery disease (right).

First, SYFLOW finds the subgroup characterized by the rule 16.5 < Age < 33. In fact, in this
subgroup, the model predicts for younger people both confidently and correctly that they survive.
This is reflected in the distribution of pY |S=1 with most of the probability mass in the low error
region, displayed in Fig. 4a. This trend however is hardly surprising, but thanks to SYFLOW’s
flexibility, we instead opt to integrate age as a second variable into our analysis and re-run SYFLOW
on the joint distribution of age and cross entropy.

Now, we find two main subgroups: “patients with both diabetes as well as a history of congestive
heart failure” (Fig. 4b), and “patients with high blood fat (hyperlipidemia) and coronary artery
disease” (Fig. 4c). In both cases, the model makes fewer errors, as in both subgroups significant risk
factors for Covid-19 are known.

In principle, SYFLOW is applicable to any target domain with arbitrary dimensionality. In Ap-
pendix D we showcase a further example of SYFLOW’s scalability by using images as target quan-
tities y, where we discover subgroups that correspond to different classes of objects. Overall, the
empirical evaluation demonstrates that SYFLOW characterizes subgroups with exceptional distribu-
tions in the widest range of settings, in terms of both speed and accuracy.

6 CONCLUSION

We proposed SYFLOW, an approach to discover locally optimal subgroups from a dataset, in which
the distribution of the target property has a deviating distribution from that of the entire dataset. Our
learned model consists of a component that approximates the membership probability of a sample
in the subgroup and two normalising flows that gives the distribution of the target property in the
dataset and subgroup, respectively. Importantly, the architecture of the membership probability
model is chosen so as to allow the extraction of crisp, interpretable rules that define the subgroup.
In experiments we show that our method is superior to the state of the art in at least scalability or
predictive capacity for any of a large variety of target property distributions and number of features.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Martin Atzmueller. Subgroup discovery. Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 5(1):35–49, 2015.

Martin Atzmueller and Frank Puppe. SD-Map – A Fast Algorithm for Exhaustive Subgroup Discov-
ery. In Knowledge Discovery in Databases: PKDD 2006, pp. 6–17. Springer Berlin Heidelberg,
2006. ISBN 978-3-540-46048-0.

John H Beigel, Kay M Tomashek, Lori E Dodd, Aneesh K Mehta, Barry S Zingman, Andre C Kalil,
Elizabeth Hohmann, Helen Y Chu, Annie Luetkemeyer, Susan Kline, et al. Remdesivir for the
treatment of covid-19. New England Journal of Medicine, 383(19):1813–1826, 2020.

Mario Boley, Bryan R. Goldsmith, Luca M. Ghiringhelli, and Jilles Vreeken. Identifying Consistent
Statements about Numerical Data with Dispersion-Corrected Subgroup Discovery. Data Mining
and Knowledge Discovery, pp. 1391–1418, September 2017.

Christina Boll and Andreas Lagemann. The gender pay gap in eu countries—new evidence based
on eu-ses 2014 data. Intereconomics, 54:101–105, 2019.

Paulo Cortez, Antonio Cerdeira, Fernando Almeida, Telmo Matos, and Jose Reis. Modeling wine
preferences by data mining from physicochemical properties. Decision support systems, 47(4):
547–553, 2009.

Ivan Donadello, Luciano Serafini, and Artur d’Avila Garcez. Logic Tensor Networks for Seman-
tic Image Interpretation. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, pp. 1596–1602. International Joint Conferences on Artificial Intelligence
Organization, August 2017. ISBN 978-0-9992411-0-3.

Wouter Duivesteijn, Ad J. Feelders, and Arno Knobbe. Exceptional Model Mining: Supervised
descriptive local pattern mining with complex target concepts. Data Mining and Knowledge
Discovery, pp. 47–98, January 2016.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. Ad-
vances in Neural Information Processing Systems, 32, 2019.

Jonas Fischer and Jilles Vreeken. Differentiable pattern set mining. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 383–392, 2021.

Alex A. Freitas. On Objective Measures of Rule Surprisingness. In Proceedings of the Second
European Conference on the Principles of Data Mining and Knowledge Discovery (PKDD’98,
pp. 1–9. Springer-Verlag, 1998.

Jerome H Friedman and Nicholas I Fisher. Bump hunting in high-dimensional data. Statistics and
computing, 9(2):123–143, 1999.

Nicolas Goossens, Shigeki Nakagawa, Xiaochen Sun, and Yujin Hoshida. Cancer biomarker dis-
covery and validation. Translational cancer research, 4(3):256, 2015.
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A PROOF OF THEOREM 3

Theorem 3 Under the assumptions of Eq. (4), (5), (6), and (7), it is

pY |S=1(y)−
∫
x∈Rp

∈

pY |S=1,X(y,x) ≤
CY (ϵ2 + CXϵ1)

P (S = 1)
dx .

Further, during learning, this bound becomes tighter until it asymptotically vanishes, assuming a
decreasing annealing schedule for the temperature parameter.

Proof: We first recall that, under our model, pS=1|X(x) = σ(x;α, β) for some α, β ∈ Rn, and is
therefore a smooth function of x. Intuitively, there are two regions of interest within Rp

/∈: one within
which it transitions from the value of almost 1 to that of almost 0, which is the region Rp

/∈ \R
p
/∈⊂, and

a saturation region, where pS=1|x → 0 super-exponentially, which is the region Rp
/∈⊂. The particular

thresholds that define these regions are not important, and any reasonable scheme leads to vanishing
bounds ϵ1, ϵ2.

More formally, using the partitioning of Rn, we can split the integral of Eq. (3) into

pY |S=1(y) =

∫
x∈Rp

∈

pY |S=1,X(y,x)
pS=1|X(x)pX(x)

P (S = 1)
dx+

∫
x∈Rp

/∈

pY |S=1,X(y,x)
pS=1|X(x)pX(x)

P (S = 1)
dx ,

with the goal to upper bound (and hence ignore) the second term, which we consider as an error.
This second term can be now bounded as∫

x∈Rp
/∈

pY |S=1,X(y,x)
pS=1|X(x)pX(x)

P (S = 1)
dx ≤

1

P (S = 1)

∫
x∈Rp

/∈

CY pS=1|X(x)pX(x)dx ≤

CY

P (S = 1)

∫
x∈Rp

/∈\Rp
/∈⊂

pS=1|X(x)︸ ︷︷ ︸
≤1

pX(x)dx+

∫
x∈Rp

/∈⊂

pS=1|X(x) pX(x)︸ ︷︷ ︸
≤CX

dx

 ≤
CY

P (S = 1)

[∫
x∈Rp

/∈\Rp
/∈⊂

pX(x)dx+ CX

∫
x∈Rp

/∈⊂

pS=1|X(x)dx

]
≤

CY (ϵ2 + CXϵ1)

P (S = 1)
,

where pS=1|X ≤ 1 since S is a discrete random variable.

We argue about the second part by claiming that both bounds ϵ1 and ϵ2 vanish during learning.
Indeed, the form s(x)→ pS=1|X(x) satisfies the assumption of Eq. (6) for a steep enough tempera-
ture parameter t, while it is also learning the correct domain Rp

/∈, so that indeed the assumption of
Eq. (7) is satisfied, both with inexorably diminishing bounds ϵ1 and ϵ2, respectively. □

B PROOF OF ASYMPTOTIC CORRECTNESS OF SOFT-BINNING

Proof: Consider a real value xi ∈ R and M sorted bin thresholds βi,j ∈ R, i.e. βi,j < βi,j+1.
From the thresholds βi,j , we construct the bias vector bi ∈ RM+1 defined as

bi = (0,

1∑
j=1

−βi,j , . . . ,

M∑
j=1

−βi,j)
T .

Additionally, we define a weight vector w ∈ RM+1 with wj = j, so that

w = (1, 2, . . . ,M + 1)T .
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The soft-binning result z ∈ [0, 1]M+1 is defined as
z = softmax ((wxi + bi)/t) .

Now, let xi be in the l-th bin, i.e. βi,l−1 < xi < βi,l, then we now firstly prove that ∀j ̸= l : zl > zj .
We do this by showing that the l-th logit z̄l = wlxi+bi,l is the largest and hence also has the highest
softmax activation.

Firstly, note that the bin thresholds are sorted in order, so that for j < l it also holds that βi,j < βi,l.
z̄l is defined as

z̄l = wlxi + bi,l = wlxi −
l−1∑
k=1

βi,k .

We can simply transform z̄l into z̄l−1 by subtracting xi − βi,l−1, so that

z̄l − xi + βi,l = wl−1xi −
l−2∑
k=1

βi,k = z̄l−1 .

Now, as xi is in the l-th bin, we know that βi,l−1 < xi and hence xi − βi,l < 0. For all other j < l
βi,j < xi holds, and hence also z̄l > z̄j .

Now consider the case where j > l. Here, it holds that

z̄l + xi − βi,l+1 = wl+1xi −
l+1∑
k=1

βi,k = z̄l+1 .

In general, we may transform z̄l into z̄j by repeatedly adding xi−βi,k for k ∈ [l+1, . . . , j]. For all
thresholds xi < βi,k holds. Thus, each time we add a strictly negative number to the logit z̄l, which
proves that also here ∀j > l : z̄l > z̄j . Thus, it holds that ∀j ̸= l : z̄l > z̄j

Lastly, it remains to prove that with temperature t→ 0, z is a one-hot bin encoding, i.e. zl = 1 and
∀j ̸= l : zj = 0. The soft-binning of zl is defined as

lim
t→0

zl = lim
t→0

exp(z̄l/t)∑M+1
j=1 exp(z̄j/t)

= lim
t→0

1∑M+1
j=1 exp ((z̄j − z̄l)/t)

.

For j = l, the sum term evaluates to exp(z̄l − z̄l)/t = exp(0) = 1. For j ̸= l, it holds that z̄l > z̄j
as show previously, and hence in the limit

lim
t→0

exp(z̄j − z̄j)/t = exp(−∞) = 0 .

Thus, in the limit t → 0, the denominator sums up to 1 and hence zl = 1, and as the softmax is
positive and sums up to zero, it follows that ∀j ̸= l : zj = 0. □

C LEARNING MULTIPLE NON-REDUNDANT RULES

The final amendment to our objective comes from the desire to discover multiple exceptional sub-
groups. In fact, it is often useful to not only look for just a single subgroup, but instead provide a
collection of them. For instance, there can be multiple interesting demographic groups in the popula-
tion under study, each one describing a different sub-population of interest. However, independently
running our algorithm multiple times, even with a different initialisation, may lead to discovering
either the very same sub-population as before, or even a very similar one.

In other words, running our algorithm multiple times independently could result in a set of sub-
groups that are redundant. Instead, to achieve a redundancy-free set of results we incrementally
run our algorithm multiple times, during each of which we take into consideration all previously
found results. That is, assuming at each invocation that we have previously discovered the set of K
subgroups {S1, . . . , Sk}, we steer the current result away from the distribution of each of them by
imposing an appropriate regulariser. In particular, using once again our adopted measure of statisti-
cal dissimilarity, we regularise our objective with the sum of Kullback-Leibler divergences between
any previous subgroups and the current candidate. Thus, the amended regularised objective becomes

DWKL (pY |S=1∥pY ) + λ
1

K

K∑
i=1

D̂KL

(
pY |S=1

∥∥pY |Si

)
.
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Figure 5: Subgroup discovery on MNIST handwritten digit dataset. We search the distribution of
images Y ∈ [0, 255]14×14 using t-SNE features X . SYFLOW clearly recovers the digits 0 and 1.

D SUBGROUP DISCOVERY ON IMAGE DATA

We consider the setting with a multi-variate target variable Y . Our probabilistic framework seam-
lessly accommodates such a setting. To assess the scalability of SYFLOW in this regard, we utilize
the well known MNIST handwritten digits image dataset (LeCun et al., 2010). In this experiment,
we investigate the distribution of images for the digits zero and one, which we treat as the target
variable Y ∈ [0, 255]14×14. Here, we use the normalising flows to model the distribution of digits,
represented as 196-dimensional vectors.

As descriptive features X , generate correlated two-dimensional features using t-SNE (Van der
Maaten & Hinton, 2008). This allows us to visually evaluate the discovered subgroups by sam-
pling the discovered subgroup distribution, as well as plot the rule as a box in the t-SNE feature
space. SYFLOW now searches the feature space X that thanks to t-SNE contains two distinct clus-
ters for each digit. We show the two discovered subgroup rules s(X;α, β, a, t) and distributions
P (Y |S = 1) in Figure 5. The black boxes represent the thresholds learned by SYFLOW, and show
that SYFLOW ably recovers the subgroups each belonging zero and one respectively. On the left, we
show five samples of the learned distributions P (Y |S0 = 1) and P (Y |S1 = 1). They too resem-
ble the digits zero and one closely, demonstrating that the combination of learning the generating
distribution and simultaneously fitting a rule works.

E ALGORITHM AND HYPERPARAMETERS

In this section, we provide pseudocode and detail the hyper parameters used in the experiments.

Algorithm 1: SYFLOW(X , Y , λ, prior sg flows, n epochs 1, n epochs 2)
1 for i← 1 to n epochs 1 do
2 minimize −pY .log-likelihood(Y );
3 for i← 1 to n epochs 2 do
4 subgroup label← rule learner(X);
5 log p← flow Y.log p(Y );
6 log p sg ← flow Y sg.log p(Y );
7 kl divergence← subgroup label · (log p sg − log p);
8 regularization← zeros(len(Y ));
9 for sg flow in prior sg flows do

10 log p sg 2← sg flow.log p(Y );
11 regularization← regularization+ (log p sg − log p sg 2);
12 loss← −kl divergence− λ · regularization;
13 loss.backwards();
14 classifier.step();
15 update flow Y sg;
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Dataset t γ lrFlow lrπ epochsFlowY
epochsFlowYs

10 0.1 0.6 5× 10−2 5× 10−2 1000 500
50 0.1 0.6 5× 10−2 5× 10−2 1000 500
100 0.1 0.6 5× 10−2 5× 10−2 1000 500
250 0.1 0.6 5× 10−2 5× 10−2 1000 1500
500 0.1 0.6 5× 10−2 5× 10−2 1000 1500
750 0.1 0.8 5× 10−2 5× 10−2 1000 1500
1000 0.1 0.6 5× 10−2 5× 10−2 1000 1500

Table 1: Hyperparameters of SYFLOW for the Scalability experiments.

Dataset t γ lrFlow lrπ epochsFY
epochsFlowYs

wine 0.2 1 5× 10−2 5× 10−2 2000 5000
insurance 0.2 1 5× 10−2 1× 10−2 5000 2000
wages 0.2 1 5× 10−2 1× 10−2 5000 2000
mpg 0.2 1 1× 10−2 1× 10−2 5000 2000
life 0.2 1 1× 10−2 1× 10−2 5000 2000
bike 0.2 1 1× 10−2 1× 10−2 2000 5000

Table 2: Hyperparameters of SYFLOW for the real world experiments in Section 5.2.

F HYPERPARAMETERS FOR EXPERIMENTAL EVALUATION

F.1 SYNTHETIC EXPERIMENTS

Cutpoints We used for SYFLOW the following the following hyperparameters: t = 0.1, γ = 0.8,
lrFlow = 5× 10−2, lrπ = 1× 10−2, epochsFlowY

= 1000 and epochsFlowYs
= 500.

Complex Target Distributions & Scalability For SD-µ, SD-KL and RSD we used the same
hyperparameters for both settings. Since PRIMPhas no hyperparameters, no tuning is required. For
SD-µ and SD-KL, we used 10 cutpoints, a beam width of 100 and maximal exploration depth of
10. Due to runtime issues of RSD we reduced the number of cutpoints to 2 and the beam width
to 50. For SYFLOW, we used in the experiment for different target distributions, the following
hyperparameters: t = 0.1, γ = 0.6, lrFlow = 5× 10−2, lrπ = 1× 10−2, epochsFlowY

= 1500 and
epochsFlowYs

= 1000. The hyperparameters for the scalability experiment are shown in Table 1.

F.2 REAL WORLD DATA & CHARACTERIZING CLASSIFICATION ERRORS

The hyperparameters for the real world experiments conducted in Section 5.2 data can be seen in
Table 2. For the classification errors we used the hyperparameters: t = 0.2, γ = 0.25, lrF =
5× 10−2, lrπ = 1× 10−2, epochsFY

= 1500 and epochsFYs
= 500.

G LIMITATIONS

SYFLOW is a general framework for subgroup discovery, which can be applied to any domain with
a differentiable likelihood. However, there are some limitations to our approach. As of now, our
learned predicates are restricted to a single interval per feature and hence lack expressive power for
scenarios where multiple intervals are required. Rules which are not based on logical conjunctions of
predicates are not supported yet, and interesting to explore in future work. As a neural network based
approach, SYFLOW has a generally higher sample complexity than a classical, mean statistic based
approach as it needs to learn the distribution of the target variable. And finally, the optimisation
process is based on gradient descent so that we can not give any formal guarantee on reaching a
global optimum of the objective, as is the case for most recent machine learning approaches.
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Dataset Method Rule

wine

SYFLOW 0.21 < volatile acidity < 1.28 ∧ 7.87 < alcohol < 10.70

RSD volatile acidity ≥ 0.3 ∧ alcohol < 9.7 ∧ 41.0 ≤ free sulfur dioxide < 51.0
∧ 6.5 ≤ fixed acidity < 7.6 ∧ density ≥ 1.0

SD-KL alcohol < 12.4

SD-µ alcohol ≥ 10.4 ∧ free sulfur dioxide ≥ 15.1 ∧
total sulfur dioxide < 194.9 ∧ density < 1.0

insurance

SYFLOW smoker = 0

RSD bmi ≥ 30.0 ∧ smoker = 1 ∧ age≥ 39.0

SD-KL age < 59.0 ∧ smoker= 0

SD-µ smoker = 1

wages

SYFLOW sex = female ∧ 2.68 < education < 15.42

RSD 64.3 ≤ height < 66.05 ∧ education < 12.0 ∧ 42.0 ≤ age < 63.0

SD-KL education < 17.0

SD-µ height ≥ 63.1 ∧ sex= male ∧ ed≥ 11 ∧ age≥ 27

mpg

SYFLOW 5.76 < cylinders < 9.92 ∧ 187.26 < displacement < 587.84

RSD weight ≥ 3947.5

SD-KL weight ≥ 2809.7 ∧ model-year< 80

SD-µ cylinders = 4.0 ∧ weight < 2809.7

life

SYFLOW
0.31 < Income composition of resources < 1.14

∧ 0 < Adult Mortality < 181.78 ∧ 11.82 < Schooling < 23.99

RSD Income composition of resources ≥ 0.797 ∧ Year < 2003.0

SD-KL HIV/AIDS < 4.5 ∧ Income composition of resources < 0.84
∧ Income composition of resources ≥ 0.56 ∧ Adult Mortality < 253.4

SD-µ HIV/AIDS < 4.5 ∧ Income composition of resources ≥ 0.56
∧ Adult Mortality < 212.0

bike

SYFLOW 1.64 < temp < 17.22

RSD season < 3.0 ∧ atemp < 19

SD-KL temp ≥ 10.66 ∧ atemp ≥ 13

SD-µ mnth ≥ 3 ∧ temp ≥ 17.63 ∧ hum < 0.82

Table 3: Symbolic subgroup descriptions for real life datasets in Section 5.2

H SUBGROUP DESCRIPTIONS

We show in Table 3 examples of subgroups found on the real life datasets. For each method we
select the subgroup with the highest size-corrected KL. Since PRIMPdid not find relevant subgroups
for most datasets, we do not consider it in the table.
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Figure 6: Overview over architecture of SYFLOW. Each feature xi is thresholded with learned
bounds αi and βi and combined into a rule with weights ai (top). In parallel, we estimate the general
likelihood pY (y) and in the subgroup pY |S=1(y) using normalising flows (bottom) and aggregate
them into the KL-Divergence (right).
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